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Peak effect, vortex-lattice melting line, and order-disorder transition in conventional
and high-Tc superconductors
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We investigate the order-disorder transition line from a Bragg glass to an amorphous vortex glass in theH-T
phase diagram of three-dimensional type-II superconductors taking into account both pinning-caused and
thermal fluctuations of the vortex lattice. Our approach is based on the Lindemann criterion and on results of
the collective pinning theory and generalizes previous work of other authors. It is shown that the shapes of the
order-disorder transition line and the vortex-lattice melting curve are determined only by the Ginzburg number,
which characterizes thermal fluctuations, and by a parameter which describes the strength of the quenched
disorder in the flux-line lattice. In the framework of this unified approach we obtain theH-T phase diagrams
for both conventional and high-Tc superconductors. Several well-known experimental results concerning the
fishtail effect and the phase diagram of high-Tc superconductors are naturally explained by assuming that a
peak effect in the critical current density versusH signalizes the order-disorder transition line in superconduct-
ors with point defects.
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I. INTRODUCTION

In type-II superconductors one often observes1–16 a peak
effect ~or fishtail effect! in the critical current density mea
sured as a function of the applied magnetic fieldH at a fixed
temperatureT or as a function ofT at fixed H. In conven-
tional low-Tc materials this peak effect mainly occurs
magnetic fieldsH near the upper critical fieldHc2(T).1–5 In
the high-Tc YBaCuO crystals, the line of the maximum crit
cal current density,Hp(T), frequently lies essentially below
the irreversibility line in theH-T plane,6–9 and in sufficiently
perfect crystals it exhibitsnonmonotonicbehavior with
temperature.10–16 In these perfect crystals the line of max
mum current density approaches the flux-line melting li
Hm(T), approximately at the so-called upper critical poin17

at which the melting line terminates. When the oxygen d
ciency d in YBa2Cu3O7-d increases or the crystal becom
less perfect, the end point tends to the superconducting t
sition temperatureTc at zero magnetic field, whileHp(T)
becomes a monotonically decreasing function.11,16 It is also
important to note that at a fixed oxygen concentration
fishtail effect can disappear in pure YBaCuO crystals if
distribution of the oxygen vacancies over the sample
comes uniform.18

At present the origin of the peak effect in low-Tc and
high-Tc superconductors is commonly associated with
proliferation of dislocations in the flux-line lattice.1–5,10–16At
this first-order phase transition3,19–22 induced by quenched
disorder in the vortex system, a transformation of a quas
dered Bragg glass23 into a disordered amorphous vorte
phase occurs. Although different criteria3,12–14 are used for
determining the exact position of this transition on the pe
shaped dependence of the critical current density onH, they
all lead to qualitatively similarH-T phase diagrams, and, fo
0163-1829/2001/64~18!/184514~14!/$20.00 64 1845
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definiteness only, we shall imply below that the phase tr
sition corresponds to the line of the maximum critical curre
density,Hp(T).

A description of this order-disorder phase transition
high-Tc superconductors was proposed in Refs. 24–26 us
the Lindemann criterion. It was implied in these papers t
the nature of the order-disorder phase transition is differ
from the vortex-lattice melting transition, but at the critic
point both phase transition lines merge. Recently it w
refined22 that the upper critical point does not generally c
incide with the point where the order-disorder line reach
the melting curve, and thus the melting line has a port
beyond the intersection point. However, the following shou
be noted: The results of Refs. 24–26 for the disorder-indu
transition were obtained in the regime of single-vort
pinning27 when the Larkin pinning lengthLc is less than
L05ea where a5(F0 /H)1/2 is the spacing between flu
lines, F0 is the flux quantum, ande5lab /lc<1 is the an-
isotropy of the superconductor (lab andlc are the London
penetration depths in theab plane and along thec axis,
respectively!. WhenT increases, the lengthLc should exceed
ea at some temperature which lies on the boundary of
single vortex pinning regime. At higher temperatures the d
order was completely neglected in Refs. 24–26, and only
melting line of the ideal lattice was derived. Thus, the beh
ior of the order-disorder line was not actually investigated
the high-temperature region, and its connection with
melting line was not established. Besides this, it has
mained unclear why the proliferation of dislocations in t
vortex lattice of high-Tc and low-Tc superconductors lead
to different phase diagrams.

In the present paper we consider the order-disorder t
sition line in the high-temperature region andobtain the
point where the vortex lattice melting and the order-disor
©2001 The American Physical Society14-1
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transition lines merge. It turns out that for a given model
the vortex pinning, the resultingH-T phase diagram is deter
mined only by the Ginzburg numberGi , which character-
izes the thermal fluctuations, and by a paramete27

j c(0)/ j 0(0) that describes the strength of the quenched
order in the flux-line lattice atT50 ( j 0 is the depairing
current density andj c is the critical current density in the
single-vortex pinning regime; both are in theab plane!. For
different values of these parameters, phase diagrams ar
tained which are similar to those observed in experiments
low-Tc and high-Tc superconductors. Thus, the results of th
paper provide a unified approach for analyzingH-T phase
diagrams of various superconductors.

In this paper we consider only magnetic fields exceed
considerably the lower critical fieldHc1 and thus disregard
the reentrant behavior of the melting transition and do
distinguish between the magnetic fieldH and the magnetic
induction B. Besides this, we deal only with anisotrop
three-dimensional superconductors, neglecting comple
the decoupling of the superconducting layers. We also
sume thatH is directed along thec axis. This assumption
simplifies the analysis of the problem, though our final eq
tions ~19!–~25! are valid for any direction of the magnet
field.

II. LINDEMANN CRITERION

We begin with simple estimates which show that the L
demann criterion does define the condition for proliferat
of dislocations in the flux-line lattice at the order-disord
transition. Consider a dislocation network in the lattice. Le
unit cell of this network have the dimensionsRd and Ld in
the transverse and longitudinal directions toH, respectively.
A comparison of tilt and shear elastic energies yields t
Ld /Rd;@c44(1/Rd,1/Ld)/c66#

1/2.1 where c66 and
c44(k' ,ki) are the shear and nonlocal tilt moduli of the flu
line lattice.28 The energy cost for the creation of a dislocati
cell is of the order of

Ed;«0Ld ,

where«05(F0/4plab)
2 andlab is the London penetration

depth for currents in theab plane. On the other hand, th
elastic energy in the volumeRd

2Ld is estimated as

Eel;c66Ldu2~Rd ,Ld!,

where u2(R,L) is the correlation function determining th
relative displacement of points in the lattice with quench
disorder,

u~R,L ![^@u~R,L !2u~0,0!#2&1/2.

Here u is the transverse displacement of a flux line,^•••&
means averaging over both thermal and quenched diso
and the first coordinateR in u(R,L) indicates the position o
the flux line in the plane normal to the applied magne
field, while the second coordinateL defines the position of a
point on the flux line. ComparingEd andEel with account of
c66;«0 /a2, one arrives at the conclusion that a dislocati
network can exist in the lattice ifu(Rd ,Ld)>a. In other
18451
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words, Rd should be greater than the so-called positio
correlation lengthRa within which typical relative vortex
displacements are of the order of the lattice spacinga. How-
ever, this is only a necessary but not sufficient condition
the existence of dislocations. Displacements generated by
dislocations facilitate a better adjustment of the vortex latt
to the quenched disorder. The relative deformation of
lattice produced by the dislocations is of the order ofa/Rd .
Therefore, the smallerRd is, the greater is the gaindEpin in
pinning energyEpin . Thus, the network first appears at th
smallest possibleRd , and we arrive at the resultRd;Ra
~andLd;La) obtained in Ref. 22. The relative magnitude
the gain, dEpin /Epin , is determined by the ratioa/Ra .
Hence, for this magnitude to become of the order of un
Ra /a should decrease to a certain constantC,

Ra

a
5C.

This criterion for the appearance of dislocations in the flu
line lattice was obtained in Refs. 22 and 29~see also Ref. 1!
and is equivalent30 to the condition25

u2~a,0!5cL
2a2, ~1!

wherecL is the phenomenological Lindemann constant. T
immediately follows from the fact that the ratio ofu(Ra,0) to
u(a,0) @i.e., a/u(a,0)# is a function ofRa /a. Finally, since
u(a,0)5u(0,L0) at L05ea,27 one more form of the Linde-
mann criterion exists:

u2~0,L0!5cL
2a2. ~2!

It is just this form that was used in Refs. 24 and 26.
Strictly speaking, the values of the constantsC and cL

may depend on whether the order-disorder transition occ
in the single-vortex pinning region or in the region of bund
pinning. However, to understand the essence of the ma
we shall use the simplest approximation:cL will be consid-
ered as the same constant for the various regimes of pinn

III. ORDER-DISORDER LINE: SIMPLIFIED APPROACH

As well known,27,31 thermal fluctuations of the flux-line
lattice lead to a smoothing of the pinning potential a
thereby affect the pinning. This thermal depinning is es
cially important for high-Tc superconductors. However, t
elucidate possible types of the order-disorder transition li
in this section we completely disregard the thermal fluct
tions. The influence of the thermal depinning on the ord
disorder line will be analyzed in Sec. IV.

A. Region of single-vortex pinning

As has been mentioned above, the order-disorder
Hdis(T) was studied24–26inside the single-vortex pinning re
gime where the Larkin pinning lengthLc is less thanL0
5ea. Since L0.Lc , formulas of the random manifold
regime27 for a single vortex are applicable to calculate t
displacement correlationu(0,L0),
4-2



a-
i

s
to
g

r-

he

e

d
in

e

t
th
for

er

ns

e

les

i-

t

PEAK EFFECT, VORTEX-LATTICE MELTING LINE, . . . PHYSICAL REVIEW B 64 184514
u~0,L0!'j~L0 /Lc!
z, ~3!

wherej is the coherence length in theab plane andz is the
roughness exponent for a flux line. In Ref. 26 the valuez
'3/5 was used, whilez'5/8 in Ref. 24. Inserting Eq.~3!
into Eq. ~2!, we obtain after simple manipulations

Hdis5
F0cL

2

j2 S cLLc

ej D a

, ~4!

where a52z/(12z)'3. Equation~4! coincides with the
appropriate formulas of Refs. 24–26. For Eq.~4! to be self-
consistent, it is necessary to verify thatL0.Lc at H5Hdis or
in other words Hdis,Hsv where Hsv5F0e2/Lc

2 is the
boundary of the single-vortex pinning regime.27 This condi-
tion yields

ej

Lc
.cL . ~5!

If the inequality ~5! is not fulfilled, Eq. ~4! is not valid to
describeHdis .

The parameterej/Lc generally depends on the temper
ture T. For example, according to simple estimates given
the Appendix, Eqs.~A3! and ~A7!, it decreases withT and
reaches zero atT5Tc . Moreover, its decrease becomes e
pecially pronounced if the thermal depinning is taken in
account.@In this case the single-vortex collective pinnin
lengthLc increases sharply27 whenT exceeds the characte
istic pinning energyT̃dp

s (T); see the Appendix.# Thus, even if
ej(0)/cLLc(0).1, the order-disorder lineHdis(T) reaches
the boundary of the single-vortex pinning regime,Hsv(T), at
some temperatureT1 defined by the condition

ej~T1!

Lc~T1!
5cL , ~6!

and atT.T1, Eq. ~4! fails.
It is worth noting that the parameterej/Lc appearing in

Eqs. ~4!–~6! and formulas given below characterizes t
strength of the disorder in the flux-line lattice27 and is ex-
pressed through the critical current densityj c in the single-
vortex pinning regime,

ej

Lc
'S j c

j 0
D 1/2

, ~7!

where j 0 is the depairing current density.

B. High-temperature region

At T.T1 the order-disorder transition line lies abov
Hsv(T). In this region of theH-T plane small-bundle and
large-bundle regimes of pinning occur.27 Hence the trans-
verse collective pinning lengthRc exceedsa, and to find
u(a,0), the results27,32,33may be used, which were obtaine
within the framework of the perturbative approach of Lark
and Ovchinnikov.32 We have

u2~a,0!'j2~L0 /Lc!
3S 12hsv

12h D 3/2

, ~8!
18451
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whereL05ea, h[H/Hc2 , hsv[Hsv /Hc2, the upper critical
field Hc25F0/2pj2, and Lc is the single-vortexcollective
pinning length. Note that Eq.~8! differs from formula~4.17!
of Ref. 27 by the last factor containingh andhsv . This factor
takes into account the possibility that 12h is small; in Ref.
27 the correlation functionu2(R,L) is given without taking
account of this possibility. The origin of this factor is th
following. The quantity u2 is proportional to
n fpin

2 lab /Hc66
3/2. Whenh→1, one haslab}(12h)21/2, c66

}(12h)2 ~see Refs. 28 and 34!, while f pin
2 }«0

2}(12h)2

~see Ref. 32 and also the Appendix!. The combination of
these factors gives Eq.~8!, in which the additional constan
factor (12hsv)3/2 has been introduced to provide a smoo
crossover of this expression to the appropriate formula
the single-vortex pinning regime ath5hsv .

Inserting formula~8! into Eq. ~1!, we obtain an equation
for hdis5Hdis /Hc2,

hdis~12hdis!
352pcL

2S ej

cLLc
D 6

~12hsv!3, ~9!

wherehsv5Hsv /Hc252p(ej/Lc)
2 and the right-hand side

depends only on the temperature. Note that atT5T1, when
ej/Lc5cL , one hashdis(T1)52pcL

25hsv(T1), in agree-
ment with Eq.~4!. A simple analysis shows that 2pcL

2 should
be greater than 0.25 but less than 1~i.e., 0.2<cL<0.4) for
Eq. ~9! to have a solution atT>T1. If cL,0.2, the order-
disorder line terminates atT5T1, which is impossible.35 On
the other hand, ifcL.0.4, one finds from Eq.~9! that hdis
.12hsv ; i.e., the root of the equation lies in the upp
region of single vortex pinning36 where Eq.~9! is not valid.
For this reason, in the following we assume the conditio
0.2<cL<0.4 to be fulfilled and, for definiteness, takecL
50.25 in the subsequent calculations.

C. Types of phase diagrams

We begin the analysis of phase diagrams with the cas

D.cL ,

whereD[ej(0)/Lc(0) is the value of the parameterej/Lc
at T50. Figure 1 shows the lineHdis(T) calculated by solv-
ing Eq. ~9! ~for Hdis.Hsv) and Eq.~4! ~for Hdis,Hsv). In
the construction of this figure, as well as in all examp
below, we useHc2(T)5Hc2(0)@12(T/Tc)

2# anda53 ~i.e.,
z53/5). Besides this, taking into account the formula~A13!
of the Appendix, we employ the following simple approx
mation for the parameterej/Lc :

ej~T!

Lc~T!
[Dg0~ t !, ~10!

with

g0~ t !5~12t2!1/2, ~11!

where t[T/Tc . The increase ofHdis and its subsequen
maximum are seen in the vicinity ofT1. As to hdis , this
normalized quantity increases monotonically aboveT1.
When 12hdis!1, an approximate solution of Eq.~9! is
4-3



ng

n
re

t

is

e
lly
th

lt
re
ns
th
s
in

o

l

her

eter

f

is
rder

se
e

e

n-

der

ng

ns

pp
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Hdis~T!

Hc2~T!
'12S 2p

cL
4 D 1/3S ej

Lc
D 2

. ~12!

This formula shows that and howHdis(T) approaches
Hc2(T), which is also seen in Fig. 1. Interestingly, accordi
to this formula, the order-disorder transition occursoutside
the upper region of single-vortex pinning,36 but its position
correlates with the boundary of this region:@12hdis(t)#/@1
2hsv(t)#5(2pcL

2)22/3.1. It should be also noted that i
the case under study~i.e., when the thermal fluctuations a
negligible! the mean fieldHc2(T) practically coincides37

with the melting lineHm(T). Thus, we obtain forD.cL that
in the high-temperature region a peak effect occurs near
melting line, while with decreasingT the position of the peak
in j c(H) shifts downwards from this line. This situation
reminiscent of that of perfect high-Tc superconductors.10–16

In this context it is also useful to note the following: Th
density of the dislocations in the vortex liquid is essentia
higher than in the disordered vortex solid phase near
order-disorder transition.22 However, if in theH-T plane the
order-disorder transition occurs sufficiently below the me
ing line of the clean superconductor; then, in the disorde
solid phase, at the field corresponding to the melting tra
tion, the density of the dislocations generated by
quenched disorder may become of the order of the den
characteristic for the liquid phase. In this case the melt
transitiondisappears. In other words, the melting lineHm(T)
terminates whenHdis(t) deviates from it appreciably.

If the strength of the disorder is sufficiently small,

D[
ej~0!

Lc~0!
,cL ,

the order-disorder line lies entirely outside the region
single vortex pinning, Fig. 2, and is described by Eq.~9! at

FIG. 1. The order–disorder lineHdis(t) ~solid line! calculated
from Eqs.~4!, ~9!, and ~A13! (d l pinning! for cL50.25 andD/cL

51.3. Simplified approach, without account of thermal fluctuatio
The boundary of the single-vortex pinning regime,Hsv(t), is given
by the dashed line, and the dotted line shows the mean-field u
critical field Hc2(t)5Hc2(0)(12t2).
18451
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any T,Tc , while Eq. ~4! is not valid at all. In the specia
situation whenD is markedly less thancL , a peak effect
occurs nearHc2(T) and its position in theH-T plane is ap-
proximately given by Eq.~12!. In this case the resulting
phase diagram looks like that of low-Tc superconductors.1–5

The transition from one type of phase diagram to the ot
occurs whenD5cL .

It has been assumed in this section that the param
ej/Lc decreases with increasingT. However, thedTc pin-
ning ~due to spatial variations ofTc) leads to an increasing
functiong0(t); see Eq.~A14! in the Appendix. In this case, i
D.cL , the formula~4! remains valid up toTc . But if D
,cL , a temperatureT0 exists, determined by the condition

ej~T0!

Lc~T0!
5cL ,

and atT,T0, Eq. ~9! should be used, while atT.T0 for-
mula ~4! holds. In other words, we have a situation which
opposite to that described above. In Fig. 3 the order-diso
line is shown for the case wheng0(t) is given by Eq.~A14!.
Note that in this case, according to formula~4!, one has
Hdis}(12t2)3/2 in the high-temperature region of the pha
diagram. This result qualitatively agrees with th
measurements6–9,11,16 on YBa2Cu3O7-d crystals whend is
not small or when the crystals are not too perfect.

IV. ORDER-DISORDER LINE WITH ACCOUNT
OF THERMAL FLUCTUATIONS

It is well known that thermal fluctuations of the flux-lin
lattice play an important role in high-Tc superconductors. In
particular, for this reason the flux-line lattice melts esse
tially below the mean-fieldHc2 line. In this section we study
the influence of thermal fluctuations on the order-disor
line.

Thermal fluctuations lead to a smoothing of the pinni
potential and thus increase the Larkin lengthLc . The length

.

er

FIG. 2. As Fig. 1 but forD/cL50.9 and 0.4. Note that for
D/cL,1 the order-disorder lineHdis(t) does not intersect the
single-vortex pinning boundaryHsv(t).
4-4
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Lc specifies the boundary of the single-vortex pinning reg
and it enters the key parameter of the collective pinn
theory,ej/Lc . Here we reserve the notationLc for the true
length renormalized by the fluctuations, while the Lark
length defined without account of the fluctuations will
denoted below asLc

0 . Note that justLc
0 has been used in Sec

III, and just this quantity is described by Eq.~10!. Apart from
increasingLc , the thermal fluctuations of the flux-line lattic
also modify the correlation function~3! as follows27:

u2~0,L0!'r p
2~L0 /Lc!

2z, ~13!

wherer p
25j21uT

2 , anduT is the magnitude of these fluctua
tions, which depends on the temperature and on the mag
field. It is implied in Eq.~13! that L05ea.Lc . As to the
correlation function~8!, the collective pinning theory27 gives

u2~a,0!'j2~L0 /Lc
0!3S 12hsv

12h D 3/2S j

r p
D 4

~14!

for L0,Lc , i.e., ath.hsv52p(ej/Lc)
2.

Sinceu(a,0)5u(0,L0), the correlation functions~13! and
~14! must coincide atL05Lc ~or equivalently ath5hsv).
This condition yields

Lc~ t !5Lc
0~ t !

r p
2
„t,Hsv~ t !…

j2~ t !
. ~15!

In fact, formula~15! is anequation for Lc since we have the
relationshipHsv5F0e2/Lc

2 . This equation enables us to fin
Lc(t), and thusHsv(t), self-consistently.

To proceed, we have to estimate the magnitude of ther
displacements of the lattice,uT , relative to its equilibrium
position. In the case of theideal vortex lattice,uT was cal-
culated in many papers; see, e.g., Refs. 38–40. This ma
tude, as well as the correlation functions~8! and ~14!, de-
pends on the elastic moduli of the lattice. However,
deriving Eqs.~8! and ~14! the contribution associated wit

FIG. 3. The linesHdis(t) andHsv(t) as in Figs. 1 and 2 but for
dTc pinning, Eq.~A14!, for D/cL51.3 and 0.9. NowHdis(t) and
Hsv(t) cross att5t0 for D/cL,1.
18451
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the compression modulusc11 was neglected. Hence, it i
consistent to use the same approximation in the calcula
of uT

2 . This simplifies the appropriate formula40 for uT
2 , and

we obtain

uT
2'j2tS Gi

12t2D 1/2

h21/2f ~h!, ~16!

whereh5H/Hc2(t), t5T/Tc , Hc2(t)5Hc2(0)(12t2), Gi
is the Ginzburg number,

Gi5
1

2 S Tc

Hc
2~0!ej3~0! D

2

,

which characterizes the strength of the thermal fluctuatio
andHc is the thermodynamic magnetic field of the superco
ductor. The functionf (h) has the form

f ~h!5
2bA

12h

@11~11 c̃!2#1/221

c̃~11 c̃!
, ~17!

with c̃50.5@bA(12h)#1/2 andbA51.16.
The quenched disorder changesuT

2 . However, when the
transverse collective pinning lengthRc is considerably
greater thana, the above result for the ideal lattice is a goo
approximation. This is due to the fact that the main con
bution touT results from the thermal fluctuations with sho
wavelengths (k';1/a), while the quenched disorder esse
tially distorts the lattice only on the scaleRc . Thus, we may
use Eq.~16! in the case of thenonideal lattice if bundle
pinning occurs. But in the single-vortex pinning regime t
influence of the disorder is essential, and one has27 uT

2}Lc .
To account for this result, we introduce an additional fac
Lc /ea in the formula~16! and thus obtain

uT
2'j2tS Gi

12t2D 1/2

hsv
21/2f ~h! ~18!

in the single-vortex pinning region ath,hsv .
Inserting expression~16! into formula~15! and using defi-

nition ~10! for ej/Lc
0 , we obtain the following equation fo

hsv5Hsv /Hc2:

hsv
1/2~ t !5~2p!1/2Dg0~ t !2tS Gi

12t2D 1/2

f „hsv~ t !…. ~19!

With increasingt the functionhsv(t) reaches zero at som
tdp
s ,1, and Eq.~19! is valid at t<tdp

s . In the regiont.tdp
s

the lengthLc is infinite in size, and the single-vortex pinnin
regime is absent, i.e.,hsv(t)50 at t.tdp

s . The value oftdp
s is

found by equatinghsv to zero in formula~19!:

tdp
s 5

~2p!1/2D

Gi1/2f ~0!
g0~ tdp

s !@12~ tdp
s !2#1/2. ~20!

It may be verified that the right-hand side of Eq.~20! coin-
cides~up to a numerical factor of the order of unity! with the
dimensionless characteristic pinning energyT̃dp

s /Tc ; see the
4-5
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Appendix. Thus, in agreement with physic
considerations,27 we obtain that the essential renormalizati
of Lc occurs at such temperaturesT that T;T̃dp

s (T).
It should be noted that our result forLc (Lc→` at t

→tdp
s ) differs in some respects from that presented in R

27 whereLc increases exponentially att;tdp
s . However, in

the framework of our approximation,Hc150, we may con-
siderLc as infinite if it becomes of the order ofl. Hence, the
difference between the results is, in fact, small. But our
proach provides the continuity of the correlation functio
~13! and ~14! at h5hsv .

Equation ~19! specifies the single-vortex pinning~SVP!
region existing at relatively low magnetic fields@0,h
,hsv(t)#. However, formulas~14! and ~16! enable one to
find also the upper region in which the vortex system retu
to this type of pinning again. The appropriate equation
sults from the conditionu(a,0)5r p and has the following
form:

~12h!Fh1/21tS Gi

12t2D 1/2

f ~h!G 2

52p@Dg0~ t !#2@12hsv~ t !#. ~21!

As might be expected, ath5hsv this equation goes over int
Eq. ~19!. However, in a certain temperature interval it h
two additional real roots which form the boundary of t
upper SVP region,hsv

up ~see Fig. 5 below!. Here we do not
consider this issue in detail, but qualitatively describe
effect of thermal fluctuations on the shape of the upper S
region specified above without their account.36 Although the
softening of the vortex lattice nearHc2 is favorable for
single-vortex pinning, this softness also leads to an incre
of the thermal fluctuationsuT , which reduces the strength o
pinning. As a result, the upper region does not touchHc2(t)
except for the pointt50 ~at t.0 andH5Hc2 we haveuT
5`). Besides this, sinceuT increases witht, the upper re-
gion does not extend toTc . Of course, one should realiz
that the part of the boundary of this SVP region lying abo
the vortex-lattice melting curve has only formal meanin
since it does not account for the vanishing shear modulu
the melting. On the other hand, it is quite possible that
sharp melting transition disappears when the melting
enters the upper SVP region~or even before it; see Sec. V!.

Inserting expressions~13! and ~18! in formula ~2!, we
arrive at an equation forhdis5Hdis /Hc2 which generalizes
formula ~4!:

hdisF11tS Gi

12t2D 1/2
f ~hdis!

@hsv~ t !#1/2G 1/(12z)

52pcL
2S 2pcL

2

hsv~ t ! D
a/2

.

~22!

This equation is valid in the single-vortex pinning regim
whenhdis<hsv . For example, ifg0(t) is a decreasing func
tion of t, the order-disorder line lies in the single-vortex pi
ning region and is described by Eq.~22! at t,t1. In the case
D.cL the temperaturet1 is found from the equation
18451
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hsv~ t1!52pcL
2F11tS Gi

12t2D 1/2
f „hsv~ t !…

@hsv~ t !#1/2G
t5t1

21

, ~23!

which generalizes condition~6!. At D,cL the line is entirely
outside this region, and thus one hast150. If g0(t) is an
increasing function of temperature, more complicated sit
tions can occur.

Inserting formulas~14! and ~16! into relation~1!, we ob-
tain the equation forhdis(t):

hdis~12hdis!
3F11tS Gi

12t2D 1/2
f ~hdis!

~hdis!
1/2G 4

52pcL
2S Dg0~ t !

cL
D 6

@12hsv~ t !#3, ~24!

which generalizes Eq.~9!. This equation is valid in the
bundle pinning region.

Let us now present formulas for the melting line which
determined by the Lindemann criterion,uT

25cL
2a2, different

from Eqs.~1! and ~2!. This well-known empirical criterion,
based on the magnitude of the thermal fluctuations, was
tified in Ref. 22 for the case of the ideal vortex lattice. A
cording to this paper, different physical mechanisms lead
the proliferation of dislocations at the vortex-lattice meltin
and at the order-disorder transition. While the disord
induced transition is driven by an adjustment of the flux-li
lattice to the disorder, the thermal melting is governed by
entropy gain associated with the creation of dislocatio
Hence, the Lindemann constantcL for the melting may, in
principle, differ from that used in Eqs.~22!–~24!. However,
for the sake of simplicity we take these constantscL as equal
in the following analysis. Thus, if the melting linehm(t)
5Hm/Hc2 does not intersecthsv(t), it is described by the
equation

tS Gi

12t2D 1/2

hm
1/2f ~hm!52pcL

2 . ~25!

But if the melting line lies belowhsv(t), an additional factor
(hm /hsv)1/2 should be inserted on the left-hand side of E
~25!; cf. Eqs.~16! and ~18!. Finally, we note that in expres
sion ~25!, as well as in Eqs.~16! and ~18!–~24!, the factor
12t2 represents the temperature dependence of the u
critical field, 12t25Hc2(t)/Hc2(0). Thus, if another form
of this dependence is implied, the appropriate modificat
of all these equations is straightforward.

Summing up, we may state the following: For give
g0(t), Eqs. ~19!–~25! enable us to calculate the orde
disorder linehdis(t), the melting linehm(t), and the bound-
aries of the single-vortex pinning regimehsv(t), hsv

up(t) with
account of the thermal fluctuations. The functiong0(t) in Eq.
~10! is determined by the pinning mechanism and by
temperature dependences ofj andl; see the Appendix.
4-6
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V. ANALYSIS OF PHASE DIAGRAMS

It is important to emphasize that for giveng0(t) Eqs.
~19!–~25! depend only ontwo parameters: the strength o
quenched disorder,D5ej(0)/Lc(0), and thestrength of the
thermal fluctuations,Gi . In this sense, the equations an
figures of Sec. III correspond to the limiting caseGi→0. We
consider now new features of the phase diagram which
pear in the real situation of finiteGi .

A. Numerical results

An example of the phase diagram in the caseD.cL is
shown in Fig. 4. Note that the order-disorder line termina
at some temperaturete,1. This termination is associate
with an increase of the thermal fluctuations and thus with
enhanced smoothing of the pinning potential when the ord
disorder line approachesHc2. Interestingly, the end point lie
near the so-called depinning line27,41 whereuT

25j2. Another
new feature of the phase diagram is the intersection of
melting and the order-disorder lines. Thus, we obtain
point where both lines merge. It is seen from Fig. 4 that
this point the position of the critical current peak begins
shift sharply downward from the melting curve, in agreem
with the experimental data.10–16Hence, as was mentioned i
Sec. III C, the upper critical point for the melting is likely t
occur somewhere nearby. The portion of the order-disor
line lying above the melting curve has no physical mean
since the density of dislocations in the liquid phase is alre
higher than in the disordered solid phase.22 Note also that the
rise of Hdis(t) at T.T1 becomes considerably steeper th
in the caseGi50.

The intersection of the order-disorder line with the me
ing curve occurs also forD,cL . In this case, whenGi
increases, the decrease ofHdis with T diminishes, and even
tually Hdis becomes an increasing function oft; see Fig. 5.
Therefore, ifGi;1022 ~this value is typical for YBaCuO
crystals!, the temperature behavior of the order-disorder l
is similar to that obtained forD.cL , and the phase diagram
in both these cases are of the same type.

In Fig. 5 we also show the upper region of single-vort
pinning. It is important to note that the intersection point
the order-disorder line and the melting line occurs clea
before the melting curve enters this region, and so at
intersection point the transverse collective pinning lengthRc
and the positional correlation lengthRa ~the dislocation spac
ing! both considerably exceed the flux-line spacinga. This
fact justifies the assumed weak influence of quenched di
der on the vortex lattice melting and the application of E
~24! up to the intersection point.

If the parameterD increases, e.g., as a result of irradiati
or of reduction of the oxygen content in YBa2Cu3O7-d crys-
tals ~see the Appendix!, then the order-disorder line shift
down, while the temperature of the intersection point~and
thus the temperature of the upper critical point for the m
ing line! increases, Fig. 6. These results are in agreem
with the experimental findings10,11,15,16 for YBa2Cu3O7-d
crystals. However, although the obtained results qualitativ
describe the phase diagram of these crystals and its evolu
18451
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with varyingD, it should be emphasized that the intersecti
point does not reachTc at reasonable values of the disord
parameterD.

Consider now the case wheng0(t) increases witht. This
situation occurs in the model ofdTc pinning; see the Appen
dix. The appropriate phase diagrams are presented in F
7–9. It is important to note the following: At sufficiently

FIG. 4. The order-disorder lineHdis(t) ~bold solid line! calcu-
lated from Eqs.~22!, ~24!, and~A13! (d l pinning!, which account
for thermal fluctuations, forcL50.25, D/cL51.3, and for three
values of the Ginzburg numberGi50.01, 0.001, and 0.0001~from
top to bottom!. Also shown are the boundary of the single-vort
pinning regime Hsv(t), Eq. ~19! ~dashed line!, the mean-field
Hc2(t)5Hc2(0)(12t2) ~dotted line!, the vortex-lattice melting line
Hm(t), Eq. ~25! ~dash-dotted line!, and the depinning lineHdp(t),
Eqs. ~16!–~18! ~thin solid line!, along which one formally hasuT

2

5j2 and whereHdis(t) ends. The short part ofHdis aboveHm has
no physical meaning.
4-7
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GRIGORII P. MIKITIK AND ERNST HELMUT BRANDT PHYSICAL REVIEW B 64 184514
strong disorder, the lineHdis(t) monotonically decrease
with temperature and practically reachesTc . When the
strength of the disorder decreases, the order-disorder line
hibits nonmonotonic behavior witht, and the temperature o
the intersection point,t i , goes down. Thus, in contrast to th
case of a decreasing functiong0(t), the model ofdTc pin-
ning correctly reproduces all the features of the experime
data for YBa2Cu3O7-d crystals.6–16 In particular, the results
presented in Fig. 8 closely resemble the development of
order-disorder line with variations of the oxygen deficien
d; see, e.g., Fig. 9 in Ref. 11.

The results of this section may also provide an expla
tion of the findings obtained in Ref. 18. It was shown in th
paper that the flux-line pinning in pure YBa2Cu3O7-d crystals

FIG. 5. As Fig. 4 but for differentD/cL50.9. The dashed lines
show the boundaries of both the lower (Hsv) and upper (Hsv

up)
regions of single-vortex pinning; see Eq.~21! and text.
18451
x-

al

e

-

is mainly due to a nonuniform distribution of oxygen vaca
cies over the sample. Changing the conditions of annea
of the sample, Erbet al. changed this distribution at a fixe
d. When the distribution became more homogeneous,
fishtail effect disappeared. Since the spatial fluctuations
the density of oxygen vacancies strengthen thedTc pinning,
we get an additional confirmation of the hypothesis that t
type of pinning plays the main role in not too perfe
YBaCuO crystals, and so the fishtail effect exists up to h
temperatures, as shown in Figs. 7 and 8 for largeD. When,
after annealing, the crystal becomes more perfect, and
above-mentioned spatial fluctuations are reduced, the v

FIG. 6. The order-disorder linesHdis(t) ~bold solid lines! ac-
cording to Eqs.~22!, ~24!, and ~A13! (d l pinning! for cL50.25,
Gi50.01, and several valuesD/cL50.4–1.6. The dash-dotted lin
is the vortex-lattice melting lineHm(t), Eq.~25!, and the dotted line
indicatesHc2(t)5Hc2(0)(12t2).

FIG. 7. The order-disorder linesHdis(t) ~solid lines! as in Fig. 6
but for dTc pinning, Eq.~A14!, for D/cL51.3, 1.1, and 0.9. The
dashed lines are the single-vortex pinning boundariesHsv(t), Eq.
~19!, the dash-dotted line is the melting lineHm(t), Eq. ~25!, and
the dotted line indicatesHc2(t)5Hc2(0)(12t2).
4-8
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PEAK EFFECT, VORTEX-LATTICE MELTING LINE, . . . PHYSICAL REVIEW B 64 184514
of the parameterD appears to decrease considerably.~More-
over, it is conceivable that some other type of pinning beg
to dominate.! Thus, we arrive at the situation when a fisht
effect is absent, at least in the region of not too high m
netic fields, as follows from the data shown in Figs. 6 an
for small D.

Finally, we briefly describe the case of small Ginzbu
numbers which occurs for conventional superconductors
this case the temperaturestdp

s and t i are practically equal to
unity, the melting line almost coincides withHc2(t), and the
phase diagrams tend to those shown in Figs. 1–3. Thus
results of the simplified approach of Sec. III can be w
applied to such superconductors.

B. Approximate formulas: Discussion

We now present analytical results which give some
sight into the origin of the above-mentioned features of

FIG. 8. The order-disorder linesHdis(t) ~solid lines! as in Fig. 7
with Eq. ~A14!, but for many valuesD/cL50.6–2.

FIG. 9. As Fig. 8 but enlarged scale, forD/cL51.16–1.26. This
figure simulates the evolution of theH-T phase diagram for
YBa2Cu3O72d crystals when the oxygen deficiencyd is changed.
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phase diagrams. Let us start with the melting line.
@Gi /(12t2)#1/2!2pcL

2 , the normalized fieldhm5Hm /Hc2

is close to unity, and we obtain from Eq.~25!

12hm'S f 1~1!

2pcL
2D 2/3

t2/3S Gi

12t2D 1/3

, ~26!

where

f 1~h![~12h!3/2f ~h!

is defined through the functionf (h) given by Eq.~17!, with
f 1(1)'1.78. Equation~26! agrees with the strict result37 de-
rived for clean superconductors without using the Lind
mann criterion. Formula~26! expressed in usual units (Hm
5hmHc2) means that

Hc2~ t !2Hm~ t !}Gi1/3~12t2!2/3.

The right-hand side of this expression is the width of t
fluctuation region in not too small magnetic fields,42,43 h
@Gi . In the opposite limiting case whenf 1(0)@Gi /(1
2t2)#1/2@2pcL

2 @but the temperature is outside the critic
region for zero magnetic field,Gi,(12t2)#, the fieldhm is
small, and Eq.~25! yields

hm5S 2pcL
2

f 1~0!t D
2 12t2

Gi
, ~27!

where f 1(0)'2.34. In fact, this is the well-known
result27,38–40for clean superconductors,

Hm}~12t !2.

Note that for Eq.~27! to hold in a sufficiently wide tempera
ture region, the Ginzburg number should not be too sm
Finally, we point out an interesting feature of Eq.~25! that
follows from our numerical analysis. The formula

Hm5A~12t2!g, ~28!

with some constantsA andg, turns out to give a very good
fit to Hm(t) determined by Eq.~25! in the wide temperature
interval 0.5,t,0.98; see Fig. 10. The values of the para
etersA andg depend onGi , and the exponentg increases
with increasingGi . In particular, we find 1.24,g,1.59
when 0.001,Gi,0.01. In this connection it is worth noting
that formulas of the type of Eq.~28! are widely used to
approximate experimental data, and frequently an expon
g'4/3 is found, which is characteristic for the fluctuatio
region of a three-dimensionalXY-type phase transition. We
emphasize here that a good fit by such formulas does
necessarily mean the existence of a large fluctuation reg
in zero magnetic field, but may result from the specific fo
of the expression@Eq. ~25!# describing the melting line.

In the case ofdTc pinning the melting line may lie inside
the region of single-vortex pinning; i.e., the inequalityhsv
.hm may hold. This occurs if the parametern ~see Ref. 27,
p. 1218!,
4-9
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n[
~2p!3/2D3

Gi1/2
, ~29!

is sufficiently large,n1/3@1. Although in this case the shap
of the melting line requires a special investigation and is
discussed in detail here, it should be realized that the sh
melting transition may disappear in this region.

Let us now analyze Eq.~24! which describes the line
hdis(t) in the regionh.hsv . To understand the behavior o
this line, we note the following: The functionf 1(h)5(1
2h)3/2f (h) decreases monotonically with increasingh; its
variation in the interval 0,h,1 is not large,f 1(1)/ f 1(0)
'0.76, and so if one considersf 1(h) as constant,f 1(h)
5 f 1(0)[ f 1'2.34, this leads to a sufficiently accurate a
proximation in solving Eq.~24!. In this approximation Eq.
~24! becomes a quadratic equation in the variablehdis

1/2(1
2hdis)

3/2, and its solution has the form

hdis
1/2~12hdis!

3/25FD2FT1@~FD2FT!22~FT!2#1/2,
~30!

whereFD andFT are the following functions of temperature

FD~ t !5
~2p!1/2@Dg0~ t !#3

2cL
2 @12hsv~ t !#3/2,

FT~ t !5 f 1tS Gi

12t2D 1/2

.

At t50 we haveFT(0)50, and Eq.~30! goes over into Eq.
~9!. Thus, the effect of thermal fluctuations is reduced to
renormalizationof the right-hand side of Eq.~9! @including
the change of the functionhsv(t) according to Eq.~19!#.
Note that the magnitude of this renormalization~i.e., the ra-
tio FT /FD) is mainly determined by the parametern21; see
Eq. ~29!. Interestingly, in contrast to the case of thedTc

FIG. 10. The vortex-lattice melting lineHm(t) from Eq. ~25!
~solid line! and its approximations Eq.~26! ~crosses! and Eq.~28!
~circles! with A50.82 and g51.31. The dashed line indicate
Hc2(t)}12t2. HerecL50.25 andGi50.002.
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pinning wheren appears as a result of the specific tempe
ture dependence ofg0, Eq. ~A14!, we now conclude that the
parametern characterizes the relative strength of pinning
any type.

It should be emphasized that the right-hand side of
~30! is real only if FD>2FT . Thus, we find that the order
disorder line terminates at a temperaturete which satisfies
the equation

FD~ te!52FT~ te!. ~31!

Taking into account Eqs.~16! and ~31!, it is easy to deter-
mine the ratiouT

2/j2 at the end point of the order-disorde
line, t5te , h5hdis(te):

uT
2

j2 5FT~ te!h
21/2~12h!23/25

FT~ te!

FT~ te!
51.

Hence, this end point lies on the so-called depinning lin27

defined by the conditionuT
25j2; see Figs. 4 and 5. It can b

also verified thatte is always less than the temperaturetdp
s

determined by Eq.~20!.
As has already been mentioned above, only the inters

tion point of the melting and the order-disorder lines hav
physical meaning rather than the end point ofHdis(t). The
temperature of this intersection point,t i , can be simply es-
timated using formulas~26! and ~30!. Then we arrive at the
following equation fort i :

4pcL
2FD~ t i !5~112pcL

2!2FT~ t i !

or, explicitly,

t i5n
@g0~ t i !#

3~12t i
2!1/2@12hsv~ t i !#

3/2

f 1~112pcL
2!2

. ~32!

This equation suggests that the temperature of the inter
tion point, t i , depends on the parametersGi and D mainly
through their combinationn, Eq. ~29!. The data of Fig. 11
support this hypothesis; viz., at giveng0(t) the temperatures
t i calculated for variousGi fall on the same curve. O
course, this prediction, as well as anyquantitativeconclusion
based on Eqs.~19!–~25!, requires an experimental verifica
tion since a number of simplifying assumptions were ma
above. In particular,cL was assumed to be the same const
for the melting and for the order-disorder transition in all t
pinning regimes. On the other hand, according to Eq.~32!,
the dependence oft i on cL is relatively weak.

Since t i specifies the width of the temperature regi
where the order-disorder transition exists, the data of Fig
mean that this width is characterized by the parameten.
These data also shed light on the different behavior
Hdis(t) in Figs. 6 and 8 at large values ofD. To elucidate the
results of Fig. 11 and the conclusions made on their basis
us analyze Eq.~32! in two limiting cases. Ifn!1, one ob-
tains the following estimate from this equation:

t i'0.42~112pcL
2!22n.

In other words, we have a situation qualitatively similar
that shown in Fig. 6 or in Fig. 8 for the smallestD. In this
4-10
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PEAK EFFECT, VORTEX-LATTICE MELTING LINE, . . . PHYSICAL REVIEW B 64 184514
case the order–disorder transition occurs only at very
temperaturest,t i , while the portion of the melting line a
t.t i has a large extension. Note that, according to the e
mates ofGi andD presented in Ref. 2, such a situation mu
take place in pure crystals of 2H-NbSe2, which were inves-
tigated in numerous papers. This conclusion does not con
dict the observation of a peak effect in these crystals,2 since
a peak effect can signalize not only the order-disorder tr
sition, as has been implied so far, but also the vortex lat
melting.44–48 Of course, the features of the peak effect m
differ in these two cases.

In the opposite limitn@1, the order-disorder transitio
reachesTc , while the region of ‘‘pure’’ melting (t i,t,1) is
contracted. This limit just corresponds to conventional sup
conductors for whichGi!1; see Figs. 1–3. However, in th
process of approaching this limit, the evolution of the pha
diagram is different for the different models of pinning, i.e
in the cases of Eqs.~A13! and~A14!. That is why Figs. 6 and
8 differ from each other at large values ofD. If Eq. ~A13! is
valid, one finds from Eq.~32! that

12t i
2'1.5~112pcL

2!n21/2.

Thus, a largen is required for the temperaturet i to reach
unity; see Fig. 6. In the case of Eq.~A14! the right-hand side
of Eq. ~32! already exceeds unity at a finite valuen (n;1),
and at suchn the line Hdis(t) practically reaches the poin
T5Tc , H50; see Fig. 8 for the largestD.

C. Upper critical point

Let us now discuss the upper critical point on the vor
lattice melting curve.17 In principle, two scenarios are pos
sible. In the first one22 the upper critical point does not co

FIG. 11. The temperaturet i where the melting line and the
order-disorder line cross, plotted vs the parametern
5(2p)3/2D3/Gi1/2. This temperature is found by calculating th
phase diagrams from Eqs.~19!–~25! with cL50.25 and Eq.~A13!
~right three curves! or Eq. ~A14! ~left two curves! for Gi50.01
~crosses!, Gi50.001~triangles!, andGi50.0001~circles!. The in-
terval of D/cL actually used for each curve can be calculated fr
Gi and then interval.
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incide with the intersection point of the melting and th
order-disorder lines and is located at a higher magnetic fi
than this intersection point. In fact, in this case the inters
tion of thetwo differentphase transition lines occurs, and o
of them ~the order-disorder line! terminates at the intersec
tion while the other one continues for some distance wh
seems to depend on the detailed position of the lines in
H-T plane. This scenario is based on the difference in
density of dislocations,r, generated at the melting and th
order-disorder transition: at the melting one hasr;a22,
while at the order-disorder transitionr;Ra

22!a22. The po-
sition of the upper critical point on the melting line is dete
mined by the condition that the density of dislocations in t
disordered vortex solid phase reaches a value typical for
liquid ~i.e., the dislocation spacingRa calculated on the melt-
ing curve reduces to the vortex spacinga). It is this scenario
that is assumed in our paper.

In the second scenario the upper critical point coincid
with the intersection point. In this case the above-mention
point is ordinary rather than singular for the free energy
the vortex system, since a continuous phase transition s
rating the disordered vortex solid phase from the vortex
uid does not seem to exist.49,50Thus, there is onlyonephase
transition line which describes both the melting and t
order-disorder transitions. This unified line originates fro
the melting curve of clean superconductors, gradually evo
ing from it as the strength of the quenched disorder
creases. The ‘‘upper critical point’’ is then simply the poi
where on the melting lineRa reduces toa and the line expe-
riences a bend. However, for this scenario to occur, the
culated intersection point must lie in the single-vortex p
ning region. Otherwise, one obtainsRa.Rc@a at this point
and returns to the first scenario.

Our results argue in favor of the first scenario sincein the
framework of the used approximationsthe intersection points
never reach the upper region of single vortex pinning~see,
e.g., Fig. 5!. Note that this scenario is also supported
recent numerical simulations.51

VI. CONCLUSIONS

In this paper, using the Lindemann criterion and results
the collective pinning theory,27 we have derived Eqs.~19!–
~25! which enable one to calculate the order-disorder tran
tion line Hdis(t) with account of both pinning-caused an
thermal fluctuations in the whole temperature interval of
existence. The boundaries of the single-vortex pinning
gion, Hsv(t), Hsv

up(t), and the melting lineHm(t) are also
found from these equations. The equations turn out to dep
only on the Ginzburg numberGi which characterizes ther
mal fluctuations, on the strength of the quenched disordeD,

D5
ej~0!

Lc~0!
5S j c~0!

j 0~0! D
1/2

,

and on the functiong0(t) defined by the pinning mechanism
and by the temperature dependences ofj and l; see the
Appendix. For example, the pinning mechanism conside
in Ref. 52 leads to ag0(t) described by Eq.~A13!, while the
4-11
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dTc pinning27 results in Eq.~A14!. Using our equations one
can analyze the phase diagrams of various superconduc
Moreover, our analysis in principle allows us to obtain info
mation on the true form of the functiong0(t), i.e., on the
mechanism of pinning in a superconductor.

At small Gi we obtain phase diagrams typical for low-Tc
superconductors. In this case the obtained results practic
coincide with the results of the simplified approach presen
in Sec. III. We also analyze phase diagrams withGi;1022

since such values ofGi are characteristic for the
YBa2Cu3O7-d superconductors. We consider both a typic
case whereg0(t) decreases witht @Eq. ~A13!# and a case
whereg0(t) increases witht @Eq. ~A14!#. In both these case
the obtained results qualitatively describe the phase diag
of YBaCuO crystals and its evolution with varyingD, which
can be caused by irradiation or by reduction of the oxyg
content in these crystals. However, we find that the mode
dTc pinning @Eq. ~A14!# more correctly reproduces all th
features of the experimental data for YBa2Cu3O7-d crystals.

Our results support the idea22 that the upper critical poin
on the melting curve of high-Tc superconductors does no
generally coincide with the intersection point of the melti
and the order-disorder lines~although the distance betwee
them is possibly small!. We predict the position of this inter
section point in theH-T plane. We suppose that the tempe
ture corresponding to this point is determined mainly by
parametern, Eq. ~29!, i.e., by a combination of the param
etersD andGi.
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APPENDIX: ESTIMATES OF THE PARAMETERS

The results of this paper are based on the collective
ning theory.27,32 It is assumed in this theory that the disord
in the flux-line lattice is generated by point defects of s
not exceeding the coherence lengthj(0). Here, in the frame-
work of three widely used models of pinning, we express
quantitiesej/Lc and T̃dp

s through the characteristics of th
point defects, viz., their concentrationn and mean radiusr 0.
These expressions enable us to get some idea of the tem
ture dependences of these quantities and to understan
changes of the phase diagram whenn and r 0 are varied.

In the first model,53 pinning is due to the gain in the
condensation energy when a vortex core is located at a
fect. This gainepin is of the order (Hc

2/8p)4pr 0
3/3, whereHc

is the thermodynamic magnetic field andr 0 the radius of the
defect. Then one obtains the following estimates for
mean elementary pinning force exerted by one point de
f pin;epin /j:
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f pin'«0S r 0

j D 3

~A1!

and, for the single vortex collective pinning length27 Lc
5n21/3(e2«0 / f pin)2/3 @with e5lab /lc , «05(F0/4plab)

2#,

Lc'
e4/3

n1/3S j

r 0
D 2

. ~A2!

Using these estimates, we find the key parameter~7!,

ej

Lc
'S nr0

3

e D 1/3r 0

j
, ~A3!

and the characteristic pinning energy27 T̃dp
s described by the

expressionj( f pin
2 nLcj

2)1/2,

T̃dp
s 'e2/3«0~nr0

3!1/3r 0 . ~A4!

A different mechanism of pinning is due to the scatteri
of quasiparticles by the defect as calculated in Ref. 52
scattering center facilitates deformations of the order par
eter up to distances of the order of the zero-temperature
herence lengthj(0). Hence, it is energetically advantageo
for a vortex core to sit at a scattering center. This mechan
leads to the pinning forcef pin;(Hc

2/8p)r 0
2j(0)/j, and we

obtain

f pin'«0S r 0

j D 2 j~0!

j
, ~A5!

Lc'
e4/3

n1/3S j

r 0
D 4/3S j

j~0! D
2/3

, ~A6!

ej

Lc
'S nr0

3

e D 1/3S r 0j2~0!

j3 D 1/3

, ~A7!

T̃dp
s 'e2/3«0~nr0

3!1/3@r 0j2~0!#1/3. ~A8!

Strictly speaking, formulas ~A5!–~A8! are valid if
pr 0

2j(0)n,1. This type of pinning is sometimes calledd l
pinning.27 Note that Eqs.~A5!–~A8! and~A1!–~A4! have the
same dependences onn, e, and temperature. They thus d
scribetwo different contributionsto one pinning mechanism
with the contribution of Eqs.~A5!–~A8! always dominating
when r 0,j(0).

If the pinning centers in YBa2Cu3O7-d are clusters of oxy-
gen vacancies, it is useful to keep in mind that

4p

3
r 0

3n5cd, ~A9!

where the constantc equals 2 if these clusters are formed
the YBa2Cu3O6.5 phase. Thus, whenr 0 decreases at a fixe
d, the parametersej/Lc andTdp

s also decrease.
In high-Tc superconductors the pinning can be due to s

tial fluctuations in the density of the oxygen vacancie
4-12
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which results in variations ofTc over the sample. One ha
the following estimates for thisdTc pinning:27

ej

Lc
}S nj

e D 1/3

, ~A10!

T̃dp
s }e2/3«0~nj4!1/3, ~A11!

wheren is the density of oxygen vacancies. This pinning c
occur whennej(0)3.1.

The above equations enable us to estimate the temper
dependence of the quantitiesej/Lc and T̃dp

s . For this pur-
pose, we insert the expressions
S
.

ta-
l,

K.
, G
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s.
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R

L.

ys

h

a
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ure

j~T!

j~0!
5

l~T!

l~0!
5S 12

T2

Tc
2D 21/2

~A12!

in the appropriate formulas. In particular, it follows from
Eqs.~10!, ~A3!, and~A7! that for d l pinning

g0~ t ![
1

D S ej~T!

Lc~T! D5~12t2!1/2, ~A13!

where t[T/Tc , D[ej(0)/Lc(0), while according to Eq.
~A10!, one finds fordTc pinning

g0~ t !5~12t2!21/6. ~A14!
J.
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