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Critical-point scaling function for the specific heat of a Ginzburg-Landau superconductor
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If the zero-field transition in high-temperature superconductors such agsCy¥B@;_ s is a critical point in
the universality class of the three-dimensiox&f model, then the general theory of critical phenomena
predicts the existence of a critical region in which thermodynamic functions have a characteristic scaling form.
We report an attempt to calculate the universal scaling function associated with the specific heat, for which
experimental data have become available in recent years. Scaling behavior is extracted from a renormalization-
group analysis, and theN/expansion is adopted as a means of approximation. The estimated scaling function
is qualitatively similar to that observed experimentally, and also to the lowest-Landau-level scaling function
used by some authors to provide an alternative interpretation of the same data. Unfortunately, eékpah-
sion is not sufficiently reliable at small values Nffor a quantitative fit to be feasible.

DOI: 10.1103/PhysRevB.64.184506 PACS nuniber74.25.Bt, 64.60.Fr

I. INTRODUCTION lently, B=B¢,(T) is the upper critical field of the Ginzburg-
Landau theory. Since in Eq. (1) is very small, and 1/2
In recent years, a considerable body of experimental evi~0.75, the two predictions are rather hard to distinguish.
dence has accumulated to suggest that the zero-field translome authors claim that lowest-Landau-level scaling works
tion in certain high-temperature superconductors, most notgust as well as, or indeed better than, critical-point
bly YBa,Cu;,O;_5 (YBCO), is a critical point in the scaling®?* For HgB3CaCwOg. 5,%° specific-heat data
universality class of the three-dimension&¥ model*™" If ~ appear to collapse to a common curve when plotted in the
this is the case, then, in the presence of a sufficiently smatbrm of Eq.(1), but the scaling functiodi(x), which ought to
magnetic fieldB, the specific heat is expected to have a sin-be universal, is apparently rather different from that found

gular part which exhibits the scaling behavior for YBCO. For LuBaCuz O, the authors of Ref. 23 find that
. a two-dimensionalowest-Landau-level scaling form best fits
Csind T,B)=B (%), @D the data, though they claim that it is also consistent with

where a~—0.013 andv~0.67 are critical exponents and three-dimensionaXy scaling for fields below 1 T. Most re-
the scaling variable ix=(T—T¢)B~Y?. Similar scaling cently, Junodet al?* have concluded that optimally doped

forms are expected for other thermodynamic quantities, sucl BCC IS the only material to show convincing evidence of

as the magnetization. In the linit— 0, the scaling function Cfitical-point scaling. _ _
must behave ag(x)—C.|x| %, so thatCq g(T,0)=C+|T Theoretically, it seems that the scaling foff) is an un-
~Te|®, where+ refers toT>Tc and ot T<Te. For ambiguous prediction of the theory of critical phenonféna

and ought to be observed sufficiently close to the zero-field
ritical point. Lowest-Landau-level scaling, on the other

and, is to be expected in large fields, in the neighborhood of
the upper critical field. There is in principle no region where
both scaling forms could be simultaneously v&fid.here is,
however, no reliable means of estimating the largest field in
which critical-point scaling ought to be observable or the
smallest field consistent with lowest-Landau-level scaling.
Calculations are somewhat simplified by the lowest-Landau-
level approximation, and scaling functions have been ob-
tained by both perturbati?& *°and nonperturbativé meth-
ods. In particular, Temovic and Andreet’ have obtained
mscaling functions which agree quite well with experimental
data for the specific heat and magnetization of YBCO,
though the fit is rather better in the case of the magnetization
than the specific hedt.

For the critical-point scaling function, to the best of our
knowledge, no theoretical estimate has been obtaiaéd
~ though some general consequences of scaling have been dis-
C(T.B)=C xu) @ cussed in Ref. 31 and the calculation of this scaling func-

is expected when only the lowest Landau leyelL) is  tion is the object of the work reported here. The calculation
significantly occupied®!* Here, the scaling variable is is based on the Ginzburg-Landau-Wilson model of an isotro-
XL =[T—Tca(B)]/(TB)?3, whereT—Tc,(B) or, equiva-  pic superconductor. Although the superconductors of interest

YBCO, zero-field measurements of the specific heat pre
sented by several authors seem to agree well with thi
predictiorf® and to be consistent with the universal values of
a and of the amplitude rati€ , /C_ as determined by pre-
cision measurements of the superfluid transition *ide,
which is also in the universality class of the three-
dimensionalXY model®° A claim has recently been made
that the zero-field singularity is actually characterized by dif-
ferent exponents, and «_, above and below -, which
would not be consistent with any ordinary type of critical
point! It has also been argued, though, that this conclusio
rests on an inappropriate background subtracifon.

In a nonzero applied field, one can test the scaling for
(1) by the extent to which data f@*/?'C,(T,B) collapse
to a common curve when plotted as a functionxoHere,
matters are complicated by the fact that a different kind o
scaling behavior
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are anisotropic, layered materials, this seems to be a reasowheret, is taken to be linear in temperaturg,¢T—T),

able approximation in the case of YBCO. More generally, inand the coupling strengtky, to be temperature independent.
fact, it is the divergence of the coherence length near a critiA convenient choice of gauge for the magnetic vector poten-
cal point which gives rise to characteristic critical phenom-tial is A(r)=B,(0,0), corresponding to a uniform field in
ena. To the extent that the critical behavior is that of a threethe z direction, and we have absorbed the charge of a Cooper
dimensional system, therefore, one might expect theair into the magnitudes ok andB,. As explained in Ref,
universal scaling function for an isotropic system to be thags 5 standard integral transformation of the Hubbard-

observed in the asymptotic critical region. We assume tha; aionovich type allows us to express the partition function
the magnetic coupling is weak enough for fluctuations in th s a functional integral over an auxiliary field

vector potentialA(r) to be neglected. In fact, it is only in this

approximation that critical behavior is to be expecte@ne N
barrier to this calculation is that, in the low-field regime, all _ Ty K _J 3 }
the Landau levels must be included, and the eigenfunctions Z=N iﬂl DD exp{ d*rH @)

are extremely inconvenient to deal with. Here, we exploit an
integral representation of the order-parameter propagator
which the sum over Landau levels is carried out once and for = f DV exd —NHgi(W)], 5)
all.

Our initial attempts to estimate the scaling functiéix)  \yhere the effective Hamiltonian is
made use of perturbation theory, which yields accurate re-
sults for the critical exponents. Unfortunately, perturbation
theory does not yield a well-controlled approximation to the Her(W) = f d3r)\51‘lf2(r)—Trr,r,In A(r,r’;¥)  (6)
function C(x), because it gives a spurious singularity in the
neighborhood off c2(B) and we have been unable to cure 4nq \rjs an irrelevant normalization constant. The propaga-
this problem satisfactorily byad hocmethods. The alterna- tor A(r,r', W) is the solution of
tive we adopt here is to study a generalized Ginzburg- Y
Landau-Wilson superconductor having an order paramet 2, o 2.2 . R ,
with N complex components and to make use of the expa;}f_V +2iBoxdy T Box“H to HIW(N]A(r W) = o(r=r )7
sion in powers of M. The scaling function must be ex- @)
tracted by means of a renormalization-group analysis. Curias jn Ref. 33, it is helpful to formulate the M/expansion in

ously, we have not found in the literature a formulation of the erms of a self-enerav. which can be defined as follows
renormalization group that is well adapted to the use of th . gyo_, :
he full two-point function

1/N expansion as a means of approximation. We have there-
fore developed a suitable formulation, which is presented in

detail for the zero-field case in Ref. 33. The extension of the GA(r,r)=($1(Nga(r))
1/N formalism and the renormalization-group analysis to the
case of a nonzero magnetic field are summarized in Secs. :z—lf DVA(r,r"; W)e NHer(¥) (8)

[I-1V below. The calculation of the scaling function requires

a numerical means .of estimating seve.ral cumbe(some_ inte- 1 pe expressed as
grals, and the techniques we have devised for doing this aré
described in Sec. V. As has long been known in connection . ,
with the estimation of critical exponents, the convergence of e o dk,do sz,o',n(r)XkZ,a',n(r )
the 1N expansion is very poor. The next-to-leading-order (r.r )_f (2m)2 50; T@(n.k,)
calculations reported here do not yield meaningful results for 7 e
small values ofN (in particular for the physically relevant \yhere theXkZ,U,n(f) are eigenfunctions of the differential

value N=1), but for larger values we obtain scaling func- operator in Eq(7), whose eigenvalues are the Landau levels
tions which are qualitatively similar to that observed experi- P o ko, 9 )
mentally. These results are presented and discussed frMK2=kz+(2n+1)Bo+1o, and we define

Sec. VL.

)

1,=I®(0,0). (10)
II. THE 1/N EXPANSION

We consider the Ginzburg-Landau-Wilson theory for an!n the limit Bo—0, this agrees with the definition adopted in

isotropic superconductor wittN complex order-parameter Ref. 33. _Because the L_andau e|genfunct|0_ns are extremely
components¢;(r) in a fixed, uniform magnetic field of inconvenient to deal with, we shall exploit the fact that
| 1

strengthB,. It is defined by the effective reduced Hamil- € '*"*)07Y)B02GE)(r r") is a translationally invariant

tonian density function to write
N
H=2, {|[V—iAN]i(N]>+to| i(n)?} @)y 1= eltrx-y802 [ 3K ik a-rmg@
=1 ' o Go(rr')=e YTy Re f ;e G (k).
(27)
N 2 (11)

Ao

+ 20 (12
4N Zl |40 ) ' @ Using the eigenfunctions given in Ref. 25, we find
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[r<2>(o,kz)]—1=(wso)—1f dkdk, e (KHKD/Bog () () G?= - S J E S —
(12) @
Owing to the factors oN multiplying Heg(W) in Egs.(5) f
and (8), the 1N expansion is generated by the method of (Y =--amem- D+ i _______
steepest descent. We exparil about the position- 2
independent saddle point by writing ®)
W(r)=i(tg+Bo—to+N"28)+(2N) " Yy(r), (13 FIG. 1. Diagrammatic representation @j the order-parameter

two-point function andb) the expectation valuéy(r)) at next-to-

where § is defined by the conditioiy(r))=0. The propa- leading order.

gator A(r,r’;¥) can be expanded as(r,r’;W¥)=A(rr")

-1 ; ; ; -
+O(N~ Y3 where the leading term is the solution of tween the self-energy, and the variables,, Ao, and By

with which we started. Consider first the expansion for the
(14  wo-point functionG®)(r,r') shown in Fig. 1a). The first
term is justA(r,r'), which contains the exact self-enertyy

In real space, the diagrammatic expansion is identical to t_haénd satisfies Eq(10) by itself. Thus, the counterterr is
explained in Ref. 33, to which we refer the reader for deta”srequired to cancel the one-loop contributiomatk,=0 and

except that the propagators are modified by the presence Qfg fing
the magnetic field. Theb propagatorA(r,r’) is given by

[ —V2+2iBoxd,+ B2+ 1to—Bg]A(r,r')=8(r—r’).
y

1 2, .2 d3k’
3 - = —(K+k)/Bg [ —
A(r,r’)=ei(X”')(y*V')BO’ZJ 'k ek =A(k), 0 ZWBOJ dkcdkye ’ 01(2#)3
(2m)*
(15 XA(k+k’)D(k’)|kz=0
where, as obtained in Ref. 2A,(k) has the integral repre- 3
sentation :lf dk A(k)D(k) (20)
. 2) (2m)® ’
A(k)zJ’ du(coshBgu) 1 where
0
xexfl — (K2 +1o—Bo)u— (Ki+k2) 7(u)] (16) A(k)zf duexg — (K2+To)u—(2Bg) ~*
0
with r(u)=BgltanhBou. The ¢ propagatorD(r—r’) is S
translationally invariant. Its inverse is X (1—e 2Bt (kg +ky)]. (21

1 The requirement thaty/(r)) =0 yields a constraint equation,
DX r—r")=xg "8(r—r')+ ZAMI)A(r,r) (17 which implicitly determined . Figure 1b) shows the expan-
sion of (¢(r)) to order 1N; the functionf is the coefficient

and its Fourier transform is of y(r) in Heg, as given in Ref. 33. From this we obtain
D(k)=[xo " +II(k)] 7, (18) ~ - N
to=®o(tg,Ng,Bg)=tg—Bo— 70A
where
1 d3’ +N71 EA— [ 1+NoI1(0)] (22
H(k)=—f ——A(k)AK +k) 4 0 ’
2) (2m)?
where
1 3/280 o (u+u1)—1/2
= —77 7J dudv—— h ; _ d3k
0 sinhBo(u+u’) A(to,)\o,BO):f 77)3A(k)
m(u)7(u’)
X expg — 2_ K2+ k2 32 o =
F{ utu’ -’ r(u)+r(u’)( <) :(i> Bof exd — (to—Bo)u]
4w 0 usinhBou
—(u+u")(to—Bp)|. (19 (23)
. . . ~ d3k
To make use of this expansion, we need to determine the A(To,No,Bg)= As(K)D(K). (24)
countertermd introduced in Eq.(13) and the relation be- (2m)°
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1 1 the second expression being convenient for the purpose of
=----- + = -— + - -- -
NA@y 4 @ 2N renormalization.

; -
- m"‘Q_O“ - 1%’8__-0'" IIl. RENORMALIZATION

FIG. 2. Diagrammatic representation of the two-point function 1€ scaling behavior of thermodynamic functions
for the auxiliary fieldy at next-to-leading order. emerges in the usual way from a renormalization-group

analysis, but in the context of theNLexpansion this requires
The function Az(k) corresponds to the loop of thre¢ @ nonstandard renormalization scheme, which is developed

propagators in F|g (b), and iS defined by in deta" in Ref 33 fOI’ the theory W|tBOZO According to
this scheme, renormalized variableg, z, andB are defined
A3(k)=f d3r el " TIA(r AT AT, by
(25 ~
_ , , . to=pu’t 1—N’1%Inz+O(N’2) , (32
Straightforward but tedious algebra suffices to show that it is 6b

independent of and is given by

z+2a 2
aT1(K) t0=t00+,u2t( ) 1—N‘13—igln z+0(N—2)},
Az(k)=——=—. (26)
ity (33
Our aim is to investigate the scaling properties of the 1 1 _,4S 72

specific heat. Within the Ginzburg-Landau-Wilson approxi- Mo =p Z1+N""Z=Inz+O(N9) |, (34)
mation, the specific heat per unit volume per order-parameter
component is given by By= u2B. (35

1 #InZ T 2 2 In these expressionsgy, is the value ofty at the zero-field
2NV o2 =(2N) fd rlzl (| (0] #5(N)]*)c, critical point, S;=(27) 2 is the usual factor arising from
27) angular integrations, and the constarts 1/167 and b
. =1/16 arise from the large- and small-momentum limits of
whereV= [d°r is the volume and- - -); denotes the con- 1y(k) whenB=0. As usualy is an arbitrary renormalization
nected correlation function. This correlation function can begcgle with the dimensions of inverse length. The magnetic
obtained directly as field requires no renormalization; the definitié85) simply

(|¢>i(0)|2|¢j(f)|2>c serves to mgkeB dimensionless, as are t, anq z In this
scheme, critical behavior is governed by an infrared-stable
renormalization-group fixed point a=0. The criterion for
renormalization is that renormalized thermodynamic func-
tions should have finite, nonzero limits 2s-0, and we have

=5ijz—1f DYAOr;W)A(r,0;¥)e NHef,

(28) implemented this requirement by a “minimal subtraction” of
but it is not hard to obtain the convenient expression the leading singularities proportional to4nlt is crucial to
our analysis that, as in the perturbative renormalization of
C=2y[1-7y'D(0)], (29  Ref. 25, the presence of a magnetic field introduces no addi-

tional divergences beyond those encounterdgi=ad and we
shall return to this point shortly.

For our immediate purposes, we need renormalized ver-
'sions of the constraint Eq22) and the specific hedR9).
Bfhe various integrals and subintegrals from which these are

constructed must be reexpressed in terms of the renormalized
D(k)=D(k)+N*1D(k)H¢(k)D(k). (30) \r/naenr?st;:)enslég—: ;E:ngggs it is convenient to introduce the di-

whereD(k) =D (k) + O(N~1) is the Fourier transform of the
two-point function{ s(r) »(r")). To order 1N, this two-point
function is given by the sum of diagrams shown in Fig. 2
and is conveniently expressed in terms of a self-ener
IT,(k) as

As explained in Appendix A, the self-energylkat O is given
by Tr(p; )= (1°B) Y1 (k; u?t, u?B), (36)

I1,(0)= ‘%?*5(937(0) Dr(pia,z,B)=[2+B Ylg(p)] ™, (37)
0 0
Ag(@)=(u®B) Y A(u%t,u?B)—A(0,0], (38

1 )
:_i{ZA_(sH(O)}_ﬂTH(O), (31 ~ R
Ito dto Ar(p;a)=pu2BA(k; u%t, 12B), (39)
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', u?B)

L u?B)II(0; u7t

Ar(a@,z,B)=p YA(ut,uz"
w?B)],
(40)

—48(u%t, pz-

Sr(@,2,B)=(u"B) Y 8(u?t,pz 1, u?B)— 8(0uz” 10)],

(41)
Asr(pra)=(u?B)¥As(k u’t, u?B), (42
with rescaled variablep and « defined by
p=(u’B) Y% and a=t/B. (43
Subsequently, it will also be helpful to write
ps=p2cosd, pi+pi=psinto. (44)

With this notation, the constraint equation becomes

=(z+2a) '@ (t,z,B), (45)

- - 1
®(t,z,B)=2z(t—-B)— E131’2AR+ N1

aﬂAR Sg 12
AR+4 Fy )3blnz zBY°6R

1
x| 7 AR+ BY?

+0O(N72). (46)

1 2 \s
+(§t—§B)FZ|nZ

The dimensionless, renormalized specific h@aft,z,B) is
defined by

C(t9,M0,Bo)=C(0\g,0)+Cyhg *(to—toc)

+Z_ZCR(T!Z!B)1 (47)
where
__(z+2a) 1 2S; )
Z= . 1-N~ 3bInz+O(N )} (48

is the renormalization factor appearing in E§3). The di-

mensionless constan€; multiplies a nonsingular term,
whose presence in three dimensions was first noted by Ab d d Jd  a(z)
and Hikam?* and whose role in our renormalization scheme | 8(2) 57 = (2= ”(Z))t__ZB B w2)

is discussed in Ref. 33.
+2a)?Ck(t,z,B), we find

Writing Cr(t,z,B)=(z

C(tzB)——D(OazB) Clcb(tzB)

+N"YE,(t,2,B)+E,(t,z,B)
+E5(t,2,B)]+O(N~?), (49)

where
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1 AR 55, RS3
1__ 12,
E,= 4DRB DR6b Inz— D3 rB™ s 6bInz
(50)
Ior S5 S;
_pn2r-1 R_=S-1_
E,=DgB HRaa b DR2b
1
—Cy| z(t-B)— = B”ZAR %mz (52)
45,
2
Esz= Rgbzlnz (52

and Dg and Il stand forDg(0;«,z,B) andIIz(0;a), re-
spectively. The integral®g(«,z,B) and 6g(«,z,B) defined
in Eg. (40) and (41) are both singular when— 0, but each
of the quantitiesb(t,z,B) andE;(t,z,B) has a finite limit,
provided that we choosg; = — 2/b?. To verify this assertion
is not an entirely trivial matter. In particular, to verify that the
expression(46) for ®(t,z,B) has a finite limit, it is neces-
sary to show that

IAr(a) Eln z
Jda 3b

Ar(@,z,B)=—BY? 4Ag(a)+a

+0(zInz). (53

Because the singularities arise from the lapyeegion of
integration, the required cancellations can be verified by
means of larggy expansions of the subintegrdlbz(p; @),

Asp(p; @), and Ag(p; ), which are discussed in Appendix
B.

IV. RENORMALIZATION GROUP AND SCALING

The fact that the unrenormalized theory is independent of
the renormalization scalg leads in the standard way to
renormalization-group equations for the renormalized quan-

tities t(t,z,B) andCg(t,z,B), which take the form

d ~0d d ~ _
ﬁ(Z)E—(Z—ﬂ(Z))tE—ZBé—B‘Fﬁ t(t,Z,B)—O,
(54)
Cr(1,2,B)=0,
(55

where «(z)=2-3w»(z) and the remaining functions are
those derived in Ref. 33. In contrast to perturbative renor-
malization schemes, the additive renormalizations of the spe-
cific heat in Eq.(47) are independent gk, so the associated
renormalization-group EQq.(55 is homogeneous. The
asymptotic critical behavior with which we are concerned
here is governed by the infrared-stable fixed poinzai0,
whereB(0)=0 and the other functions reduce to the critical
exponents

184506-5



DOMINIC J. LEE AND IAN D. LAWRIE PHYSICAL REVIEW B 64 184506

Asr, we have an expansion of the form

16
v=1— 2N+0(|\r2), a=—1+TN+0(N*2),
37 § Agr(p. i) = a3 1o(q,0)+ a 10, 6)
4 +a%f,(g,0)+0(a3)], 62
372N

o _ . whereq=a~¥?p. [This entails, of course, a rescaling of the
Forz=0, the renormalization-group equations are equivalenintegration variable in the final integré24).] Using the rep-

to the relations resentation (B4), the change of variables=w/a, v’
_ oo -, =w’/a leads to a power-series expansion in which each of
t(t,0B8)=1"t(1"?~7t,0)~?B) the remaining integrals can be calculated analytically. We

- find that the functions;(q, ) are given b
:|1/V(2a)—1q)(|—(Z—W)t'O,I—ZB), (57) I(q ) g y

- - _ -1 _ -1 2
CR(t,O,B)=|_a/VCR“_(Z_’?)t,O,'_ZB), (58) I:0 (877) Qv I:l (1677) (Q+8Q )r

wherel is an arbitrary scaling factor. The functiotd,0,8) f,=(96m) 3Q+ 16Q%+ (128+ 492s?) Q3+ 96¢%s2Q?],
and C(t,0B) have infrared singularities when their first (63
argumentt vanishes. On the right-hand sides of E¢fs7)

and(58), we exponentiate these singularities into the prefacWhereQ=(g?+4)~* ands=sin¢. In practice, we have used
tors by choosing to satisfyl‘(z‘”)~t=1. Then, by setting this approximation fora>2.25, where it appears to yield

|=BY2L, we find thatCg has the scaling form results of satisfactory accuracy. . L
For p<6 and «<<2.25 no systematic expansion in any

Cr=B2¢(tB~ V), (590  small parameter will serve our purpose. Instead, we have
devised an approximation scheme which we again illustrate
where, withx=tB~ %", the scaling function is for the example ofA ;5. The basic strategy is to evaluate the
Caly > double integralB2) numerically for selected values pf 6,
CO)=L" (X Cr(L,0L"%(x)), (60 and« and to construct an interpolating function from these
the functionL (x) being determined by the constraint equa-numerical values. To interpolate simultaneously in all three
tion variables is a difficult undertaking, however. To simplify it,
we introduce a further approximation, which reduces the
2ax=LY"(x)®(1,0L "3(x)). (61)  function of three variables to several functions, each depend-

_ ) _ ) ing on only two variables. In the expressitB2), we make
To obtain a numerical estimate of the scaling funcii§r),  the change of integration variables
we need an approximate means of evaluating the integrals in
Egs. (46) and (49) which is discussed in the following sec- , .
tion. u=pcosge, U =psirfe. (64)

V. NUMERICAL ESTIMATION OF INTEGRALS The integral becomeggain, with the notatios=sin 6§ and

c=cosb)

In order to determine the function€x(1,0L"2) and
®(1,0L?), and hence the scaling functic(x), we need to 1 s " 32
estimate the renormalized counterparts of integrals such as A,.(p,6;a)= —f do sin(2¢)J dp {J
Egs.(20) and(24). This requires analytic approximations to 2(4m)%2J)o o  sinhp
the functionslIx(p; @), Ar(p;a), andA;g(p; ), which are « —(a—1)p—(D2c24) p Sir?(2
themselves defined by rather intractable integrals. This sec- X~ (a=Dp=(p c/4)psim(24)
tion indicates the methods of approximation we have used, —p2s®T(p,d)], (65)
focusing on the example df;x(p; @), which we express in
terms of the variable&44) as A3r(p, 8; «). Having used the )
renormalization group to repladewith 1 andB with L =2 in T(p.d)= tanh(p cog ¢)tanh(p sirf¢) 66

Egs.(60) and(61), we havea=1t/B=L2. tanh(p cos'¢) +tanh(p sinf ¢p)
For large values op, we approximate all of the subinte-
grals by means of the large-momentum expansions deve@ur approximation scheme is based on the observation that
oped in Appendix B. Numerically, this turns out to be a good7'(p,¢)%(p/4)sinz(2¢) for p—0 while T(p,¢)~3 for p
approximation fop=6. In particular, this strategy allows us —, except at the end poinis=0 and¢= /2. We divide
to cancel analytically the divergences that arise at the fixethe region of integration into two parts: region I, where 0
point z=0. <p<S(¢), and region Il, wheres(¢p)<p<w. The bound-
For p<6, an expansion in inverse powerswofs possible ary p=S(¢) is determined in a manner to be explained
when « is large enough. More specifically, in the case ofshortly. We havaA3R:A'3R+ AgR, where
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| w2 p°? functions[and those folIx(p;«) and Ar(p;«), which we
Azr= (dm 3,4 deé sm(2¢)f smhp do not give explicitly is chosen so as to give the correct
(4m) behavior at large values @fand to allow the integrals over
xex —(a—1)p—(p2pld)siri(2¢) + p?s2X'], 0 tg (Sbe performed analytically in the final calculationsfgf
an )
(67) i
. e ez = p*? VI. RESULTS AND DISCUSSION
A3R_—3/2 d¢sin(2¢) 4o Sinhs
2(4m) ) P As compared with perturbation theofthe expansion in
« o 2.2 : _ powers of\Ag), the 1N expansion has a key advantage when
ex —(a=1)p = (p*c*/4)(psim(2¢) - 2) applied to the problem of a superconductor in a magnetic
+p2s2X'"7] (68) field. At the lowest order of perturbation theory, it is not hard
ith to show that the specific heat behaves as
Wi
X'(p,)=[(pl4)sir’(2¢)—T(p,$)], (69) C~By(to—toctBo) ¥2~Bo[T—Tca(Bo) ] ¥2 (79
[ —_ri_
Xp.¢)=[2-T(p.¢)] (70 in the neighborhood of the lIN€=T,(By). In terms of the

and we propose to expand the integrands of E6#: and formalism used in this paper, this approximation corresponds
(68) in powers ofX' and X", respectively. The boundagy  to taking C~II(0) in Eq. (29) andto~to—to.+ B, in the
=5(¢) is chosen as the locus on whictl=X", namely, constraint Eq(22). This divergence is entirely spurious. Ex-
S(¢)=2/sirt(2¢), so that the two expansions match term by perimentally, there is no sign of it and theoretically it can be
term on the boundary. With this choic&'(p,#) and removed by means of a self-energy resummation of the Har-
X"(p,¢) are always smaller than the boundary valuetree variety. The N expansion incorporates this resumma-
XS(¢)=2%—T(S(), ), which itself has a maximum value tion in a way which allows a renormalization-group analysis
of approximately 0.18 atp=0 and ¢=m/2. Moreover, the of the scaling behavior to be systematically pursued.
quantitiesp?s?X” are positive, so the expansion of each in-  On the other hand, the l/expansion has serious draw-
tegrand converges monotonically. This is not necessarily trubacks. Even at the next-to-leading order we have used here,
of the integrals, but in practice we have found that retainingcalculations are extremely cumbersome, and this is unfortu-
only the first two terms of each expansion yields results thanate, because the convergence of the expansion is notori-
are fairly accurate and match smoothly to the langend  ously poor. With the relevant valug=1 for the number of
largep expansions. It will be seen that each term in thecomplex order-parameter components, the specific-heat ex-
expansion ofAbg(p, 0;a) is of the form @%s?)"f.(p?,a),  Pponent given in Eq(56) is «~0.62; compared with the best
while each term in the expansion afjx(p,6;a) is of the  theoretical and experimental value for tH& model ayy~

form e- p2/2(p282 nf:]l(pzczﬂ)_ Each of the functioni;ﬁ de- —0.013, it is about fifty times too large and has the wrong

pends only on two variables. We have obtained interpolation§Ign For the correlation-length exponent, we have0.46

. _ - , L compared withyyy=~0.67.
Ig: X]fsgffrhnecﬁfrg’ fon=0,1, giving final approximations Using the formalism and numerical methods summarized
3R

above, we have obtained estimates for the specific-heat scal-
| 1/6 ing functionC(x) as given in Eq(60). Here too, we find that
A'g,R(p 0: )= 6R1,0(0‘) the convergence is poor; for small valgesl\bfthe next-to-
o leading terms are larger than the leading terms. Matters are
1+n§_‘41 Rin(a)p somewhat improved if th&Y exponentsvyy and ayy are
- substituted in Eq9.60) and(61) for those shown in Eq56).
Rlzo(a) Here, we present only the best resulés judged by their
+ p?s? — r/z, (71)  qualitative similarity to experimental datthat we have been

14 2 R, (a)p?" able to obtain by this strategy. Figure 3 shows the scaling
= e function calculated for values df between 10 and 20 and,
for comparison, Fig. 4 reproduces the experimental data re-

e*pz’ZRQ a)[lJrR! (a)p?c?] ported ?n R_ef. 4. For more negative va!uesmﬂwan_ thosg

' . shown in Fig. 3, the calculated curves diverge rapidly, either
1+ R!,z(a)pzczJr R!,g(a)p“C“ to large positive values or to large negative values, and our
approximations are clearly inadequate in this region. The
reason for this is not entirely clear to us. One possibility is
that our neglect of the nonzero order paraméig(r)) in the
mixed state becomes seriously inadequate at temperatures a
where theRAj are rational approximants obtained from the little below T¢,(Bg). In the lowest-Landau-level approxima-
Thiele interpolation formula. The form of these interpolatingtion, it seems to be possible to continue the scaling function

AgR(p, 0,a)=

e* p2/2RII 0( a)
1+Rp 4(@)p’c?’

2:2

+p?s (72
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mated by Tesaovic and Andreev° It is far from clear, there-
fore, that a quantitatively more reliable estimate of the
critical-point scaling function, should it be obtainable, would
serve to discriminate between the two scaling hypotheses.
In this paper, we have attempted to estimate the scaling
function associated with asymptotic critical behavior, which
is controlled by the renormalization-group fixed pomt 0.
In principle, the formalism and numerical approximations
described here should also facilitate an investigation of the
competition between low-field critical-point scaling and
high-field lowest-Landau-level scaling in the intermediate re-
gion where neither type of scaling is exactly valid. We plan
to address this issue in a future publication.
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-0.05
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Since we cannot obtain reliable results for the physically AppENDIX A: CALCULATION OF VERTEX EUNCTIONS
relevant number of order-parameter componésl, a de-
tailed fit of our calculated scaling function to the data would ~As explained in detail in Ref. 33, the basic elements of
have little meaning, and we have not attempted it. For largeFeynman diagrams in theN/expansion are vertex functions
values ofN, it is clear that the calculated scaling function of the form
does reproduce the qualitative features of the experimentally
determined function in the region where our approximations An(ry, oo ) = A(rg,rp)A(rg,ra) - - A(ry,ry). (A1)
appear to work. Tentatively, at least, it seems reasonable t?h . . .
conclude that the critical-point scaling implied by the ese are gau_ge-lnvarlant functions, and therefore al_so _trans-
Ginzburg-Landau-Wilson model is consistent with what iSIatlonally invariant, but in the presence of a magnetic field,
actually observed. A less tentative conclusion is that soméhe form of the propagatdfl) makes them somewhat awk-
much better method of approximation than those currentl ard to handle. For.the purposes of this paper, the fact that
available is needed to test this scaling prediction quantita- e usually need to integrate over one or more of the argu-

tively mentsr; leads to some simplification. Let us write
Whether the scaling observed in YBCO really corre- ) XY (y—y ) B/ 2 )
sponds to a regime dominated by critical-point fluctuations is A(r,r')=e YEYORIEA(r—r"), (A2)

another matter. Indeed, the scaling functions exhibited in Fig. — . . . o
3 are qualitatively very similar to the three-dimensional scal-WhereA(r) is the function whose Fourier transform is given
ing function of the lowest-Landau-level approximation esti-iN EQ- (16). We find that

j d3r”A(r,r”)A(r”,r’)=ei<x+x’)(y*y’)BO/ZK2(r— r/)7
(A3)
with

én
&
T

Kz(r)=f d3r’ e XYY NB2A (r—r)A(r').  (Ad)

A lengthy, but straightforward calculation shows that the
Fourier transform of\,(r) is

(C| B Co)HaJZV(mJg-1 K-1 TO.M97)

&
©
T

Ar(k)=——=—. (A5)

vH 12v (T -0.747 )

When By=0, this reduces to the familiar fact thaf (k?

FIG. 4. Experimental data for the specific-heat scaling function+ to) ~1]/dto=— (k?+ ) ~2. The functionA4(k) defined in
as reported in Ref. 4. Eq. (25) is equivalent to
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d3k’ . Using the expressiofil8) for D(k) and the first expression
Ag(k)zf 2 )3A(k’)A2(k+ k") in Eq. (A6) for Az(k), we find that
a
) dD (k)
14 f d3k =—D(k)?A5(k) (A12)
=—5 = A(K")A(k+K’ T S\
2 gty (2m)3 (K)A( ) an
so the third diagram of Fig. 2 is
JIl (k)
=—— . (AB)
dto @) d3k 5
_ 11y (0)=f 3 A3(K)D(K)“A3(k)
In the same way, we can defidg(r—r’) by (27)
f d3r"d3 " A A A f %k DK Ax(k) (A13)
r/! r/!/ r,rH rH,rNI r/II,rI p— —_—
(r,r")A( )A( ) 2m? dtg
= XD YIBO2A 4 (r— 1), (A7) and we obtain
and find that its Fourier transform is 3
™ H<1)(0)+2H<2>(0)—H(3>(0)=—if ak D(K)A5(K)
1 9A5(k) 1 6°A(K) 4 4 4 ity (2m)3 3

SR I R (A8) 3
aA(to,)\o,Bo)

Consider now the self-energy diagrams shown in Fig. 2, N ato (A14)
which are to be evaluated with the external wave vector
equal to zero. The first one is The final diagram in Fig. 2 is
d*k d%k’ — — JII(0
H(”o:f — D(K)Ay(K' ) Akt )0y A(0)— — O
v (0) (2 (2m)? (K)Aa(k")Ax( ) I15P(0)=A5(0) R (A15)
d®k  d3k’ dA(K)— )
= —j 3 3 D(K)——=—A5(k+k’) APPENDIX B: LARGE-MOMENTUM EXPANSIONS
(2m)° (2m) atg
To verify that the constraint equation and the specific heat
(A9) : i .
can be correctly renormalized, and also to assist the numeri-
and the second is cal estimation of the renormalized quantities, we require ex-
5 5, pansions of the subintegral$lg(p;a), Asr(p;a), and
H(Z)(O):f d’k D(K)A(K")Ag(k+k') Ag(p;a). We use the notation indicated in E@4) and the
v (2m)® (2m)® abbreviations=sind andc=cosé. For Ax(p;a), the expan-
— sion
10 d%k d3’ L A(k+K")
3] GO T . 1
(2m)" (2m) 0 AR(p,a;a)=J duexr{—(pzczntoz)u—E(l—e‘zu)pzs2
(A10) 0
so we can use EqAB) to write =p 2—(a—28°)p *+[a?— (6a+4)s?
d3k 0"A3(k) + 1%4]p76+ O(pis) (Bl)
H$>(0>+2H‘;’<0>:—f D(k) —=— . _ )
(2m)° dtg follows trivially from the change of variable=uv/p-. For

(A11) Asr(p; @) we have the expression

p2C2_

® (utu’) (r+7")
ASR:— dU du, N y
2(4m)%?)o sinh(u+u’)

where 7=tanhu and 7’ =tanhu’. By virtue of the symmetry of the integrand under interchange ehdu’, the region of
integration Gsu’=<u yields exactly half of the integral. In this region, we can make the change of variable

252

(u+u')1’2exp[ —(a—1)(u+u’)—-

(B2)

u+u'=v+v’, 4uu’'/(u+u’)=v’ (B3)
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to obtain
1
1 (v+v')ex —(oz—l)(v-i—v’)—Zv'pzcz—a'(v,v’)pzs2
Ang—J dU dU’ y (B4)
4(4m)32Jo v sinhv+v")
|
where r(p;e)=bp t-4aa'® 2+0(p~* (B9)

o(v,v")=[cosiv+v')—cosi\v(v+v'))]/
2sinhv+v'). (BS)

A further change of variable’ =v"/p? facilitates an expan-
sion in powers ofp~ 2, with a result of the form

Azr(p,8;@)=Qo(a)p ?+[Qy(a) + Qu(a)s?]p~*
+[Qa( @)+ Qu(a)s*+ Qs(a)s*]p~°

+0(p~ 9. (B6)
The coefficientQ;(«) are
1 312 o 1/2 e _ _ 1)
ato| [
(B7)
with
Qo(v,a) = 1,

Q1(v,a)=4(v t—cothv+1-a),
Q,(v,@)=2(cothv —v 1),
Q3(v, ) =16 a®>—2a+ 2(cothv — 1+ a)(cothv —v ~1)],
Qu(v,a)=4[5+3(cothv —v 1) (v ~1—4 cothv +2—2a)],
Qs(v,@)=12(cothv —v ~ )2,

The  function TIg(p;«@) satisfies  Jllx(p;a)/da

=—A3r(p; @), but does not itself have an expansion in pow-

ers ofp~2. At B=0, we have the exact result
[1(k;t,0)= (87k) ~tan Y(k/2tY?) =bk™1—4at¥%* 2

+0(k™%), (B8)

with k=|k|, which implies thatlIgz(p;«) has the limiting
form

as a—. By integratingA;x(p; @) with this boundary con-
dition, we obtain the expansion

g(p;a)=bp~*+Ag(a)p~?+0(p~"),  (B10)

which is sufficient for our purposes.

In the constraint Eq(46) and the specific hed#9), sin-
gularities atz— 0 arise from the largg-region of integration
in integrals of the form

d3p
J (Zw)aDR(p;a,Z,B)f(p;a). (B11)

By restricting the range of integration tp|=p,, where the
value of py is immaterial, the leading singularities can be
extracted by means of the power-series expansions given
above. Using the expansiddy *(p;@,z,B)=z+B *%p~?*

+B Y2Ax(a)p 2+ 0O(p~ %), we encounter the three diver-
gent integrals

3
J da’p ! =—Bl’2§lnz+~--,
(2’7T)3 (Z+ B*l/prfl)p4 b
(B12)
f d°p 1 _ 1/2%2—14__”
(277)3 (z+ BflIpr71)2p4 b !
(B13)
d°p 1 Ss
f =—B¥2Z|nz+. ..,
(271_)3 (Z+ B—l/pr—1)3p6 b3
(B14)

where the ellipses represent less singular terms. These re-
sults, together with straightforward, though tedious manipu-
lations of the integral¢B7) suffice to verify that the func-
tions®, E;, andE, have finite limits and, in Eq(46), that
Z6g=—ARS3/2b+ . ..
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