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Quantum statistics and entanglement of two electromagnetic field modes coupled via a mesoscopic
SQUID ring
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In this paper we investigate the behavior of a fully quantum mechanical system consisting of a mesoscopic
SQUID ring coupled to one or two electromagnetic field modes. We show that we can use a static magnetic
flux threading the SQUID ring to control the transfer of energy, the entanglement and the statistical properties
of the fields coupled to the ring. We also demonstrate that at, and around, certain values of static flux the
effective coupling between the components of the system is large. The position of these regions in static flux
is dependent on the energy level structure of the ring and the relative field mode frequencies, In these regions
we find that the entanglement of states in the coupled system, and the energy transfer between its components,
is strong.
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[. INTRODUCTION copic SQUID rings(and other weak link based circuits
in quantum technologies, for example, in quantum
In an earlier publicatichwe considered the interaction of computing?~*2 This interest has been stimulated by recent
a quantum mechanical SQUID ririg single Josephson weak experimental work on probing quantum mechanical super-
link, capacitanceCs, enclosed by a thick superconducting Position states in Josephson weak link circuit syst&is,
ring, inductanceA ) with a classical electromagnetieny  @nd even more so in th?ellglst year by reports of superposition
field. Using quasiclassical Floguet the®r{to solve the time  States in SQUID rmgé.‘. It seems reasonable to assume
dependent Schdinger equation(TDSE) for the SQUID f[hat the theore_tlcal descrl_ptlon of weak link systems interact-
ring, we were able to show that the ring-field interaction'"Y with em f|elds(c_IaSS|caI and_ quantum mechanjcé
could be very highly nonperturbative in nature. In essenc Jkely to be of great.|mportance in the deV.e'Opme”t. of any
this is due to the ring Hamiltonidrcontaining a cosine term uture superconducting quantum technologies. In this regard

X . . the very strong nonlinear behavior exhibited by a single
(the Josephson coupling eneygyhich can generate nonlin- ; L :
i S . L .._weak link SQUID ring in the exchange regions, referred to
earities to all orders. In addition, this Hamiltonian and its

: L . above, may prove to be of great utility. In order to test this
solutions areb(=h/2e) periodic in the external static mag- ie\ynoint we have recently considered, within a fully quan-
netic flux (P,sia) applied to the ring. This quantum non- ., mechanical framework, the interaction of a SQUID ring
linearity ensures that energy exchange between the field angiih an oscillator field mod&i.e., the simplest coupled sys-
the ring is dominated by multiphoton absorpti@nd emis-  tem we could have chosdsee Fig. 1 We found that for the
sion) processes.As we have demonstrated, this is the casecase of the em field in a coherent state the results derived
even at modest field amplitudes and at frequencies much lesgom this quantum approach compare very well with those
than the separation between the ring energy levelg)( In obtained previously using quasiclassical Floquet theory. In
this work we showed that these energy exchanges occurrdsbth approaches the ring and the field mode only couple
over very small regions in the bias fldx,,. The values in  strongly together within the exchange regions, i.e., over cer-
D, ar@t Which these exchanges take place are determined bigin narrow regions in the bias fluR,g,. This means that
the ring energy level structure and the field frequency

(wef27) and flux amplitude @,). To be precise, it is in the Hes

exchange regions that the energy expectation value appears A C
to jump (for example, using a two level modddetween the " € €
time-averaged energies of the ground and first excited states As

of the ring. Each transitiofexchanggregion corresponds to
the separation between the ring eigenenergies equalling
nfiwe, Ninteger, leading to multiphoton absorption, or emis-
sion, between the ring and the field. It is in these regions that F|G. 1. Block diagram of a SQUID ring coupled to a single em
the nonlinear nature of the ring Hamiltonian becomes manifield mode of frequencyw,(=1//C.A,) where the flux linkage
fest and where strongand nonperturbatiyetime dependent factor, ring to field mode, isues. Here, it is assumed that the
superpositions occur between the original eigenstates of themperatureT is such thakgT<#% ws,% w, for a SQUID oscillator
ring. frequencyws=1/\/C,A . Also shown is a static bias magnetic flux
Currently there is a great deal of interest in using mesos®,,; applied to the ring.
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Heys Hsey ducing coherent pulse modulated signals. In our opinion, the
Cey= Ae " " L Ce, combination of such strong nonlinear properties, coupled
As

-
S
1

B with ®y-periodic external bias flux control of this behavior,
makes the SQUID ring quite unique as a device for applica-
tion in quantum technologies. Thus, although the following
calculations are concerned with some of the basic conse-
gquences of the quantum interaction of em field modes with a

FIG. 2. Block diagram of a SQUID ring coupled to two em field SQUID ring, we also wish to emphasize the technological
modes of frequencye, andwe, assumingkgT <A ws,hwe iwe,,  possibilities which may open up as these ring-field mode
with flux linkage factors,uels and Hse, between, respectively, the systems become more fully understood.

first field mode e}nd the ring and the ring and the second field mode; | the work presented here we first consider briefly the

all else as for Fig. 1. two mode system, including a static bias filx, (Fig. 1).

This allows us to relate the quasiclassical Floquet approach

@, Can be used to control the coupling without losing 0 the fully quantum mechanical treatment and demonstrate

superposition coherence in the system. We note that thi§at our quantum model can produce consistent results. It
work relates to quantum optical interactions in few level at-alS0 provides the background formalism for our main goal
oms and to few level systems involving eith@upercon- which is _the st_udy of two em flel_d modes coupled through a
ducting electron pairs or single electrofié!=2* SQUID ring. Since our purpose is to study the full quantum
These initial results for a two modeing + oscillatoy ~ Mechanics of the ring-field modé or 2 system, we assume
system have encouraged us to draw more parallels witfhiroughout that the operating temperati@ is such that
quantum optics. Rather than simply consider the SQUID rind? @e, .e,>KeT, fws>kgT. This ensures that both the ring
as an electronic device, we may also view it as a tunablegnd field modés) behave quantum mechanically. We then
®,-periodic, nonlinear medium to couple a system ofconsider the extended quantum circuit, the two oscillator
guantum oscillators together. Regarded as a nonlinear méeld modes §; and &) coupled through a SQUID ring
dium, there is a clear analogy to other nonlinear quantun{S)—Fig. 2—with a bias flux®,g;also coupled to the ring.
systems in the context of quantum optics. However, there arl previous paper<s® this bias flux was used to control the
two crucial differences, both of which may be of greatbehavior of the SQUID ring alone or the ring interacting
importance in future quantum technologies. First, unlikewith one field mode. In the current paper it is used to control
the SQUID ring, in quantum optical systems the mediumthe interaction between two field modes via the nonlinear
usually displays a weak polynomial nonlinearity, even inproperties of the SQUID ring. At first sight there might ap-
strong fields?®>~*°Second, all of the properties of the SQUID pear to be no a priori reason why, in this three mode system,
(quantum or quasiclassigadre ® periodic in bias flux. it should prove easy to couple all the components together
In this paper, our objective is to explore the consequencestrongly. However, at least for the case of weak inductive
of the strong quantum nonlinearity of the SQUID ring on thecoupling between the modes, we shall show that well char-
interaction, via the ring, of two oscillator field modes. This acterized energy exchange can take plac¢oatclose tQ
arrangement is depicted in Fig. 2, with the two field modescertain specific values @b, In these regions of bias flux
and the ring oscillator frequencies taken to b%1/277, multiphoton absorption and emission processes occur. Thus,

we2/27'r, and w5/2w=1/277\/m, respectively. As we shall the energy required for an interaction to take place is ap-

. i . roximately equal to the energy transfer in the absorption or
see, the ad_dl_tlon of the s_econd T'eld mode makes this a rnu?‘ﬂission of an integer number of photons with frequency
more sophisticated and interesting system than the two mode

. ! X : : e, In the first field mode to an integer number of photons
system (ring+field oscillatoy which was the subject of a %t i )
recent publicatio? even though the computational demandsWith frequencywe, in the second. As for the two modeng
that need to be met are very much greater. In this regard it ig-field mode system, these are the exchange regions where
widely viewed™°that the SQUID ring, as a coherent quan- the effective coupling becomes strong because of the non-
tum device, has many potential applications in the designljnearity of the SQUID ring. As we shall see, it is in these
development and operation of quantum mechanical circuit§egions that many interesting quantum phenomena can be
and quantum logic elements. In this paper we consider tw@bserved.
aspects of the quantum behavior of a SQUID ring which To emphasize that the coupling across the extended three
could have a serious impact in these areas, namely, the tran®ode system is controlled by the bias flux, we calculate the
fer of entanglement and frequency conversion between erverage number of quanta in each mode and show that there
field modes via the quantum nonlinearity of the ring. In thisis a large exchange of energy between the three modes at
work we discuss frequency conversion and entanglement fapecific values ofb,g,,, thus demonstrating that frequency
just two field modes. However, if the nonlinear aspects ofconversion can take place in the system. In addition, we
quantum SQUID ring behavior can be fully exploited morealso calculate the second order correlatig?? (again con-
complicated operations could be envisaged. These may irrolled by the bias flux which quantifies the quantum
clude using SQUID rings to couple/decouple entangled statestatistics(bunching of quantafor all three modes?3 We
in extended qubit circuit structures and allow frequency conshow that as the system evolves in time, strong entanglement
version processes between field modes to be modulated, proecurs between the three modes. We quantify this by calcu-
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FIG. 3. First three energy eigenvalugs_q,, of a quantum FIG. 4. First three time averaged Floguet energies as a function
mechanical SQUID ring as a function of bias fluR,g. /P, of @,/ Py for the SQUID ring of Fig. 3 where, agairf,wg
over the range &®,q /Po<1 for C=1x10F, A, =0.043bj/A, (w/2m~1 THz) and #Av=0.07j/ A (v
=3X10 % (hws=0.043D3/Ay), and  Av=0.07P%A, =1.63w,) with a classical em field of frequenay.=0.5ws and
=163 ws (v=1.63w,). amplitude ®,.,=2x 10 3®, applied. Here, the energy has been

normalized to the ring oscillator enerdytws .
lating various entropic quantities based on the von Neumann
entropy>*~3"These are chosen for convenience and familiartime averaged ring energy expectation values for the first
ity and because they can be used to quantify the degree #iree Floquet stategeigenvalues of the evolution operator
entanglement between the subsysteffisld modes and after one period of em field evolutipras a function of
SQUID ring). Although these entropic quantities do have de-® e/ P, USiNg the ring parameters of Fig. 3. Hete, has
ficiencies as measures of entanglem&rthere is no real been set at 0 with the associate®,e,=2x 10 3®. As
consensus about which is the preferred measure within thean be seen, energy exchange between these time averaged
quantum technology community. In the absence of any conenergies occurs at specific values of the bias @y, and,

sensus, we opt for a familiar choice. as we have already pointed out, the number and position in
d, .ot Of these exchange regions dependsen) ®,.y, and
II. THE TWO MODE HAMILTONIAN the energy level structure of the ring. We have observed
that these transitionexchangg points occur for values
A. The SQUID ring in a classical field of bias flux such thatat least for small em field ampli-
In our earlier work we treated the em field classicaffy ~tudes ®yen) Niwe~E(P,)—E;j(Py) where N=0,1,
and the SQUID ring quantum mechanically, using the well=2, ... - We note that for the SQUID ring we can write
known Hamiltoniaf down a renormalized oscillator frequency)= wq
+4727%v®, °C *wg t which is related to the fact that there
Q§ (Ds— [ Dystart Pyem SiNwet])? is ana;raS term in a Taylor expansion of the cosifioseph-
Hszzcs 2A son term in the ring Hamiltoniar{1).
—hy Co{ 277%). (1) B. The SQUID ring in a nonclassical field
0

In the fully quantum description the Hamiltoniddh, for
Here, ®,, the magnetic flux threading the ring aqd, the the SQUID ring-em oscillator mode system can be written
electric displacement flux between the electrodes of the we

link in the ring, are the conjugate variabt&8!for the system

(with [®,Q4]=i%), % v/2 is the matrix element for Joseph- Hi=Het+Hs—Hes, 2
son pair tunnelling through the weak link adeley, is the  \yhereH, and H, are, respectively, the Hamiltonian contri-
amplitude of the classical magnetic flux at the ring due to thg, ,iions for the field and the ring artd,. is the interaction
em field mode. Witkﬂ)xem set to zero we can solve the time energy linking these together.

independent S_chcti)nger equation to fin_d the eigenv_alues of Following Eq. (1), the Hamiltonian for the SQUID ring
the SQUID ring alone as a function of applied flux gone i€

D,/ Po. As an example, we show in Fig. 3 the first three

eigenenergies of the rinE, ¢ 1 A Pysta! Po), Wherex=0 Qg (P~ D yepa)?

denotes the ground state, gtover the range & ® 4,/ Pq Hs= 5C + T—fwcos(
=<1 using parameters typical of a quantum regime SQUID S S

ring 2% i.e., Ca=1x10 * F, A;=3x10" H (hence while the Hamiltonian for the em fieltmodelled as a paral-
hws=0.043D3/Ag or wg2m=9.8X10'" Hz) and #v  lel capacitanceG,) inductance () cavity mode equivalent
=0.0M3/A=1.6F wy(v=1.630). With ®,,, turned on, circuit with infinite parallel resistance on resonahtakes

we can use Eq(1) to solve the corresponding TDSE. Again, the form Ho=QZ/2C.+ ®2/2A .. Here,®, and Q, are, re-

by way of illustration, we show in Fig. 4 the computed spectively, the cavity mode magnetic flux and charge opera-

)
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o 15 where the em-field mode is in a coherent state and the SQUID ring
o is in one of its first three energy eigenstates, i.e., the initial states are
@ 05 la=i20):®|0)s, (¢=0,1,2). Here, as for Fig. 5C;=C.=1

< X107 %F, w,=0.5w; (where wd27~1 THz), v=1.63w, but
= o5t with wes=7.6X 10" * for comparison with Fig. 4.
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FIG. 5. Eigenenergies of the SQUID ring-em field mode system . .
(normalized in units ofi w.) Versus® ./, using the ring pa- 1 Ne time averaged energy expectation val{(g, s )) for

rameters of Fig. 3 WIthCo=Co=1x10 F, w,—2w, (where the ring and the field(i.e., 7, and ) can then be calcu-

wg/2m~1 THz) andv=1.63ws. In (8 the field mode-SQUID lated using the expression
ring flux linkage factorues=0; in (b) wes=0.1.

11~
Hi))y= Iim—f Tr[ p; (t)H;]dt, (7)
tors for a field mode frequency.=1/\/C.A.. This cavity () —xTJO Lei(0)7]
mode is coupled inductively to the SQUID ring with a cou- ) )
pling energyHes= (tes/ A (Ps— Prgm) P, Where uois  Wherep;, i=e,s are the reduced density operators for the

the em field-SQUID ring flux linkage factor. em mode and the SQUID ring, respectively. In practice, we
By making a suitable transformatidusing the unitary Nave been able to ensure the convergence of the intégral
translation operatof = exp(—iP,Qs/%)] the Hamiltonian by integrating numerically from 0 up to 20 0G{y.

(3)—now in script—can be written more conveniently as Clearly, provided we select the correct initial state for the
em field in the two mode system, there should exist a corre-

Q2 @2 P+ Do spondence between the Floguet method used in Sec. Il A
H=TTHT= ZCS + ZAS —ﬁvCOS< 277%) (4)  [using(1)] and the result of a fully quantum mechanical cal-
s s 0 culation. As an initial state the coherent state is an obvious

while the Hamiltonian for the em field mode remains unaf-Choice since it is the closest quantum state to a monochro-

fected. However, the interaction energy does transform tghatic em field, as used in the Floquet approach above. With
Ho= (fres! A) P D.. We denote the magnetic flux depen- this choice we would expect a reasonable agreement between

dent eigenstates 6f; by |o)s. In our computations we then the fully quantum and quasiclassical computations. In fact
use a truncated energy eigenbasis both for the fiaj)(and the match between these two approaches can be very good.

the em field mode|q)). The basis statelsr),|n), whereo To compare with the quasiclassical result of Sec. Il A, we set
—a, ... Qandn=0, ... N, are taken so that andN are, the zero time (=0) product state a$a=i20):0|0)s,

respectively, much greater than the average number d¥here|e).is a coherent state of the fieldd a)c= ala)).
quanta in the ring and em field. Using this coherent state we show in Fig. 6 the calculated

Using this truncated basis, we can then solve ({Hs)) for an integration timer=2x10% ws with the ener-
gies normalized in units ok ws. The computations have
Hl &) =Enl&n) (5) been made over the range=@®, .,/ Po=<1 for the values of
0=0,1,2, using the SQUID ring capacitance, inductance and
to obtain the eigenfunctions and eigenenergies of the twd,-dependent energy level structure of Fig. 4. Here, as for
mode system Hamiltoniafi;. The eigenenergies for the Fig. 3, we have made.=0.5w¢ while setting the flux link-
ring-field mode system are shown in Fig. 5 for fig, A, age factoru.s=0.00076. We chose this value pt ¢ so that
and# v values used for Fig. 3, witbs=2w,, as in Fig. 4. the amplitude of oscillation of the coherent state in the em
Here, in Fig. %a) the field mode-ring linkage facton.;  field coupled to the SQUID ring is equivalent to that used in
=0.0 while in Fig. §b) it is 0.1. From this spectral decom- the Floquet calculation of Fig. 4. It is apparent that the time
position we can form the evolution operator via averaged energy expectation values, and their exchange re-
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FIG. 7. (Color) Comparison between time averaged energies of Figeedt and 6(blue).

gions, calculated in the quantum model as a function ofvhere the SQUID ring Hamiltonian is given by E®)
d,.ocare very close to those found using the quasi-classicalvhich has been transformed into tfbg,,; basis. We choose
Floguet approach. To emphasise this, we show in Fig. 7 theo write our component Hamiltonians in E() in terms of
two calculations superimposed. The very close fit betweetthe annihilation [a;=(1/y2)(x;+ip;)] and creation[a;r
the two gives us confidence that the quantum model is physi= (1/\/2)(x;,—ip;)] operators as

cally valid with an accurate correspondence to the quasiclas-

sical regime when a coherent state is chosen for the em field. N 1
As we have already noted for the SQUID ring in a clas- Helzﬁwel Qe, Ae, T 5]

sical field(Sec. Il A), we observed that transitiojor strong

coupling regions occur whenNAwe~E;(P,) —E;(PD,). 1

From Fig. 5 we can see that this situation exists when degen- He, =T we, aez’faez+ ok

eracies in the spectrum of the system are lifted due to the
coupling term between the Hamiltonians for the SQUID ring

and em field. T 1 27 f +
Hs=hws asas 5 hvcos{q)o 2C5ws(a3 ag)
IIl. THE THREE MODE HAMILTONIAN (0N
+27T¢T ,
0

Following on from Eq.(2), we now consider a SQUID

ring with oscillator frequencyvs, threaded, as before, by a \ynere the position and momentum operators can be defined
static bias flux®yg, but now coupled to two em field jn terms of the magnetic flux and the charge operators via
modes of frequency ., andwe, (see Fig. 2 With the usual x;=\/C;w; [ ®; andp;=1IC;% w;Q; for oscillator frequen-

flux (®;) charge Q;) commutation relation[®;,Q;]  ciesw;=1/\J/C;A,, with the subscript denotinge, ,e, for the
=if g, the total Hamiltonian?{; for this system can be fields ors for the ring. Hence the Hamiltonians of the com-
written as ponents of the system are identi¢hlt extended to include

an extra field modeto those used in Sec. Il B, but written in
terms of creation and annihilation operators. The interaction
H7=He + He s T HsT Hse, + He,, (8) energiesH, s and’Hs,, in Eq. (8), each of which represents
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the inductive coupling between the SQUID ring and the ostherefore made the two mode frequencies differ by a factor

cillator modese; ande,, respectively, are given by of two, i.e., we, =2we, while again, for simplicity, setting
we, = Ws. With all capacitances identical these frequencies
Hes= —ﬁws% :s&(a&as)(alﬁ ael)’ correspond to\el= %A%:AS for a typical SQUID ring in-
e We; ductance\ ;=3x10 1% H (see Sec. )l Again, as in Sec. Il,
we have puth 1/=0.07CI>§/AS (»=1.63ws) which is typical
Hse, Cows + value of the pair tunnelling matrix element for quantum re-
Hse,= ~has 2 cezwez(a5+a5)(a62+aez)' gime SQUID rings operating at a few K. In addition, we

have set the ring-field mode flux linkage factors 8d s

IV. TIME EVOLUTION OF THE THREE MODE SYSTEM :001 and/,l,s%=01 Wh|Ch apprOXimateS to some reported

) ) ) experiments in the literature involving two oscillator field
The Hilbert space? for the SQUID ring-em field system ,0des coupled through a SQUID rifig*

is a tensor product of the Hilbert spaSdor the ring and the
Hilbert spacest; and &, for the fields, that is to say=¢&;
®S®E,. We denote in roman script the simple harmonic, em
oscillator mode number eigenstates; (afa;/n);=n|n);). In Sec. Il we demonstrated that strong coupling between
In representing the SQUID ring we use greek script, for exihe SQUID ring and the em field occurs when degeneracies
ample|@)s,|B8)s.|7)s. - . ., torepresent the eigenstates of in the spectrum of the Hamiltonian are lifted due to the cou-
the HamiltonianH; in order to distinguish these from the Pling between the components of the system. Numerically,
number eigenstatés) of the ring @lagn)s=n|n)s). this equates to the conditiomfiwe=~E;(Py)—Ej(Dy),

In dealing with the time evolution of the coupled three WhereN is integer and theg;(®,) andE;(®,) are theith
mode system we must first solve the eigenprobjege Eq. a@nd jth eigenvalues of the system Hamiltoniafy. These
(5)]. As in Sec. Il for the two mode system, we use a trun-€gions of strong couplinghe exchange regiopswhich de-

A. Strong coupling of the SQUID ring to em field modes

cated basis. This has the form velop at specific values of the bias flu® () applied to the
SQUID ring, are dependent on the ring eigenenergy structure
{an’K’m>E|n>gl®|K>S®|m>52| and the frequency of the em field. Similarly, for the three

mode system strong energy exchange will occur between the

n=0,... Nq, two field modes and the SQUID ring when the coupling
terms lift degeneracies in the spectrum of the Hamiltonian.

k=a,...Q, This will occur when

m=0,... Ny}, ©) Ne i e, — Ne,fiwe,~Ei(Dy) — Ej(Dy), (10)

Where|n>5l and|m),52 are the number states for the two field

e 50 SaniNs, o, e MEGESHOSIe o GBI i cas,
greater than the average number of quanta in each Compg_hotons with frequency)el in the first field mode are used to
nent of the system. With the eigenfunctions and eigenenegxcite the SQUID from thgth state to théth state with the
gies of Eq.(5), but using the three mode Hamiltonian, the emission ofN,, photons of frequency., into the second
evolution operator can be calculated using the expres8jon field mode. Taking the ring-field parameters set above, we
Then, assuming that the systemtatO is described by the have calculated the energy eigenvalues for the three mode
density matrix p(0), the density matrix p(t) system. These are shown in Fig. 8. It can be seen that these
=U(t)p(0)UT(t) at a later timet can be found, as can the eigenenergies possess a very rich structure which leads di-
reduced density matriceﬁel=Tr$®52(p), pS=Trgl®52(p), rectly to the results presented in this paper.
Pe,= Mg 0s(p) and pe s=Tre(p), pse,=Tre (p), Pee, Given a choice of the initial state for the fields in the two
=Try(p). With these density matrices determined, we Canoscnlator_ modes, we can _calcu_late Fhe time averaged energy
then investigate a range of parameters which reveal much gxPectation valuesnormalized in units ofiws=1/yCsAs)
the quantum behavior of the three mode system, for exampl@f 7 e,» He,» @ndHs using Eq.(7) and integrating numeri-
the von Neumann entropy. cally from O up to 2<10% ws. As an example, we show in

In the following sections of the paper we present numeri-Fig. 9(a) these time averaged energies plotted as a function
cal results demonstrating various aspects of this behavio@f ® s/ o assuming that at=0 the system is in the state
Since the examples given are intended to be illustrative id|1>gl®|a)s®|0>52, i.e., with one photon in the first em mode
nature, for simplicity we have made the capacitances for alaind none in the second. The peaks are a manifestation of the
three modes of the system the same, these being typical gfrong coupling between the various oscillators at and around
quantum regime oscillators operating at a few K, i@,  specific values ofb,,/®P, where the energy transfer be-
=C eZICs: 10 ® F. Amongst other things we wish to tween the various components of the three mode system oc-

show that quantum frequency conversion can occur betweefHrs. Thus, starting in the initial stafe) ®|a)s®|0)e,, it
the two oscillator field modes, via the SQUID ring. We havecan be seen that in the exchange regions, on average, energy

where, now, theg; j(®,) are theith/jth eigenvalues ofs
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FIG. 9. (a) Time averaged energy expectation val(ieunits of
hwg) over the range & ®, .,/ Po=<1 for the three mode system of
Fig. 8 and(b) as for (a), but expanded aroun® g,/ P,=0.426.
The initial state for the system [&), ®|a)s®|0)¢, and the circuit

. . . . t in Fig. 8.
is being transferred from the first mode to the SQUID rlngpalrame ersareasintig

and to the second mode. This will become more transparent . - .
when we compute the time evolution of the expectation valing. This is quantified by the second order correlations al-
ues of the number operators for the components of the sy
tem (below). In Fig. 9b) we show one of the three mode
exchange region@round®,,/®,=0.426) of Fig. 9a) on

a much expanded scale so that the details can be seen m

clearly.

hough higher order correlations can also be calcul3fted.
hese correlations fully describe the quantum statistics and
quantum noise of the photons in the two field modes and the
&léoerconducting condensate.

C. Quantum entanglement in the three mode system

B. Quantum statistics of the SQUID ring-field system The creation of entangled states of multi-particle systems

An important aspect of non-classical electromagnetidS & key feature of all quantum technologies. In their pursuit
fields is the quantum statistics of photadisinching of pho- the generation of entanglements in real physical systems is

tons described by the second order correlati3ris clearly of very considerable interest. In this regard, it appears
that the nonlinear properties of the SQUID ring can be used

(N2~ (N;) very efficiently to entangle circuit sul_nsysterﬂsnere, field
@=L (NMY=Trpi(ala)"]i=e;,e,,5. oscillator modep that are coupled to it. As we shall also
' (N;)? ' ' show, the ring nonlinearity can also be used with facility to
(11 generate energy conversion between the two oscillator field
@)_ ) ) .. modes. Again, taking as our example the three mode system
The value gfg =1 corresponds to Poissonian statistics.yf Fig. 2, we shall demonstrate that as this system evolves in
Values ofg(® greater than 1 indicate photon bunchm%, time its three components become, to a greater or lesser ex-
where the photons arrive in groypwhile values ofg® tent, entangled. The degree of this entanglement can be
smaller than one indicate antibunchifige., the regular ar-  gyantified by using entropic quantities. The entanglement for

rival of photong. The latter regime is characteristic of non- 5 yyo mode(ring-oscillatoy system can be quantified #y 3’
classical electromagnetic fields since it can be shown that in

classical opticgg®=1. Only in quantum mechanical sys-

tems carg®<1 3233 This is well known in quantum optics

but is, perhaps, less familiar in condensed matter physics. i )
In this work we show that the statistics of photons threadWhereéS(p) is the von Neumann entropy given by

ing the SQUID ring affects the statistics of electron pair con-

densate tunnelling through the Josephson junction in the S(p)=—TrpIn(p)] (13

lag=S(pa) +S(pg) —S(p), (12

184517-7
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with po=Trgp and pg=Trap. This entanglement entropy is g YW
positive or zera(subadditivity property of the entrojpyEx- % 12} (a)
amples of the calculation of this entanglement for the two £ 1
mode system can be found in our previous wotk. L s L ]
An analogous quantity can be used to characterize the oo (ne,)
entanglement of a three component systém° Thus, for the LE 06 (n) T
field mode-SQUID ring-field mode system, this takes the L o04f .
form g o2l {nea)y 1
=
I=S(pe,) +S(ps)+S(p e,) —S(p) (19 Z % Io00 2000 8000 4000 5000
which can be written as g Dimensionless Time (wst)
I =lestlse,T1(€1S;56), (15 | (b) |
Wherelels andlse2 are the entanglement entropies between g sl
£,9S andS®&,, as defined above E@12), and 2 ’
o 1
|(€15:5€,) =S(pe,s) + S(pse,) ~S(ps) —S(p) ~ (16) = leg Ty Tlersseg) and 1
0.5
describes a deeper entanglement betwg&enS and S® &,. & J(
Understanding of this deeper entanglement, that exists in 0
0 1000 2000 3000 4000 5000

three component systems, is intimately connected to the . . .
strong subadditivity property of the entropy. This can be used Dimensionless Time (wst)
to demonstrate that the quantitye;s;se,) is positive or o
zero. We note that to prove this presented a very difficult G- 10- Starting in a pure staf#)s, ©|a)s®|0).,, plots of(a)

problem in the theory of entropgit was a conjecture for the number expectation valuése,), (ns), (ne,) and (b) the en-
many years until a proof was provioE@dsﬁ. tanglement entropiel s, Ise, I(e;S;s8), | versus dimensionless

In this paper we are not going to proceed further intotime w4t for the three component system of Fig. 9 with the ring flux
this deep problem of entanglement in three Componentf:‘i.ased atAin Fig. @). Here, the system parameter values are as for
systems as it has been discussed in detail elsevifiere F9: 80).

However, we note that the entangleméntan also be ex-

pressed as contains none. In our first set of examples we choose the

=0 state in the first mode to be a number state; in the second
I =S(pe,) +S(ps) +S(pe,) — S(p) set we make this a coherent steh’e>gl, where ael|A>g1

=A|A>5l. For the case of the number state we assume that at
t=0 the three mode system is in the stdB. ®|a)s
=lestlee, T1(€5€16;), 17 ®|0>52. For the example where we adopt a coherent state for

the first mode we choose for illustrative purposasd com-

wherel(e;s;e;e,) andl(e,s;e,e,) are non-negative num- , .
oL T X utational eagethe system statpA=i/3)¢ ® ®10)¢..
bers. On physical grounds, i.e., because we are using tHe y B )&, 8] a)s®|0)e,

SQUID ring as the intermediary between the two field
modes, we choose to show numerical results for the en- A. Number state computations

tanglement between the SQUID and the first madg, the As is evident from Figs. @ and 9b), the flux bias points

SQUID and the second modg.(s), and also theé(e;s;s&).  have been selected either to be well away from, or within, an

exchange region, i.e., point A and points B and C, respec-
V. NUMERICAL CALCULATIONS tively. For a complete, quantitative view of the system we
should compute, in sequence, the number expectation values
As we have shown in Figs. 6 and 9, strong coupling be<n, __ ) the entropie§l, ,lse.!(€;S;56), andl] and the

tween the various of components of ring-field mode systems 5~ lations f hl G le. Id modes0). the SOUID

only occurs over small regions if,s.——the exchange re- “¢1:5% correlations for the _'rSt ield modez), the Q

gions. We now see how the variation in coupling across arfing (5), and the second field mod&) as a function of

exchange region affects the number operator expectation vatormalized timewst. However, it is apparent in Fig. 1®ias

ues, quantum statistics and entanglements—all importarf0int A) that, starting in a pure stafé). ® |@)s®|0), for

guantities reflecting on the quantum behavior of these sys£;, the number expectation valué® and entropiegb) re-

tems. Continuing from Fig. 9, we calculate these quantities atnain constant as a function of time. We note tha} is not

each of the three flux bias points A, B, and&@ ®,q/Po  zero because the ground stét s of the SQUID ring is not

=0.0,0.4246 and 0.4263, respectivelyn each of the fol- the same as the ground state of a simple harmonic oscillator

lowing computed examples we assume that=af the first |0). From the definition given in Sec. IV B, the fact that

field mode&; contains one or more photons while the second(ne,) =0 makes the calculation af® for the second mode

=1 els+ I e1e2+ I(e1S;e1€5)
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FIG. 11. With the initial pure statﬁ>gl®|a>5®|0)52, and with FIG. 13. Entanglement entropidg s, |, 1(€:S;s€) and|

the parameter values of Fig(l8, a plot of the number expectation versus dimensionless timegt for the three component system of
values(ng ), (ng), (ne,) versus dimensionless timegt for the  Fig. 9, with the parameter values of Fig(b§ starting in state
static magnetic flux on the SQUID ring set at point B in Fi¢)9 |1>gl®|a)s®|0)52 with the SQUID ring flux set at point BFig.
9(b)].
at bias point A physically unmeaningful since this is division
by zero. It is therefore very sensitive to numerical error. .0 4 theoretical viewpoint the problem with demon-
However, such is not the case when the bias point point 'Strating high ratio frequency conversions is the rapid rise in
shifted into an exchange region. Starting again with the sysge nmper of basis states required as the d@wphconver-
tem Statél>_51®|“>_5® |O>52' we show in Figs. 11bias point  gjq frequency ratio increases. The computational difficulties
B) and 12(bias point g the average number of quanta—the increase accordingly. Nevertheless, even given the limita-
(nj)—in each of the three modes as a function of time. Withtions on the computational power we have availai@em-
this choice of starting state these results demonstrate clearpag XP1000 alphaserver with 2GB RAMwe have been
the quasiperiodic exchange of energy between the variougole to demonstrate quantum down conversion by a factor of
components of the system. Since the exchange coupling 0 in frequency. We intend to deal with this in a future pub-
strongest at C, this is where we would expect to find thejcation. There is some indication that these down conversion
maximum energy transfer between the first and second fielgrocesses occd?. In Fig. 12 the input state is the number
modes, as is the caseig. 12. We note that in the computed state|1), but, as we shall show, down conversion can occur
resl,ults Ode'r?' 12f tEe second field mode nl:]mberllexpectatlo%r a coherent input state. It may well be that this ability to
value(and that of the SQUID ring to a much smaller exient gonerate photon down/up conversion could have practical
is a maximum when that for the first field mode is a mini- 5y pjication for pure state sources in quantum information
mum. This is the signature for frequen@own) conversion, processing and quantum computing. For example, it may
in this example by a factor of 2. The process could, Ofprove desirable to take single photon terahertz sources, as are
course, be run backwards to generate frequency up CONVeL,, peing developetf“Sand use these to provide the input
sion from the second to the first field mode via the quantumy o 19 a SQUID ring to generate photons at much lower

nonlinearity of the SQUID ring. Given that this nonlinearity o encies suitable for solid state quantum circuit technolo-
can be to all orders, we see no obvious reason why Mucllies |t is also clear that if very large down/up frequency

h|gr|1er ratio frequency conversions should not prove practizonyersion ratios can be achieved experimentally, there
cable. could well be interesting metrological applications, for ex-
ample, in frequency standards.

o 14 This role in linking the two field modes together in a
% 12 strongly nonlinear, quantum mechanical manner is empha-
£ 1k sized in Figs. 13 and 14. Here, the time varying entangle-
;oi osl ment entropies are computed for bias point§Fgy. 13 and

o] C (Fig. 14 following the definitions given in Sec. IV C.

_c;J' 067 Here, again, we have started the system in stat)gl

= 0.4 ®|a)s®|0)¢,. It can be seen that the entanglement between
= 0.2

the various components of the syste[mgls, l'se, and

% | 1060 2000 3000 4000 5000 I (e;S;s&)], and the total entanglement entropy for the sys-
Dimensionless Time (wst) tem (1), are stronger at C than at B which, from Figgb)9
11, and 12, is to be expected. In our opinion it is this ability
FIG. 12. Starting in the pure staj#)s ®|a)s®|0)¢,, and with  to control the degree of entanglement between the compo-
the parameter values of Fig(t8, plots of the number expectation nents of (for example this three mode system simply by
values(ng ), (Ng), (Ne,) versus dimensionless timegt for the  changing® g, Which marks out the SQUID ring as a poten-
three component system of Fig. 9 with the SQUID ring flux biasedtially very useful device in future quantum circuit technolo-
at point C in Fig. 2b). gies. This is emphasized by the contrast between figures
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FIG. 14. Entanglement entropidss, |, |(€;s;sey), and| FIG. 15. Second order correlatiog§”, ¥, andg?) versus
versus dimensionless timegt for the three component system of dimensionlessyt for the three component system of Fig. 9, start-
Fig. 9, with the parameter values of Fig(b§ starting in state ing in a pure stat¢l), ®|a)s®[0)¢, with the static magnetic flux
|1>gl®|a>5®|0>52 with the SQUID ring flux biased at point C in on the SQUID ring set at bias point B in Figl®. Here, the system
Fig. 9b). parameter values are as for FigbB

10(b) (for bias point A and 14, where the system and sub-switched away rapidly from the exchange regigor
system entanglement go from zero to a maximum for arswitched off thus leaving the input and output modes en-
adjustment in®, ., around 0.0, . tangled but uncoupled. An array of these circuits could then
Although, in the above we have considered in some detaibe used as an qubit register for a quantum computer, where
entanglement between two field mod@sput and outpyt  the qubits would be entangled but not coupled to the input
interacting via a SQUID ring, there are many other couplednodes. Conceivably, this arrangement could facilitate quan-
systems of field modes and SQUID rings which could betum error correction for quantum computatifrSchemes of
studied. One which may be of importance, both scientificallythis kind may well find application in quantum encryption
and technologically, is an input field mode linked through aand transmission of information at a more complex level
SQUID ring to two separate output modes at half the inputhan is usually consideréd®>*
frequency. From the results obtained in this paper we would Since the underlying purpose of this work is to demon-
expect the twgdown convertefiphotons to be strongly en- strate the influence of the SQUID ring nonlinearity on a
tangled with the degree of entanglement controlled, again, bgoupled quantum system, it is important to show quantita-
the bias fluxd,..applied to the ring. Furthermore, given the tively the way in which the quantum statistics of the photons
nonlinearity of the SQUID ring, we would also expect it to affects the quantum statistics of the electron péies, the
be possible to entangle a large number of output photonsuperconducting condensate flowing through the weak link
starting at an initial input frequency and down converting toin the ring. As we explained abovéSec. IV B), this is quan-
a whole set of lower frequency output modes. As a techtified with the second order correlatiog¥” . In Figs. 15 and

nique, the use of a SQUID ring to generate entanglements6 we plot the second order correlatiag$, g{”, andg(?

between several systems could well be applied to great adyy pias points B and C as functions of time with, again, a
vantage in fundamental experimental studies of quantundiarting state for the system m>€1®|“>$®|0>52' As with

mechanic$®-*C It could also have implications in quantum .
. ) ; . the number expectation values and the entanglement entro-
computing, for example, in creating an entangled input reg-

ister for a quantum computer. It has also been suggested that
the creation of(large number multiparticle entangled sys-
tems could lead to new sensors and instrumentation of un-
paralleled sensitivif/ and it may be that SQUID rings are
very well suited to creating these entanglements, at least for
photons.

There are other possible ways that the input register of a
guantum computer could be based on the nonlinear proper-
ties of SQUID rings described in this paper. For example, we

could set the three modes of the coupled system in Fig. 2 all
to have the same oscillator frequengy. Then, with® g
biased within an exchange region, we could arrange to create
a qubit superposition state () and|1) in the output mode
starting from the number staf&) of the input mode. As our

N

0 i
0 1000 2000 3000 4000
Dimensionless Time (wst)

5000

(2)

FIG. 16. Second order correlatioggi), g!?, and gg) versus

results have demonstrated, this could be done in such a walmensionlesswt for the three component system of Fig[8a-
as to ensure that the input and output oscillator modes ar@meter values as for Fig.(l8], starting in a pure stat¢l).
entangled. Once the desired qubit state of the output mode|a)s®|0),, with the SQUID ring bias flux set at bias point C in
had been realized, in principle the bias flux could then berig. 9b).
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FIG. 17. Starting the three component system with the first field?@mpPonent - system, th? entangleme_nt entropless, s o,
mode in a coherent state, i-$A=i\/§>gl®|a)s®|0)gz, and using I(e;S;86), andl versus_dlmensmnless tlmest,_ wh_ere the _system
the parameter values of Fig(t8, plots of the number expectation Parameters are as for Figl$ and the SQUID ring is flux biased at
values(ne,), (ng), (n,,) against dimensionless timegt for the ~ POINt C in Fig. ab).
static flux on the SQUID ring set at point C in Fig(bd.

(Fig. 17) that there is energy transfer, via the SQUID ring,
pies, we see a strong oscillatory behavior, particularly in Fighetween the first and second field modes of the system, just
16 (biased at point £ In order to interpret the results we first as in Fig. 12 for the pure stafd)s ®|a)s®[0)¢,. Thus,
note that for the statg0); (i=¢;,6,,5), or other states when(n,,) decreasegn,,) increases, and vice versa. How-
close to this state, the average number of photons is N€d:ver, it is evident that the regular oscillatory behavior seen in
ZEro. From Eq(1]) this means that the second order Corre'Figs. 11 and 12 has been lost. We note that, as in Figs. 11 and
lation bzecomes very large. We also no.te fzo)r the nqmbgr statle the number expectation value of the SQUID ring remains
|1), (N#)—(N)=0 and the correspondirgi®=0. With this 5" roughly constant value, highlighting the view that the
N mlnd_, we see in Fig. 1%bias point B th_at th((ez)ﬂrst field SQUID ring is acting as a nonlinear control medium linking
mode, in number stafd ), att=0, starts with @'®) at zero. 4 o quantum field modes together. In Fig. 18 we see that
It remains extremely close to this value over the time of thethe components of the system again entangled very strongly
computation, i.e., this field mode stays reasonably close tgut, unlike the previous computations of Figs. 13 and 14,
the number statgl) . By contrast, the second field mode, there is no longer any quasiperiodic disentanglement to be
assumed to be in the staf@)., att=0, has on average a seen. The system remains entangled at all points in time, i.e.,
large g value, although this dips well below unity almost the total entanglement entropy is always high. In Fig. 19
periodically with time. This demonstrates that even at bia§here(2';5 clearly a significant deviation from the behavior of
point B, on the edge of the exchange region, the Va'@?f the g c(ozt)afﬁments displayed in Figs. 1.5 and 16..Thus, in
regularly falls below 1. It also shows that for this initial Fig. 19'961 IS Clo§e to .one for all of the time evolutldar;d
condition the quantum statistics of the second field moddor most of the time just greater than onehereasg
cannot be described by classical means. In Fighi#s point ~ spends most of its time just less than one g@d is almost
C), att=0, we again assume that the first field mode is inalways greater than 1.

state|1),, with the second in stat®)., . As before, the first In all the examples given above we observe that, as ex-
field mode starts ag®’=0 but as the wavefunction for the Pected, the system displays strong entanglement when the
! first field mode has a low number expectation value, i.e., the

system evolves with time we see trg?@i) regularly shifts

away from zero. Correspondingly, the first field mode is no
longer in the pure number statas)gl due to its interaction
with the rest of the system. The first field mode is described
by a reduced density operator which, at these points, repre-
sents statistical mixture of states with a low photon number
expectation valuéas can be seen from Fig. 1As a conse-
quence,gﬁfl) increases since the denominator in Erl) be-

comes very small around these points.

0 L 3 i I
B. Coherent state computations 0 10000 20000 30000
; ; i ionless Time (wst
In Figs. 17, 18 and 19 we show the number expectation Dimensionless Time (wst)
values, the entanglement entropies andgffé correlations FIG. 19. Second order correlation§”, g, andg® versus

for the bias inm Cin Fig. @), takiﬁg the initial stat.e of.the dimensionless timat for the three component systdipmarameter
system a$A=|\/§)gl®|a>3®|O>52, i.e., where the first field y4jues as for Fig. ®)] starting in statdA=i3); @ |a)s2|0)e,
mode is in the coherent staltie\/§)gl att=0. It is apparent with the flux on the SQUID ring set at bias point C in Figb®
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components of the system have evolved away from theiSQUID ring is made manifest through the coupling of the
initial pure states. We also note that when we start the firstield modes via the ring. For example, in these regions en-
field mode in the pure stat&>gl®|a>3®|0)gz, at bias points  ergy can be exchanged between the field modes and the

B and C, we find strong entanglement between the variouSQUID ring and, through the intermediary of the ring, be-
components of the coupled system which, at certain time§veen the field modes themselves. From this we suggest that,
(semiperiodically, disentangle. The entanglement entropiesSuitably driven, this system may act as a frequency converter
are, of course, theoretical quantities that demonstrate the déLitable for operation up to the THz range. From our view-
velopment of quantum correlations between the three modeg0int this illustrates the utility of these exchange regions
In principle, experimental observation of these quantum corSince it is here that the strong quantum couplings develop
relations can be achieved by determining Bell typebetween the components of the system. We have added to
inequalities®°5“%In the context of the work presented here this perspective by calculating other physical phenomena as-
this will require further theoretical investigation. In Figs. 15, Sociated with such a coupled quantum system. To illustrate
16, and 19 it is evident that thg® correlation coefficient this we have computed the statistics of the various quanta
for at least one of the components of the system become§uantified with the second order correlatiprsd the de-
less than 1 at some point in the evolution of the systemgree of entanglemertquantified with various entropigbe-
Hence, for the initial conditions used in this work, we con- ftween the components of the system, both outside and within
clude that the photon statistics of this system cannot be ddhe exchange regions. Our results demonstrate quite clearly
scribed by classical optics. that the mesoscopic SQUID ring can be used as a flux tun-
able element to manipulate the¢end presumably othger
quantum properties of these coupled circuit systems. As
such, the work presented here may be of considerable rel-
In this paper we have studied the coupling of a SQUIDevance to current experiments on quantum superposition of
ring to two em field modes. For this we have made the asstates in SQUID rings and on probing crossing/anticrossing
sumption that the ambient temperature of the system is lowegions of their energy level structute!®>7
enough to be able to treat each of the three comporients We note that we have neglected dissipation in the results
+ two field modeg quantum mechanically. Our purpose haspresented in this paper. Thus, we have computed the time
been to demonstrate that the SQUID ring, as a nonlineagvolution of the three mode system using the equadign
quantum object, can be used to couple a number of quantum —i[H,p]. A more realistic calculation, with dissipation
oscillators together to generate physical phenomena of gredue to the environment taken into accoufur example, in
interest. As we have emphasized, there exist obvious paraRefs. 58—60is now being developed. The equation for the
lels with the field of quantum optics. However, in quantumtime evolution then takes the formp=—i[H,p]+f(p),
optical systems the coupling media involved generally diswhere a dissipative terrfip) has been introduced to repre-
play only weak polynomial nonlinearity. In contrast the sent the environment. We intend to extend our work to in-
SQUID ring, with the cosine term in its Hamiltonian descrip- vestigate in detail the effects of this environmental dissipa-
tion, can generate nonlinear interactions to all orders. It ision on the behavior of SQUID ring-field mode systems.
this, plus thedy-periodic nature of its behavior as a function ~ We suggest that the three component syst8@UID ring
of external flux®,, which makes the SQUID ring of such + two field modeg and its extensions, is rich in possibilities
interest in the burgeoning field of quantum circuit technol-for device applicationsge.g., in guantum gates, guantum en-
ogy. Viewed from the perspective of quantum optics, thecryption, and frequency conversiprit is also a pointer to
SQUID ring (or a set of coupled SQUID ringscan be more sophisticated quantum technologies in the future.
thought of as a nonlinear medium par excellence which caGiven that the technical problems associated with such tech-
easily create very strongly coupled regimedbeit at lower nologies can be overcome, it seems likely that the SQUID
frequencies—for example, at THz frequencies and bglowring (and related weak link circuitswill, in the future, be
which are inaccessible using conventional optical materialsable to operate at THz frequencies. This could complement
In our theoretical investigations of the two em field modesthe current drive to develop THz applications (itlassical
coupled through a quantum SQUID ring we have also apcommunications and imagirf§:*® It would also allow for
plied a static external magnetic fluP(y,) to the ring. In quantum circuit technologies to be utilized at quite acces-
this paper we started with the simpler example of a SQUIDsible temperatures.
ring interacting with a single em mode. We showed that the
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