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Spatiotemporal intermittency in the critical dynamics of dc-driven two-dimensional frustrated
Josephson arrays
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We report the numerical observation of spatiotemporal intermittency in the critical dynamics of two-
dimensional frustrated underdamped dc-driven Josephson junction arrays. This intermittency is due to the
hopping of the system among the different subcritical metastable states, which are characterized by domain
walls separating regions with the symmetry of the ground state. Turbulentlike domains correspond to the
regions surrounding the nucleation and decay of these domain walls, or equivalently, to the regions where
vortex motion takes place. This intermittency is further signaled by the observation of 1/f noise in the
high-frequency tail of the power spectrum of the voltage fluctuations, and by the scaling of the characteristic
time scale for front propagation with the current. A study of the ground and metastable states of the system is
also presented.
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I. INTRODUCTION

Spatiotemporal intermittency was first proposed
Pomeau when considering that turbulence may originate
a subcritical bifurcation with front formation.1 This phenom-
enon is characterized by the presence of laminar and tu
lent domains, and intermittent fluctuations in time, and it c
be understood using tools borrowed from the theory of ph
transitions,2 although no universality has yet been shown

It has been observed in the numerical simulations o
variety of discrete spatially extended systems, in particula
coupled-map lattices,3,4 and recently it has been observed
the numerical simulations of an array of globally coupl
ac-driven Josephson junctions.5 In the latter, the global cou
pling and the intermittent behavior of the single junctio
prove to be essential for its observation.

In this paper we show the presence of spatiotempora
termittency in the critical dynamics of a numerical model
a two-dimensional underdamped frustrated array of Jose
son junctions, driven by a uniform dc current. The chao
nature of these oscillations was first observed by Faloet al.,6

who nevertheless attempted to explain it in terms of
Frenkel-Kontorova model. The dynamics of this system
also been subject to study at high voltages, in the dc cas
Refs. 7,8, and in the ac case in Ref. 9. Our result differs fr
that of Xie and Cerdeira5 in that in our case the junctions i
the uncoupled case are not chaotic~since they can be chaoti
only in the presence of an ac driving!, which implies that the
fluctuations~or chaotic oscillations! arise due to a collective
instability, and in the fact that we use only nearest-neigh
coupling, which allows the possibility of the appearance
spatial structures. We find that this intermittency is due to
hopping of the system among the different subcritical me
stable states~which are all unstable above the critical cu
rent!, a result which somewhat resembles what has been
served in the case of a single junction, where the hopp
occurs among the different unstable periodic solutions.10,11

This result can as well be related with the generic mechan
0163-1829/2001/64~18!/184513~7!/$20.00 64 1845
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for spatiotemporal intermittency proposed by Argentina a
Coullet,12 according to which the intermittency is due to th
bistability of their system between an oscillatory state an
stationary state.

This hopping occurs through the nucleation and decay
domain walls separating regions with the symmetries of
ground state, a process seemingly stochastic, and which
quires a local motion of vortices near the domain wa
which are being created or destroyed, giving rise to lo
chaotic voltage oscillations. This local vortex motion defin
a ‘‘turbulentlike’’ region, which propagates through an ‘‘in
fection’’ process, a feature of spatiotemporal intermitten
This spatiotemporal intermittency is further signaled by t
appearance of 1/f noise in the high-frequency tail of th
power spectrum of the average voltage oscillations in
system. At lower frequencies, this scaling relationship is
stroyed by the presence of the Josephson and plasma
quencies. In addition, the time scale characteristic of fr
propagation displays a scaling relationship with the curre
which is another signature of the critical nature of the os
lations.

We find as well that forf 51/2 the fluctuations are two
dimensional. This does not allow an understanding of
situation, given that now it is impossible for us to identi
the defects and metastable states. Forf 51/3 andf 52/5 we
find that the fluctuations are quasi-one-dimensional.

The paper is divided as follows. In Sec. II we discuss
mathematical model on which our study is based. In Sec
we present a study of the ground states of the system
function of the injected current. In Sec. IV we discuss t
metastable states of the system. In Sec. V we study the c
cal fluctuations of the system, discussing the dynamics of
domain walls, and the nature of the instability giving rise
the fluctuations, and finally in Sec. VI we present some c
clusions.

II. THE MODEL

We consider a square array of underdamped Josep
junctions with parallel shunt resistance and capacitancR
©2001 The American Physical Society13-1
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ITALO F. MARINO AND MANUEL G. VELARDE PHYSICAL REVIEW B 64 184513
andC, respectively,f (5p/q, p andq being relatively prime
integers! magnetic flux quanta piercing each plaquette,
plied perpendicularly to the array, a critical current per jun
tion i 0, a uniformly injected dc currenti dc along a direction
taken as horizontal, and periodic boundary conditions w
period q along the vertical direction. We shall also set t
horizontal length of the array to be equal to an integer m
tiple of q. As we shall verify below, these boundary cond
tions will determine that the dynamics be quasi-on
dimensional~save for the case in whichf 51/2), being this
dimension the horizontal dimension, as there is
symmetry-breaking perturbation along the vertical directi

The dynamical variables are the gauge-invariant ph
differencesu i j 5u i2u j2Ai j , whereu i is the superconduct
ing phase on thei th site on the array, andAi j is equal to
2e/(\c) times the line integral of the vector potential fromi
to j. The equations of motion express the conservation of
current at each sitei on the array

(̂
j &

Fb d2

dt2
u i j 1

d

dt
u i j 1 sin~u i j !G50, ~2.1!

the sum being over nearest neighbors. In this equation, q
tities are expressed in dimensionless units: time is meas
in units oft05\/(2ei0R), current is measured in units ofi 0,
and b5(2ei0R2C)/\ is the MacCumber dimensionles
number.13 The first term represents the displacement curre
the second the normal current, due to the tunneling of q
siparticles, and the last one, the supercurrent. A gauge w
is convenient to use is the Landau gauge, according to w
Ai j 52p f n, wherein bothi andj lie on a vertical bond on the
nth column, and zero on horizontal bonds. The currenI
~which is the dc current measured in units ofi 0) is injected at
each site at the left boundary~the equation for current con
servation continues to hold, with the expression for the c
rent on the left junction replaced by the dc current!, and
removed at the right boundary.

The phase configuration of the system can as well be
sualized through its vortex configuration. At each plaque
of the system, we define the so-called vorticitynv ~in degen-
erate albeit common terminology, as it actually correspo
to the circulation! through the sum of the gauge-invaria
phase differences around the plaquette,

(
P

~u i2u j2Ai j !52p~nv2 f !, ~2.2!

where the gauge-invariant phase differences are restricte
lie within the interval between6p. The average vorticity in
the array is equal tof, which means that out ofq plaquettes,
p contain vortices~this terminology is also degenerate, as
this case there is no magnetic core associated with the ‘‘
tex’’ ! with nv51.

This system possesses a critical current, below which
system settles into a state with vanishing normal and
placement currents, whereas above the critical current
are nonvanishing, and a dynamical situation ensues. Co
quently, the equation satisfied by the gauge-invariant ph
differences below the critical current in their steady state
18451
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sin~u i2u j2Ai j !50. ~2.3!

This critical current, however, depends on the value ofb.13

In fact, asb increases, the critical current decreases. Thi
because whenb is larger, the relative effect of dissipatio
becomes weaker, which eases the appearance of a
voltage.

This last equation gives us the extrema of the function

H52J(̂
i j &

cos~u i2u j2Ai j !. ~2.4!

This function resembles the Hamiltonian, which is well d
fined only in the absence of normal and displacement c
rents, and which can be used to study the statistical mec
ics of the system.13,14Although we can no longer interpretH
as the Hamiltonian of the system, we can nevertheless in
pret it as a Lyapunov functional, which tends to decrea
under the application of an external current, for currents
low the critical current. Notwithstanding, we shall continu
to refer to this function as the ‘‘Hamiltonian.’’J is a param-
eter which depends on the temperature and the supercon
ing gap. Without loss of generality, we shall henceforth se
equal to unity.

The solutions of Eq.~2.3! play a fundamental role no
only below the critical current, but also at the critical curre
when they all become unstable, as we will see below. Be
the critical current they are the metastable states of the
tem. Hence, we now turn to their study.

III. GROUND STATES

The ground state is the state with lowest ‘‘energy,’’ d
fined according to Eq.~2.4!. This state plays a fundamenta
role in the dynamics of this system, because it is the last s
to become unstable under the application of an external
rent. Here we present a brief discussion of the ground st
of the system, stressing their relationship to the injected c
rent. A more thorough discussion will be published els
where.

These ground states were discussed by Halsey.15 For this,
he used the relationship that exists between this model
the charge model. Thus, he showed that for all values
< f <1/2 the ground states were staircase states, oriented
pendicularly to one of the diagonals~of the q3q unit cell!.
Assuming that the current runs along these staircases
wrote down the expressions for the gauge-invariant ph
differences for zero applied current

ũ~m!2 ũ~m21!5p f m1~a/2!2p nint@ f m1~a/2p!#,
~3.1!

where nint is the nearest integer function.ũ(m)2 ũ(m21) is
the gauge-invariant phase difference along themth staircase,
anda is a parameter to be determined by the minimization
the Hamiltonian.

Following Halsey’s prescription, we assume that the sta
have staircase symmetry, and thus in the presence of an
plied currentI all we need are the values of theq horizontal
phasesuHk andq vertical phasesuVk , as shown in Fig. 1~in
3-2
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SPATIOTEMPORAL INTERMITTENCY IN THE . . . PHYSICAL REVIEW B 64 184513
this case, the current is no longer constant along the s
case!. We can then write down the expressions for the pha
in terms of the expressions for the gauge-invariant ph
differences for zero current,

uHk5uHk
(0)1ak , ~3.2!

uVk5uVk
(0)1bk , ~3.3!

whereak andbk vanish at zero current, anduHk
(0) anduVk

(0) are
the horizontal and vertical gauge-invariant phase differen
on thekth staircase for zero current.

The application of the equations for current conservat
at each site on the array yields

sin~uHk
(0)1ak!2 sin~uVk

(0)1bk!5j, ~3.4!

wherej is a parameter independent ofk, yet dependent onI.
Likewise, the equation stating the relationship between
sum total of the phases around a plaquette and the vort
can easily be written down in terms of the phasesak andbk ,
which leads to the relationship

ak1bk5x, ~3.5!

wherex, asj, is a parameter independent ofk, but dependent
on I.

Imposing the boundary conditions through the relatio
ship

(
k51

q

sin~uHk
(0)1ak!5qI, ~3.6!

and the minimization of the Hamiltonian with respect
variations of the parametersj andx, it is possible to obtain

FIG. 1. Distribution of gauge-invariant phase differences fo
staircase state with nonvanishing albeit smallI. Only three stair-
cases are shown, which are labeled by the indexi 51,2,3. Notice
that the horizontal~respectively vertical! phases are invariant unde
the translation along the staircase. ForI 50, uVi5uHi , so that the
current is constant on each staircase, and runs in the direction
cated by the arrows~on some staircases the current runs in
opposite direction, so that the total current flowing is zero!.
18451
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ak and bk . Moreover, in the limit of very small currents,I
!1, it is possible to write down explicit solutions, namely

ak5

q sin
p

2q

l 1q2 sin
p

2q

@l1qsec~uHk
(0)!#I , ~3.7!

bk5

q sin
p

2q

l 1q2 sin
p

2q

@l2qsec~uHk
(0)!#I , ~3.8!

where

l5 (
k51

q

sec~uHk
(0)!. ~3.9!

We now turn to the study of the metastable states of
system.

IV. METASTABLE STATES

The metastable states are states in which the normal
displacement currents vanish. Consequently, they are s
tions of Eq.~2.3!. In this case it is no longer possible to writ
down analytical expressions, so we need to resort to num
cal studies. For this we integrated the equations of mot
using a fourth-order Runge-Kutta method, with time ste
which varied betweenDt50.01 toDt50.1. We then gener-
ated these states in two different manners. First, by runn
simulations starting with random initial conditions along t
horizontal direction~so that the periodic boundary condition
along the vertical direction were respected!, and secondly by
starting off with ground states, then raising the current ab
the critical current, at which fluctuations occur, and by th
lowering the current below the critical current. In all cas
we studied, except those in whichf 51/2, the states thus
generated were quasi-one-dimensional, and were chara
ized by a random pattern of domain walls oriented perp
dicularly to the current, separating regions with oppos
symmetries of the ground states. In the casef 51/2, we ob-
tained sometimes states which were disordered in the
dimensions, which suggests that in this case there is a tr
verse instability, as well as a longitudinal one. It is also p
sible to generate two-dimensional~2D!-disordered states fo
other values of the frustration by starting the simulatio
with 2D-disordered states. However, an understanding of
metastable states in this case does not seem possible. T
fore, and for the sake of simplicity, we focused our stu
only on the quasi-one-dimensional states ensuing in sim
tions with f 51/3 andf 52/5.

In order to understand these metastable states, it pro
useful to study a single domain wall. For the sake of si
plicity, we assume thatI 50. In the ground state, as dis
cussed in the previous section, the current runs along
staircases. The direction of the staircase is altered by
presence of a domain wall. At the other side of it, the sta

di-
3-3
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ITALO F. MARINO AND MANUEL G. VELARDE PHYSICAL REVIEW B 64 184513
case runs along the perpendicular direction, as can be se
Fig. 2. It is natural to guess that the current continues to
along this ‘‘bent’’ staircase, even in the close vicinity of th
domain wall. This is approximately true. Only a couple
lattice sites away from the domain wall, the gauge-invari
phase differences are just those of the ground states~corre-
sponding to the respective symmetry of the state at the s!.
In the close vicinity or at the domain wall, however, there
a slight deviation from this picture, in the sense that
current is not constant along it, and deviates from the gro
state value. The deviation is nevertheless not large,
amounts to only a few percent for most cases we stud
being larger at the center of the domain wall.

This picture has as consequence that at opposite side
the domain wall the current on the vertical bonds has op
site sign, as on one side the current is going up, wherea
the other side the current is going down. On the other ha
the current on the horizontal bonds is symmetric under
inversion across the domain wall.

A given metastable state is characterized by the prese
of several of these domain walls, which can be of two typ
as can be seen in Fig. 3, corresponding to the two poss
directions of the staircase at the left of the wall. For the s
of notation, we shall refer to them as a domain wall~DW!, in
which the staircase at the left of the wall is long the (1
direction~wherein thex direction is set equal to the directio
of the injected current!, and as an antidomain wall~ADW!,
corresponding to the staircase at the left of the wall going
the (1,21) direction. It should be clear that a DW alway
appears next to an ADW, or to a boundary.

In general, the energy of a state increases the larger
number of domain walls. In this case it is unfortunately n
possible to derive a general expression for the energy, w
will depend not only on the number of domain walls, b
also on their distribution.

These observations also provide a simple explanation
the hysteresis that is observed in the current-voltage cha
teristics. In fact, when starting with the ground state, j
above the critical current the system is excited to a me
stable state with domain walls, which has a lower critic

FIG. 2. Distribution of gauge-invariant phase differences arou
a domain wall. Notice that the horizontal gauge-invariant ph
differences are symmetric across the wall, whereas the ver
gauge-invariant phase differences are antisymmetric. Sufficie
far away from the wall, the gauge-invariant phase differences
just those of the corresponding staircase states, whereas in its
vicinity they deviate from the staircase values.
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current than the ground state. This implies that when
current is lowered, the voltage across the array will be hig
than before.

V. CRITICAL BEHAVIOR

The critical current is the current at which the grou
state becomes unstable. This is the last state to become
stable, and thus above this value of the current all states
unstable. This instability takes place through the nucleat
of a domain wall next to one of the boundaries, which
volves the rotation of the phases in the small region betw
the wall and the boundary. The ensuing state is once a
unstable, and it subsequently undergoes the nucleation
DW-ADW pair , so that the ADW appears at the site of t
formerly existing domain wall, and two other domain wa
appear at the two sides of it. A DW can also annihilate w
a neighboring ADW. This process repeats itself, giving r
to a disordered pattern of DW’s and ADW’s which are co
stantly being created and annihilated. Moreover, due of
instability, the proliferation of the DW’s seems to be favore
so that only states with a large number of DW’s a
observed.

The creation and annihilation of DW-ADW pairs involve
a local motion of vortices. In fact, it suffices the motion of
single column of vortices for this purpose, wherefore t
process can as well be understood in terms of vortex mot
On the other hand, the local vortex motion manifests itself
a sudden change in the horizontal voltage across the re
where the motion is taking place. This can be seen in Fig
wherein we superpose the voltage across a horizontal ju
tion in the middle of the array with a graph depicting th
motion of the vortex across the junction.

It is possible to interpret these irregular oscillations in tw
other ways. In terms of the phase configuration, the mot
of a column of vortices necessary for the creation of a

d
e
al
ly
re
ose

FIG. 3. Vortex configuration for a metastable state forf 51/3,
produced by raising the current above its critical value, wherea
it is set equal to zero. Notice that the state is characterized b
random distribution of domain walls~signaled by the broken lines!,
separating regions with the symmetries of the ground state.
3-4
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main wall involves the rotation of the gauge-invariant pha
differences on the vertical bonds adjacent the given colu
by an amount equal top ~so that the current flowing on th
vertical bonds at the two sides of the wall have the oppo
signs!. Thus the instability which gives rise to the vorte
motion can as well be understood as an instability to
rotation of the phases by this amount. Finally, it is possible
view these irregular oscillations as a process whereby
system hops among the different subcritical metastable s
~although only among those with a large number of DW’!.
The fact that these states correspond to subcritical metas
states~in spite of the fact that there is now a finate volta
across the junction at all times! is due to the fact that while
the vortices are not jumping, the voltage across the junc
is minimal, so that the system can be regarded as sta
close to a metastable state during that time.

We identify the regions where vortex motion takes pla
as ‘‘turbulent.’’ These turbulentlike domains are intersped
with regular domains. They are characterized by large ph
oscillations, or large voltages, whereas within the regular
mains the voltages are smaller, because there the irreg
oscillations correspond to oscillations around the metast
states. Within the turbulent domains, on the other hand, th
are large oscillations carrying the system into other me
stable states. This ‘‘turbulence’’ propagates itself through
‘‘infection’’ process, mediated by fronts, as can be seen
Fig. 5, which is very similar to the pattern observed in oth
systems undergoing spatiotemporal intermittency. One co
define, as well, the turbulent domains according to whet
the voltage is larger than a given fraction of the maximu
voltage. In fact, the two definitions provide equivalent r
sults. A small voltage just corresponds to a small oscillat
around the metastable state.

FIG. 4. Time series of the voltage across a given horizon
junction ~solid! superposed to the time series of the vortex jum
~dashed!. In the latter a value of zero indicates a no jump, and
finite value a jump. Notice that the spikes in the voltage corresp
neatly to the spikes in the vortex jump function. While the vortex
not jumping, the voltage is much smaller, which corresponds to
period during which the system is in a given metastable state.
18451
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The chaotic nature of the oscillations can be verified
computing the maximum Lyapunov exponent of the syste
which turns out to be positive when these oscillations occ
Figure 6 displays this quantity as a function of the inject
currentI for b510. On the other hand, decreasing the va
of b increases the relative effect of dissipation, which lea
to a suppression of the chaos~and an increase in the value o
the critical current!. This can be seen in Fig. 7, in which th
maximum Lyapunov exponent is plotted as a function ofb
for I 50.129.

The critical nature of the oscillations can be ascertain
by looking at a characteristic time scale as a function of
current. We obtained this time scale by measuring the t
needed for the initial front~separating the turbulent from th

l
s
a
d

e

FIG. 5. Space-time distribution of vortex jumps. A black sp
represents a column of vortices jumping~vortices jump simulta-
neously on a given column!, whereas a white area represents a
jump. Thus dark areas correspond to ‘‘turbulent’’ regions, wher
the white areas represent the ‘‘laminar’’ domains. Notice the w
the turbulent regions propagate within the array, which is charac
istic of spatiotemporal intermittency. The simulation was done
f 51/3, andI 50.129, with an array size of 70315.

FIG. 6. Maximum Lyapunov exponent as a function of the c
rent, for f 51/3, b510 and array size 15315. Notice that below a
threshold the Lyapunov exponent is negative, whereas above it,
positive, signaling the chaotic nature of the state.
3-5
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ITALO F. MARINO AND MANUEL G. VELARDE PHYSICAL REVIEW B 64 184513
regular domains! to propagate across the entire array. T
time scale is related to the lifetime of a domain wall. O
results are displayed in Fig. 8. We observe a scaling beha
for this time scale as a function of the current, which is
signature of criticality.

Another manifestation of the chaotic nature of the os
lations can be obtained by looking at the power spectrum
the voltage fluctuations, which are a measure of the col
tive fluctuations the system is undergoing. Figure 9 displ
the power spectrum of the average voltage oscillations ac
the array. We observe a scaling behavior of the spectrum
large frequenciesS( f ); f k, where k is nonuniversal, and
appears to depend on the case under consideration, for
quencies above the plasma and Josephson frequencies.
uncoupled case, the plasma frequency is simplyvp5b21/2.
Unfortunately in our case it is not possible to derive an a
lytical expression for either of the two frequencies, and sin
we here have a broad band of frequencies, it is in genera

FIG. 7. Maximum Lyapunov exponent as a function ofb, for
f 51/3, I 50.129, and array size 15315. Notice that above a thresh
old the Lyapunov exponent is negative, whereas below it, it is p
tive, signaling the chaotic nature of the state. This is also consis
with the idea that large values ofb suppress the chaos.

FIG. 8. Logarithmic plot of the time scale characteristic of fro
propagation as a function of the applied current, forb510, and
array size 70315. Notice the scaling relationship, characteristic
criticality t;(I 2I c)

2g, with g51.71.
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possible to identify these two frequencies, although
rough estimate given above seems to work more or less
to define the high-frequency region.

We interpret these observations by saying that the sys
is undergoing spatiotemporal intermittency, which is char
terized by the presence of these turbulent and regular
mains, and of the 1/f noise. A subcritical bifurcation may be
responsible for this, as all the subcritical metastable sta
become unstable at the critical current. In this spatiotemp
intermittency the defects~domain walls! play a fundamental
role, something which has been observed to occur in o
systems.3,4 We further interpret these observations in term
of the transitions among the different metastable sta
which can be related to a mechanism for intermittency p
posed many years ago in the case of a single Josephson
tion by Ben-Jacobet al.,10 which was on the other han
based on the more generic model of Arecchi and Lisi.11 In
the context of spatiotemporal intermittency, the role play
by the metastable states has been emphasized within
framework of a model developed by Argentina and Coulle12

VI. CONCLUSIONS

We have studied the critical dynamics of a tw
dimensional frustrated array of Josephson junctions, u
formly driven by a dc current. Our study has shown that
the critical current the system experiences chaotic osc
tions, characterized by transitions among different subcrit
metastable states. These oscillations are intermittent, s
the system remains close to these states before maki
transition into another state, with a different distribution
domain walls. The intermittent nature of the oscillations
shown as well by the existence of power laws relating
characteristic time scale for front propagation to the drivi
current, and in the high-frequency tail of the power spectr
of the voltage fluctuations.

i-
nt

f

FIG. 9. Logarithmic plot of the power spectrum of the volta
fluctuations, forI 50.129,b510, and array size 15315. Notice the
scaling relationship at high frequenciesS( f ); f k, with k525.4.
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To the best of our knowledge, this is the first theo
of spatiotemporal chaos in Josephson arrays without an
driving. Furthermore, this provides a good example of
role of multistability in the generation of spatiotempor
intermittency.
re

g

18451
ac
e

ACKNOWLEDGMENTS

This research was supported by the Grant No. PB96-
from the Spanish Ministry of Science and Technology. I.
is grateful to the same ministry for financial support.
ns
ys.

of
ys.

he
1Y. Pomeau, Physica D23, 3 ~1986!.
2H. Chateau, inSpontaneous Formation of Space-Time Structu

and Criticality, edited by T. Riste and D. Sherrington~Kluwer,
Dordrecht, The Netherlands, 1991!, pp. 273–311.

3J. D. Keeler and J. D. Farmer, Physica D23, 413 ~1986!.
4K. Kaneko, Prog. Theor. Phys.72, 480 ~1984!.
5F. Xie and H. Cerdeira, Int. J. Bifurcation Chaos Appl. Sci. En

8, 1713~1998!.
6F. Falo, A. R. Bishop, and P. S. Lomdahl, Phys. Rev. B41, 10 983

~1990!.
7I. Marino and T. C. Halsey, Phys. Rev. B50, 6289~1994!.
8I. Marino, Phys. Rev. B55, 551 ~1997!.
9I. Marino, Phys. Rev. B52, 6775~1995!.
s

.

10Multistability as a source for intermittency in Josephson junctio
was proposed in E. Ben-Jacob, I. Goldhirsch, and Y. Imry, Ph
Rev. Lett.49, 1599~1982!.

11The fact that intermittency may arise due to the multistability
the system was first proposed in F. T. Arecchi and F. Lisi, Ph
Rev. Lett.49, 94 ~1982!.

12M. Argentina and P. Coullet, Physica A257, 45 ~1988!.
13D. E. McCumber, J. Appl. Phys.39, 3113~1968!.
14See, for instance,Coherence in Superconducting Networks, Pro-

ceedings of a NATO Advanced Research Workshop, Delft, T
Netherlands@Physica B152, ~1988!#.

15T. C. Halsey, Phys. Rev. B31, 5728~1985!.
3-7


