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Spatiotemporal intermittency in the critical dynamics of dc-driven two-dimensional frustrated
Josephson arrays
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We report the numerical observation of spatiotemporal intermittency in the critical dynamics of two-
dimensional frustrated underdamped dc-driven Josephson junction arrays. This intermittency is due to the
hopping of the system among the different subcritical metastable states, which are characterized by domain
walls separating regions with the symmetry of the ground state. Turbulentlike domains correspond to the
regions surrounding the nucleation and decay of these domain walls, or equivalently, to the regions where
vortex motion takes place. This intermittency is further signaled by the observationf afoige in the
high-frequency tail of the power spectrum of the voltage fluctuations, and by the scaling of the characteristic
time scale for front propagation with the current. A study of the ground and metastable states of the system is
also presented.
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[. INTRODUCTION for spatiotemporal intermittency proposed by Argentina and
Coullet!? according to which the intermittency is due to the
Spatiotemporal intermittency was first proposed bybistability of their system between an oscillatory state and a

Pomeau when considering that turbulence may originate vigtationary state. _
a subcritical bifurcation with front formatiohThis phenom- This hopping occurs through the nucleation and decay of

enon is characterized by the presence of laminar and turbLg-Omain walls separating regions with the symmetries of the

lent domains, and intermittent fluctuations in time, and it cargvround state, a process seemingly stachastic, and which re-

. uires a local motion of vortices near the domain walls
be understood using tools borrowed from the theory of phasg ich are being created or destroyed, giving rise to local

transitions’ although no universality has yet been shown.  chaotic voltage oscillations. This local vortex motion defines
It has been observed in the numerical simulations of & “turbulentlike” region' which propagates through an “in-
variety of discrete spatially extended systems, in particular ifection” process, a feature of spatiotemporal intermittency.
coupled-map lattice3? and recently it has been observed in This spatiotemporal intermittency is further signaled by the
the numerical simulations of an array of globally coupledappearance of 1/noise in the high-frequency tail of the
ac-driven Josephson junctiohsn the latter, the global cou- power spectrum of the average voltage oscillations in the
pling and the intermittent behavior of the single junctionssystem. At lower frequencies, this scaling relationship is de-
prove to be essential for its observation. stroyed by the presence of the Josephson and plasma fre-
In this paper we show the presence of spatiotemporal inquencies. In addition, the time scale characteristic of front
termittency in the critical dynamics of a numerical model of propagation displays a scaling relationship with the current,
a two-dimensional underdamped frustrated array of Josepwvhich is another signature of the critical nature of the oscil-
son junctions, driven by a uniform dc current. The chaoticlations. .
nature of these oscillations was first observed by Ealal,> ~ We find as well that forf =1/2 the fluctuations are two
who nevertheless attempted to explain it in terms of thedimensional. This does not allow an understanding of the

Frenkel-Kontorova model. The dynamics of this system has$ituation, given that now it is impossible for us to identify

also been subject to study at high voltages, in the dc case ij. e defects and metgstable states. Fod/ 3 andf_z 2/5 we
ind that the fluctuations are quasi-one-dimensional.

Refs. 7,8, and in the ac case in Ref. 9. Our result differs fro ™ is divided as foll | I i h
that of Xie and Cerdeirain that in our case the junctions in € paper IS divided as 1oflows. in Se_c. we discuss the
the uncoupled case are not chadtimce they can be chaotic mathematical model on which our study is based. In Sec. Il
only in the presence of an ac drivingvhich implies that the we present a st.ut_jy of the ground states of the system as a
function of the injected current. In Sec. IV we discuss the

fluctuations(or chaotic oscillationsarise due to a collective .
petastable states of the system. In Sec. V we study the criti-

instability, and in the fact that we use only nearest-neighbo i i fh di ina the d . £h
coupling, which allows the possibility of the appearance ofc@ luctuations of the system, discussing the dynamics of the

spatial structures. We find that this intermittency is due to théjomaln wal_ls, and the_ hature of the instability giving rise to
hopping of the system among the different subcritical meta:[he f_Iuctuat|0ns, and finally in Sec. VI we present some con-
stable stateswhich are all unstable above the critical cur- clusions.
rent), a result which somewhat resembles what has been ob-
served in the case of a single junction, where the hopping

occurs among the different unstable periodic solutfdrs. We consider a square array of underdamped Josephson
This result can as well be related with the generic mechanisrjunctions with parallel shunt resistance and capacitaRce

Il. THE MODEL
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andC, respectivelyf (=p/q, p andq being relatively prime

integers magnetic flux quanta piercing each plaquette, ap- >, sin(6,— 6;—A;j)=0. (2.3
plied perpendicularly to the array, a critical current per junc- '

tion iy, a uniformly injected dc current,. along a direction ~ This critical current, however, depends on the valuggdf
taken as horizontal, and periodic boundary conditions within fact, asg increases, the critical current decreases. This is
period g along the vertical direction. We shall also set thebecause wherB is larger, the relative effect of dissipation
horizontal length of the array to be equal to an integer mulbecomes weaker, which eases the appearance of a finite
tiple of g. As we shall verify below, these boundary condi- voltage.

tions will determine that the dynamics be quasi-one- This last equation gives us the extrema of the function
dimensional(save for the case in which=1/2), being this

dimension the _ horizontal _dimension, as fchere_ is no H= _JZ cog 6,— 0,—A;). (2.4)
symmetry-breaking perturbation along the vertical direction. i

d.ﬁThe dynaan]caal \(/Qana;t\)les a;]re tge' g?#ge-mvanancti p?as%his function resembles the Hamiltonian, which is well de-
d er(;nces ij_hi'_h i M Wh ereo; Is eAsu.percon IUC " fined only in the absence of normal and displacement cur-
Ing phase on theth site on the array, anéy; Is equal 0 oo and which can be used to study the statistical mechan-
2e/(fc) times the line integral of the vector potential fram ics of the system®*4Although we can no longer interpret

toj. The equation_s_ of motion express the conservation of the g yhe Hamiltonian of the system, we can nevertheless inter-
current at each siteon the array pret it as a Lyapunov functional, which tends to decrease

under the application of an external current, for currents be-
d? d ; low the critical current. Notwithstanding, we shall continue
> Bge tit gt sind;) | =0, 2.0 . . . -9 e
i) to refer to this function as the “HamiltonianJ is a param-

] ] ) ) eter which depends on the temperature and the superconduct-
the sum being over nearest neighbors. In this equation, quafsg gap. Without loss of generality, we shall henceforth set it

tities are expressed in dimensionless units: time is measuregy | to unity.

in units OfTofﬁé(ze'oR): current is measured in units o The solutions of Eq(2.3 play a fundamental role not
and p=(2eioR°C)/4 is the MacCumber dimensionless onjy below the critical current, but also at the critical current,
number'® The first term represents the displacement currentyhen they all become unstable, as we will see below. Below

the second the normal current, due to the tunneling of quame critical current they are the metastable states of the sys-
siparticles, and the last one, the supercurrent. A gauge whiglam  Hence, we now turn to their study.

is convenient to use is the Landau gauge, according to which

Aj;=2mfn, wherein both andj lie on a vertical bond on the IIl. GROUND STATES
nth column, and zero on horizontal bonds. The current _ _ . .
(which is the dc current measured in units gf is injected at The ground state is the state with lowest “energy,” de-

each site at the left boundafthe equation for current con- fined according to Eq(2.4). This state plays a fundamental
servation continues to hold, with the expression for the curf0l€ in the dynamics of this system, because itis the last state
rent on the left junction replaced by the dc curjergnd ~ to become unstable under the application of an external cur-
removed at the right boundary. rent. Here we present a brief discussion of the ground states

The phase configuration of the system can as well be viof the system, stressing their relationship to the injected cur-
sualized through its vortex configuration. At each plaguettd®nt. A more thorough discussion will be published else-
of the system, we define the so-called vortigity(in degen- ~ Where.

erate albeit common terminology, as it actually corresponds These ground states were discussed by HafsEgr this,
to the circulation through the sum of the gauge-invariant e used the relationship that exists between this model and

phase differences around the plaquette, the charge model. Thus, he showed that for all values 1/3
=<f=1/2 the ground states were staircase states, oriented per-
pendicularly to one of the diagonalsf the < g unit cell).

> (6= 6,—Ay)=2m(n,—T), (2.2 Assuming that the current runs along these staircases, he
P wrote down the expressions for the gauge-invariant phase

where the gauge-invariant phase differences are restricted gifferences for zero applied current

lie within the interval betweert 7. The average vorticity in ~ ~ :

the array is equal t& which means that out (?1 plaquettizs, 6(m) —o(m—1)=atm-+(a/2) = ning fm-+ (a/Zﬂ')(%, 7

p contain vorticegthis terminology is also degenerate, as in )

this case there is no magnetic core associated with the “vomwhere nint is the nearest integer functiém) — 6(m—1) is

tex”) with n,=1. the gauge-invariant phase difference alongrtitk staircase,
This system possesses a critical current, below which thande is a parameter to be determined by the minimization of

system settles into a state with vanishing normal and disthe Hamiltonian.

placement currents, whereas above the critical current they Following Halsey’s prescription, we assume that the states

are nonvanishing, and a dynamical situation ensues. Conshave staircase symmetry, and thus in the presence of an ap-

quently, the equation satisfied by the gauge-invariant phasglied currentl all we need are the values of thghorizontal

differences below the critical current in their steady state isphases,,, andq vertical phase$®,,,, as shown in Fig. 1in
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A A a, andb,. Moreover, in the limit of very small currents,
' : <1, it is possible to write down explicit solutions, namely,

|
O _6_“2_ .. .G.)EB. i q sin——
I : ag=—— [N +qgsec 6 ]I (3.7
(e W k HK f .
@v1 VZ: 6\/3: N +q2 sinzl
Ow | _Ow | O ; |
I . -
Oy, Oy, 6\/3 q Sinﬁ
Ou | Ow | Ou be=———— [\—gsecsl, (38
L ] 0. . \ L asin
I 435
: where
. q
FIG. 1. Distribution of gauge-invariant phase differences for a A= k21 seq Hfﬂz). (3.9

staircase state with nonvanishing albeit smalDnly three stair-
cases are shown, which are labeled by the indeg,2,3. Notice
that the horizontalrespectively verticalphases are invariant under
the translation along the staircase. Fer0, 6y,;,=6y;, so that the
current is constant on each staircase, and runs in the direction indi-

cated by the arrowgon some staircases the current runs in the IV. METASTABLE STATES
opposite direction, so that the total current flowing is zero

We now turn to the study of the metastable states of the
system.

The metastable states are states in which the normal and
displacement currents vanish. Consequently, they are solu-

this case, the current is no longer constant along the staifs - L . h
case. We can then write down the expressions for the phase%ons of Eq.(2.3). In this case it is no longer possible to write

in terms of the expressions for the gauge-invariant phasdoWn analytical expressions, so we need to resort to numeri-
differences for zero current cal studies. For this we integrated the equations of motion

using a fourth-order Runge-Kutta method, with time steps

0= 00)+ &y, (3.2  Which varied betwgemzo_.m toAt=0.1. We _then gener-
ated these states in two different manners. First, by running
Oui= 6+ by, (3.3  simulations starting with random initial conditions along the

horizontal directior(so that the periodic boundary conditions
wherea, andb, vanish at zero current, al 0,2 and GS,OK) are along the vertical direction were respedteahd secondly by
the horizontal and vertical gauge-invariant phase differencestarting off with ground states, then raising the current above

on thekth staircase for zero current. the critical current, at which fluctuations occur, and by then
The application of the equations for current conservatiorlowering the current below the critical current. In all cases
at each site on the array yields we studied, except those in whidh=1/2, the states thus
generated were quasi-one-dimensional, and were character-
sin( 650+ ay) — sin( 600+ by) = €, (3.4  ized by a random pattern of domain walls oriented perpen-

. . dicularly to the current, separating regions with opposite
where{ is a parameter independentlofyet dependent oh symmetries of the ground states. In the chsel/2, we ob-

Likewise, the equation stating the relationship between .th?ained sometimes states which were disordered in the two
sum tOt"."I of the.phases arqund a plaquette and the Vort'c't?jimensions, which suggests that in this case there is a trans-
can easily be written down in terms of the phaagandb,,

hich leads 1o th lationshi verse instability, as weII_ as a _Iongitudir_1al one. It is also pos-
which leads 1o the relationship sible to generate two-dimension@D)-disordered states for
(3.5 other values of the frustration by starting the simulations
with 2D-disordered states. However, an understanding of the
wherey, asé, is a parameter independentlobut dependent metastable states in this case does not seem possible. There-

ak+ bk:X,

onl. fore, and for the sake of simplicity, we focused our study
Imposing the boundary conditions through the relation-only on the quasi-one-dimensional states ensuing in simula-
ship tions with f=1/3 andf=2/5.

In order to understand these metastable states, it proves
d ful to study a single domain wall. For the sake of sim-
in(6%+a,)=ql (3.6 vy Y J ' i
Z sin( Ok +a) =ql, - plicity, we assume that=0. In the ground state, as dis-
cussed in the previous section, the current runs along the
and the minimization of the Hamiltonian with respect to staircases. The direction of the staircase is altered by the
variations of the parametegsand y, it is possible to obtain presence of a domain wall. At the other side of it, the stair-
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FIG. 2. Distribution of gauge-invariant phase differences around X X i X X
a domain wall. Notice that the horizontal gauge-invariant phase X i X X X i X i¥X
differences are symmetric across the wall, whereas the vertical i X X X X X
gauge-invariant phase differences are antisymmetric. Sufficiently i X X iX | X
far away from the wall, the gauge-invariant phase differences are 00 —_— 5 — 10 E— 15
just those of the corresponding staircase states, whereas in its close
vicinity they deviate from the staircase values. FIG. 3. Vortex configuration for a metastable state fer1/3,

produced by raising the current above its critical value, whereafter
case runs along the perpendicular direction, as can be seeniiris set equal to zero. Notice that the state is characterized by a
Fig. 2. It is natural to guess that the current continues to rumandom distribution of domain wallsignaled by the broken lings
along this “bent” staircase, even in the close vicinity of the separating regions with the symmetries of the ground state.
domain wall. This is approximately true. Only a couple of
lattice sites away from the domain wall, the gauge-invariancurrent than the ground state. This implies that when the
phase differences are just those of the ground statmse- current is lowered, the voltage across the array will be higher
sponding to the respective symmetry of the state at thg sitethan before.
In the close vicinity or at the domain wall, however, there is
a slight deviation from this picture, in the sense that the
current is not constant along it, and deviates from the ground
state value. The deviation is nevertheless not large, and The critical current is the current at which the ground
amounts to only a few percent for most cases we studiedstate becomes unstable. This is the last state to become un-
being larger at the center of the domain wall. stable, and thus above this value of the current all states are
This picture has as consequence that at opposite sides ofstable. This instability takes place through the nucleation
the domain wall the current on the vertical bonds has oppoef a domain wall next to one of the boundaries, which in-
site sign, as on one side the current is going up, whereas &blves the rotation of the phases in the small region between
the other side the current is going down. On the other handhe wall and the boundary. The ensuing state is once again
the current on the horizontal bonds is symmetric under thainstable, and it subsequently undergoes the nucleation of a
inversion across the domain wall. DW-ADW pair , so that the ADW appears at the site of the
A given metastable state is characterized by the presendermerly existing domain wall, and two other domain walls
of several of these domain walls, which can be of two typesappear at the two sides of it. A DW can also annihilate with
as can be seen in Fig. 3, corresponding to the two possible neighboring ADW. This process repeats itself, giving rise
directions of the staircase at the left of the wall. For the sakeo a disordered pattern of DW's and ADW's which are con-
of notation, we shall refer to them as a domain wBW), in stantly being created and annihilated. Moreover, due of the
which the staircase at the left of the wall is long the (1,1)instability, the proliferation of the DW's seems to be favored,
direction(wherein thex direction is set equal to the direction so that only states with a large number of DW's are
of the injected current and as an antidomain walhDW), observed.
corresponding to the staircase at the left of the wall going in  The creation and annihilation of DW-ADW pairs involves
the (1~ 1) direction. It should be clear that a DW always a local motion of vortices. In fact, it suffices the motion of a
appears next to an ADW, or to a boundary. single column of vortices for this purpose, wherefore the
In general, the energy of a state increases the larger therocess can as well be understood in terms of vortex motion.
number of domain walls. In this case it is unfortunately notOn the other hand, the local vortex motion manifests itself as
possible to derive a general expression for the energy, which sudden change in the horizontal voltage across the region
will depend not only on the number of domain walls, but where the motion is taking place. This can be seen in Fig. 4,
also on their distribution. wherein we superpose the voltage across a horizontal junc-
These observations also provide a simple explanation fotion in the middle of the array with a graph depicting the
the hysteresis that is observed in the current-voltage charamotion of the vortex across the junction.
teristics. In fact, when starting with the ground state, just It is possible to interpret these irregular oscillations in two
above the critical current the system is excited to a metaether ways. In terms of the phase configuration, the motion
stable state with domain walls, which has a lower criticalof a column of vortices necessary for the creation of a do-

V. CRITICAL BEHAVIOR
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FIG. 5. Space-time distribution of vortex jumps. A black spot
. represents a column of vortices jumpifigortices jump simulta-
time neously on a given columnwhereas a white area represents a no
i’ump. Thus dark areas correspond to “turbulent” regions, whereas
the white areas represent the “laminar” domains. Notice the way

| | | |
2700 3000 3300 3600

FIG. 4. Time series of the voltage across a given horizontal

junction (solid) superposed to the time series of the vortex jumps . - o
J (solid) superp Jump the turbulent regions propagate within the array, which is character-

(dashed! In the latter a value of zero indicates a no jump, and & tic of spatiotemporal intermittency. The simulation was done for
finite value a jump. Notice that the spikes in the voltage correspon . g
jump P 9 P =1/3, andl =0.129, with an array size of 3015.

neatly to the spikes in the vortex jump function. While the vortex is
not jumping, the voltage is much smaller, which corresponds to the
period during which the system is in a given metastable state. The chaotic nature of the oscillations can be verified by
computing the maximum Lyapunov exponent of the system,

main wall involves the rotation of the gauge-invariant phasélvhich turns out to be positive when these oscillations occur.
differences on the vertical bonds adjacent the given columfrigure 6 displays this quantity as a function of the injected
by an amount equa| tar (SO that the current f|OW|ng on the currentl for ﬁ:10 On the other hand, deCI’eaSing the value
vertical bonds at the two sides of the wall have the opposit@f B increases the relative effect of dissipation, which leads
signg. Thus the instability which gives rise to the vortex t0 @ suppression of the cha@nd an increase in the value of
motion can as well be understood as an instability to thdhe critical current This can be seen in Fig. 7, in which the
rotation of the phases by this amount. Finally, it is possible tgnaximum Lyapunov exponent is plotted as a functiongof
view these irregular oscillations as a process whereby théor | =0.129.
system hops among the different subcritical metastable states The critical nature of the oscillations can be ascertained
(although only among those with a large number of D\W's by looking at a characteristic time scale as a function of the
The fact that these states correspond to subcritical metastatterrent. We obtained this time scale by measuring the time
states(in spite of the fact that there is now a finate voltageneeded for the initial frontseparating the turbulent from the
across the junction at all timgss due to the fact that while
the vortices are not jumping, the voltage across the junction 0.004
is minimal, so that the system can be regarded as staying
close to a metastable state during that time.

We identify the regions where vortex motion takes place 0.003

as “turbulent.” These turbulentlike domains are interspeded E:

with regular domains. They are characterized by large phase g

oscillations, or large voltages, whereas within the regular do- g5 0.002

mains the voltages are smaller, because there the irregular 2

oscillations correspond to oscillations around the metastable 5

states. Within the turbulent domains, on the other hand, there § 0.001
-

are large oscillations carrying the system into other meta-
stable states. This “turbulence” propagates itself through an
“infection” process, mediated by fronts, as can be seen in 0.000
Fig. 5, which is very similar to the pattern observed in other
systems undergoing spatiotemporal intermittency. One could
define, as well, the turbulent domains according to whether
the voltage is larger than a given fraction of the maximum  F|G. 6. Maximum Lyapunov exponent as a function of the cur-
voltage. In fact, the two definitions provide equivalent re-rent, forf=1/3, =10 and array size 2615. Notice that below a
sults. A small voltage just corresponds to a small oscillatiorthreshold the Lyapunov exponent is negative, whereas above it, it is
around the metastable state. positive, signaling the chaotic nature of the state.

1 . 1 . 1 .
0.128 0.129 0.129 0.130 0.130
current
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FIG. 7. Maximum Lyapunov exponent as a function &f for log(f)
f=1/3,1=0.129, and array size 3&515. Notice that above a thresh-
old the Lyapunov exponent is negative, whereas below it, it is posi- FIG. 9. Logarithmic plot of the power spectrum of the voltage

tive, signaling the chaotic nature of the state. This is also ConSiSte'?ﬁJctuations forl =0.129, =10, and array size 2615. Notice the
with the idea that large values @f suppress the chaos. scaling relationship at high frequencigéf)~f“, with k=—5.4.

regular domainsto propagate across the entire array. This . ) ) .
time scale is related to the lifetime of a domain wall. OurPOSsSible to identify these two frequencies, although the

results are displayed in Fig. 8. We observe a scaling behavidPUgh estimate given above seems to work more or less well
to define the high-frequency region.

for this time scale as a function of the current, which is a i X .
signature of criticality. We interpret these observations by saying that the system

Another manifestation of the chaotic nature of the oscil-'S Undergoing spatiotemporal intermittency, which is charac-
lations can be obtained by looking at the power spectrum of€fized by the presence of these turbulent and regular do-
the voltage fluctuations, which are a measure of the collecMins, and of the $/noise. A subcritical bifurcation may be
tive fluctuations the system is undergoing. Figure 9 display§eSp°ns'ble for this, as a!llthe subcritical metastz?\ble states
the power spectrum of the average voltage oscillations acrog_)oecome unstable at the crmca] current. In this spatiotemporal
the array. We observe a scaling behavior of the spectrum fdptermittency the defectdomain wall$ play a fundamental
large frequenciesS(f)~f*, where « is nonuniversal, and role, som4eth|ng which has been observed to occur in other
appears to depend on the case under consideration, for fréystemé‘ We further interpret these observations in terms

quencies above the plasma and Josephson frequencies. In fife (N€ transitions among the different metastable states,
uncoupled case, the plasma frequency is simqngytﬂ’l’z. which can be related to a mechanism for intermittency pro-

Unfortunately in our case it is not possible to derive an anaP0Sed many years ago in the case of a single Josephson junc-
on by Ben-Jacobet al,™ which was on the other hand

lytical expression for either of the two frequencies, and sincxil‘a . . .
we here have a broad band of frequencies, it is in general nd}2Sed on the more generic model of Arecchi and Hisgn

the context of spatiotemporal intermittency, the role played
8 . — — . by the metastable states has been emphasized within the
framework of a model developed by Argentina and Couflet.

7.8

by
=)
T

] VI. CONCLUSIONS

We have studied the critical dynamics of a two-
dimensional frustrated array of Josephson junctions, uni-
formly driven by a dc current. Our study has shown that at

log(time scale)
~
'y
T

721 T the critical current the system experiences chaotic oscilla-
tions, characterized by transitions among different subcritical
70+ 1 metastable states. These oscillations are intermittent, since

— the system remains close to these states before making a

21 20 19 18 1.7 1.6 -15 -4 IO X ; o
Jog(current) transition into another state, with a different distribution of
domain walls. The intermittent nature of the oscillations is
FIG. 8. Logarithmic plot of the time scale characteristic of front Shown as well by the existence of power laws relating the
propagation as a function of the applied current, fo+10, and  Characteristic time scale for front propagation to the driving
array size 7& 15. Notice the scaling relationship, characteristic of current, and in the high-frequency tail of the power spectrum

criticality 7~ (1—1,)~?, with y=1.71. of the voltage fluctuations.
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