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We investigate the order-disorder transition line from a Bragg glass to an amorphous vortex glass-in the
phase diagram of three-dimensional type-ll superconductors taking into account both pinning-caused and
thermal fluctuations of the vortex lattice. Our approach is based on the Lindemann criterion and on results of
the collective pinning theory and generalizes previous work of other authors. It is shown that the shapes of the
order-disorder transition line and the vortex-lattice melting curve are determined only by the Ginzburg number,
which characterizes thermal fluctuations, and by a parameter which describes the strength of the quenched
disorder in the flux-line lattice. In the framework of this unified approach we obtaiiitiiephase diagrams
for both conventional and high; superconductors. Several well-known experimental results concerning the
fishtail effect and the phase diagram of highsuperconductors are naturally explained by assuming that a
peak effect in the critical current density verddisignalizes the order-disorder transition line in superconduct-
ors with point defects.
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I. INTRODUCTION definiteness only, we shall imply below that the phase tran-
sition corresponds to the line of the maximum critical current
In type-Il superconductors one often obselvé%a peak  density,H(T).
effect (or fishtail effecj in the critical current density mea- A description of this order-disorder phase transition in
sured as a function of the applied magnetic figlat a fixed  high-T. superconductors was proposed in Refs. 24—-26 using
temperaturel or as a function ofT at fixedH. In conven- the Lindemann criterion. It was implied in these papers that
tional low-T. materials this peak effect mainly occurs at the nature of the order-disorder phase transition is different
magnetic fieldsH near the upper critical fielt ,(T).2 > In from the vortex-lattice melting transition, but at the critical
the highT, YBaCuO crystals, the line of the maximum criti- point both phase transition lines merge. Recently it was
cal current densityH,(T), frequently lies essentially below refined? that the upper critical point does not generally co-
the irreversibility line in theH-T plane®~°and in sufficiently  incide with the point where the order-disorder line reaches
perfect crystals it exhibitsnonmonotonicbehavior with  the melting curve, and thus the melting line has a portion
temperaturé®=2% In these perfect crystals the line of maxi- beyond the intersection point. However, the following should
mum current density approaches the flux-line melting linebe noted: The results of Refs. 24—-26 for the disorder-induced
H(T), approximately at the so-called upper critical pbint transition were obtained in the regime of single-vortex
at which the melting line terminates. When the oxygen defi-pinning’ when the Larkin pinning length.., is less than
ciency 6 in YBa,Cu;O,_5 increases or the crystal becomesLy=e€a where a=(Py/H)Y? is the spacing between flux
less perfect, the end point tends to the superconducting tratines, @ is the flux quantum, and=\,,/A.<1 is the an-
sition temperaturel; at zero magnetic field, whiléd,(T) isotropy of the superconductok {;, and\; are the London
becomes a monotonically decreasing functibtf It is also  penetration depths in thab plane and along the axis,
important to note that at a fixed oxygen concentration theespectively. WhenT increases, the length, should exceed
fishtail effect can disappear in pure YBaCuO crystals if theea at some temperature which lies on the boundary of the
distribution of the oxygen vacancies over the sample besingle vortex pinning regime. At higher temperatures the dis-
comes unifornt® order was completely neglected in Refs. 24—-26, and only the
At present the origin of the peak effect in Ioly-and  melting line of the ideal lattice was derived. Thus, the behav-
high-T, superconductors is commonly associated with theor of the order-disorder line was not actually investigated in
proliferation of dislocations in the flux-line lattice>!°~*%At  the high-temperature region, and its connection with the
this first-order phase transitidf°~2?induced by quenched melting line was not established. Besides this, it has re-
disorder in the vortex system, a transformation of a quasiormained unclear why the proliferation of dislocations in the
dered Bragg glagd into a disordered amorphous vortex vortex lattice of highT. and low-T, superconductors leads
phase occurs. Although different critettd*are used for to different phase diagrams.
determining the exact position of this transition on the peak- In the present paper we consider the order-disorder tran-
shaped dependence of the critical current densitjpthey  sition line in the high-temperature region awttain the
all lead to qualitatively similaH-T phase diagrams, and, for point where the vortex lattice melting and the order-disorder
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transition lines merge. It turns out that for a given model ofwords, Ry should be greater than the so-called positional
the vortex pinning, the resulting-T phase diagram is deter- correlation lengthR, within which typical relative vortex
mined only by the Ginzburg numb&si, which character- displacements are of the order of the lattice spaeingow-
izes the thermal fluctuations, and by a paranféter ever, this is only a necessary but not sufficient condition for
ic<(0)/jo(0) that describes the strength of the quenched disthe existence of dislocations. Displacements generated by the
order in the flux-line lattice alf=0 (j, is the depairing dislocations facilitate a better adjustment of the vortex lattice
current density and, is the critical current density in the to the quenched disorder. The relative deformation of the
single-vortex pinning regime; both are in th® plane. For  lattice produced by the dislocations is of the ordeafRy .
different values of these parameters, phase diagrams are obherefore, the smalleR; is, the greater is the gaifE;, in
tained which are similar to those observed in experiments fopinning energyE,;,. Thus, the network first appears at the
low-T and highT. superconductors. Thus, the results of thissmallest possibld&ry, and we arrive at the resuRy~R,
paper provide a unified approach for analyzidgl phase (andLy~L,) obtained in Ref. 22. The relative magnitude of
diagrams of various superconductors. the gain, 6E,;,/Ei,, is determined by the rati@/R,.

In this paper we consider only magnetic fields exceedingdence, for this magnitude to become of the order of unity,
considerably the lower critical fielth;; and thus disregard R,/a should decrease to a certain constant
the reentrant behavior of the melting transition and do not
distinguish between the magnetic fidlland the magnetic Ra
induction B. Besides this, we deal only with anisotropic a
three-dimensional superconductors, neglecting completely
the decoupling of the superconducting layers. We also asfhis criterion for the appearance of dislocations in the flux-
sume thatH is directed along the axis. This assumption line lattice was obtained in Refs. 22 and @@e also Ref.)1
simplifies the analysis of the problem, though our final equa@nd is equivalerif to the conditioR®

tions (19)—(25) are valid for any direction of the magnetic X
field. u*(a,0)=cfa?, (6h)

wherec, is the phenomenological Lindemann constant. This
immediately follows from the fact that the ratio 0fR,,0) to

We begin with simple estimates which show that the Lin-u(a,0) [i.e., a/u(a,0)] is a function ofR,/a. Finally, since
demann criterion does define the condition for proliferationu(a,0)=u(0,Ly) at Lo= €a,?” one more form of the Linde-
of dislocations in the flux-line lattice at the order-disordermann criterion exists:
transition. Consider a dislocation network in the lattice. Let a
unit cell of this network have the dimensioRg and L in u?(0,Lg)=cfa. (2
the transverse and longitudinal directionsHprespectively.

A comparison of tilt and shear elastic energies yields thatt 1S just this form that was used in Refs. 24 and 26.
Ly/Ry~[Cas( LRy 1L g)/Ceg]¥?>>1  where cgs  and Strictly speaking, the values of the constaitsand ¢,

Cas(k, ,K;) are the shear and nonlocal tilt moduli of the flux- may depend on whether the order-disorder transition occurs

line lattice?® The energy cost for the creation of a dislocation " the single-vortex pinning region or in the region of bundle
cell is of the order of

II. LINDEMANN CRITERION

pinning. However, to understand the essence of the matter,
we shall use the simplest approximatian: will be consid-
Eq~eolg, ered as the same constant for the various regimes of pinning.

whereey=(®o/4m\,,)? and ), is the London penetration

depth for currents in theb plane. On the other hand, the Ill. ORDER-DISORDER LINE: SIMPLIFIED APPROACH

elastic energy in the volumRiL 4 is estimated as As well known?"?! thermal fluctuations of the flux-line
) lattice lead to a smoothing of the pinning potential and
Eei~CeelaU™(Ra,La), thereby affect the pinning. This thermal depinning is espe-

where u¥(R,L) is the correlation function determining the cially important for highT, superconductors. However, to

relative displacement of points in the lattice with quenchecglucidate possible types of the order-disorder transition line,
disorder, in this section we completely disregard the thermal fluctua-

tions. The influence of the thermal depinning on the order-
u(R,L)=([u(R,L)—u(0,0]3)*2 disorder line will be analyzed in Sec. IV.

Hereu is the transverse displacement of a flux lie; - )
means averaging over both thermal and quenched disorder,
and the first coordinat® in u(R,L) indicates the position of As has been mentioned above, the order-disorder line
the flux line in the plane normal to the applied magneticH 4<(T) was studietf~?®inside the single-vortex pinning re-
field, while the second coordinatedefines the position of a gime where the Larkin pinning length, is less thanL,
point on the flux line. Comparingq andE,, with account of =ea. Since Ly>L., formulas of the random manifold
Ces~ £0/a’, one arrives at the conclusion that a dislocationregimé’ for a single vortex are applicable to calculate the
network can exist in the lattice ifi(Ry,Ly)=a. In other displacement correlation(O,L),

A. Region of single-vortex pinning
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u(0.Lo)~&(Lo/Lo)", )

where¢ is the coherence length in tlab plane and. is the
roughness exponent for a flux line. In Ref. 26 the value
~3/5 was used, whilg~5/8 in Ref. 24. Inserting Eq(3)
into Eq. (2), we obtain after simple manipulations

(4)

where a«=2¢/(1-{)~3. Equation(4) coincides with the
appropriate formulas of Refs. 24—-26. For KE4). to be self-
consistent, it is necessary to verify thgf>L . atH=H;s or

in other words Hys<Hg, where Hg,=®€?/L2 is the

boundary of the single-vortex pinning regifffeThis condi-
tion yields

—>C .
L.t

If the inequality (5) is not fulfilled, Eq. (4) is not valid to
describeH 45 -

©)
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wherelLy=ea, h=H/H,, hg,=Hg, /H,, the upper critical
field H,=®o/27&2, andL, is the single-vortexcollective
pinning length. Note that Ed8) differs from formula(4.17)
of Ref. 27 by the last factor containitgandhg, . This factor
takes into account the possibility that-h is small; in Ref.
27 the correlation functiom?(R,L) is given without taking
account of this possibility. The origin of this factor is the
following. The quantity u? is proportional to
Nfihan/HCE . Whenh—1, one hask 5o (1—h) "2, cge
«(1—h)? (see Refs. 28 and 34while f}; cefo(1—h)?
(see Ref. 32 and also the AppendiXhe combination of
these factors gives E@8), in which the additional constant
factor (1—hg,)*? has been introduced to provide a smooth
crossover of this expression to the appropriate formula for
the single-vortex pinning regime at=hg, .

Inserting formula(8) into Eq. (1), we obtain an equation
for hgis=Hgis/Heca,

6

“ ) 1-he)?,

CLLc

(€)

hdis(l_hdis)3:27TCE(

The parameteeé/L. generally depends on the tempera- where hg,=Hsg, /H=2m(eé/L)? and the right-hand side

ture T. For example, according to simple estimates given independs only on the temperature. Note thal &{T,, when
the Appendix, Eqs(A3) and (A7), it decreases withl and  e&/L,=c,_, one hashg(T;)=2mc?=hg,(T;), in agree-
reaches zero af=T,. Moreover, its decrease becomes es-ment with Eq.(4). A simple analysis shows thatz? should
pecially pronounced if the thermal depinning is taken intobe greater than 0.25 but less tharii., 0.2<c <0.4) for
account.[In this case the single-vortex collective pinning Eq. (9) to have a solution aT=T;. If ¢, <0.2, the order-

lengthL . increases sharplywhenT exceeds the character- disorder line terminates at=T,, which is impossiblé® On

istic pinning energﬁ'gp(T); see the Appendi}Thus, even if
€&(0)/c L.(0)>1, the order-disorder linél4s(T) reaches
the boundary of the single-vortex pinning reginkk, (T), at
some temperatur@, defined by the condition

€&(Ty)
Lo(Ta)

and atT>T,, Eq. (4) fails.
It is worth noting that the parametei/L . appearing in

=CL ’ (6)

Egs. (4)—(6) and formulas given below characterizes the

strength of the disorder in the flux-line lattideand is ex-
pressed through the critical current dengityin the single-
vortex pinning regime,

6_5%(1'_(:)1/2

Lc jO (7)

wherej, is the depairing current density.

B. High-temperature region

At T>T, the order-disorder transition line lies above

He,(T). In this region of theH-T plane small-bundle and
large-bundle regimes of pinning occirHence the trans-
verse collective pinning lengtRR, exceedsa, and to find

u(a,0), the resultd *2*3may be used, which were obtained
within the framework of the perturbative approach of Larkin

and Ovchinnikov? We have

1— hSu) 3/2

u?(a,0)~ §Z(L0/Lc)3< i=h

®)

the other hand, it, >0.4, one finds from Eq(9) that hy;s
>1—hg,; i.e., the root of the equation lies in the upper
region of single vortex pinnin§ where Eq.(9) is not valid.
For this reason, in the following we assume the conditions
0.2<c =<0.4 to be fulfilled and, for definiteness, take
=0.25 in the subsequent calculations.

C. Types of phase diagrams
We begin the analysis of phase diagrams with the case

D>c_,

whereD=¢€£(0)/L.(0) is the value of the parameteg/L .
atT=0. Figure 1 shows the linel 4;s(T) calculated by solv-
ing Eq. (9) (for Hgis>Hsg,) and Eq.(4) (for Hyis<Hg,). In

the construction of this figure, as well as in all examples
below, we uséH .»(T) =H,(0)[1—(T/T.)?] anda=3 (i.e.,
{=3/5). Besides this, taking into account the form(#d.3)

of the Appendix, we employ the following simple approxi-
mation for the parameteré/L . :

e&(T)

szgo(t), (10

with

go(H)=(1-t3*,

wheret=T/T.. The increase oH,; and its subsequent
maximum are seen in the vicinity of;. As to hys, this
normalized quantity increases monotonically aboVe.
When 1-hyis<<1, an approximate solution of E) is

11)
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FIG. 1. The order—disorder linkl 45(t) (solid line) calculated FIG. 2. As Fig. 1 but forD/c,=0.9 and 0.4. Note that for
from Egs.(4), (9), and(A13) (8l pinning for ¢, =0.25 andD/c, D/c <1 the order-disorder linéH;(t) does not intersect the
=1.3. Simplified approach, without account of thermal fluctuations.single-vortex pinning boundamfg,(t).

The boundary of the single-vortex pinning reginkk, (t), is given
by the dashed line, and the dotted line shows the mean-field uppemy T<T., while Eq. (4) is not valid at all. In the special
critical field Hp(t) = Hcp(0) (1- 7). situation whenD is markedly less thar, , a peak effect
occurs neaH ,(T) and its position in thed-T plane is ap-
Hais(T) (277)1’3( ef)z proximately given by Eq(12). In this case the resulting
Heao(T) cl Le/

(120 phase diagram looks like that of loWs superconductors:®

The transition from one type of phase diagram to the other
This formula shows that and howys(T) approaches occurs wherD=c, .

He2(T), which is also seen in Fig. 1. Interestingly, according |t has been assumed in this section that the parameter
to this formula, the order-disorder transition occorgside  ¢¢£/| . decreases with increasinfy However, thesT. pin-

the upper region of single-vortex pinnifybut its position  ning (due to spatial variations of,) leads to an increasing
correlates with the boundary of this regid:—hgis(t)1/[1  functiong(t); see Eq(A14) in the Appendix. In this case, if
—hg,(t)]=(2mc)"?3>1. It should be also noted that in D>c,, the formula(4) remains valid up tdl,. But if D

the case under study.e., when the thermal fluctuations are <c, , a temperaturd@, exists, determined by the condition
negligible the mean fieldH,(T) practically coincide¥
with the melting lineH ,(T). Thus, we obtain fob>c, that €&(To) e

L(To)

in the high-temperature region a peak effect occurs near the
melting line, while with decreasing the position of the peak )
in jo(H) shifts downwards from this line. This situation is and atT<T,, Eq. (9) should be used, while at>T, for-
reminiscent of that of perfect highs superconductor¥-1° mula(4) holds. In othgr words, we hav_e a situation Wh.ICh is

In this context it is also useful to note the following: The OPPOsite to that described above. In Fig. 3 the order-disorder
density of the dislocations in the vortex liquid is essentially!ine is shown for the case whegp(t) is given by Eq(A14).
higher than in the disordered vortex solid phase near th&lote that in this case, according to formul), one has
order-disorder transitio?? However, if in theH-T plane the ~ Hais*(1—t?)*?in the high-temperature region of the phase
order-disorder transition occurs sufficiently below the melt-diagram.  This result ~qualitatively agrees with the
ing line of the clean superconductor; then, in the disorderedneasurements®**1°on YB&Cu;0;.5 crystals whens is
solid phase, at the field corresponding to the melting transinot small or when the crystals are not too perfect.
tion, the density of the dislocations generated by the
guenched disorder may become of the order of the density
characteristic for the liquid phase. In this case the melting
transitiondisappearsin other words, the melting lindl ,(T)
terminates whet 4;5(t) deviates from it appreciably.

If the strength of the disorder is sufficiently small,

_€£(0)
T L)

the order-disorder line lies entirely outside the region of
single vortex pinning, Fig. 2, and is described by E9). at

IV. ORDER-DISORDER LINE WITH ACCOUNT
OF THERMAL FLUCTUATIONS

It is well known that thermal fluctuations of the flux-line
lattice play an important role in highz superconductors. In
particular, for this reason the flux-line lattice melts essen-
tially below the mean-fieldH ., line. In this section we study
the influence of thermal fluctuations on the order-disorder
line.

Thermal fluctuations lead to a smoothing of the pinning
potential and thus increase the Larkin length The length

D

<C_,

184514-4
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1

the compression modulus,;; was neglected. Hence, it is
consistent to use the same approximation in the calculation

_(q_\-18
", Hy 9=(1-") of u2. This simplifies the appropriate form@faor u2, and
0.8f c= 0.25 | we obtain
L _1'3 Hsv ; 172
__________ .  DIg=13,09 2 .o Gi _12

506} R : up~ &t 5| h™7f(h), (16)

o i 1=

I

= whereh=H/H(t), t=T/T¢, Heo(t) =Hcp(0)(1-t7), Gi

is the Ginzburg number,
1 Tc ?
Gi=5|=2—3 /| .
2\ H:(0)e£°(0)

which characterizes the strength of the thermal fluctuations,

5 02 oa 05 08 1 andH_ is the thermodynamic magnetic field of the supercon-
t=TT, ductor. The functiorf(h) has the form
FIG. 3. The lineH;s(t) andH,(t) as in Figs. 1 and 2 but for 284 [1+(1+E)2]1/2—1
8T, pinning, Eq.(A14), for D/c,=1.3 and 0.9. NowH 4;4(t) and f(h)= = = (17)
H,,(t) cross at=t, for D/c, <1. 1-h c(1+c)

L. specifies the boundary of the single-vortex pinning regionVith ¢=0.9 8A(1— h_)]llz andB,=1.16.

and it enters the key parameter of the collective pinning The guenched disorder _change%. However, when the
theory, e£/L. Here we reserve the notatidn, for the true ~ transverse collective pinning lengtR. is considerably
length renormalized by the fluctuations, while the Larkingreater thar, the above result for the ideal lattice is a good
length defined without account of the fluctuations will be @Pproximation. This is due to the fact that the main contri-
denoted below ak?. Note that just.? has been used in Sec. bution tou results from the thermal fluctuations with short
lll, and just this quantity is described by EQ0). Apart from ~ Wavelengths K, ~1/a), while the quenched disorder essen-
increasing_, the thermal fluctuations of the flux-line lattice tially distorts the lattice only on the scali.. Thus, we may

also modify the correlation functiof8) as follow$”: use Eq.(16) in the case of thenonideal lattice if bundle
pinning occurs. But in the single-vortex pinning regime the
u3(0Lo)~ra(Lo/Lo)%, (13)  influence of the disorder is essential, and on€ha$=L .

2 o 2 ) _ To account for this result, we introduce an additional factor
wherer= &+ u7, anduy is the magnitude of these fluctua- | /¢a in the formula(16) and thus obtain

tions, which depends on the temperature and on the magnetic
field. It is implied in Eq.(13) thatLy=ea>L.. As to the
correlation function8), the collective pinning theofy gives uZ~ £t

Gi 1/2
1 tz) hg, " (h) (18)

312 4
u?(a,0)~ £%(Lo /LY l__hs‘f) (é) (14)  in the single-vortex pinning region at<hs, .
1-h Ip Inserting expressiofiL6) into formula(15) and using defi-
for Lo<L,, i.e., ath>hg,=2m(e&/L )2 nition (10) for €&/L%, we obtain the following equation for
Sinceu(a,0)=u(0,L), the correlation function&l3) and hg,=Hs, /Hcy:
(14) must coincide at.g=L. (or equivalently ath=hg,).
This condition yields

1/2, 1/2 GI v
hsl)(t)z(zw) Dgo(t)—t 112 f(hg,(1)). (19

2

rp(t!HSU(t)) . . . .

— (15  With increasingt the functionhg,(t) reaches zero at some
(V) tap<1l, and Eq.(19 is valid att<tg,. In the regiont>tg,

In fact, formula(15) is anequation for L, since we have the the lengthL is infinite in size, and the single-vortex pinning

relationshipHs, = ®€?/L2. This equation enables us to find r€gime is absent, i.elis, (1) =0 att>tq,. The value otg, is

L) =Lt

L(t), and thusH,(t), self-consistently. found by equatindhg, to zero in formula(19):

To proceed, we have to estimate the magnitude of thermal
displacements of the latticei;, relative to its equilibrium s (2m)'A (5[ 1= (t5,)2]¥2 20
position. In the case of thigleal vortex lattice,ur was cal- 4P Gl () 9oltap dpl 4

culated in many papers; see, e.g., Refs. 38—40. This magni-

tude, as well as the correlation functiof® and (14), de- It may be verified that the right-hand side of Eg0) coin-
pends on the elastic moduli of the lattice. However, inCides(up to a numerical factor of the order of unityith the
deriving Eqgs.(8) and (14) the contribution associated with dimensionless characteristic pinning eneﬁ'@ﬁ/Tc; see the

184514-5
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1+t G
1-t2

-1

., (23

Appendix. Thus, in agreement with  physical
consideration$! we obtain that the essential renormalization he,(t1)=2mc?

of L. occurs at such temperaturTésthatT~T'§p(T).
It should be noted that our result far, (L,—« att

—tgp) differs in some respects from thag presented in Refyyhich generalizes conditiof6). At D<c, the line is entirely
27 whereL . increases expon_e-ntlglly at-ty,. However, in  gytside this region, and thus one Has=0. If go(t) is an
the framework of our approximatioti; =0, we may con- increasing function of temperature, more complicated situa-
siderL as infinite if it becomes of the order af Hence, the  tions can occur.
difference between the results is, in fact, small. But our ap- |nserting formulag14) and (16) into relation(1), we ob-
proach provides the continuity of the correlation functionstain the equation fohgis(t):
(13) and(14) ath=hg,.

Equation(19) specifies the single-vortex pinningVP)

Y2 £ (hg, (1))
[he, (1)]22

t=t;

region existing at relatively low magnetic field<h 3 Gi l/zf(hdis) N
<hg,(t)]. However, formulag14) and (16) enable one to hais(1—Ngis)”| 1+t 1-12)  (hyot2

find also the upper region in which the vortex system returns dis

to this type of pinning again. The appropriate equation re- »( Ddo(t) 6 3

sults from the conditioru(a,0)=r, and has the following :ZWCL( c ) [1-hs (D], (24)
form:

which generalizes Eq(9). This equation is valid in the

Gi 1/2 2 >nel -
_I) f(h)l bundle pinning region.

(1—h)| h¥2+1

_t2 Let us now present formulas for the melting line which is
determined by the Lindemann criterions = c?a?, different
=27 Dgo(t) ][ 1—hg,(1)]. (21 from Egs.(1) and (2). This well-known empirical criterion,
based on the magnitude of the thermal fluctuations, was jus-
As might be expected, &t=hg, this equation goes over into tified in Ref. 22 for the case of the ideal vortex lattice. Ac-
Eqg. (19). However, in a certain temperature interval it hascording to this paper, different physical mechanisms lead to
two additional real roots which form the boundary of the the proliferation of dislocations at the vortex-lattice melting
upper SVP regionhg? (see Fig. 5 beloy Here we do not and at the order-disorder transition. While the disorder-
consider this issue in detail, but qualitatively describe thenduced transition is driven by an adjustment of the flux-line
effect of thermal fluctuations on the shape of the upper SVRattice to the disorder, the thermal melting is governed by the
region specified above without their accodhalthough the  entropy gain associated with the creation of dislocations.
softening of the vortex lattice nedd., is favorable for Hence, the Lindemann constagt for the melting may, in
single-vortex pinning, this softness also leads to an increaserinciple, differ from that used in Eq$22)—(24). However,
of the thermal fluctuations, which reduces the strength of for the sake of simplicity we take these constantas equal
pinning. As a result, the upper region does not tohich(t) in the following analysis. Thus, if the melting link,,(t)
except for the point=0 (att>0 andH=H_, we haveuy =H,/H., does not intersedhb,(t), it is described by the
=), Besides this, sincer increases with, the upper re- equation
gion does not extend td.. Of course, one should realize
that the part of the boundary of this SVP region lying above
the vortex-lattice melting curve has only formal meaning, t( G

since it does not account for the vanishing shear modulus at 2

the melting. On the other hand, it is quite possible that the

sharp melting transition disappears when the melting line o N

enters the upper SVP regidor even before it; see Sec)yv  Butif the melting line lies belovh, (t), an additional factor
Inserting expression&l3) and (18) in formula (2), we  (Nm/hs,)"? should be inserted on the left-hand side of Eq.

arrive at an equation fongis=Hgis/He, Which generalizes (25); cf. Egs.(16) and(18). Finally, we note that in expres-

formula (4): sion (25), as well as in Eqs(16) and (18)—(24), the factor

1—t? represents the temperature dependence of the upper
T 1U(1-9) 2\ al2 critical field, 1—t2=H,(t)/H¢(0). Thus, if another form
1+t Gi f(hais) —om 2( ZWCL) of this dependence is implied, the appropriate modification
1-t2)  [hg(t)]¥2 Hhg(t)) of all these equations is straightforward.
(22) Summing up, we may state the following: For given
0o(t), Egs. (19—(25 enable us to calculate the order-
This equation is valid in the single-vortex pinning regime disorder linehg;s(t), the melting lineh,(t), and the bound-
whenhg<hg, . For example, ifgo(t) is a decreasing func- aries of the single-vortex pinning reginhg, (t), he?(t) with
tion of t, the order-disorder line lies in the single-vortex pin- account of the thermal fluctuations. The functiy(t) in Eq.
ning region and is described by E@2) att<t;. In the case (10) is determined by the pinning mechanism and by the
D>c, the temperature, is found from the equation temperature dependenceséand ; see the Appendix.

. 1/2
|
) h¥2f (hy,) =2mc?. (25)

hdis
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V. ANALYSIS OF PHASE DIAGRAMS TR T
A N _(_ 12
It is important to emphasize that for givegy(t) Egs. ) T Hy 20'_(10 ;5)
(19)—(25) depend only ortwo parameters: the strength of %8 Sl y DL/_ '
guenched disordeD = €£(0)/L.(0), and thestrength of the { RN .°L=1'3
thermal fluctuationsGi. In this sense, the equations and & o} ~_ H Gi =001
figures of Sec. Ill correspond to the limiting casé—0. We < )
consider now new features of the phase diagram which ap~
. . . .. . T 0.4f
pear in the real situation of finit&i .
0.2k

A. Numerical results

An example of the phase diagram in the c@&sec is
shown in Fig. 4. Note that the order-disorder line terminates
at some temperature,<1. This termination is associated
with an increase of the thermal fluctuations and thus with an 4l
enhanced smoothing of the pinning potential when the order- )
disorder line approachés.,. Interestingly, the end point lies _  p~. RN Gi = 0.001

near the so-called depinning Iffé*whereuZ=¢2. Another ~ %  ~~~_ N

new feature of the phase diagram is the intersection of thex® N S
melting and the order-disorder lines. Thus, we obtain thez o4} RN AN
point where both lines merge. It is seen from Fig. 4 that at ~. N,
this point the position of the critical current peak begins to A = AN
shift sharply downward from the melting curve, in agreement Ts. RN
with the experimental dat®~*°Hence, as was mentioned in BN NS
Sec. llI C, the upper critical point for the melting is likely to 0 . . . -
occur somewhere nearby. The portion of the order-disordel  '[™=<Zz, e ' ' '
line lying above the melting curve has no physical meaning N
since the density of dislocations in the liquid phase is already o8} RN
higher than in the disordered solid ph&éélote also that the RN
rise of Hyis(t) at T>T,; becomes considerably steeper than . [~~-. RN Gi = 0.0001
in the caseGi=0. 3%0'6' - NG

The intersection of the order-disorder line with the melt- I ~~ RN
ing curve occurs also fob<c, . In this case, wherGi I 04f N N
increases, the decreasehbf;s with T diminishes, and even- b ~
tually Hg;s becomes an increasing function pfsee Fig. 5. N, |
Therefore, ifGi~10 2 (this value is typical for YBaCuO .. "«;'3,,’
crystalg, the temperature behavior of the order-disorder line S..
is similar to that obtained fdd>c, , and the phase diagrams % 02
in both these cases are of the same type.

In Fig. 5 we also show the upper region of single-vortex _ _ o
pinning. It is important to note that the intersection point of _ F'G- 4. The order-disorder linBly;(t) (bold solid ling calcu-

the order-disorder line and the melting line occurs clearly/2€d from Egs(22), (24), and(A13) (4l pinning), which account

before the melting curve enters this region, and so at thefor thermal fluctuations, foc, =0.25, D/c =1.3, and for three

. . . . P values of the Ginzburg numb&i=0.01, 0.001, and 0.000from
InterseCtlon.Pomt the tran§verse coIIectlve' pinning lerigth top to bottom. Also shown are the boundary of the single-vortex
and the positional correlation leng®), (the dislocation spac- pinning regime H, (t), Eq. (19) (dashed ling the mean-field
ing) _both_con5|derably exceed the flux-line spacagrhis . Hey(t)=Hw(0)(1—t?) (dotted ling, the vortex-lattice melting line
fact justifies the assumed weak influence of quenched d|so[_-|m(t)’ Eq. (25 (dash-dotted ling and the depinning linélg(t),
der on the vortex lattice melting and the application of Ed.gqs. (16)~(18) (thin solid line, along which one formally has2

(24) up to the intersection point. - =¢ and whereHi((t) ends. The short part 04 ;s aboveH,,, has
If the parameteD increases, e.g., as a result of irradiation no physical meaning.

or of reduction of the oxygen content in YRau,0;_5 crys-

tals (see the Appendix then the order-disorder line shifts with varyingD, it should be emphasized that the intersection
down, while the temperature of the intersection pdentd  point does not reachi, at reasonable values of the disorder
thus the temperature of the upper critical point for the melt-parameteD.

ing line) increases, Fig. 6. These results are in agreement Consider now the case whep(t) increases witt. This

with the experimental finding$**>® for YBa,Cu;0,.;  situation occurs in the model &T, pinning; see the Appen-
crystals. However, although the obtained results qualitativelylix. The appropriate phase diagrams are presented in Figs.
describe the phase diagram of these crystals and its evolutioh-9. It is important to note the following: At sufficiently

0.4 t= T/TCO.S 0.8 1

184514-7
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\.\_4 ,,,,, ’ go=(1'12)1/2 g0=(1—12)”2
osk /T e ¢ =025
8, -, ¢ =025
| - “Hep S Dfc,= 0.9 L
. s/ ) . Hdp Gi=0.01 Gi=0.01
S os} S
3 - .. _ Dic = 0.4 - 1.6
I dis ~. o T
~ Hm \'\ o
I 04} ~ .~ . I°
- \\ E
R N,
0.2f T~ SN .
0 . : b= . '\'\
1 AT T T T “'\
\\'\‘\/ “ % 02 04 06 08 — 1
0.8f BRSNS ‘ 1 . ot ® _
~ | NS Gi = 0.001 . . .
o o8} S . FIG. 6. The order-disorder lineldy;s(t) (bold solid lineg ac-
I% =< cording to Egs.(22), (24), and (A13) (8l pinning for ¢, =0.25,
= e Gi=0.01, and several valugy/c, =0.4-1.6. The dash-dotted line
T o4y \,\ i is the vortex-lattice melting linél ,(t), Eq.(25), and the dotted line
------ - NN indicatesH () =H,(0)(1—t?).
0.2} Tteell N
Tl RN is mainly due to a nonuniform distribution of oxygen vacan-
0 , , L TN cies over the sample. Changing the conditions of annealing
F— . . . of the sample, Erket al. changed this distribution at a fixed
TSR 6. When the distribution became more homogeneous, the
"':,j'f';-..\,,,, fishtail effect disappeared. Since the spatial fluctuations in
08f \\ 1 the density of oxygen vacancies strengthendfig pinning,
----------------- RN . we get an additional confirmation of the hypothesis that this
S osf TN, G- 00001 type of pinning plays the main role in not too perfect
I‘?') N YBaCuO crystals, and so the fishtail effect exists up to high
| \\ | temperatures, as shown in Figs. 7 and 8 for labg&Vhen,
T ° i N after annealing, the crystal becomes more perfect, and the
"""""""" - X above-mentioned spatial fluctuations are reduced, the value
0.2} R N T
R e 1 =
~- b el
. . . TNeee N (=16
% 02 04y 17 06 08 1 o 9p=(1-1
T e o8k R e He c =025
FIG. 5. As Fig. 4 but for differenD/c_=0.9. The dashed lines "»\_ ' D/g=1.3,1.1,09

show the boundaries of both the lowerd,) and upper H5P)
regions of single-vortex pinning; see H@1) and text.

: Gi=0.01

S 08 N,
N
[

T

strong disorder, the lindys(t) monotonically decreases I o4k N
with temperature and practically reachd&s. When the '
strength of the disorder decreases, the order-disorder line ex
hibits nonmonotonic behavior witth and the temperature of
the intersection point,; , goes down. Thus, in contrast to the
case of a decreasing functiap(t), the model ofdT. pin-
ning correctly reproduces all the features of the experimenta J
data for YBaCu,O,.5 crystals®~1® In particular, the results 0 02 04 i1 8 08 1
presented in Fig. 8 closely resemble the development of the ¢
order-disorder line with variations of the oxygen deficiency k|G, 7. The order-disorder linds«(t) (solid lineg as in Fig. 6
J; see, e.g., Fig. 9 in Ref. 11. but for 6T, pinning, Eq.(A14), for D/c, =1.3, 1.1, and 0.9. The
The results of this section may also provide an explanadashed lines are the single-vortex pinning boundariggt), Eq.
tion of the findings obtained in Ref. 18. It was shown in this(19), the dash-dotted line is the melting litd,(t), Eq. (25), and
paper that the flux-line pinning in pure YBaL,0;_5 crystals  the dotted line indicatesl .,(t) =H,(0)(1—t?).

184514-8
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[ " y y y phase diagrams. Let us start with the melting line. If
. o, g,=(1-O"® [Gi/(1-1t?)]¥?<27c?, the normalized fielch,=Hy/He,
. .y c =025 is close to unity, and we obtain from E(5)
0.8f M T H L 1
‘~ ‘., €2
0.6 ~ Dic,= 0.6 ...2 2/3 AR
< (B fi(1 Gi
/ . Gi- 0.01 1— hm% (L;) t2/3( _) , (26)
i ’ ) | 2mCy 1—t2

where

H/H_,(0)

f1(h)=(1—h)>*(h)

is defined through the functiof(h) given by Eq.(17), with
f,(1)~1.78. Equatior(26) agrees with the strict resdftde-
. rived for clean superconductors without using the Linde-
. . ) - ) mann criterion. Formuld26) expressed in usual unitd(,
0 0.2 0.4 t=TT 0.6 0.8 1 =h,H) means that

o]

11/3 2y2/3
FIG. 8. The order-disorder linds,;s(t) (solid lineg as in Fig. 7 Heo(t) —Hpm(t) < GimH(1—t5) 7™

with Eq. (A14), but for many value®/c, =0.6-2. The right-hand side of this expression is the width of the

of the parameteD appears to decrease consideratijore- ~ fluctuation region in not too small magnetic ﬁeﬁﬁ's h
over, it is conceivable that some other type of pinning begin?%' 'l/;” the opposite limiting case whefy (0)[Gi/(1
to dominate. Thus, we arrive at the situation when a fishtail ~t?)1">2mc( [but the temperature is outside the critical
effect is absent, at least in the region of not too high magregion for zero magnetic fieldzi<(1-t%)], the fieldh,, is
netic fields, as follows from the data shown in Figs. 6 and gsmall, and Eq/(25) yields

for small D. - )
Finally, we briefly describe the case of small Ginzburg . 2mef | “1-t 5
numbers which occurs for conventional superconductors. In molf (0t Gi 27)

this case the temperaturg'}% andt; are practically equal to

unity, the melting line almost coincides with.,(t), and the ~Where f;(0)~2.34. In fact, this is the well-known
phase diagrams tend to those shown in Figs. 1-3. Thus, thesult’*8-*%for clean superconductors,

results of the simplified approach of Sec. lll can be well

applied to such superconductors. Hmo (1—1)2.

B. Approximate formulas: Discussion Note that for Eq(2_7) to hold in a sufficiently wide tempera-
_ i ) _ ture region, the Ginzburg number should not be too small.
~We now present analytical results which give some in-Finally, we point out an interesting feature of E@5) that
sight into the origin of the above-mentioned features of thegollows from our numerical analysis. The formula

o.18f Hn=A(1—12)?, (28)
with some constanté and v, turns out to give a very good
3 fit to H,(t) determined by Eq(25) in the wide temperature
“Fe interval 0.5<t<0.98; see Fig. 10. The values of the param-
. etersA and y depend orGi, and the exponeny increases
with increasingGi . In particular, we find 1.24 y<<1.59
when 0.00K Gi<0.01. In this connection it is worth noting
that formulas of the type of Eq.28) are widely used to
approximate experimental data, and frequently an exponent
v=~4/3 is found, which is characteristic for the fluctuation
region of a three-dimensiondY-type phase transition. We
emphasize here that a good fit by such formulas does not

0.12f

H/H_,(0)

9,~(1 &y
0.06f o = 0.25

D/CL= 1.16...1.26

Gi=0.01 . ) : .
' 3 necessarily mean the existence of a large fluctuation region
0 . . 2 R in zero magnetic field, but may result from the specific form
07 8 T 09 1 of the expressiofiEq. (25)] describing the melting line.
c

In the case oBT. pinning the melting line may lie inside
FIG. 9. As Fig. 8 but enlarged scale, ofc, =1.16-1.26. This  the region of single-vortex pinning; i.e., the inequality,
figure simulates the evolution of thel-T phase diagram for >hy,, may hold. This occurs if the parameter(see Ref. 27,
YBa,Cu;0;_ 5 crystals when the oxygen deficienéyis changed. p. 1218,

184514-9
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1

N
AT c =025
08 :_:oooo°°°°°° . \\\
o, ~ .
R Gi = 0.002
°°o° ‘\
A}
S 06 ~
I':(g \‘
~ \\\
T o4} Hn .
\\
Al
A}
A Y
A
0.2 .
\
\\
A
A)
0 . . . .
0 0.2 04 0.6 0.8 1
t="T/T,

FIG. 10. The vortex-lattice melting linél(t) from Eq. (25
(solid line) and its approximations E¢26) (crossesand Eq.(28)
(circles with A=0.82 and y=1.31. The dashed line indicates
Ho(t)c1—t2. Herec, =0.25 andGi=0.002.

(2 77) 3/2D3

Gil/2

(29

14

is sufficiently large,s/*>> 1. Although in this case the shape

of the melting line requires a special investigation and is no
discussed in detail here, it should be realized that the sharp

melting transition may disappear in this region.

Let us now analyze Eq(24) which describes the line
hgis(t) in the regionh>hg, . To understand the behavior of
this line, we note the following: The functiofi;(h)=(1
—h)¥2f(h) decreases monotonically with increasihgits
variation in the interval &h<<1 is not large,f,(1)/f1(0)
~0.76, and so if one considerfs(h) as constantf,(h)

=f,(0)=f,~2.34, this leads to a sufficiently accurate ap-

proximation in solving Eq(24). In this approximation Eq.
(24) becomes a quadratic equation in the variabtéi(l
—hgis)¥? and its solution has the form

h&2(1—hgie)¥*=Fp—Fr+[(Fp—F)2—(Fp4Y2
(30)

whereF andF+ are the following functions of temperature:

(2m¥Dgy(t)]?
Fp(t)= cho

GI 1/2
FT(t):flt(l 2) .

[1-hs, (D2

At t=0 we haveF;(0)=0, and Eq.(30) goes over into Eq.
(9). Thus, the effect of thermal fluctuations is reduced to
renormalizationof the right-hand side of Eq9) [including
the change of the functiohg,(t) according to Eq.(19)].
Note that the magnitude of this renormalizatiome., the ra-
tio F1/Fp) is mainly determined by the parameter!; see
Eqg. (29). Interestingly, in contrast to the case of thd,

a

PHYSICAL REVIEW B 64 184514

pinning wherev appears as a result of the specific tempera-
ture dependence @, Eq. (A14), we now conclude that the
parameten characterizes the relative strength of pinning of
any type.

It should be emphasized that the right-hand side of Eq.
(30) is real only ifF;=2F+. Thus, we find that the order-
disorder line terminates at a temperattigewhich satisfies
the equation

Fo(te)=2F+(te). (31)

Taking into account Eq9.16) and (31), it is easy to deter-
mine the ratiou/¢2 at the end point of the order-disorder
line, t=ty, h=hy;s(te):
u% _ —1/2 -3/2_ Fr(te) _
2= Fr(to)h™ 7 H1—h) "= Fr(ty)
Hence, this end point lies on the so-called depinning?line
defined by the conditiou$=§2; see Figs. 4 and 5. It can be
also verified that, is always less than the temperatmﬁg
determined by Eq(20).

As has already been mentioned above, only the intersec-
tion point of the melting and the order-disorder lines have a
physical meaning rather than the end pointHyfi¢(t). The
temperature of this intersection point, can be simply es-
timated using formula$26) and (30). Then we arrive at the
{ollowing equation fort; :

AmciFp(t)=(1+27c?)?F+(t)

or, explicitly,

[9o(t) 13(1—tA) Y 1—hg, (1)) 132
14 .

32
f1(1+2mc?)? (32

I
This equation suggests that the temperature of the intersec-
tion point, t;, depends on the parametdts and D mainly
through their combination, Eq. (29). The data of Fig. 11
support this hypothesis; viz., at giveg(t) the temperatures
t; calculated for variousGi fall on the same curve. Of
course, this prediction, as well as agyantitativeconclusion
based on Eq919)—(25), requires an experimental verifica-
tion since a number of simplifying assumptions were made
above. In particularg, was assumed to be the same constant
for the melting and for the order-disorder transition in all the
pinning regimes. On the other hand, according to 4),
the dependence af on ¢, is relatively weak.

Since t; specifies the width of the temperature region
where the order-disorder transition exists, the data of Fig. 11
mean that this width is characterized by the parameter
These data also shed light on the different behavior of
Hgis(t) in Figs. 6 and 8 at large values Df To elucidate the
results of Fig. 11 and the conclusions made on their basis, let
us analyze Eq(32) in two limiting cases. Ifv<1, one ob-
tains the following estimate from this equation:

ti~0.421+2mc?) ?w.

In other words, we have a situation qualitatively similar to
that shown in Fig. 6 or in Fig. 8 for the smalleBt In this

184514-10
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1 : - y y y incide with the intersection point of the melting and the
order-disorder lines and is located at a higher magnetic field
than this intersection point. In fact, in this case the intersec-
tion of thetwo differentphase transition lines occurs, and one
of them (the order-disorder lineterminates at the intersec-
tion while the other one continues for some distance which
seems to depend on the detailed position of the lines in the
H-T plane. This scenario is based on the difference in the
density of dislocationsp, generated at the melting and the

order-disorder transition: at the melting one hasa 2,

0.8f

0.6

0.4t ¢ = 0.25

0.0001 D/ic =02 .2 while at the order-disorder transitign~ R, ><a 2. The po-
- sition of the upper critical point on the melting line is deter-
02rg v=en®D®/Gi"” |  mined by the condition that the density of dislocations in the

disordered vortex solid phase reaches a value typical for the

liquid (i.e., the dislocation spacirig, calculated on the melt-

0 5 10 15 20 25 ing curve reduces to the vortex spacamy It is this scenario

v that is assumed in our paper.

In the second scenario the upper critical point coincides

order-disorder line cross, plotted vs the parameter Wit_h the inte_zrsection point. In this case the above-mentioned

= (27)¥2D3/Gi2. This temperature is found by calculating the point is ordinary rath_er than sm.gular for the free energy of

phase diagrams from Eq&l9)—(25) with ¢, =0.25 and Eq(AL3) thg vortex system, since a continuous phase transition sepa-

(right three curvesor Eq. (A14) (left two curves for Gi=0.01  rating the disordered vorte>s<osolld phase from the vortex lig-

(crossel Gi=0.001 (triangle$, and Gi=0.0001(circles. The in-  Uid does not seem to exiSt™ Thus, there is onlpnephase

terval of D/c, actually used for each curve can be calculated fromtransition line which describes both the melting and the

Gi and thev interval. order-disorder transitions. This unified line originates from
the melting curve of clean superconductors, gradually evolv-

case the order—disorder transition occurs only at very lowng from it as the strength of the quenched disorder in-

temperatures<t;, while the portion of the melting line at creases. The “upper critical point” is then simply the point

t>t; has a large extension. Note that, according to the estwhere on the melting lin&, reduces ta and the line expe-

mates ofGi andD presented in Ref. 2, such a situation mustriences a bend. However, for this scenario to occur, the cal-

take place in pure crystals of 2H-NbSevhich were inves- culated intersection point must lie in the single-vortex pin-

tigated in numerous papers. This conclusion does not contradng region. Otherwise, one obtaifRg>R:>a at this point

dict the observation of a peak effect in these crystaimce  and returns to the first scenario.

a peak effect can signalize not only the order-disorder tran- Our results argue in favor of the first scenario siicéhe

sition, as has been implied so far, but also the vortex latticdramework of the used approximatiotie intersection points

melting#4~*8 Of course, the features of the peak effect maynever reach the upper region of single vortex pinnisee,

differ in these two cases. e.g., Fig. 3. Note that this scenario is also supported by

In the opposite limitv>1, the order-disorder transition recent numerical simulations.

reachedl ., while the region of “pure” melting {;<t<<1) is

contracted. This limit just corresponds to conventional super- VI. CONCLUSIONS

conductors for whiclGi<1; see Figs. 1-3. However, in the ) ) ) o

process of approaching this limit, the evolution of the phase N this paper, using the Lindemann criterion and results of

diagram is different for the different models of pinning, i.e., the collective pinning theor§, we have derived Eqg19)-

in the cases of Eq$A13) and(A14). That is why Figs. 6 and (_25) WhICh enable one to calculate the o_rdgr—dlsorder transi-

8 differ from each other at large valuesDf If Eq. (A13) is  tion line Hg;s(t) with account of both pinning-caused and

FIG. 11. The temperaturg where the melting line and the

valid, one finds from Eq(32) that thermal fluctuations in the whole temperature interval of its
existence. The boundaries of the single-vortex pinning re-
1-t?~1.51+2mc?)v 12 gion, Hg,(t), HuP(t), and the melting lineH ,(t) are also

found from these equations. The equations turn out to depend
only on the Ginzburg numbegi which characterizes ther-
mal fluctuations, on the strength of the quenched disdeder

Thus, a largev is required for the temperatutte to reach
unity; see Fig. 6. In the case of E@A14) the right-hand side
of Eq. (32) already exceeds unity at a finite valugv~1),
and at suchv the line Hy;s(t) practically reaches the point €£(0)  [jo(0)| 22
T=T., H=0; see Fig. 8 for the largef. D= :(J_C )
L(0) \jo(0))

and on the functiomy(t) defined by the pinning mechanism
Let us now discuss the upper critical point on the vortexand by the temperature dependencesédnd \; see the

lattice melting curvé! In principle, two scenarios are pos- Appendix. For example, the pinning mechanism considered

sible. In the first on® the upper critical point does not co- in Ref. 52 leads to g,(t) described by Eq(A13), while the

C. Upper critical point
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5T, pinning?’ results in Eq(A14). Using our equations one ro)3

can analyze the phase diagrams of various superconductors. fpinmso(z> (A1)
Moreover, our analysis in principle allows us to obtain infor-

mation on the true form of the functiogy(t), i.e., on the and, for the single vortex collective pinning lengfth .

mechanism of pinning in a superconductor. =n"Y3(e%eq/f in) 3 [With €=Nap/N¢, 0= (Poldmhap)?],
At small Gi we obtain phase diagrams typical for lowy-

superconductors. In this case the obtained results practically e ¢\

coincide with the results of the simplified approach presented L~ nTB( G) (A2)

in Sec. Ill. We also analyze phase diagrams v@th~ 102
since such values ofGi are characteristic for the ysing these estimates, we find the key param@ter
YBa,Cuw05.s superconductors. We consider both a typical
case whergyy(t) decreases with [Eqg. (A13)] and a case €& [nrd 1’3r0
wheregg(t) increases with [Eq. (A14)]. In both these cases L—W( ) i
the obtained results qualitatively describe the phase diagram ¢
of YBaCuO crystals and its evolution with varyiiyy which 54 the characteristic pinning enefg§s, described by the
can be caused by irradiation or by reduction of the oxyge Xpressiort(f2, nl &2)2 p
content in these crystals. However, we find that the model o pinT=c '
ST, pinning [Eqg. (A14)] more correctly reproduces all the
features of the experimental data for YBayO, 5 crystals.
Our results support the id&athat the upper critical point
on the melting curve of high- superconductors does not
generally coincide with the intersection point of the melting
and the order-disorder lingglthough the distance between
them is possibly small We predict the position of this inter-
section point in thed-T plane. We suppose that the tempera-
ture corresponding to this point is determined mainly by th
parameter, Eq. (29), i.e., by a combination of the param-

(A3)
€

Tap~€?%o(nrd) Y. (A4)

A different mechanism of pinning is due to the scattering
of quasiparticles by the defect as calculated in Ref. 52. A
scattering center facilitates deformations of the order param-
eter up to distances of the order of the zero-temperature co-
herence lengtl§(0). Hence, it is energetically advantageous
for a vortex core to sit at a scattering center. This mechanism
Seads to the pinning forcé,;,~ (HZ/8m)r3¢(0)/&, and we

etersD andGi. obtain
2
ro\“£(0)
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APPENDIX: ESTIMATES OF THE PARAMETERS
) ] _ Strictly speaking, formulas (A5)—(A8) are valid if

The results of this paper are based on the collective PiNZr2£(0)n<1. This type of pinning is sometimes callgt
ning theory?”*21t is assumed in this theory that the disorder pin?wing” Note that Eqs(A5)—(A8) and(A1)—(Ad) have the
in the flux-line lattice is generated by point defects of Sizesame d.ependences one, and temperature. They thus de-
not exceeding the coherence leng{i0). Here, in the frame-  gqihetyg different contributionso one pinning mechanism,
work of three W|dely~used models of pinning, we express thg, ;i the contribution of Eqs(A5)—(A8) always dominating
quantitieseé/L ;. and ij through the characteristics of the whenr,< £(0).
point defects, viz., their concentrationand mean radius,,. If the pinning centers in YB&L W0, are clusters of oxy-
These expressions enable us to get some idea of the tempeggn vacancies, it is useful to keep in mind that
ture dependences of these quantities and to understand the
changes of the phase diagram wheandr, are varied. 3

In the first modeP? pinning is due to the gain in the 3 fon=cs, (A9)
condensation energy when a vortex core is located at a de-
fect. This gairep, is of the order H2/8m)4mr33, whereH,  where the constartequals 2 if these clusters are formed by
is the thermodynamic magnetic field anglthe radius of the the YBaCuwOg 5 phase. Thus, when, decreases at a fixed
defect. Then one obtains the following estimates for thes, the parametersé/L ande,p also decrease.
mean elementary pinning force exerted by one point defect In high-T. superconductors the pinning can be due to spa-
foin~ €pin/ &: tial fluctuations in the density of the oxygen vacancies,

184514-12
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which results in variations of ; over the sample. One has
the following estimates for thi$T, pinning?’

1/3
(o) 0
:'I-Z poc 62/380(n§4) 1/3, (All)

wheren is the density of oxygen vacancies. This pinning can

occur whemne&(0)3>1.
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g

in the appropriate formulas. In particular, it follows from
Egs.(10), (A3), and (A7) that for 8l pinning

( €&(T)

Le(T)
wheret=T/T., D=¢€&(0)/L.(0), while according to Eq.

T2 -1/2
T

§T) MT)

FONON (A12)

1

do()=75 ) =(1-t)" (A13)

The above equations enable us to estimate the temperatuig10), one finds forsT, pinning

dependence of the quantitieg/L andﬁp. For this pur-
pose, we insert the expressions

go(H)=(1—t*)~ % (A14)
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