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Quantum statistics and entanglement of two electromagnetic field modes coupled via a mesosco
SQUID ring
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In this paper we investigate the behavior of a fully quantum mechanical system consisting of a mesoscopic
SQUID ring coupled to one or two electromagnetic field modes. We show that we can use a static magnetic
flux threading the SQUID ring to control the transfer of energy, the entanglement and the statistical properties
of the fields coupled to the ring. We also demonstrate that at, and around, certain values of static flux the
effective coupling between the components of the system is large. The position of these regions in static flux
is dependent on the energy level structure of the ring and the relative field mode frequencies, In these regions
we find that the entanglement of states in the coupled system, and the energy transfer between its components,
is strong.
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I. INTRODUCTION

In an earlier publication1 we considered the interaction o
a quantum mechanical SQUID ring~a single Josephson wea
link, capacitanceCs , enclosed by a thick superconductin
ring, inductanceLs) with a classical electromagnetic~em!
field. Using quasiclassical Floquet theory2–7 to solve the time
dependent Schro¨dinger equation~TDSE! for the SQUID
ring, we were able to show that the ring-field interacti
could be very highly nonperturbative in nature. In esse
this is due to the ring Hamiltonian8 containing a cosine term
~the Josephson coupling energy! which can generate nonlin
earities to all orders. In addition, this Hamiltonian and
solutions areF0(5h/2e) periodic in the external static mag
netic flux (Fxstat) applied to the ring. This quantum non
linearity ensures that energy exchange between the field
the ring is dominated by multiphoton absorption~and emis-
sion! processes.1 As we have demonstrated, this is the ca
even at modest field amplitudes and at frequencies much
than the separation between the ring energy levels (4h). In
this work we showed that these energy exchanges occu
over very small regions in the bias fluxFxstat. The values in
Fxstat at which these exchanges take place are determine
the ring energy level structure and the field frequen
(ve/2p) and flux amplitude (Fe). To be precise, it is in the
exchange regions that the energy expectation value app
to jump ~for example, using a two level model! between the
time-averaged energies of the ground and first excited st
of the ring. Each transition~exchange! region corresponds to
the separation between the ring eigenenergies equa
n\ve , n integer, leading to multiphoton absorption, or em
sion, between the ring and the field. It is in these regions
the nonlinear nature of the ring Hamiltonian becomes ma
fest and where strong~and nonperturbative! time dependent
superpositions occur between the original eigenstates of
ring.

Currently there is a great deal of interest in using mes
0163-1829/2001/64~18!/184517~13!/$20.00 64 1845
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copic SQUID rings~and other weak link based circuits!
in quantum technologies, for example, in quantu
computing.9–12 This interest has been stimulated by rece
experimental work on probing quantum mechanical sup
position states in Josephson weak link circuit systems,13–16

and even more so in the last year by reports of superpos
states in SQUID rings.17–19 It seems reasonable to assum
that the theoretical description of weak link systems intera
ing with em fields ~classical and quantum mechanical! is
likely to be of great importance in the development of a
future superconducting quantum technologies. In this reg
the very strong nonlinear behavior exhibited by a sin
weak link SQUID ring in the exchange regions, referred
above, may prove to be of great utility. In order to test th
viewpoint we have recently considered, within a fully qua
tum mechanical framework, the interaction of a SQUID ri
with an oscillator field mode,20 i.e., the simplest coupled sys
tem we could have chosen~see Fig. 1!. We found that for the
case of the em field in a coherent state the results der
from this quantum approach compare very well with tho
obtained previously using quasiclassical Floquet theory.
both approaches the ring and the field mode only cou
strongly together within the exchange regions, i.e., over c
tain narrow regions in the bias fluxFxstat. This means that

FIG. 1. Block diagram of a SQUID ring coupled to a single e
field mode of frequencyve(51/ACeLe) where the flux linkage
factor, ring to field mode, ismes. Here, it is assumed that th
temperatureT is such thatkBT!\vs ,\ve for a SQUID oscillator
frequencyvs51/ACsLs. Also shown is a static bias magnetic flu
Fxstat applied to the ring.
©2001 The American Physical Society17-1
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M. J. EVERITT et al. PHYSICAL REVIEW B 64 184517
Fxstat can be used to control the coupling without losi
superposition coherence in the system. We note that
work relates to quantum optical interactions in few level
oms and to few level systems involving either~supercon-
ducting! electron pairs or single electrons.8,21–24

These initial results for a two mode~ring 1 oscillator!
system have encouraged us to draw more parallels
quantum optics. Rather than simply consider the SQUID r
as an electronic device, we may also view it as a tuna
F0-periodic, nonlinear medium to couple a system
quantum oscillators together. Regarded as a nonlinear
dium, there is a clear analogy to other nonlinear quant
systems in the context of quantum optics. However, there
two crucial differences, both of which may be of gre
importance in future quantum technologies. First, unl
the SQUID ring, in quantum optical systems the mediu
usually displays a weak polynomial nonlinearity, even
strong fields.25–30Second, all of the properties of the SQUI
~quantum or quasiclassical! areF0 periodic in bias flux.

In this paper, our objective is to explore the consequen
of the strong quantum nonlinearity of the SQUID ring on t
interaction, via the ring, of two oscillator field modes. Th
arrangement is depicted in Fig. 2, with the two field mod
and the ring oscillator frequencies taken to beve1

/2p,

ve2
/2p, andvs/2p51/2pALsCs, respectively. As we shal

see, the addition of the second field mode makes this a m
more sophisticated and interesting system than the two m
system~ring1field oscillator! which was the subject of a
recent publication,20 even though the computational deman
that need to be met are very much greater. In this regard
widely viewed31,10 that the SQUID ring, as a coherent qua
tum device, has many potential applications in the des
development and operation of quantum mechanical circ
and quantum logic elements. In this paper we consider
aspects of the quantum behavior of a SQUID ring wh
could have a serious impact in these areas, namely, the t
fer of entanglement and frequency conversion between
field modes via the quantum nonlinearity of the ring. In th
work we discuss frequency conversion and entanglemen
just two field modes. However, if the nonlinear aspects
quantum SQUID ring behavior can be fully exploited mo
complicated operations could be envisaged. These may
clude using SQUID rings to couple/decouple entangled st
in extended qubit circuit structures and allow frequency c
version processes between field modes to be modulated,

FIG. 2. Block diagram of a SQUID ring coupled to two em fie
modes of frequencyve1

andve2
assumingkBT!\vs ,\ve1

,\ve2
,

with flux linkage factorsme1s and mse2
between, respectively, th

first field mode and the ring and the ring and the second field mo
all else as for Fig. 1.
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ducing coherent pulse modulated signals. In our opinion,
combination of such strong nonlinear properties, coup
with F0-periodic external bias flux control of this behavio
makes the SQUID ring quite unique as a device for appli
tion in quantum technologies. Thus, although the followi
calculations are concerned with some of the basic con
quences of the quantum interaction of em field modes wit
SQUID ring, we also wish to emphasize the technologi
possibilities which may open up as these ring-field mo
systems become more fully understood.

In the work presented here we first consider briefly t
two mode system, including a static bias fluxFxstat ~Fig. 1!.
This allows us to relate the quasiclassical Floquet appro
to the fully quantum mechanical treatment and demonst
that our quantum model can produce consistent results
also provides the background formalism for our main g
which is the study of two em field modes coupled through
SQUID ring. Since our purpose is to study the full quantu
mechanics of the ring-field mode~1 or 2! system, we assume
throughout that the operating temperature~T! is such that
\ve1 ,e2

@kBT, \vs@kBT. This ensures that both the rin
and field mode~s! behave quantum mechanically. We the
consider the extended quantum circuit, the two oscilla
field modes (E1 and E2) coupled through a SQUID ring
(S)—Fig. 2—with a bias fluxFxstat also coupled to the ring
In previous papers1,20 this bias flux was used to control th
behavior of the SQUID ring alone or the ring interactin
with one field mode. In the current paper it is used to cont
the interaction between two field modes via the nonlin
properties of the SQUID ring. At first sight there might a
pear to be no a priori reason why, in this three mode syst
it should prove easy to couple all the components toge
strongly. However, at least for the case of weak induct
coupling between the modes, we shall show that well ch
acterized energy exchange can take place at~or close to!
certain specific values ofFxstat. In these regions of bias flux
multiphoton absorption and emission processes occur. T
the energy required for an interaction to take place is
proximately equal to the energy transfer in the absorption
emission of an integer number of photons with frequen
ve1

in the first field mode to an integer number of photo

with frequencyve2
in the second. As for the two mode~ring

1field mode! system, these are the exchange regions wh
the effective coupling becomes strong because of the n
linearity of the SQUID ring. As we shall see, it is in thes
regions that many interesting quantum phenomena can
observed.

To emphasize that the coupling across the extended t
mode system is controlled by the bias flux, we calculate
average number of quanta in each mode and show that t
is a large exchange of energy between the three mode
specific values ofFxstat, thus demonstrating that frequenc
conversion can take place in the system. In addition,
also calculate the second order correlationgi

(2) ~again con-
trolled by the bias flux! which quantifies the quantum
statistics~bunching of quanta! for all three modes.32,33 We
show that as the system evolves in time, strong entanglem
occurs between the three modes. We quantify this by ca

e;
7-2
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QUANTUM STATISTICS AND ENTANGLEMENT OF TWO . . . PHYSICAL REVIEW B64 184517
lating various entropic quantities based on the von Neum
entropy.34–37These are chosen for convenience and famil
ity and because they can be used to quantify the degre
entanglement between the subsystems~field modes and
SQUID ring!. Although these entropic quantities do have d
ficiencies as measures of entanglement,38 there is no real
consensus about which is the preferred measure within
quantum technology community. In the absence of any c
sensus, we opt for a familiar choice.

II. THE TWO MODE HAMILTONIAN

A. The SQUID ring in a classical field

In our earlier work we treated the em field classically1,39

and the SQUID ring quantum mechanically, using the w
known Hamiltonian8

Hs5
Qs

2

2Cs
1

~Fs2@Fxstat1Fxem sinvet# !2

2Ls

2\n cosS 2p
Fs

F0
D . ~1!

Here,Fs, the magnetic flux threading the ring andQs, the
electric displacement flux between the electrodes of the w
link in the ring, are the conjugate variables40,41for the system
~with @Fs ,Qs#5 i\), \n/2 is the matrix element for Joseph
son pair tunnelling through the weak link andFxem is the
amplitude of the classical magnetic flux at the ring due to
em field mode. WithFxem set to zero we can solve the tim
independent Schro¨dinger equation to find the eigenvalues
the SQUID ring alone as a function of applied flu
Fxstat/F0. As an example, we show in Fig. 3 the first thr
eigenenergies of the ring@Ek50,1,2(Fxstat/F0), wherek50
denotes the ground state, etc.# over the range 0<Fxstat/F0
<1 using parameters typical of a quantum regime SQU
ring,1,20 i.e., Cs51310216 F, Ls53310210 H ~hence
\vs50.043F0

2/Ls or vs/2p59.831011 Hz) and \n
50.07F0

2/Ls51.63\vs(n51.63vs). With Fxem turned on,
we can use Eq.~1! to solve the corresponding TDSE. Agai
by way of illustration, we show in Fig. 4 the compute

FIG. 3. First three energy eigenvaluesEk50,1,2 of a quantum
mechanical SQUID ring as a function of bias fluxFxstat/F0

over the range 0<Fxstat/F0<1 for Cs51310216F, Ls

53310210H (\vs50.043F0
2/Ls), and \n50.07F0

2/Ls

51.63\vs (n51.63vs).
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time averaged ring energy expectation values for the fi
three Floquet states~eigenvalues of the evolution operato
after one period of em field evolution! as a function of
Fxstat/Fo using the ring parameters of Fig. 3. Here,ve has
been set at 0.5vs with the associatedFxem5231023F0. As
can be seen, energy exchange between these time ave
energies occurs at specific values of the bias fluxFxstat and,
as we have already pointed out, the number and positio
Fxstat of these exchange regions depends onve , Fxem and
the energy level structure of the ring. We have observ
that these transition~exchange! points occur for values
of bias flux such that~at least for small em field ampli
tudes Fxem) N\ve'Ei(Fx)2Ej (Fx) where N50,61,
62, . . . .1 We note that for the SQUID ring we can writ
down a renormalized oscillator frequencyVs5vs

14\2p2nF0
22Cs

21vs
21 which is related to the fact that ther

is anas
†as term in a Taylor expansion of the cosine~Joseph-

son! term in the ring Hamiltonian~1!.

B. The SQUID ring in a nonclassical field

In the fully quantum description the HamiltonianHt for
the SQUID ring-em oscillator mode system can be writt
as20

Ht5He1Hs2Hes, ~2!

whereHe and Hs are, respectively, the Hamiltonian contr
butions for the field and the ring andHes is the interaction
energy linking these together.

Following Eq. ~1!, the Hamiltonian for the SQUID ring
alone is8

Hs5
Qs

2

2Cs
1

~Fs2Fxstat!
2

2Ls
2\n cosS 2p

Fs

F0
D ~3!

while the Hamiltonian for the em field@modelled as a paral
lel capacitance (Ce) inductance (Le) cavity mode equivalent
circuit with infinite parallel resistance on resonance# takes
the form He5Qe

2/2Ce1Fe
2/2Le . Here,Fe and Qe are, re-

spectively, the cavity mode magnetic flux and charge ope

FIG. 4. First three time averaged Floquet energies as a func
of Fxstat/F0 for the SQUID ring of Fig. 3 where, again,\vs

50.043F0
2/Ls (vs/2p'1 THz) and \n50.07F0

2/Ls (n
51.63vs) with a classical em field of frequencyve50.5vs and
amplitudeFxem5231023F0 applied. Here, the energy has bee
normalized to the ring oscillator energy\vs .
7-3
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M. J. EVERITT et al. PHYSICAL REVIEW B 64 184517
tors for a field mode frequencyve51/ACeLe. This cavity
mode is coupled inductively to the SQUID ring with a co
pling energyHes5(mes/Ls)(Fs2Fxstat)Fe , wheremes is
the em field-SQUID ring flux linkage factor.

By making a suitable transformation@using the unitary
translation operatorT5exp(2iFxstatQs /\)] the Hamiltonian
~3!—now in script—can be written more conveniently as

Hs5T†HsT5
Qs

2

2Cs
1

Fs
2

2Ls
2\n cosS 2p

Fs1Fxstat

F0
D ~4!

while the Hamiltonian for the em field mode remains un
fected. However, the interaction energy does transform
Hes5(mes/Ls)FsFe . We denote the magnetic flux depe
dent eigenstates ofHs by us&S . In our computations we then
use a truncated energy eigenbasis both for the ring (us&) and
the em field mode (un&). The basis statesus&,un&, wheres
5a, . . . ,V andn50, . . . ,N, are taken so thatV andN are,
respectively, much greater than the average number
quanta in the ring and em field.

Using this truncated basis, we can then solve

Htujn&5Jnujn& ~5!

to obtain the eigenfunctions and eigenenergies of the
mode system HamiltonianHt . The eigenenergies for th
ring-field mode system are shown in Fig. 5 for theCs , Ls ,
and\n values used for Fig. 3, withvs52ve , as in Fig. 4.
Here, in Fig. 5~a! the field mode-ring linkage factormes
50.0 while in Fig. 5~b! it is 0.1. From this spectral decom
position we can form the evolution operator via

FIG. 5. Eigenenergies of the SQUID ring-em field mode syst
~normalized in units of\vs) versusFxstat/F0 using the ring pa-
rameters of Fig. 3 withCs5Ce51310216F, vs52ve ~where
vs /2p'1 THz) and n51.63vs . In ~a! the field mode-SQUID
ring flux linkage factormes50; in ~b! mes50.1.
18451
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U~ t !5(
n

ujn&expS 2
iJnt

\ D ^jnu. ~6!

The time averaged energy expectation values^^Hi 5s,e&& for
the ring1 and the field~i.e., Hs andHe) can then be calcu-
lated using the expression

^^Hi&&5 lim
t→`

1

tE0

t

Tr@r i~ t !Hi #dt, ~7!

wherer i , i 5e,s are the reduced density operators for t
em mode and the SQUID ring, respectively. In practice,
have been able to ensure the convergence of the integra~7!
by integrating numerically from 0 up to 20 000/vs .

Clearly, provided we select the correct initial state for t
em field in the two mode system, there should exist a co
spondence between the Floquet method used in Sec.
@using~1!# and the result of a fully quantum mechanical ca
culation. As an initial state the coherent state is an obvi
choice since it is the closest quantum state to a monoc
matic em field, as used in the Floquet approach above. W
this choice we would expect a reasonable agreement betw
the fully quantum and quasiclassical computations. In f
the match between these two approaches can be very g
To compare with the quasiclassical result of Sec. II A, we
the zero time (t50) product state asua5 iA20&E^ us&S ,
whereua&E is a coherent state of the field (aeua&E5aua&E).
Using this coherent state we show in Fig. 6 the calcula
^^Hs&& for an integration timet523104/vs with the ener-
gies normalized in units of\vs . The computations have
been made over the range 0<Fxstat/F0<1 for the values of
s50,1,2, using the SQUID ring capacitance, inductance
Fx-dependent energy level structure of Fig. 4. Here, as
Fig. 3, we have madeve50.5vs while setting the flux link-
age factormes50.00076. We chose this value ofmes so that
the amplitude of oscillation of the coherent state in the
field coupled to the SQUID ring is equivalent to that used
the Floquet calculation of Fig. 4. It is apparent that the tim
averaged energy expectation values, and their exchang

FIG. 6. Time averaged energy expectation values ofHs ~in units
of \vs) as a function ofFxstat/F0 for comparison with Fig. 4
where the em-field mode is in a coherent state and the SQUID
is in one of its first three energy eigenstates, i.e., the initial states
ua5 iA20&E^ us&S , (s50,1,2). Here, as for Fig. 5,Cs5Ce51
310216F, ve50.5vs ~where vs/2p'1 THz), n51.63vs but
with mes57.631024 for comparison with Fig. 4.
7-4
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FIG. 7. ~Color! Comparison between time averaged energies of Figs. 4~red! and 6~blue!.
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gions, calculated in the quantum model as a function
Fxstat are very close to those found using the quasi-class
Floquet approach. To emphasise this, we show in Fig. 7
two calculations superimposed. The very close fit betw
the two gives us confidence that the quantum model is ph
cally valid with an accurate correspondence to the quasic
sical regime when a coherent state is chosen for the em fi

As we have already noted for the SQUID ring in a cla
sical field ~Sec. II A!, we observed that transition~or strong
coupling! regions occur whenN\ve'Ei(Fx)2Ej (Fx).
From Fig. 5 we can see that this situation exists when deg
eracies in the spectrum of the system are lifted due to
coupling term between the Hamiltonians for the SQUID ri
and em field.

III. THE THREE MODE HAMILTONIAN

Following on from Eq.~2!, we now consider a SQUID
ring with oscillator frequencyvs , threaded, as before, by
static bias fluxFxstat, but now coupled to two em field
modes of frequencyv e1

andve2
~see Fig. 2!. With the usual

flux (F i) charge (Qi) commutation relation @F i ,Qj #
5 i\d i j , the total HamiltonianHT for this system can be
written as

HT5He1
1He1s1Hs1Hse2

1He2
, ~8!
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where the SQUID ring Hamiltonian is given by Eq.~4!
which has been transformed into theFxstat basis. We choose
to write our component Hamiltonians in Eq.~8! in terms of
the annihilation @ai5(1/A2)(xi1 ipi)# and creation @ai

†

5(1/A2)(xi2 ipi)# operators as

He1
5\ve1S ae1

†ae1
1

1

2D ,

He2
5\ve2S ae2

†ae2
1

1

2D ,

Hs5\vsS as
†as1

1

2D2\n cosF2p

Fo
A \

2Csvs
~as

†1as!

12p
Fx

F0
G ,

where the position and momentum operators can be defi
in terms of the magnetic flux and the charge operators
xi5ACiv i /\F i andpi5A1/Ci\v iQi for oscillator frequen-
ciesv i51/ACiL i , with the subscripti denotinge1 ,e2 for the
fields ors for the ring. Hence the Hamiltonians of the com
ponents of the system are identical~but extended to include
an extra field mode! to those used in Sec. II B, but written i
terms of creation and annihilation operators. The interact
energiesHe1s andHse2

in Eq. ~8!, each of which represent
7-5
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M. J. EVERITT et al. PHYSICAL REVIEW B 64 184517
the inductive coupling between the SQUID ring and the
cillator modese1 ande2, respectively, are given by

He1s52\vs

me1s

2 A Csvs

Ce1
ve1

~as
†1as!~ae1

† 1ae1
!,

Hse2
52\vs

mse2

2 A Csvs

Ce2
ve2

~as
†1as!~ae2

† 1ae2
!.

IV. TIME EVOLUTION OF THE THREE MODE SYSTEM

The Hilbert spaceT for the SQUID ring-em field system
is a tensor product of the Hilbert spaceS for the ring and the
Hilbert spacesE1 andE2 for the fields, that is to sayT5E1
^ S^ E2. We denote in roman script the simple harmonic,
oscillator mode number eigenstatesun& i (ai

†ai un& i5nun& i).
In representing the SQUID ring we use greek script, for
ample ua&s ,ub&s ,ug&s , . . . , to represent the eigenstates
the HamiltonianHs in order to distinguish these from th
number eigenstatesun&s of the ring (as

†asun&s5nun&s).
In dealing with the time evolution of the coupled thre

mode system we must first solve the eigenproblem@see Eq.
~5!#. As in Sec. II for the two mode system, we use a tru
cated basis. This has the form

$uNn,k,m&[un&E1
^ uk&S^ um&E2

u

n50, . . . ,N1 ,

k5a, . . . ,V,

m50, . . . ,N2%, ~9!

whereun&E1
andum&E2

are the number states for the two fie

modes anduk&S are the energy eigenstates of the SQUID ri
Hamiltonian. Here,N1 , V and N2 are taken to be much
greater than the average number of quanta in each com
nent of the system. With the eigenfunctions and eigene
gies of Eq.~5!, but using the three mode Hamiltonian, th
evolution operator can be calculated using the expression~6!.
Then, assuming that the system att50 is described by the
density matrix r(0), the density matrix r(t)
5U(t)r(0)U†(t) at a later timet can be found, as can th
reduced density matricesre1

5TrS^ E2
(r), rs5TrE1^ E2

(r),

re2
5TrE1^ S(r) and re1s5TrE2

(r), rse2
5TrE1

(r), re1e2

5TrS(r). With these density matrices determined, we c
then investigate a range of parameters which reveal muc
the quantum behavior of the three mode system, for exam
the von Neumann entropy.

In the following sections of the paper we present nume
cal results demonstrating various aspects of this beha
Since the examples given are intended to be illustrative
nature, for simplicity we have made the capacitances for
three modes of the system the same, these being typic
quantum regime oscillators operating at a few K, i.e.,Ce1

5C e2
5Cs510216 F. Amongst other things we wish t

show that quantum frequency conversion can occur betw
the two oscillator field modes, via the SQUID ring. We ha
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therefore made the two mode frequencies differ by a fac
of two, i.e., ve1

52ve2
while again, for simplicity, setting

ve1
5vs . With all capacitances identical these frequenc

correspond toLe1
5 1

4 Le2
5Ls for a typical SQUID ring in-

ductanceLs53310210 H ~see Sec. II!. Again, as in Sec. II,
we have put\n50.07F0

2/Ls (n51.63vs) which is typical
value of the pair tunnelling matrix element for quantum r
gime SQUID rings operating at a few K. In addition, w
have set the ring-field mode flux linkage factors atme1s

50.01 andmse2
50.1 which approximates to some reporte

experiments in the literature involving two oscillator fie
modes coupled through a SQUID ring.42,43

A. Strong coupling of the SQUID ring to em field modes

In Sec. II we demonstrated that strong coupling betwe
the SQUID ring and the em field occurs when degenera
in the spectrum of the Hamiltonian are lifted due to the co
pling between the components of the system. Numerica
this equates to the conditionN\ve'Ei(Fx)2Ej (Fx),
whereN is integer and theEi(Fx) and Ej (Fx) are thei th
and j th eigenvalues of the system HamiltonianHt . These
regions of strong coupling~the exchange regions!, which de-
velop at specific values of the bias flux (Fxstat) applied to the
SQUID ring, are dependent on the ring eigenenergy struc
and the frequency of the em field. Similarly, for the thr
mode system strong energy exchange will occur between
two field modes and the SQUID ring when the coupli
terms lift degeneracies in the spectrum of the Hamiltoni
This will occur when

Ne1
\ve1

2Ne2
\ve2

'Ei~Fx!2Ej~Fx!, ~10!

where, now, theEi , j (Fx) are thei th/ j th eigenvalues ofHS
andNe1 ,e2

are integers~positive or negative!. In this caseNe1

photons with frequencyve1
in the first field mode are used t

excite the SQUID from thej th state to thei th state with the
emission ofNe2

photons of frequencyve2
into the second

field mode. Taking the ring-field parameters set above,
have calculated the energy eigenvalues for the three m
system. These are shown in Fig. 8. It can be seen that t
eigenenergies possess a very rich structure which lead
rectly to the results presented in this paper.

Given a choice of the initial state for the fields in the tw
oscillator modes, we can calculate the time averaged en
expectation values~normalized in units of\vs5\/ACsLs)
of H e1

, He2
, andHs using Eq.~7! and integrating numeri-

cally from 0 up to 23104/vs . As an example, we show in
Fig. 9~a! these time averaged energies plotted as a func
of Fxstat/F0 assuming that att50 the system is in the stat
u1&E1

^ ua&S^ u0&E2
, i.e., with one photon in the first em mod

and none in the second. The peaks are a manifestation o
strong coupling between the various oscillators at and aro
specific values ofFxstat/F0 where the energy transfer be
tween the various components of the three mode system
curs. Thus, starting in the initial stateu1&E1

^ ua&S^ u0&E2
, it

can be seen that in the exchange regions, on average, en
7-6
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is being transferred from the first mode to the SQUID ri
and to the second mode. This will become more transpa
when we compute the time evolution of the expectation v
ues of the number operators for the components of the
tem ~below!. In Fig. 9~b! we show one of the three mod
exchange regions~aroundFxstat/F050.426) of Fig. 9~a! on
a much expanded scale so that the details can be seen
clearly.

B. Quantum statistics of the SQUID ring-field system

An important aspect of non-classical electromagne
fields is the quantum statistics of photons~bunching of pho-
tons! described by the second order correlations32,33

gi
(2)5

^Ni
2&2^Ni&

^Ni&
2

,^Ni
M&5Tr@r i~ai

†ai !
M#,i 5e1 ,e2 ,s.

~11!

The value ofg(2)51 corresponds to Poissonian statistic
Values ofg(2) greater than 1 indicate photon bunching~i.e.,
where the photons arrive in groups! while values ofg(2)

smaller than one indicate antibunching~i.e., the regular ar-
rival of photons!. The latter regime is characteristic of no
classical electromagnetic fields since it can be shown tha
classical opticsg(2)>1. Only in quantum mechanical sys
tems cang(2),1.32,33 This is well known in quantum optics
but is, perhaps, less familiar in condensed matter physic

In this work we show that the statistics of photons thre
ing the SQUID ring affects the statistics of electron pair co
densate tunnelling through the Josephson junction in

FIG. 8. Eigenenergies~in units of\vs) versusFxstat/F0 of the
three mode~em-mode–ring–em-mode! system withCs5Ce1

5Ce2

51310216F, vs5v e1
52ve2

~where vs/2p'1 THz), n

51.63vs and flux linkage factorsme1s and mse2
. In ~a! me1s and

mse2
are set equal to zero while in~b! me1s50.01 andmse2

50.1.
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ring. This is quantified by the second order correlations
though higher order correlations can also be calculate32

These correlations fully describe the quantum statistics
quantum noise of the photons in the two field modes and
superconducting condensate.

C. Quantum entanglement in the three mode system

The creation of entangled states of multi-particle syste
is a key feature of all quantum technologies. In their purs
the generation of entanglements in real physical system
clearly of very considerable interest. In this regard, it appe
that the nonlinear properties of the SQUID ring can be u
very efficiently to entangle circuit subsystems~here, field
oscillator modes! that are coupled to it. As we shall als
show, the ring nonlinearity can also be used with facility
generate energy conversion between the two oscillator fi
modes. Again, taking as our example the three mode sys
of Fig. 2, we shall demonstrate that as this system evolve
time its three components become, to a greater or lesse
tent, entangled. The degree of this entanglement can
quantified by using entropic quantities. The entanglement
a two mode~ring-oscillator! system can be quantified by34–37

I AB5S~rA!1S~rB!2S~r!, ~12!

whereS(r) is the von Neumann entropy given by

S~r!52Tr@r ln~r!# ~13!

FIG. 9. ~a! Time averaged energy expectation values~in units of
\vs) over the range 0<Fxstat/F0<1 for the three mode system o
Fig. 8 and~b! as for ~a!, but expanded aroundFxstat/F050.426.
The initial state for the system isu1&E1

^ ua&S^ u0&E2
and the circuit

parameters are as in Fig. 8.
7-7
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with rA5TrBr andrB5TrAr. This entanglement entropy i
positive or zero~subadditivity property of the entropy!. Ex-
amples of the calculation of this entanglement for the t
mode system can be found in our previous work.20

An analogous quantity can be used to characterize
entanglement of a three component system.52–55Thus, for the
field mode-SQUID ring-field mode system, this takes t
form

I 5S~re1
!1S~rs!1S~r e2

!2S~r! ~14!

which can be written as

I 5I e1s1I se2
1I ~e1s;se2!, ~15!

where I e1s and I se2
are the entanglement entropies betwe

E1^ S andS^ E2, as defined above Eq.~12!, and

I ~e1s;se2!5S~re1s!1S~rse2
!2S~rs!2S~r! ~16!

describes a deeper entanglement betweenE1^ S andS^ E2.
Understanding of this deeper entanglement, that exist
three component systems, is intimately connected to
strong subadditivity property of the entropy. This can be u
to demonstrate that the quantityI (e1s;se2) is positive or
zero. We note that to prove this presented a very diffic
problem in the theory of entropy~it was a conjecture for
many years until a proof was provided52–55!.

In this paper we are not going to proceed further in
this deep problem of entanglement in three compon
systems as it has been discussed in detail elsewhe30

However, we note that the entanglementI can also be ex-
pressed as

I 5S~re1
!1S~rs!1S~re2

!2S~r!

5I e1s1I e1e2
1I ~e1s;e1e2!

5I e2s1I e1e2
1I ~e2s;e1e2!, ~17!

where I (e1s;e1e2) and I (e2s;e1e2) are non-negative num
bers. On physical grounds, i.e., because we are using
SQUID ring as the intermediary between the two fie
modes, we choose to show numerical results for the
tanglement between the SQUID and the first mode (I e1s), the

SQUID and the second mode (I e2s), and also theI (e1s;se2).

V. NUMERICAL CALCULATIONS

As we have shown in Figs. 6 and 9, strong coupling
tween the various of components of ring-field mode syste
only occurs over small regions inFxstat—the exchange re
gions. We now see how the variation in coupling across
exchange region affects the number operator expectation
ues, quantum statistics and entanglements—all impor
quantities reflecting on the quantum behavior of these s
tems. Continuing from Fig. 9, we calculate these quantitie
each of the three flux bias points A, B, and C~at Fxstat/F0
50.0,0.4246 and 0.4263, respectively!. In each of the fol-
lowing computed examples we assume that att50 the first
field modeE1 contains one or more photons while the seco
18451
o

e

e

n

in
e
d

lt

nt
.

he

n-

-
s

n
al-
nt
s-
at

d

contains none. In our first set of examples we choose tht
50 state in the first mode to be a number state; in the sec
set we make this a coherent stateuA&E1

, where ae1
uA&E1

5AuA&E1
. For the case of the number state we assume tha

t50 the three mode system is in the stateu1&E1
^ ua&S

^ u0&E2
. For the example where we adopt a coherent state

the first mode we choose for illustrative purposes~and com-
putational ease! the system stateuA5 iA3&E1

^ ua&S^ u0&E2
.

A. Number state computations

As is evident from Figs. 9~a! and 9~b!, the flux bias points
have been selected either to be well away from, or within,
exchange region, i.e., point A and points B and C, resp
tively. For a complete, quantitative view of the system w
should compute, in sequence, the number expectation va
^ne1 ,s,e2

&, the entropies@ I e1s ,I se2
,I (e1s;se2), andI ] and the

ge1 ,s,e2

(2) correlations for the first field mode (E1), the SQUID

ring (S), and the second field mode (E2) as a function of
normalized timevst. However, it is apparent in Fig. 10~bias
point A! that, starting in a pure stateu1&E1

^ ua&S^ u0&E2
for

E1, the number expectation values~a! and entropies~b! re-
main constant as a function of time. We note that^ns& is not
zero because the ground stateua&S of the SQUID ring is not
the same as the ground state of a simple harmonic oscill
u0&. From the definition given in Sec. IV B, the fact tha
^ne2

&50 makes the calculation ofg(2) for the second mode

FIG. 10. Starting in a pure stateu1&E1
^ ua&S^ u0&E2

, plots of ~a!

the number expectation values^ne1
&, ^ns&, ^ne2

& and ~b! the en-
tanglement entropiesI e1s , I se2

, I (e1s;se2), I versus dimensionless
time vst for the three component system of Fig. 9 with the ring fl
biased at A in Fig. 9~a!. Here, the system parameter values are as
Fig. 8~b!.
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QUANTUM STATISTICS AND ENTANGLEMENT OF TWO . . . PHYSICAL REVIEW B64 184517
at bias point A physically unmeaningful since this is divisi
by zero. It is therefore very sensitive to numerical err
However, such is not the case when the bias point poin
shifted into an exchange region. Starting again with the s
tem stateu1&E1

^ ua&S^ u0&E2
, we show in Figs. 11~bias point

B! and 12~bias point C! the average number of quanta—th
^ni&—in each of the three modes as a function of time. W
this choice of starting state these results demonstrate cle
the quasiperiodic exchange of energy between the var
components of the system. Since the exchange couplin
strongest at C, this is where we would expect to find
maximum energy transfer between the first and second
modes, as is the case~Fig. 12!. We note that in the compute
results of Fig. 12 the second field mode number expecta
value~and that of the SQUID ring to a much smaller exte!
is a maximum when that for the first field mode is a min
mum. This is the signature for frequency~down! conversion,
in this example by a factor of 2. The process could,
course, be run backwards to generate frequency up con
sion from the second to the first field mode via the quant
nonlinearity of the SQUID ring. Given that this nonlineari
can be to all orders, we see no obvious reason why m
higher ratio frequency conversions should not prove pra
cable.

FIG. 11. With the initial pure stateu1&E1
^ ua&S^ u0&E2

, and with
the parameter values of Fig. 8~b!, a plot of the number expectatio
values ^ne1

&, ^ns&, ^ne2
& versus dimensionless timevst for the

static magnetic flux on the SQUID ring set at point B in Fig. 9~b!.

FIG. 12. Starting in the pure stateu1&E1
^ ua&S^ u0&E2

, and with
the parameter values of Fig. 8~b!, plots of the number expectatio
values ^ne1

&, ^ns&, ^ne2
& versus dimensionless timevst for the

three component system of Fig. 9 with the SQUID ring flux bias
at point C in Fig. 9~b!.
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From a theoretical viewpoint the problem with demo
strating high ratio frequency conversions is the rapid rise
the number of basis states required as the down~up! conver-
sion frequency ratio increases. The computational difficult
increase accordingly. Nevertheless, even given the lim
tions on the computational power we have available~Com-
paq XP1000 alphaserver with 2GB RAM!, we have been
able to demonstrate quantum down conversion by a facto
10 in frequency. We intend to deal with this in a future pu
lication. There is some indication that these down convers
processes occur.43 In Fig. 12 the input state is the numbe
stateu1&E1

but, as we shall show, down conversion can oc
for a coherent input state. It may well be that this ability
generate photon down/up conversion could have pract
application for pure state sources in quantum informat
processing and quantum computing. For example, it m
prove desirable to take single photon terahertz sources, a
now being developed,44,45 and use these to provide the inp
state to a SQUID ring to generate photons at much low
frequencies suitable for solid state quantum circuit techno
gies. It is also clear that if very large down/up frequen
conversion ratios can be achieved experimentally, th
could well be interesting metrological applications, for e
ample, in frequency standards.

This role in linking the two field modes together in
strongly nonlinear, quantum mechanical manner is emp
sized in Figs. 13 and 14. Here, the time varying entang
ment entropies are computed for bias points B~Fig. 13! and
C ~Fig. 14! following the definitions given in Sec. IV C
Here, again, we have started the system in stateu1&E1

^ ua&S^ u0&E2
. It can be seen that the entanglement betwe

the various components of the system@ I e1s , I se2
, and

I (e1s;se2)], and the total entanglement entropy for the sy
tem (I ), are stronger at C than at B which, from Figs. 9~b!,
11, and 12, is to be expected. In our opinion it is this abil
to control the degree of entanglement between the com
nents of ~for example! this three mode system simply b
changingFxstat which marks out the SQUID ring as a pote
tially very useful device in future quantum circuit technol
gies. This is emphasized by the contrast between figu

d

FIG. 13. Entanglement entropiesI e1s , I se2
, I (e1s;se2) and I

versus dimensionless timevst for the three component system o
Fig. 9, with the parameter values of Fig. 8~b!, starting in state
u1&E1

^ ua&S^ u0&E2
with the SQUID ring flux set at point B@Fig.

9~b!#.
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10~b! ~for bias point A! and 14, where the system and su
system entanglement go from zero to a maximum for
adjustment inFxstat around 0.04F0 .

Although, in the above we have considered in some de
entanglement between two field modes~input and output!
interacting via a SQUID ring, there are many other coup
systems of field modes and SQUID rings which could
studied. One which may be of importance, both scientifica
and technologically, is an input field mode linked through
SQUID ring to two separate output modes at half the in
frequency. From the results obtained in this paper we wo
expect the two~down converted! photons to be strongly en
tangled with the degree of entanglement controlled, again
the bias fluxFxstatapplied to the ring. Furthermore, given th
nonlinearity of the SQUID ring, we would also expect it
be possible to entangle a large number of output phot
starting at an initial input frequency and down converting
a whole set of lower frequency output modes. As a te
nique, the use of a SQUID ring to generate entangleme
between several systems could well be applied to great
vantage in fundamental experimental studies of quan
mechanics.48–50 It could also have implications in quantum
computing, for example, in creating an entangled input r
ister for a quantum computer. It has also been suggested
the creation of~large number! multiparticle entangled sys
tems could lead to new sensors and instrumentation of
paralleled sensitivity47 and it may be that SQUID rings ar
very well suited to creating these entanglements, at leas
photons.

There are other possible ways that the input register
quantum computer could be based on the nonlinear pro
ties of SQUID rings described in this paper. For example,
could set the three modes of the coupled system in Fig. 2
to have the same oscillator frequencyvs . Then, withFxstat
biased within an exchange region, we could arrange to cr
a qubit superposition state ofu0& andu1& in the output mode
starting from the number stateu1& of the input mode. As our
results have demonstrated, this could be done in such a
as to ensure that the input and output oscillator modes
entangled. Once the desired qubit state of the output m
had been realized, in principle the bias flux could then

FIG. 14. Entanglement entropiesI e1s , I se2
, I (e1s;se2), and I

versus dimensionless timevst for the three component system o
Fig. 9, with the parameter values of Fig. 8~b!, starting in state
u1&E1

^ ua&S^ u0&E2
with the SQUID ring flux biased at point C in

Fig. 9~b!.
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switched away rapidly from the exchange region~or
switched off! thus leaving the input and output modes e
tangled but uncoupled. An array of these circuits could th
be used as an qubit register for a quantum computer, wh
the qubits would be entangled but not coupled to the in
modes. Conceivably, this arrangement could facilitate qu
tum error correction for quantum computation.46 Schemes of
this kind may well find application in quantum encryptio
and transmission of information at a more complex le
than is usually considered.9,46,51

Since the underlying purpose of this work is to demo
strate the influence of the SQUID ring nonlinearity on
coupled quantum system, it is important to show quant
tively the way in which the quantum statistics of the photo
affects the quantum statistics of the electron pairs~i.e., the
superconducting condensate flowing through the weak
in the ring!. As we explained above~Sec. IV B!, this is quan-
tified with the second order correlationsgi

(2) . In Figs. 15 and
16 we plot the second order correlationsge1

(2) , gs
(2) , andge2

(2)

for bias points B and C as functions of time with, again
starting state for the system ofu1&E1

^ ua&S^ u0&E2
. As with

the number expectation values and the entanglement e

FIG. 15. Second order correlationsge1

(2) , gs
(2) , andge2

(2) versus
dimensionlessvst for the three component system of Fig. 9, sta
ing in a pure stateu1&E1

^ ua&S^ u0&E2
with the static magnetic flux

on the SQUID ring set at bias point B in Fig. 9~b!. Here, the system
parameter values are as for Fig. 8~b!.

FIG. 16. Second order correlationsge1

(2) , gs
(2) , andge2

(2) versus
dimensionlessvst for the three component system of Fig. 9@pa-
rameter values as for Fig. 8~b!#, starting in a pure stateu1&E1

^ ua&S^ u0&E2
with the SQUID ring bias flux set at bias point C i

Fig. 9~b!.
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pies, we see a strong oscillatory behavior, particularly in F
16 ~biased at point C!. In order to interpret the results we firs
note that for the stateu0& i ( i 5E1 ,E2 ,S), or other states
close to this state, the average number of photons is
zero. From Eq.~11! this means that the second order cor
lation becomes very large. We also note for the number s
u1&, ^N2&2^N&50 and the correspondingg(2)50. With this
in mind, we see in Fig. 15~bias point B! that the first field
mode, in number stateu1&E1

at t50, starts with ag(2) at zero.
It remains extremely close to this value over the time of
computation, i.e., this field mode stays reasonably close
the number stateu1&E1

. By contrast, the second field mod

assumed to be in the stateu0&E2
at t50, has on average

largeg(2) value, although this dips well below unity almo
periodically with time. This demonstrates that even at b
point B, on the edge of the exchange region, the value ofge2

(2)

regularly falls below 1. It also shows that for this initia
condition the quantum statistics of the second field mo
cannot be described by classical means. In Fig. 16~bias point
C!, at t50, we again assume that the first field mode is
stateu1&E1

with the second in stateu0&E2
. As before, the first

field mode starts atge1

(2)50 but as the wavefunction for th

system evolves with time we see thatge1

(2) regularly shifts

away from zero. Correspondingly, the first field mode is
longer in the pure number stateu1&E1

due to its interaction
with the rest of the system. The first field mode is describ
by a reduced density operator which, at these points, re
sents statistical mixture of states with a low photon num
expectation value~as can be seen from Fig. 12!. As a conse-
quence,ge1

(2) increases since the denominator in Eq.~11! be-

comes very small around these points.

B. Coherent state computations

In Figs. 17, 18 and 19 we show the number expecta
values, the entanglement entropies and theg(2) correlations
for the bias point C in Fig. 9~b!, taking the initial state of the
system asuA5 iA3&E1

^ ua&S^ u0&E2
, i.e., where the first field

mode is in the coherent stateu iA3&E1
at t50. It is apparent

FIG. 17. Starting the three component system with the first fi
mode in a coherent state, i.e.,uA5 iA3&E1

^ ua&S^ u0&E2
, and using

the parameter values of Fig. 8~b!, plots of the number expectatio
values ^ne1

&, ^ns&, ^ne2
& against dimensionless timevst for the

static flux on the SQUID ring set at point C in Fig. 9~b!.
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~Fig. 17! that there is energy transfer, via the SQUID rin
between the first and second field modes of the system,
as in Fig. 12 for the pure stateu1&E1

^ ua&S^ u0&E2
. Thus,

when ^ne1
& decreaseŝne2

& increases, and vice versa. How
ever, it is evident that the regular oscillatory behavior seen
Figs. 11 and 12 has been lost. We note that, as in Figs. 11
12, the number expectation value of the SQUID ring rema
at a roughly constant value, highlighting the view that t
SQUID ring is acting as a nonlinear control medium linkin
the two quantum field modes together. In Fig. 18 we see
the components of the system again entangled very stro
but, unlike the previous computations of Figs. 13 and
there is no longer any quasiperiodic disentanglement to
seen. The system remains entangled at all points in time,
the total entanglement entropy is always high. In Fig.
there is clearly a significant deviation from the behavior
the g(2) coefficients displayed in Figs. 15 and 16. Thus,
Fig. 19,ge1

(2) is close to one for all of the time evolution~and

for most of the time just greater than one! whereasgs
(2)

spends most of its time just less than one andge2

(2) is almost

always greater than 1.
In all the examples given above we observe that, as

pected, the system displays strong entanglement when
first field mode has a low number expectation value, i.e.,

d

FIG. 18. With initial stateuA5 iA3&E1
^ ua&S^ u0&E2

for the three
component system, the entanglement entropiesI e1s , I s e2

,
I (e1s;se2), andI versus dimensionless timevst, where the system
parameters are as for Fig. 8~b! and the SQUID ring is flux biased a
point C in Fig. 9~b!.

FIG. 19. Second order correlationsge1

(2) , gs
(2) , andge2

(2) versus
dimensionless timevst for the three component system@parameter
values as for Fig. 8~b!# starting in stateuA5 iA3&E1

^ ua&S^ u0&E2

with the flux on the SQUID ring set at bias point C in Fig. 9~b!.
7-11
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components of the system have evolved away from th
initial pure states. We also note that when we start the
field mode in the pure stateu1&E1

^ ua&S^ u0&E2
, at bias points

B and C, we find strong entanglement between the vari
components of the coupled system which, at certain tim
~semiperiodically!, disentangle. The entanglement entrop
are, of course, theoretical quantities that demonstrate the
velopment of quantum correlations between the three mo
In principle, experimental observation of these quantum c
relations can be achieved by determining Bell ty
inequalities.32,56,46In the context of the work presented he
this will require further theoretical investigation. In Figs. 1
16, and 19 it is evident that theg(2) correlation coefficient
for at least one of the components of the system beco
less than 1 at some point in the evolution of the syste
Hence, for the initial conditions used in this work, we co
clude that the photon statistics of this system cannot be
scribed by classical optics.

VI. CONCLUSIONS

In this paper we have studied the coupling of a SQU
ring to two em field modes. For this we have made the
sumption that the ambient temperature of the system is
enough to be able to treat each of the three components~ring
1 two field modes! quantum mechanically. Our purpose h
been to demonstrate that the SQUID ring, as a nonlin
quantum object, can be used to couple a number of quan
oscillators together to generate physical phenomena of g
interest. As we have emphasized, there exist obvious pa
lels with the field of quantum optics. However, in quantu
optical systems the coupling media involved generally d
play only weak polynomial nonlinearity. In contrast th
SQUID ring, with the cosine term in its Hamiltonian descri
tion, can generate nonlinear interactions to all orders. I
this, plus theF0-periodic nature of its behavior as a functio
of external fluxFx , which makes the SQUID ring of suc
interest in the burgeoning field of quantum circuit techn
ogy. Viewed from the perspective of quantum optics,
SQUID ring ~or a set of coupled SQUID rings! can be
thought of as a nonlinear medium par excellence which
easily create very strongly coupled regimes~albeit at lower
frequencies—for example, at THz frequencies and belo!
which are inaccessible using conventional optical materi

In our theoretical investigations of the two em field mod
coupled through a quantum SQUID ring we have also
plied a static external magnetic flux (Fxstat) to the ring. In
this paper we started with the simpler example of a SQU
ring interacting with a single em mode. We showed that
coupling between the components of the system can
strong. This strong coupling only occurs over small range
Fxstat, centred around specific values of this bias flux, i.e.
what we term exchange regions which are govern by
energy eigenstructure of the system. It is in and around
exchange regions that the quantum nonlinear nature of
18451
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SQUID ring is made manifest through the coupling of t
field modes via the ring. For example, in these regions
ergy can be exchanged between the field modes and
SQUID ring and, through the intermediary of the ring, b
tween the field modes themselves. From this we suggest
suitably driven, this system may act as a frequency conve
suitable for operation up to the THz range. From our vie
point this illustrates the utility of these exchange regio
since it is here that the strong quantum couplings deve
between the components of the system. We have adde
this perspective by calculating other physical phenomena
sociated with such a coupled quantum system. To illustr
this we have computed the statistics of the various qua
~quantified with the second order correlations! and the de-
gree of entanglement~quantified with various entropies! be-
tween the components of the system, both outside and wi
the exchange regions. Our results demonstrate quite cle
that the mesoscopic SQUID ring can be used as a flux
able element to manipulate these~and presumably other!
quantum properties of these coupled circuit systems.
such, the work presented here may be of considerable
evance to current experiments on quantum superpositio
states in SQUID rings and on probing crossing/anticross
regions of their energy level structure.17,18,57

We note that we have neglected dissipation in the res
presented in this paper. Thus, we have computed the
evolution of the three mode system using the equation] tr
52 i @H,r#. A more realistic calculation, with dissipatio
due to the environment taken into account~for example, in
Refs. 58–60! is now being developed. The equation for th
time evolution then takes the form] tr52 i @H,r#1 f (r),
where a dissipative termf (r) has been introduced to repre
sent the environment. We intend to extend our work to
vestigate in detail the effects of this environmental dissi
tion on the behavior of SQUID ring-field mode systems.

We suggest that the three component system~SQUID ring
1 two field modes!, and its extensions, is rich in possibilitie
for device applications~e.g., in quantum gates, quantum e
cryption, and frequency conversion!; it is also a pointer to
more sophisticated quantum technologies in the futu9

Given that the technical problems associated with such te
nologies can be overcome, it seems likely that the SQU
ring ~and related weak link circuits! will, in the future, be
able to operate at THz frequencies. This could complem
the current drive to develop THz applications in~classical!
communications and imaging.44,45 It would also allow for
quantum circuit technologies to be utilized at quite acc
sible temperatures.
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