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Critical-point scaling function for the specific heat of a Ginzburg-Landau superconductor
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If the zero-field transition in high-temperature superconductors such as YBa2Cu3O72d is a critical point in
the universality class of the three-dimensionalXY model, then the general theory of critical phenomena
predicts the existence of a critical region in which thermodynamic functions have a characteristic scaling form.
We report an attempt to calculate the universal scaling function associated with the specific heat, for which
experimental data have become available in recent years. Scaling behavior is extracted from a renormalization-
group analysis, and the 1/N expansion is adopted as a means of approximation. The estimated scaling function
is qualitatively similar to that observed experimentally, and also to the lowest-Landau-level scaling function
used by some authors to provide an alternative interpretation of the same data. Unfortunately, the 1/N expan-
sion is not sufficiently reliable at small values ofN for a quantitative fit to be feasible.
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I. INTRODUCTION

In recent years, a considerable body of experimental
dence has accumulated to suggest that the zero-field tr
tion in certain high-temperature superconductors, most n
bly YBa2Cu3O72d ~YBCO!, is a critical point in the
universality class of the three-dimensionalXY model.1–7 If
this is the case, then, in the presence of a sufficiently sm
magnetic fieldB, the specific heat is expected to have a s
gular part which exhibits the scaling behavior

Csing~T,B!5B2a/2nC~x!, ~1!

where a'20.013 andn'0.67 are critical exponents an
the scaling variable isx5(T2TC)B21/2n. Similar scaling
forms are expected for other thermodynamic quantities, s
as the magnetization. In the limitB→0, the scaling function
must behave asC(x)→C6uxu2a, so thatCsing(T,0)5C6uT
2TCu2a, where1 refers toT.TC and 2 to T,TC . For
YBCO, zero-field measurements of the specific heat p
sented by several authors seem to agree well with
prediction4,8 and to be consistent with the universal values
a and of the amplitude ratioC1 /C2 as determined by pre
cision measurements of the superfluid transition in4He,
which is also in the universality class of the thre
dimensionalXY model.9,10 A claim has recently been mad
that the zero-field singularity is actually characterized by d
ferent exponentsa1 anda2 , above and belowTC , which
would not be consistent with any ordinary type of critic
point.11 It has also been argued, though, that this conclus
rests on an inappropriate background subtraction.12

In a nonzero applied field, one can test the scaling fo
~1! by the extent to which data forBa/2nCsing(T,B) collapse
to a common curve when plotted as a function ofx. Here,
matters are complicated by the fact that a different kind
scaling behavior

C~T,B!'CLLL ~xLLL ! ~2!

is expected when only the lowest Landau level~LLL ! is
significantly occupied.13,14 Here, the scaling variable i
xLLL 5@T2TC2(B)#/(TB)2/3, whereT2TC2(B) or, equiva-
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lently, B5BC2(T) is the upper critical field of the Ginzburg
Landau theory. Sincea in Eq. ~1! is very small, and 1/2n
'0.75, the two predictions are rather hard to distingui
Some authors claim that lowest-Landau-level scaling wo
just as well as, or indeed better than, critical-po
scaling.15–21 For HgBa2Ca2Cu3O81d ,22 specific-heat data
appear to collapse to a common curve when plotted in
form of Eq.~1!, but the scaling functionC(x), which ought to
be universal, is apparently rather different from that fou
for YBCO. For LuBa2Cu3O7, the authors of Ref. 23 find tha
a two-dimensionallowest-Landau-level scaling form best fi
the data, though they claim that it is also consistent w
three-dimensionalXY scaling for fields below 1 T. Most re
cently, Junodet al.24 have concluded that optimally dope
YBCO is the only material to show convincing evidence
critical-point scaling.

Theoretically, it seems that the scaling form~1! is an un-
ambiguous prediction of the theory of critical phenomen25

and ought to be observed sufficiently close to the zero-fi
critical point. Lowest-Landau-level scaling, on the oth
hand, is to be expected in large fields, in the neighborhoo
the upper critical field. There is in principle no region whe
both scaling forms could be simultaneously valid.26 There is,
however, no reliable means of estimating the largest field
which critical-point scaling ought to be observable or t
smallest field consistent with lowest-Landau-level scalin
Calculations are somewhat simplified by the lowest-Land
level approximation, and scaling functions have been
tained by both perturbative27–29 and nonperturbative30 meth-
ods. In particular, Tesˇanović and Andreev30 have obtained
scaling functions which agree quite well with experimen
data for the specific heat and magnetization of YBC
though the fit is rather better in the case of the magnetiza
than the specific heat.18

For the critical-point scaling function, to the best of o
knowledge, no theoretical estimate has been obtained~al-
though some general consequences of scaling have been
cussed in Ref. 31!, and the calculation of this scaling func
tion is the object of the work reported here. The calculat
is based on the Ginzburg-Landau-Wilson model of an iso
pic superconductor. Although the superconductors of inte
©2001 The American Physical Society06-1
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are anisotropic, layered materials, this seems to be a rea
able approximation in the case of YBCO. More generally,
fact, it is the divergence of the coherence length near a c
cal point which gives rise to characteristic critical pheno
ena. To the extent that the critical behavior is that of a thr
dimensional system, therefore, one might expect
universal scaling function for an isotropic system to be t
observed in the asymptotic critical region. We assume
the magnetic coupling is weak enough for fluctuations in
vector potentialA(r) to be neglected. In fact, it is only in thi
approximation that critical behavior is to be expected.32 One
barrier to this calculation is that, in the low-field regime,
the Landau levels must be included, and the eigenfunct
are extremely inconvenient to deal with. Here, we exploit
integral representation of the order-parameter propagator25 in
which the sum over Landau levels is carried out once and
all.

Our initial attempts to estimate the scaling functionC(x)
made use of perturbation theory, which yields accurate
sults for the critical exponents. Unfortunately, perturbat
theory does not yield a well-controlled approximation to t
function C(x), because it gives a spurious singularity in t
neighborhood ofTC2(B) and we have been unable to cu
this problem satisfactorily byad hocmethods. The alterna
tive we adopt here is to study a generalized Ginzbu
Landau-Wilson superconductor having an order param
with N complex components and to make use of the exp
sion in powers of 1/N. The scaling function must be ex
tracted by means of a renormalization-group analysis. C
ously, we have not found in the literature a formulation of t
renormalization group that is well adapted to the use of
1/N expansion as a means of approximation. We have th
fore developed a suitable formulation, which is presented
detail for the zero-field case in Ref. 33. The extension of
1/N formalism and the renormalization-group analysis to
case of a nonzero magnetic field are summarized in S
II–IV below. The calculation of the scaling function require
a numerical means of estimating several cumbersome
grals, and the techniques we have devised for doing this
described in Sec. V. As has long been known in connec
with the estimation of critical exponents, the convergence
the 1/N expansion is very poor. The next-to-leading-ord
calculations reported here do not yield meaningful results
small values ofN ~in particular for the physically relevan
value N51), but for larger values we obtain scaling fun
tions which are qualitatively similar to that observed expe
mentally. These results are presented and discusse
Sec. VI.

II. THE 1 ÕN EXPANSION

We consider the Ginzburg-Landau-Wilson theory for
isotropic superconductor withN complex order-paramete
componentsf i(r) in a fixed, uniform magnetic field o
strengthB0. It is defined by the effective reduced Ham
tonian density

H5(
i 51

N

$u@“2 iA~r!#f i~r!u21t0uf i~r!u2%

1
l0

4NS (
i 51

N

uf i~r!u2D 2

, ~3!
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where t0 is taken to be linear in temperature (t0}T2T0),
and the coupling strengthl0 to be temperature independen
A convenient choice of gauge for the magnetic vector pot
tial is A(r)5B0(0,x,0), corresponding to a uniform field in
thez direction, and we have absorbed the charge of a Coo
pair into the magnitudes ofA andB0. As explained in Ref.
33, a standard integral transformation of the Hubba
Stratonovich type allows us to express the partition funct
as a functional integral over an auxiliary fieldC,

Z5NE )
i 51

N

Df iDf i* expF2E d3rHG ~4!

5E DC exp@2NHeff~C!#, ~5!

where the effective Hamiltonian is

Heff~C!5E d3rl0
21C2~r!2Trr,r8ln D~r,r8;C! ~6!

andN is an irrelevant normalization constant. The propag
tor D(r,r8,C) is the solution of

@2¹212iB0x]y1B0
2x21t01 iC~r!#D~r,r8;C!5d~r2r8!.

~7!

As in Ref. 33, it is helpful to formulate the 1/N expansion in
terms of a self-energyt̃ 0, which can be defined as follows
The full two-point function

G(2)~r,r8!5^f1* ~r!f1~r8!&

5Z21E DCD~r,r8;C!e2NHeff(C) ~8!

can be expressed as

G(2)~r,r8!5E dkzds

~2p!2
B0(

n

xkz ,s,n~r!xkz ,s,n* ~r8!

G (2)~n,kz!
, ~9!

where thexkz ,s,n(r) are eigenfunctions of the differentia
operator in Eq.~7!, whose eigenvalues are the Landau lev
E(n,kz)5kz

21(2n11)B01t0, and we define

t̃ 05G (2)~0,0!. ~10!

In the limit B0→0, this agrees with the definition adopted
Ref. 33. Because the Landau eigenfunctions are extrem
inconvenient to deal with, we shall exploit the fact th
e2 i (x1x8)(y2y8)B0/2G(2)(r,r8) is a translationally invariant
function to write

G(2)~r,r8!5ei (x1x8)(y2y8)B0/2E d3k

~2p!3
eik•(r2r8)G(2)~k!.

~11!

Using the eigenfunctions given in Ref. 25, we find
6-2
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CRITICAL-POINT SCALING FUNCTION FOR THE . . . PHYSICAL REVIEW B 64 184506
@G (2)~0,kz!#
215~pB0!21E dkxdky e2(kx

2
1ky

2)/B0G(2)~k!.

~12!

Owing to the factors ofN multiplying Heff(C) in Eqs.~5!
and ~8!, the 1/N expansion is generated by the method
steepest descent. We expandC about the position-
independent saddle point by writing

C~r!5 i ~ t01B02 t̃ 01N21d!1~2N!21/2c~r!, ~13!

whered is defined by the condition̂c(r)&50. The propa-
gator D(r,r8;C) can be expanded asD(r,r8;C)5D(r,r8)
1O(N21/2), where the leading term is the solution of

@2¹212iB0x]y1B21 t̃ 02B0#D~r,r8!5d~r2r8!.
~14!

In real space, the diagrammatic expansion is identical to
explained in Ref. 33, to which we refer the reader for deta
except that the propagators are modified by the presenc
the magnetic field. Thef propagatorD(r,r8) is given by

D~r,r8!5ei (x1x8)(y2y8)B0/2E d3k

~2p!3
eik•(r2r8)D~k!,

~15!

where, as obtained in Ref. 25,D(k) has the integral repre
sentation

D~k!5E
0

`

du ~coshB0u!21

3exp@2~kz
21 t̃ 02B0!u2~kx

21ky
2!t~u!# ~16!

with t(u)5B0
21tanhB0u. The c propagatorD(r2r8) is

translationally invariant. Its inverse is

D21~r2r8!5l0
21d~r2r8!1

1

2
D~r,r8!D~r8,r! ~17!

and its Fourier transform is

D~k!5@l0
211P~k!#21, ~18!

where

P~k!5
1

2E d3k8

~2p!3
D~k8!D~k81k!

5S 1

4p D 3/2B0

2 E
0

`

dudu8
~u1u8!21/2

sinhB0~u1u8!

3expF2
uu8

u1u8
kz

22
t~u!t~u8!

t~u!1t~u8!
~kx

21ky
2!

2~u1u8!~ t̃ 02B0!G . ~19!

To make use of this expansion, we need to determine
countertermd introduced in Eq.~13! and the relation be-
18450
f

at
,
of

e

tween the self-energyt̃ 0 and the variablest0 , l0, and B0
with which we started. Consider first the expansion for t
two-point functionG(2)(r,r8) shown in Fig. 1~a!. The first
term is justD(r,r8), which contains the exact self-energyt̃ 0,
and satisfies Eq.~10! by itself. Thus, the countertermd is
required to cancel the one-loop contribution atn5kz50 and
we find

d5
1

2pB0
E dkkdkye

2(kx
2
1ky

2)/B0E d3k8

~2p!3

3D~k1k8!D~k8!ukz50

5
1

2E d3k

~2p!3
D̂~k!D~k!, ~20!

where

D̂~k!5E
0

`

du exp@2~kz
21 t̃ 0!u2~2B0!21

3~12e22B0u!~kx
21ky

2!#. ~21!

The requirement that̂c(r)&50 yields a constraint equation
which implicitly determinest̃ 0. Figure 1~b! shows the expan-
sion of ^c(r)& to order 1/N; the functionf is the coefficient
of c(r) in Heff , as given in Ref. 33. From this we obtain

t05F0~ t̃ 0 ,l0 ,B0![ t̃ 02B02
l0

2
D

1N21Fl0

4
A2d@11l0P~0!#G , ~22!

where

D~ t̃ 0 ,l0 ,B0!5E d3k

~2p!3
D~k!

5S 1

4p D 3/2

B0E
0

`

du
exp@2~ t̃ 02B0!u#

u1/2sinhB0u
,

~23!

A~ t̃ 0 ,l0 ,B0!5E d3k

~2p!3
D3~k!D~k!. ~24!

FIG. 1. Diagrammatic representation of~a! the order-paramete
two-point function and~b! the expectation valuêc(r)& at next-to-
leading order.
6-3
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DOMINIC J. LEE AND IAN D. LAWRIE PHYSICAL REVIEW B 64 184506
The function D3(k) corresponds to the loop of threef
propagators in Fig. 1~b!, and is defined by

D3~k!5E d3r 8d3r 9eik•(r82r9)D~r,r8!D~r8,r9!D~r9,r!.

~25!

Straightforward but tedious algebra suffices to show that
independent ofr and is given by

D3~k!52
]P~k!

] t̃ 0

. ~26!

Our aim is to investigate the scaling properties of t
specific heat. Within the Ginzburg-Landau-Wilson appro
mation, the specific heat per unit volume per order-param
component is given by

C5
1

2NV

]2 ln Z

]t0
2

5~2N!21E d3r(
i , j

^uf i~0!u2uf j~r!u2&c ,

~27!

whereV5*d3r is the volume and̂ •••&c denotes the con
nected correlation function. This correlation function can
obtained directly as

^uf i~0!u2uf j~r!u2&c

5d i j Z
21E DCD~0,r;C!D~r,0;C!e2NHeff,

~28!

but it is not hard to obtain the convenient expression

C5l0
21@12l0

21D~0!#, ~29!

whereD(k)5D(k)1O(N21) is the Fourier transform of the
two-point function^c(r)c(r8)&. To order 1/N, this two-point
function is given by the sum of diagrams shown in Fig.
and is conveniently expressed in terms of a self-ene
Pc(k) as

D~k!5D~k!1N21D~k!Pc~k!D~k!. ~30!

As explained in Appendix A, the self-energy atk50 is given
by

Pc~0!52
1

4

]A

] t̃ 0

1d
]P~0!

] t̃ 0

52
]

] t̃ 0
F1

4
A2dP~0!G2

]d

] t̃ 0

P~0!, ~31!

FIG. 2. Diagrammatic representation of the two-point functi
for the auxiliary fieldc at next-to-leading order.
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the second expression being convenient for the purpos
renormalization.

III. RENORMALIZATION

The scaling behavior of thermodynamic functio
emerges in the usual way from a renormalization-gro
analysis, but in the context of the 1/N expansion this requires
a nonstandard renormalization scheme, which is develo
in detail in Ref. 33 for the theory withB050. According to
this scheme, renormalized variablest̃ , t, z, andB are defined
by

t̃ 05m2 t̃ F12N21
S3

6b
ln z1O~N22!G , ~32!

t05t0c1m2t
~z12a!

z F12N21
2S3

3b
ln z1O~N22!G ,

~33!

l0
215m21zF11N21

4S3

3b
ln z1O~N22!G , ~34!

B05m2B. ~35!

In these expressions,t0c is the value oft0 at the zero-field
critical point, S35(2p)22 is the usual factor arising from
angular integrations, and the constantsa51/16p and b
51/16 arise from the large- and small-momentum limits
P(k) whenB50. As usual,m is an arbitrary renormalization
scale, with the dimensions of inverse length. The magn
field requires no renormalization; the definition~35! simply
serves to makeB dimensionless, as aret̃ , t, and z. In this
scheme, critical behavior is governed by an infrared-sta
renormalization-group fixed point atz50. The criterion for
renormalization is that renormalized thermodynamic fun
tions should have finite, nonzero limits asz→0, and we have
implemented this requirement by a ‘‘minimal subtraction’’
the leading singularities proportional to lnz. It is crucial to
our analysis that, as in the perturbative renormalization
Ref. 25, the presence of a magnetic field introduces no a
tional divergences beyond those encountered atB50 and we
shall return to this point shortly.

For our immediate purposes, we need renormalized
sions of the constraint Eq.~22! and the specific heat~29!.
The various integrals and subintegrals from which these
constructed must be reexpressed in terms of the renorma
variables. To this end, it is convenient to introduce the
mensionless quantities,

PR~p;a!5~m2B!1/2P~k;m2 t̃ ,m2B!, ~36!

DR~p;a,z,B!5@z1B21/2PR~p;a!#21, ~37!

DR~a!5~m2B!21/2@D~m2 t̃ ,m2B!2D~0,0!#, ~38!

D̂R~p;a!5m2BD̂~k;m2 t̃ ,m2B!, ~39!
6-4
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CRITICAL-POINT SCALING FUNCTION FOR THE . . . PHYSICAL REVIEW B 64 184506
AR~a,z,B!5m21@A~m2 t̃ ,mz21,m2B!

24d~m2 t̃ ,mz21,m2B!P~0;m2 t̃ ,m2B!#,

~40!

dR~a,z,B!5~m4B!21/2@d~m2 t̃ ,mz21,m2B!2d~0,mz21,0!#,

~41!

D3R~p;a!5~m2B!3/2D3~k;m2 t̃ ,m2B!, ~42!

with rescaled variablesp anda defined by

p5~m2B!21/2k and a5 t̃ /B. ~43!

Subsequently, it will also be helpful to write

pz
25p2cos2u, px

21py
25p2sin2u. ~44!

With this notation, the constraint equation becomes

t5~z12a!21F~ t̃ ,z,B!, ~45!

F~ t̃ ,z,B!5z~ t̃ 2B!2
1

2
B1/2DR1N21

3F1

4
AR1B1/2S DR1

a

4

]DR

]a D S3

3b
ln z2zB1/2dR

1S 1

2
t̃ 2

2

3
BDS3

b
zln zG1O~N22!. ~46!

The dimensionless, renormalized specific heatCR( t̃ ,z,B) is
defined by

C~ t̃ 0 ,l0 ,B0!5C~0,l0,0!1C1l0
23~ t02t0c!

1Z̄t
22CR~ t̃ ,z,B!, ~47!

where

Z̄t5
~z12a!

z F12N21
2S3

3b
ln z1O~N22!G ~48!

is the renormalization factor appearing in Eq.~33!. The di-
mensionless constantC1 multiplies a nonsingular term
whose presence in three dimensions was first noted by
and Hikami34 and whose role in our renormalization schem
is discussed in Ref. 33. Writing CR( t̃ ,z,B)5(z
12a)2C̄R( t̃ ,z,B), we find

C̄R~ t̃ ,z,B!52DR~0;a,z,B!2
1

2
C1F~ t̃ ,z,B!

1N21@E1~ t̃ ,z,B!1E2~ t̃ ,z,B!

1E3~ t̃ ,z,B!#1O~N22!, ~49!

where
18450
be

E15
1

4
DR

2B21
]AR

]a
2DR

5S3

6b
ln z2DR

2B21/2a
]PR

]a

S3

6b
ln z,

~50!

E25DR
2B21PR

]dR

]a
2

S3

b
z212DR

S3

2b
ln z

2C1S z~ t̃ 2B!2
1

2
B1/2DRDS3

b
ln z, ~51!

E35DR
2 4S3

3b
z ln z, ~52!

and DR and PR stand forDR(0;a,z,B) and PR(0;a), re-
spectively. The integralsAR(a,z,B) anddR(a,z,B) defined
in Eq. ~40! and ~41! are both singular whenz→0, but each
of the quantitiesF( t̃ ,z,B) andEi( t̃ ,z,B) has a finite limit,
provided that we chooseC1522/b2. To verify this assertion
is not an entirely trivial matter. In particular, to verify that th
expression~46! for F( t̃ ,z,B) has a finite limit, it is neces-
sary to show that

AR~a,z,B!52B1/2S 4DR~a!1a
]DR~a!

]a D S3

3b
ln z

1O~z ln z!. ~53!

Because the singularities arise from the large-p region of
integration, the required cancellations can be verified
means of large-p expansions of the subintegralsPR(p;a),
D3R(p;a), and D̂R(p;a), which are discussed in Appendi
B.

IV. RENORMALIZATION GROUP AND SCALING

The fact that the unrenormalized theory is independen
the renormalization scalem leads in the standard way t
renormalization-group equations for the renormalized qu
tities t( t̃ ,z,B) andCR( t̃ ,z,B), which take the form

Fb~z!
]

]z
2~22h~z!! t̃

]

] t̃
22B

]

]B
1

1

n~z!G t~ t̃ ,z,B!50,

~54!

Fb~z!
]

]z
2~22h~z!! t̃

]

] t̃
22B

]

]B
2

a~z!

n~z! GCR~ t̃ ,z,B!50,

~55!

where a(z)5223n(z) and the remaining functions ar
those derived in Ref. 33. In contrast to perturbative ren
malization schemes, the additive renormalizations of the s
cific heat in Eq.~47! are independent ofm, so the associated
renormalization-group Eq.~55! is homogeneous. The
asymptotic critical behavior with which we are concern
here is governed by the infrared-stable fixed point atz50,
whereb(0)50 and the other functions reduce to the critic
exponents
6-5
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n512
16

3p2N
1O~N22!, a5211

16

p2N
1O~N22!,

h5
4

3p2N
1O~N22!. ~56!

For z50, the renormalization-group equations are equival
to the relations

t~ t̃ ,0,B!5 l 1/nt~ l 2(22h) t̃ ,0,l 22B!

5 l 1/n~2a!21F~ l 2(22h) t̃ ,0,l 22B!, ~57!

CR~ t̃ ,0,B!5 l 2a/nCR~ l 2(22h) t̃ ,0,l 22B!, ~58!

wherel is an arbitrary scaling factor. The functionst( t̃ ,0,B)
and CR( t̃ ,0,B) have infrared singularities when their fir
argumentt̃ vanishes. On the right-hand sides of Eqs.~57!
and~58!, we exponentiate these singularities into the pref
tors by choosingl to satisfy l 2(22h) t̃ 51. Then, by setting
l 5B1/2L, we find thatCR has the scaling form

CR5B2a/2nC~ tB21/2n!, ~59!

where, withx5tB21/2n, the scaling function is

C~x!5L2a/n~x!CR„1,0,L22~x!…, ~60!

the functionL(x) being determined by the constraint equ
tion

2ax5L1/n~x!F„1,0,L22~x!…. ~61!

To obtain a numerical estimate of the scaling functionC(x),
we need an approximate means of evaluating the integra
Eqs. ~46! and ~49! which is discussed in the following sec
tion.

V. NUMERICAL ESTIMATION OF INTEGRALS

In order to determine the functionsCR(1,0,L22) and
F(1,0,L22), and hence the scaling functionC(x), we need to
estimate the renormalized counterparts of integrals suc
Eqs.~20! and ~24!. This requires analytic approximations
the functionsPR(p;a), D̂R(p;a), andD3R(p;a), which are
themselves defined by rather intractable integrals. This
tion indicates the methods of approximation we have us
focusing on the example ofD3R(p;a), which we express in
terms of the variables~44! asD3R(p,u;a). Having used the
renormalization group to replacet̃ with 1 andB with L22 in
Eqs.~60! and ~61!, we havea5 t̃ /B5L2.

For large values ofp, we approximate all of the subinte
grals by means of the large-momentum expansions de
oped in Appendix B. Numerically, this turns out to be a go
approximation forp>6. In particular, this strategy allows u
to cancel analytically the divergences that arise at the fi
point z50.

For p,6, an expansion in inverse powers ofa is possible
when a is large enough. More specifically, in the case
18450
t

-

-

in

as

c-
d,

l-

d

f

D3R , we have an expansion of the form

D3R~p,u;a!5a23/2@ f 0~q,u!1a21f 1~q,u!

1a22f 2~q,u!1O~a23!#, ~62!

whereq5a21/2p. @This entails, of course, a rescaling of th
integration variable in the final integral~24!.# Using the rep-
resentation ~B4!, the change of variablesv5w/a, v8
5w8/a leads to a power-series expansion in which each
the remaining integrals can be calculated analytically.
find that the functionsf i(q,u) are given by

f 05~8p!21Q, f 15~16p!21~Q18Q2!,

f 25~96p!21@3Q116Q21~12814q2s2!Q3196q2s2Q4#,

~63!

whereQ5(q214)21 ands5sinu. In practice, we have use
this approximation fora.2.25, where it appears to yiel
results of satisfactory accuracy.

For p,6 and a,2.25 no systematic expansion in an
small parameter will serve our purpose. Instead, we h
devised an approximation scheme which we again illustr
for the example ofD3R . The basic strategy is to evaluate th
double integral~B2! numerically for selected values ofp, u,
anda and to construct an interpolating function from the
numerical values. To interpolate simultaneously in all thr
variables is a difficult undertaking, however. To simplify
we introduce a further approximation, which reduces
function of three variables to several functions, each depe
ing on only two variables. In the expression~B2!, we make
the change of integration variables

u5r cos2f, u85r sin2f. ~64!

The integral becomes~again, with the notations5sinu and
c5cosu)

D3R~p,u;a!5
1

2~4p!3/2E0

p/2

df sin~2f!E
0

`

dr
r3/2

sinhr

3exp@2~a21!p2~p2c2/4!r sin2~2f!

2p2s2T ~r,f!#, ~65!

T ~r,f!5
tanh~r cos2f!tanh~r sin2f!

tanh~r cos2f!1tanh~r sin2f!
. ~66!

Our approximation scheme is based on the observation
T(r,f)'(r/4)sin2(2f) for r→0 while T(r,f)' 1

2 for r
→`, except at the end pointsf50 andf5p/2. We divide
the region of integration into two parts: region I, where
,r,S(f), and region II, whereS(f),r,`. The bound-
ary r5S(f) is determined in a manner to be explain
shortly. We haveD3R5D3R

I 1D3R
II , where
6-6
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D3R
I 5

1

2~4p!3/2E0

p/2

df sin~2f!E
0

S(f)

dr
r3/2

sinhr

3exp@2~a21!r2~p2r/4!sin2~2f!1p2s2XI#,

~67!

D3R
II 5

e2p2/2

2~4p!3/2E0

p/2

df sin~2f!E
S(f)

`

dr
r3/2

sinhr

3exp@2~a21!r2~p2c2/4!~r sin2~2f!22!

1p2s2XII# ~68!

with

XI~r,f!5@~r/4!sin2~2f!2T ~r,f!#, ~69!

XII~r,f!5@ 1
2 2T ~r,f!# ~70!

and we propose to expand the integrands of Eqs.~67! and
~68! in powers ofXI and XII , respectively. The boundaryr
5S(f) is chosen as the locus on whichXI5XII , namely,
S(f)52/sin2(2f), so that the two expansions match term
term on the boundary. With this choice,XI(r,f) and
XII(r,f) are always smaller than the boundary val
XS(f)5 1

2 2T(S(f),f), which itself has a maximum valu
of approximately 0.18 atf50 andf5p/2. Moreover, the
quantitiesp2s2XA are positive, so the expansion of each
tegrand converges monotonically. This is not necessarily
of the integrals, but in practice we have found that retain
only the first two terms of each expansion yields results t
are fairly accurate and match smoothly to the large-a and
large-p expansions. It will be seen that each term in t
expansion ofD3R

I (p,u;a) is of the form (p2s2)nf n
I (p2,a),

while each term in the expansion ofD3R
II (p,u;a) is of the

form e2p2/2(p2s2)nf n
II(p2c2,a). Each of the functionsf n

A de-
pends only on two variables. We have obtained interpolati
for these functions, forn50,1, giving final approximations
for D3R

A of the form

D3R
I ~p,u;a!5F R1,0

I ~a!

11 (
n51

6

R1,n~a!p2nG 1/6

1p2s2
R2,0

I ~a!

F11 (
n51

6

R2,n
I ~a!p2nG1/2, ~71!

D3R
II ~p,u;a!5

e2p2/2R1,0
II ~a!@11R1,1

II ~a!p2c2#

11R1,2
II ~a!p2c21R1,3

II ~a!p4c4

1p2s2
e2p2/2R2,0

II ~a!

11R2,1
II ~a!p2c2

, ~72!

where theRi , j
A are rational approximants obtained from t

Thiele interpolation formula. The form of these interpolati
18450
-
e

g
t

s

functions @and those forPR(p;a) and D̂R(p;a), which we
do not give explicitly# is chosen so as to give the corre
behavior at large values ofp and to allow the integrals ove
u to be performed analytically in the final calculations ofAR
anddR .

VI. RESULTS AND DISCUSSION

As compared with perturbation theory~the expansion in
powers ofl0!, the 1/N expansion has a key advantage wh
applied to the problem of a superconductor in a magn
field. At the lowest order of perturbation theory, it is not ha
to show that the specific heat behaves as

C;B0~ t02t0c1B0!23/2;B0@T2TC2~B0!#23/2 ~73!

in the neighborhood of the lineT5TC2(B0). In terms of the
formalism used in this paper, this approximation correspo
to taking C'P(0) in Eq. ~29! and t̃ 0't02t0c1B0 in the
constraint Eq.~22!. This divergence is entirely spurious. Ex
perimentally, there is no sign of it and theoretically it can
removed by means of a self-energy resummation of the H
tree variety. The 1/N expansion incorporates this resumm
tion in a way which allows a renormalization-group analy
of the scaling behavior to be systematically pursued.

On the other hand, the 1/N expansion has serious draw
backs. Even at the next-to-leading order we have used h
calculations are extremely cumbersome, and this is unfo
nate, because the convergence of the expansion is no
ously poor. With the relevant valueN51 for the number of
complex order-parameter components, the specific-heat
ponent given in Eq.~56! is a'0.62; compared with the bes
theoretical and experimental value for theXY modelaXY'
20.013, it is about fifty times too large and has the wro
sign! For the correlation-length exponent, we haven'0.46
compared withnXY'0.67.

Using the formalism and numerical methods summariz
above, we have obtained estimates for the specific-heat s
ing functionC(x) as given in Eq.~60!. Here too, we find that
the convergence is poor; for small values ofN, the next-to-
leading terms are larger than the leading terms. Matters
somewhat improved if theXY exponentsnXY and aXY are
substituted in Eqs.~60! and~61! for those shown in Eq.~56!.
Here, we present only the best results~as judged by their
qualitative similarity to experimental data! that we have been
able to obtain by this strategy. Figure 3 shows the sca
function calculated for values ofN between 10 and 20 and
for comparison, Fig. 4 reproduces the experimental data
ported in Ref. 4. For more negative values ofx than those
shown in Fig. 3, the calculated curves diverge rapidly, eit
to large positive values or to large negative values, and
approximations are clearly inadequate in this region. T
reason for this is not entirely clear to us. One possibility
that our neglect of the nonzero order parameter^f(r)& in the
mixed state becomes seriously inadequate at temperatu
little below TC2(B0). In the lowest-Landau-level approxima
tion, it seems to be possible to continue the scaling funct
6-7
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of the homogeneous normal state to temperatures well be
TC2(B0), but the same may not be true of the critical-po
scaling function.

Since we cannot obtain reliable results for the physica
relevant number of order-parameter componentsN51, a de-
tailed fit of our calculated scaling function to the data wou
have little meaning, and we have not attempted it. For lar
values ofN, it is clear that the calculated scaling functio
does reproduce the qualitative features of the experimen
determined function in the region where our approximatio
appear to work. Tentatively, at least, it seems reasonab
conclude that the critical-point scaling implied by th
Ginzburg-Landau-Wilson model is consistent with what
actually observed. A less tentative conclusion is that so
much better method of approximation than those curre
available is needed to test this scaling prediction quan
tively.

Whether the scaling observed in YBCO really corr
sponds to a regime dominated by critical-point fluctuation
another matter. Indeed, the scaling functions exhibited in F
3 are qualitatively very similar to the three-dimensional sc
ing function of the lowest-Landau-level approximation es

FIG. 3. Numerical results for the specific-heat scaling funct
C(x) for several values ofN.

FIG. 4. Experimental data for the specific-heat scaling funct
as reported in Ref. 4.
18450
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mated by Tesaˇnović and Andreev.30 It is far from clear, there-
fore, that a quantitatively more reliable estimate of t
critical-point scaling function, should it be obtainable, wou
serve to discriminate between the two scaling hypothese

In this paper, we have attempted to estimate the sca
function associated with asymptotic critical behavior, whi
is controlled by the renormalization-group fixed pointz50.
In principle, the formalism and numerical approximatio
described here should also facilitate an investigation of
competition between low-field critical-point scaling an
high-field lowest-Landau-level scaling in the intermediate
gion where neither type of scaling is exactly valid. We pl
to address this issue in a future publication.
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APPENDIX A: CALCULATION OF VERTEX FUNCTIONS

As explained in detail in Ref. 33, the basic elements
Feynman diagrams in the 1/N expansion are vertex function
of the form

Dn~r1 , . . . ,rn!5D~r1 ,r2!D~r2 ,r3!•••D~rn ,r1!. ~A1!

These are gauge-invariant functions, and therefore also tr
lationally invariant, but in the presence of a magnetic fie
the form of the propagator~15! makes them somewhat awk
ward to handle. For the purposes of this paper, the fact
we usually need to integrate over one or more of the ar
mentsr i leads to some simplification. Let us write

D~r,r8!5ei (x1x8)(y2y8)B0/2D̄~r2r8!, ~A2!

whereD̄(r) is the function whose Fourier transform is give
in Eq. ~16!. We find that

E d3r 9D~r,r9!D~r9,r8!5ei (x1x8)(y2y8)B0/2D̄2~r2r8!,

~A3!

with

D̄2~r!5E d3r 8 ei (x8y2y8x)B0/2D̄~r2r8!D̄~r8!. ~A4!

A lengthy, but straightforward calculation shows that t
Fourier transform ofD̄2(r) is

D̄2~k!52
]D~k!

] t̃ 0

. ~A5!

When B050, this reduces to the familiar fact that]@(k2

1 t̃ 0)21#/] t̃ 052(k21 t̃ 0)22. The functionD3(k) defined in
Eq. ~25! is equivalent to

n

6-8
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D3~k!5E d3k8

~2p!3
D~k8!D̄2~k1k8!

52
1

2

]

] t̃ 0
E d3k8

~2p!3
D~k8!D~k1k8!

52
]P~k!

] t̃ 0

. ~A6!

In the same way, we can defineD̄3(r2r8) by

E d3r 9d3r-D~r,r9!D~r9,r-!D~r-,r8!

5ei (x1x8)(y2y8)B0/2D̄3~r2r8!, ~A7!

and find that its Fourier transform is

D̄3~k!52
1

2

]D̄2~k!

] t̃ 0

5
1

2

]2D~k!

] t̃ 0
2

. ~A8!

Consider now the self-energy diagrams shown in Fig
which are to be evaluated with the external wave vec
equal to zero. The first one is

Pc
(1)~0!5E d3k

~2p!3

d3k8

~2p!3
D~k!D̄2~k8!D̄2~k1k8!

52E d3k

~2p!3

d3k8

~2p!3
D~k!

]D~k!

] t̃ 0

D̄2~k1k8!

~A9!

and the second is

Pc
(2)~0!5E d3k

~2p!3

d3k8

~2p!3
D~k!D~k8!D̄3~k1k8!

52
1

2E d3k

~2p!3

d3k8

~2p!3
D~k!D~k8!

]D̄2~k1k8!

] t̃ 0

,

~A10!

so we can use Eq.~A6! to write

Pc
(1)~0!12Pc

(2)~0!52E d3k

~2p!3
D~k!

]D3~k!

] t̃ 0

.

~A11!
18450
,
r

Using the expression~18! for D(k) and the first expression
in Eq. ~A6! for D3(k), we find that

]D~k!

] t̃ 0

52D~k!2D3~k!, ~A12!

so the third diagram of Fig. 2 is

Pc
(3)~0!5E d3k

~2p!3
D3~k!D~k!2D3~k!

52E d3k

~2p!3

]D~k!

] t̃ 0

D3~k! ~A13!

and we obtain

Pc
(1)~0!12Pc

(2)~0!2Pc
(3)~0!52

]

] t̃ 0
E d3k

~2p!3
D~k!D3~k!

52
]A~ t̃ 0 ,l0 ,B0!

] t̃ 0

. ~A14!

The final diagram in Fig. 2 is

Pc
(4)~0!5D3~0!52

]P~0!

] t̃ 0

. ~A15!

APPENDIX B: LARGE-MOMENTUM EXPANSIONS

To verify that the constraint equation and the specific h
can be correctly renormalized, and also to assist the num
cal estimation of the renormalized quantities, we require
pansions of the subintegralsPR(p;a), D3R(p;a), and
D̂R(p;a). We use the notation indicated in Eq.~44! and the
abbreviationss5sinu andc5cosu. For D̂R(p;a), the expan-
sion

D̂R~p,u;a!5E
0

`

du expF2~p2c21a!u2
1

2
~12e22u!p2s2G

5p222~a22s2!p241@a22~6a14!s2

112s4#p261O~p28! ~B1!

follows trivially from the change of variableu5v/p2. For
D3R(p;a) we have the expression
D3R5
1

2~4p!3/2E0

`

du du8

~u1u8!1/2expF2~a21!~u1u8!2
uu8

~u1u8!
p2c22

tt8

~t1t8!
p2s2G

sinh~u1u8!
, ~B2!

wheret5tanhu and t85tanhu8. By virtue of the symmetry of the integrand under interchange ofu and u8, the region of
integration 0<u8<u yields exactly half of the integral. In this region, we can make the change of variable

u1u85v1v8, 4uu8/~u1u8!5v8 ~B3!
6-9
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to obtain

D3R5
1

4~4p!3/2
E

0

`

dv dv8

~v1v8!expF2~a21!~v1v8!2
1

4
v8p2c22s~v,v8!p2s2G

v1/2 sinh~v1v8!
, ~B4!
w

e
iven

r-

re-
pu-

rs

er

e

.
and

C.
where

s~v,v8!5@cosh~v1v8!2cosh~Av~v1v8!!#/

2 sinh~v1v8!. ~B5!

A further change of variablev85v9/p2 facilitates an expan-
sion in powers ofp22, with a result of the form

D3R~p,u;a!5Q0~a!p221@Q1~a!1Q2~a!s2#p24

1@Q3~a!1Q4~a!s21Q5~a!s4#p26

1O~p28!. ~B6!

The coefficientsQi(a) are

Qi~a!5S 1

4p D 3/2E
0

`

dv
v1/2 exp@2~a21!v#

sinhv
Qi~v,a!

~B7!

with

Q0~v,a!51,

Q1~v,a!54~v212cothv112a!,

Q2~v,a!52~cothv2v21!,

Q3~v,a!516@a222a12~cothv211a!~cothv2v21!#,

Q4~v,a!54@513~cothv2v21!~v2124 cothv1222a!#,

Q5~v,a!512~cothv2v21!2.

The function PR(p;a) satisfies ]PR(p;a)/]a
52D3R(p;a), but does not itself have an expansion in po
ers ofp22. At B50, we have the exact result

P~k; t̃ ,0!5~8pk!21tan21~k/2t̃ 1/2!5bk2124a t̃1/2k22

1O~k24!, ~B8!

with k5uku, which implies thatPR(p;a) has the limiting
form
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30Z. Tešanovićand A.V. Andreev, Phys. Rev. B49, 4064~1994!.
31M. Friesen and P. Muzikar, Physica C302, 67 ~1998!.
32B.I. Halperin, T.C. Lubensky, and S.K. Ma, Phys. Rev. Lett.32,

292 ~1974!.
33I.D. Lawrie and D.J. Lee, preceding paper, Phys. Rev. B64,

184505~2001!.
34R. Abe and S. Hikami, Prog. Theor. Phys.51, 1041~1974!.
6-11


