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Probability distribution of the conductance in anisotropic systems
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We investigate the probability distributign(g) of the conductancg in anisotropic two-dimensional sys-
tems. The scaling procedure applicable to mapping the conductance distributions of localized anisotropic
systems to the corresponding isotropic one can be extended to systems at the critical point of the metal-to-
insulator transition. Instead of the squares used for isotropic systems, one should use rectangles for the
anisotropic ones. At the critical point, the ratio of the side lengths must be equal to the square root of the ratio
of the critical values of the quasi-one-dimensional scaling functions. For localized systems, the ratio of the side
lengths must be equal to the ratio of the localization lengths.
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The presence of disordemay allow a system to make a dimensional systems or take into account additional interac-
transition from metallic to insulating behavior by varying the tions (beyond the disorder potentiasuch as spin-orbit
Fermi energy in an energy range where both extended arebupling® Another possibility is the introduction of external
localized states are found, separated by a mobility edgenagnetic fields as, e.g., in integer quantum Hall syst&ors
Characterizing this transition, one can employ transportight-binding models with random magnetic fitkHowever,
properties, such as the conductance, or properties of the sygs a result of Anderson localization, extended states do not
tem’s eigenstates, such as the correlation length for extendegxist in two-dimensional systems of noninteracting electrons
metallic states or the localization length for insulating in a magnetic field, except at a singular energy near the cen-
states. At the mobility edge, a determination of the completder of each of the Landau subbands. At these critical energies
probability distributionp(g) of the conductanceg (in units  E the localization lengtl diverges with a critical exponent
of e?/h) is needed. The critical point of the transition from v: éx|E—E¢| ™"
metallic states to Anderson localized ohés of particular Because significant finite size effects have to be expected,
interest. The distributions are well known to be normal andve decided to concentrate our research on two-dimensional
log-normal off the mobility edge towards the extended andsystems, although the exact form of the critical distribution
the localized regime, respectively, whereas the exact form of the conductance depends on the dimensionality of the
the critical distribution is still under investigatidn®® For  system’ The investigation of the self-averaging quangtjn
example, contrary to expectations, the critical distributioninteger quantum Hall systems yielded very encouraging
seems to vary even within the same universality class, deresultst® supporting the expectation that quantities of aniso-
pending on the boundary conditions perpendicular to the ditropic systems can indeed be mapped to isotropic values by a
rection in which transport occufs® Also, questions about simple rescaling scheme.
the exact form of the largg-tail (g>>1) remain unanswered. In this paper, we show a method of mapping the probabil-
Where calculations in 2 ¢ dimension8 indicate higher cu- ity distributions of the conductance of anisotropic two-
mulants to diverge with system size, leading to a power lawdimensional systems with a magnetic field perpendicular to
tail, numerical calculatiorisin three dimensions and analyti- the plane or with spin-orbit coupling to the probability dis-
cal results for quasi-one-dimensional witesiow an expo- tribution of the conductance for the corresponding isotropic
nential decay. system at the critical point, using a tight-binding model. It

Anisotropic systems have recently been the focus of parturns out that the ratio of the squares of the side lengths
ticular attention: =8It is generally accepted that anisotropy Ly, L, of the anisotropic system should be chosen equal to
does not change the universality class and that isotropic réhe ratio of the critical values\g, Af, of the quasi-one-
sults can be recovered by performing a proper scaling of thdimensional scaling functions:
anisotropic results. For anisotropic systems in a localized
state, it is reasonable to assume that scaling the dimensions L>2< AS
of the system by the corresponding localization lengths will F: F @)
make the system effectively isotropic. This procedure has y y
been applied successfully to the scaling functionA  In the following, we first describe the models and the nu-
=\ /M, which is a function o&/M, where\ , denotes the merical method we employed. Then we present and discuss
finite size localization length of a quasi-one-dimensionalour numerical results and finally summarize the conclusions
strip of finite widthM and \yy,— & as M—o. It was also  Of this work.
showrt’ that the same scaling procedure works for the prob- The tight-binding model uses the Hamiltonian
ability distribution in such a system.

In order to test the approach for critical states one must H=>, [nDep(nr|+ X |InDVoa(n'7|, (2
either face the numerical challenge of large three- n,7 ’

n,7,n’ 7’
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wheren,n’ denotes the lattice site. Without spin-orbit inter- systems with 192 192 lattice sites. The anisotropic quantum
action the “variables”r,7’ take on only one value and the Hall systems we investigated are characterized/bys. The
hopping integrals/,, ,, are scalar, otherwise they are<2  anisotropies we chose wet§/t)=0.5 atW=0.5 andt/t)
matrices and the spin variables take on the values + br  =0.8 atW=0.1. The latter was chosen mainly because we
In either case the site energies are independent of and  already had the data for the quasi-one-dimensional scaling
we take into account interactions only between neighboringunction. As the disorder is even weaker than in the first case,
lattice sites. finite-size effects are even stronger, and even at<2uD

An external magnetic field enters the Hamiltonian via itslattice sites the conductance distribution is far from the one
vector potentiaA (V XA=B), which appears in the phases we expect from our calculations of isotropic systems. There-

of the hopping integrals: fore, we will not be able to show that our procedure maps the
two anisotropic conductance distributions to the critical dis-
_.0 o n tribution of isotropic systems for this extreme case. We will,

Vi t”v”’eXp( 27TI(6/h)frn A(r)dr). ©) however, be able to prove the somewhat weaker claim that

) ) ) our method transforms the two anisotropic distributions so
The integral connects the lattice sitegatr,) andn’ (atr,/)  that both have the same shape. In a square system, one ex-
in a straight line. For the systems under consideration, whergects that the distribution in the difficult hopping direction
the m_agneti_c inducti(_)B is perpendicular to the plane of thg shows a more localized character than the one in the easy
two-dimensional lattice, the gauge for the vector potentiahopping direction. In an isotropic system, the distribution
can be chosen such that the phases vanish in the dlrect|Qj1g,Vious|y cannot depend on the direction of transport. By
perpendicular ta and are integer multiples of some number making the system rectangular rather than square, i.e.,
2ma in the direction parallel t\. The value of the param- shorter in the difficult hopping direction, it should be pos-
eter « then completely characterizes the influences of thesiple to obtain distributions in the two directions that are the

magnetic field on the system. For rational the denomina-  same, thus making the anisotropic system effectively behave
tor determines the number of bands in the density of states @éotropically.

the system without disorder. _ o The task now is “How do we choose the correct ratio of
The Evangelou—Ziman modelincorporates spin-orbit side lengths of the rectangle?” From the research on local-
coupling by using the following hopping integrals: ized system$” we know that in those cases, the ratio
should be equal to the ratio of the localization lengths:
nr _ .0 . v v
Vir =ty S i X oty (4) oL
v (_X S N ) = & (6)
wherev=X, y, z, ando” are the Pauli matrices. The param- & &y Ly &

eteru characterizes the strength of the spin-orbit interaction

Both systems may be made anisotropic by choosing th%or localized systems, as these are obviously the appropriate

ength scales in their respective directions. This is of no use

value oft” to be different in the two directions within the far critical systems as both localization lengths diverge at the
plane. Otherwise this parameter is a constant, independent Pcf L Y . 1 1eng ge
ransition. A closely correspondingprdiverging quantity is,

lattice siten. We bring disorder to the system by choosing all however, available in the scaling functiofy=Ay /M,

the site energies independently from a rectangular distribu- = - . )
tion of width W centered at 0, so tha/ is a measure of the which has a finite critical value, independent of the system

strength of the disorder. The parameterare also randomly \r']V;(\j/t: gMér-]r dhge f'?'etg'selzgvgcagﬁ?g?r llg?gé_nﬁ"r"n"i‘tsan;n)a“’%r
selected from a uniform distribution dn-1/2,1/2]. The en- X v P Y '

ergy scale is set by the larger of the two valuestfowhich large enough systems we can approximate (Egby
is taken to be unity.

We calculate the conductance from the Landauer 5: Awix (7)
formula? Ly Amy
g=Tr(tTt) (5 for localized systems at “large enougiM. The meaning of

) o ) ~M in this context would be that of the system width perpen-
xgﬁirteetllesaége;:nz;gfﬁe%n t??)tpr)lp))((.)s\?tlg Ssil(J:I%pso(S)fe t:]";oszer’n”;)'l'dicular to the direction in which the localization length is
Thent determines the transmission of an electron through thgﬁﬁﬁ;?ndd Itf)m silaeéno);hlga(i?%yL I/_E Inw);thV’;I ow, by
sample. The numerical procedure is based on the algorithms oy
published by And&® and by Pendnet al?® )

The critical conductance distributions we calculated for ﬂ: Lx )‘MVX: Amx @)
isotropic quantum Hall systems at different disorder |_§ Ay Ly Awy
strengths show that finite-size effects become stronger the
weaker the disorder. Where systems with=4.0 andW  for large localized systems. Now,, is a continuous func-
=2.0 show a basically size-independent critical distributiontion of E and for large enough systems &t should have
of the conductance for squares of>684 lattice sites, aWw  reached its critical value. Therefore, we arrive at the conclu-
=0.5 finite-size effects are still somewhat noticeable up tcsion that
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FIG. 1. The conductance distributions of an anisotropic rectan- 13 -10 5 -15 -10 5 0

gular system with a ratio of side lengths chosen according to Eq.
(9). For comparison the corresponding distribution of an isotropic

. FIG. 2. Conductance distributions of an anisotropic system for
system is shown as well.

varying ratios of the side lengths. The left panels refer to transport
in the easy hopping direction, the right panels to transport in the
difficult hopping direction. The ratio of side lengths is 1.0 for the

L = — 9) top row, 1.25 for the middle row, and 1.5 for the bottom row.

should be the correct ratio for critical systems in order to ~ Taking the best-ratio rectangle as the “undeformed” base,
make them behave like isotropic ones. Noting theWe can also see from Fig. 2 that similar “deformations” have

relationshig 3 similar effects in the two directions, that is, reducing the ratio
by a factory in one direction will cause the ensemble aver-

‘/A§A§:Aicso (10 age(In(g)) in that direction to increase, and the standard
) _ deviation to decrease, while the trend is opposite in the per-
we can write Eq(9) in the alternate form pendicular direction. However, reducing the ratio by the
c c same factory in the other direction will result roughly in the
ﬁ _ ﬂ _ ﬁ (11) same distributions as before, but with the one associated with
Ly AS, A§ ' the easy direction before now assigned to the difficult direc-

tion andvice versa
We tested this prediction on the system vviﬁﬂtf;:O.S That the same procedure also works for systems with
and W=0.5, where the ratio/A/A is roughly 1.5. The Spin-orbit coupling is shown in Fig. 3, where we plot the
result is shown in Fig. 1 together with the critical distribution conductance distribution for an isotropic system wijth
for the isotropic system. The agreement is very good. For thee 1.0 atE=0.1 andW,.=6.7 together with that of two an-
other system witft}/t)=0.8 andW=0.8, we have to deal

with stronger finite-size effects and cannot expect to ap- 20 ' ' ' '

proach the form of the critical distribution we see in Fig. 1 | ~___ :3?10: ?’;%2%;% :‘:?) L =230
for reasonable system sizes. Instead we merely show in Fig. | . £=10.0=01 W=L16,L =230,L =10

2 how the critical distributions change with the ratio of side LS [ 202,6=10W=26,L =20,L =185 |
lengths. The best value for the ratio according to Ej. ——- ti:l.O, tz=0.2,W=2.6,L:=185 ,y=20
would be roughly 1.23. Figure 2 shows results for ratios of ],

1.0, 1.25, and 1.5. The averages oflnfor the easy hopping ;’ 10 | <In(g)>/G,,: ,’% _
direction decrease with increasing ratio frond.09 for the X '

square to—4.40 and—5.30, while the averages for the dif- -0.41/0.29 J

ficult hopping direction increase from 4.94 for the square 0s 8‘;3@%3 |
to —4.18 and—4.03. Similarly, the standard deviations in- ) _0'43/0'35 /

crease for the easy hopping direction from 1.90 for the -0:37/0:26 A

square to 2.07 and 2.30, while they decrease for the difficult )
hopping direction from 2.24 for the square to 2.01 and 1.91. 0-0_40 30 20 10 00 - 10
The values for a ratio of 1.25 are not equal but reasonably ’ ' ' In(g) ' ' '

close, so that for larger systems, where a ratio of 1.23 might

be practicable, we expect a better agreement of the two prob- FIG. 3. The conductance distributions for an isotropic and two
ability distributions. anisotropic systems with spin-orbit coupling.

193103-3



BRIEF REPORTS PHYSICAL REVIEW B 64 193103

isotropic systems, one with=1.0 and tS/tSzO.l atE in both unitary and symplectic two-dimensional systems. In-
=0.1 andW,=1.6, the other withu=1.0 andtgltgzo.z at stead of the squares used for isotropic systems, one should
E=0.1 andW,=2.6. The ratio of sidelengths, according to use rectangles for the anisotropic ones, with a ratio of side
Eg.(9), should be 23.0 for the latter. We chosex4D lattice  lengths equal to the square root of the ratio of the critical
sites for the isotropic system, ¥@30 lattice sites for the values of the quasi-one-dimensional scaling function.
strongly anisotropic one, and 85 lattice sites for the
anisotropic system with the weaker anisotropy. Again theEn
agreement is very good.
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