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A renormalization-group scheme is developed for the three-dimensiogaN)-symmetric Ginzburg-
Landau-Wilson model, which is consistent with the use offN&xpansion as a systematic method of approxi-
mation. It is motivated by an application to the critical properties of superconductors, reported in a separate
paper. Within this scheme, the infrared stable fixed point controlling critical behavior appea+® atvhere
z=\"1is the inverse of the quartic coupling constant, and an efficient renormalization procedure consists of
the minimal subtraction of ultraviolet divergenceszat0. This scheme is implemented at next-to-leading
order, and the standard results for critical exponents calculated by other means are recovered. An apparently
novel result of this nonperturbative method of approximation is that corrections to scalingpnfluent
singularitieg do not, as in perturbative analyses, appear as simple power series in the warialif&. At least
in three dimensions, the power series are modified by powersyof In
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[. INTRODUCTION susceptibility x(tg,Ag,A), where ty is proportional toT
—Tc, N\g is a coupling constant which can be taken as tem-
Renormalization-group techniques have long been estalperature independent in the critical region, akds a mo-
lished as the standard formal framework for understandingnentum cutoff of the order of the inverse of a typical inter-
critical phenomen&:* Those based on effective Hamilto- atomic distance. In the limitt—0, we expect this
nians of the Ginzburg-Landau-Wilson type require somesusceptibility to diverge ag~t, ”, wherey is a universal
kind of supplementary approximation if concrete informationexponent which we would like to determine. In general, a
is to be extracted from them, and this is normally providedrenormalization scheme introduces a renormalized suscepti-
by perturbation theory, in the form either of teeexpansion  Dility xr, together with renormalized parameterand A,
introduced originally by Wilson and Fistfeor of a fixed-  Which depend on an arbitrary length scale, gay'. The fact
dimension calculatiof.For O(N) symmetric models, a sys- that physics is independent @f leads to a relation of the
tematic expansion in poF\:vclags ofNLiprovides an alternative Orm
method of approximation.~~ While the methods that have _
been used to extract estimates of critical exponents as power XREM AT =Py (Dxr(tD) (D, AT R), @)
series in 1N are informed by renormalization-group ideas, wherel is an arbitrary number. The prefactB(l) and the
there seems to exist no method for implementing this aptunning variables(l) and\ () depend on how the renormal-
proximation scheme within a systematic renormalizationdization has been implemented. Now, the function
group analysis. The purpose of this paper is to describe &r(t,\,A/u) diverges when its first argumert,approaches
renormalization scheme which does this. zero, but the nature of this singularity is hard to determine
As is well known, the few terms of the /expansions for directly. Suppose, however, that the renormalization scheme

critical exponents that it has been possible to calculate ex1@S been constructed in such a way that

plicitly do not yield accurate results for the small valuedNof I o .

that characterize physically interesting systems, so the devel- Py~ ;o o AMD—=A 2

opment of a formal technique is not especially useful fromin the limit |—0, wherey*, v*, and\* (the “fixed-point”

this point .Of view. Our motivation. for deygloping this coupling are constants. By setting=t*", we find in the

scheme arises from our efforts to estimate critical-point scalﬁmit t—0

ing functions for thermodynamic properties of superconduct-

ors in applied magnetic fields, in particular the specific heat, Y * v*

for whicphpexperin?ental data havg been availabrl)e for some XRILN A ) ~ 7 XR(IN® AL p)). 3

time (see, for example, Ref. 11For this problem, it turns The exponent* will be equal to the true critical exponemt

out that perturbation theory does not yield a well-controlledif yg(1\*,%) has a finite, nonzero value and the renormal-

sequence of approximations. As reported in an accompanyzation scheme must be designed to ensure that this is so. The

ing paper? the 1N expansion is advantageous in this re- exponenty* will then be equal to the critical exponent

spect, and yields qualitatively encouraging results, althougkvhich characterizes the divergence of the correlation length.

guantitative agreement with existing data is still hard to These calculations cannot be carried out exactly, so a

achieve. renormalization scheme must be supplemented by some sys-
In outline, the renormalization-group strategy we proposdematic means of approximation and its details will depend

works as follows. Consider, for example, the order-parameteon this method of approximation. Perturbative methods of
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approximation, involving an expansion in powers\gfrely  tion of this formalism that we have mainly in view is the

on the possibility of expressing exponents suchjass calculation of scaling functions. In particular, the specific

power series ine=4—d, whered is the spatial dimension- heat of a superconductor near its critical point, and in the

ality (although in practice it proves possible also to imple-presence of a magnetic field, is expected to assume the

ment them directly in three dimensionsVear four dimen-  scaling formC(T,B)~B~**C(tB~"*) and we wish to es-

sions, the bare susceptibilityy(to,Ao,A) and other timate the scaling functioﬁ('x), for which experimental data

thermodynamic functions diverge ds—, so the principal &€ available. When the Glnzburg-Landau _model is er_llarged

requirement of a renormalization scheme is to remove thesl® include the magnetic field, the renormalized specific heat

divergences from renormalized functions suchyas One obeys a relation similar to Eq1), namely,

then finds that* is of ordere, so the perturbative analysis ~ . ~ s

can be implemented self-consistently. Cr(t,2,B)=Pc()Cr(t(1).2(1),BI")

For the reasons outlined above, we wish to make use of an -0

alternative approximation scheme consisting of an expansion — |~ /"Cx(1~ @7t 0] ~2B). (4

in powers of 1N with d=3. A systematic means of obtain- o~ o ) ) .

ing the 1N expansion is reviewed in Sec. II. It is facilitated BY Settingt(l)=1 a_n%lz B, we can identify the scaling

by an integral transformation of the Hubbard-StratonovichfUnction asC(x)=L"“*"Cg(1,0L %), with L determined as

type which expresses the partition function as a functionaft function ofx by SOI”tl',?n of theiczonstram_t equation, which

integral over an auxiliary fieldV', with an effective Hamil- thgn has the fornx=|'_ CD(l’OJ_‘ ). Deta|ls'of 'th|s calcu- .

tonianH (). This partition function can be calculated as alatlon are presented in _Ref_. 12; here, our pr_|nC|paI concernis
to explain the renormalization-group formalism that makes it

power series in M by the method of steepest descent. . : : .
Within this expansion, thermodynamic quantities are mosLeaSlble' It happens that special considerations apply to the

. ritical behavior of the specific hédand the impact of these
naturally expressed as functions not of the temperature vark e renormalization-group formalism is discussed in

able t, but rather of the exact inverse susceptibility gec. v

=x L. The temperature dependence gis given implicitly While the main purpose of this paper is to expose details
by solving a constraint equation of the forntg  of the renormalization scheme that will be applied in Ref. 12,
=®d(ty,Ng,A). At lowest order, this constraint equation We also wish to report what we believe to be a novel feature

simply locates the saddle poifit= —i(t,—t,) of the effec- c_>f the renorrparI:zalt\ldon group, rev:alt_ad t;y the n%npertgrb?—
tive HamiltonianH oq(¥). tive nature of the M expansion, that is of some theoretica

In Sec. IIl. a renormalization scheme is exhibited Whichinterest. The leading corrections to asymptotic critical singu-

manifestly extracts the correct critical exponents at Ieading?”t'es, (sorr?etlfmes defscrlbed I"?‘S conf[uer:t f'nQUIa'Z[tm
order. In the case of the susceptibility, the renormalized conP€af in the form of a scaling variablg=(\—\*)|T

. . ~ _ —T¢|®". According to conventional wisdom, the order-
— _ 1 C ’
ztrreggttisﬂugtlo_n—lCDR(t,A,A/,u)b—(I)R.(ﬁR h’)"AI/'U“) it)beyg, parameter susceptibility, say, has a singular part which can
quivalent to Eq1), but with the roles ot an be expressed ag®"%=|T—Tc|” *X(y), where the scaling
xr ' reversed. The substantive issue, addressed in Sec. IV,

X S finction X(y) has a power-series expansionyinin pertur-
how this renormalization scheme can properly be extendef],iq theory, this is automatically true, but th\1éxpan-

to _higher orders_,. The usgal per.turbative strategy fails a.lt thi§ion suggests otherwise. In three dimensions, at least, we
point, because in three @menqus the const(a!nt funebion g thatX(y) contains, in addition to powers gf singular
and other thermodynamic quantities remain finite\as«. .\« \vhich at next-to-leading order are of the foyfin y.

For this reason, we shall actually omit the cutoff altogetherrnis is shown in Sec. IV and further discussed along with
in subsequent sections. We find, however, that the fixed-poir§ ;. other principal finaings in Sec. VI. ’

coupling strengti\* is infinite, and that divergences appear

in the limit A —oo. For this reason, we find it convenient to

deal with the inverse of the renormalized coupliag; A ",

so that the fixed point appearszit=0. In the context of the We consider the standard Ginzburg-Landau-Wilson theory

1/N expansion, then, the primary requirement of a renormalfor N complex fields, defined by the Hamiltonian density

ization scheme is not to remove divergences that appear as

A —oo, but rather to remove those that appearzas0. This 5 , Ao N 5 2

crucial observation is the first result that we wish to report. H:Zl [V i (r)[*+to| i(r)]*+ N 21 [gi(N]?]

The second is a concrete renormalization scheme that actu- a a (5)

ally does remove the divergenceszat0. As shown in Sec.

IV, this can be achieved economically by means of a “mini-in which t, is taken to be linear in temperaturgy¢T—T,

mal subtraction” scheme which subtracts powers df In where T, is the mean-field transition temperatui@nd the
We have, of course, checked that the critical exponentsoupling strength\, to be temperature independent. This is

obtained from our renormalization scheme agree with thosactually anO(2N)-symmetric model; we have assembled its

obtained long ago by other methods. However, our purpos@N real fields intoN complex fields merely to facilitate the

in devising this renormalization-group strategy is not simplyapplication to a Ginzburg-Landau superconductor which we

to reproduce old results by a different method. The applicahave ultimately in view. Introducing sourc¢gr) andj;* (r)

II. THE 1/N EXPANSION

N
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for the fields¢;(r) and ¢ (r), we arrive at the generating G™)(ry,ry;r3.12)
functional for correlation functions

fD\I' A(ry, T W)A(rg, 1, W)e NHer(¥)

Z[ji’ji*]:il_[Nl f thf D¢i*eXpHd3r = : (12

J DV e™ NHeg(¥)

X

N
—H+ D (J'i(r)¢i*(r)+jf(r)¢i(r))} J Owing to the factor olN that multipliesH .«(V), the 1N
=1 expansion is now generated by the method of steepest de-
(6) ~ scent. It proves convenient to formulate this expansion in

o _ terms of a parametédr,, defined by
The 1N expansion is generated by the procedure described,

for example, by Brein etal®® A Hubbard-Stratonovich To=T?(0), (13)
transformation

of-f o3l ]

where I'®(p) is the inverse of the Fourier transform of
G@(r—r"). We write

qf(r)=—i<'f —t —35 +(2N) ~Y2y(r) (14)
0 0 N ’

N
N .
=NJ Dw ex;{—f d3r)\—\If2—|\If_Zl |¢i|2}, where 6 is defined by imposing the constrai(r))=0.
0 o Since 6 has contributions of all orders in N/ we setd
(7) =8,+N"18,+ ... The position-independent valu,=

—i(to—to) locates the saddle point éf; up to corrections
of order 1N, and the propagatoA(r,r’;¥) is given by
A(r,r";W)=A(r—r")+O(N"?), where

d3p eip-r
80| G o

N The two quantitiesNHqz(W) and A(r,r’;¥) can now be
3 3, ) ok expanded in powers of M/ For NH4(V), discarding irrel-
+f d rf d*r I:zl JDA W) |, evant terms that are independentygir), the result is

®)

where N is a normalization factor whose value is of no con-
sequence, brings the integral owgr and ¢ to a Gaussian
form. On computing this integral, we obtain

Z[ji ,J'i*]=Nf bW exn[ —NHe(W)

2 ~
NHeﬁ=iN1’2A£[to—f(to,m]f d®r ()
where the effective Hamiltonian is 0

1
— d3 d3 ’ D Yr—r' ’
Heﬁ(‘I’)=fd3r)\i0\1f2(r)—Trr,r,|nA(r,r';qf) ©) +2f ra*r (D —=(r=r")y(r’)

1
and the propagatak(r,r’;¥) is the solution of —iN‘l/Zﬁj d3rd3r d3r"Ag(r,r' 1"

[—V2+ty+iW(r)]A(rr;¥)=56(r—r'). (10

1
< r r’ " _N—l _j d3rd3rrd3rrrd3rm
The connected correlation functionsGil,,,in(rl- 1) YY) g(r) [16

=<¢i*l(rl)~ -+ ¢; (ry))c are, of course, obtained by differen- X AL 0 E"Y () (e ) (1) (")
tiation of Z[j;,j]. For example, the two-point function 1
Gij(r,r’)zéijG(z)(r—r') is given by _ §5°J d3rd3r’d3r"A3(r,r’,r”)lp(r)(/;(r’)}
8 Inz +O(N"%2), (16)

G(Z)(rl_rz):<¢”1c(r1)¢1(r2)>c: - -
S1a(r) it (ra) |, _ sy where they propagator is given by

1
f DV A(rq,rp;¥)e NHer(¥) Dfl(r—r’)=)\515(r—r’)+§A(r—r’)A(r’—r) 17
= (11
f DW e~ NHer(¥) and the vertex functions are
Ap(ry, oo ) =A(rg=ra)A(ry—r3) - - - A(ry—ry).
Similarly, we can define a four-point function (18)
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The functionf(ty,\o) is

~ ~ 1 1 1 3
f(to,)\o):to_N50_§)\0A(0)_§)\05ofd I’AZ(I’).
(19

Although in principle the counterter is determined by the

PHYSICAL REVIEW B 64 184505

FIG. 2. Diagrammatic representation of the constraint equation
at next-to-leading order.

constraint(¢(r))=0 while the definition(13) determines,  With
as a function ofty and\,, we see from the expansidi6)
that practical calculations invert this logic. Thus, the terma (rr';ry, ... r_)=A(—r)A(r; =) A(rp_1—r1").

proportional toN 18, is quadratic iny(r), so we arrange for
Eq. (13) to be true by adjusting the value 6§. On the other
hand, the term that is linear i#(r) provides a counterterm
that is adjusted to makgy(r)) vanish, yielding a constraint
(or gap equation

to=T(To,Ng) +O(N™?) (20)

that implicitly determined, as a function ot, and \,.
For the propagatoA (r,r’;¥) we have the expansion

A(r,r';W):A(r—r')—iN—mif d3raAg(r,r'iry) g(ry)
V2
-1 1 3 3 A ’.
-N > drdrpAg(r,r" 5wy, 1) (ry) ¥(rp)
+5of d3r1K2(r,r’;r1)}

+iNT32

1 _
ﬁf d3r,d3r,d3r 34,
X(r,r"5ry,0,13) (ry) d(r) ¥(rs)
+\/§50f d3r1d3r2K3(r,r’;rl,rz)zp(rl)l

+O(N?), (21

O OO O QO

FIG. 1. Elements of Feynman diagrams in th&l Bxpansion:
(a) the ¢ propagator(b) the counterterni(ty,\o), (c) the first few
terms in the expansion of the propagatbfr,r’;¥), and (d) el-
ementary vertex functions arising from the expansionNd .
Solid lines represent the lowest-ordg¢rpropagatorA(r—r') and
filled circles represent the counterteéin (c) and(d), the dashed

lines are the legs to whicly propagators can be attached; arbitrary

sequences of these lines and the dashed legs are allowed.

(22

The two expansions given in EgEl6) and (21) can be
summarized diagrammatically by the Feynman rules given
schematically in Fig. 1 for calculating the correlation func-
tions Gil.__in(rl, ...,fp). In practice, it is most convenient

to interpret these in momentum space. Then ¢hand
propagators are

A(p)=(p*+1p) 1, (23)
D(p)=[No *+IL(p)] (24)
with
I )_Ef d3k 1
P72 23 e T (k+ p) 2+ o]
1 [ Ipl
- NN LI
87T|p|tan (2,%/2). (25)

For future use, we note that(0)=at, “?, with a=1/16m,
while for large momenta we can write

(p)= 73/2ﬁ(70> (26)
P =Tl p? |\ p?/’
with b=1/16 and
fl(r)= 2 tan 32 = 42| 1— 27t - .
8w 3
(27)

For our immediate purposes, we require explicit expres-
sions at next-to-leading order inNLfor the constraint equa-
tion (¢(r))=0, the two-point functiorG®(p), and the trun-
cated four-point function )(p)) = G*)(p)/T{_, G (p)),
which is one-particle irreducible with respect to hgropa-
gatorA(p). These are shown diagrammatically in Figs. 2, 3,

2) __ 1 ! M 1
G®= v + 30 .

FIG. 3. Diagrammatic representation of the order-parameter
two-point function at next-to-leading order.
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“=1- 1 -1l +% Q
1 C) 1A L1 A 84
—mo+m§ wQ N

FIG. 4. Diagrammatic representation of the vertex funciiéh
at next-to-leading order.

and 4 respectively. The constraint equation is

No
to=f(to,\ 0)+ A+O(N 2)

3 Mf d3k
0 2] 2ap

A(k)+N1[¥A(’EO,>\O)—>\050H(0)

— 8| +O(N72), (29
whereA(ty,\o) is the integral
Aty \ )—fd—skﬂA(k)ZA(k')D(kJrk')
) 2w 2m)? '
(29

The inverse two-point functioft ) (p)=G@)(p) ! is given
by

IF@(p)=p>+ 1o+ N2 (p;To.No)— Fo] + O(N2),

(30)
with
S(pito,\ )—1f d% A(k+p)D(k) (31
PtosAo) =5 (2m)° p :
Thus, the definitio(13) of t, allows us to identify
5022(0;’{01)\0)1 (32)

and the constraint equation is given explicitly by

tozto

No [ d%k Ao ~ ~
—Of( SRR [4 A(To.ho) =2 (0To,Mo)

X[1+NoII(0)][+O(N~?). (33

We shall need the four-point functioi(p;) evaluated at

PHYSICAL REVIEW B 64 184505

dsk, 2 1\ 2 3 ’
f (ZW)s[A(k )2A(k+k') 24 2A (K )3A(k+K')]
d2
:TZH(k)
t0

1 8t,

T —3/2 +
k?+4ty  (K2+1g)?

(35

together with the value of, given in Eqg.(32). We then find

I®(0)=N"1D(0)+N"2[B1(To,No) +Ba(To,No)

+Ba(to.No) ]+ O(N™9), (36)
where the remaining integrals are
B1(to,\o) ! ~t_1/2D(0)2J dk D(k)
, =-—a =
100l 4900 (2m)3 (K3+41t5)2
° (37)
(K2+10) (K2 +41,) |

1
B,(To. 0)—_D(0)J(2 SOK s (9

3

(277)3D

Bs(to,Ao)= _J

1
k?+4t,

—aty ¥?D(0) (39

with D(0)= (Ao *+aty 31,

IIl. RENORMALIZATION GROUP AT LEADING ORDER

In the limit N— o, the one-particle-irreducible four-point
function I'™(p,) vanishes, and so do the higher multipoint
functions. The theory is therefore effectively Gaussian, all
correlations being determined by the two-point function
G®(p)=(p?+1,) 1. The analysis of critical-point behavior
now reduces essentially to determining the dependentg of
on the temperaturelike variablg from the constraint Eq.
(33). This equation can be written as

tO_tOC:’EO+ Za)\oté/z, (40)

wheret,, is the critical value ot,, corresponding td,=0.

p;=0. For this case, the multiloop integrals shown in Fig. 41t represents fluctuation corrections to the mean-field transi-

can be simplified by using the results

2415 12
K2+4t,
(34)

AK)2A(K+K')=—

f d3k’ , , d -
(2m)3 dto

(k)=

tion temperature and is given formally by the divergent inte-
gral

xo d’k 1
toc=— 2mi K (41)
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Near the critical temperature, the leading behaviot@fs  the variablest and z Typically, given a thermodynamic
clearly tox(to—toc)”, with y=2. According to standard quantity A(\o,,), its renormalized counterpafty(z,1) is
renormalization-group ideas, we should be able to find gjyen py

fixed-point value of the coupling strengtkg , for which this

power law is exact, and this value is cleaxl§y=c. Within a A(\g }O) = ZA(Z)MDAAR(ZI), (52
suitable renormalization scheme, we might expect this fixed ) ] ] ] o

point to correspond to a finite value of a renormalized couWhereD, is the canonical dimension & The criterion for
pling \. The usual motivations for renormalization, namely, d€términing the renormalization fact@,(z) will be dis-
the removal of ultraviolet divergencies or the exponentiationcussed in the next section. The fact teo,to) is inde-
of logarithms ofty,—ty. are absent here, because the conendent of the renormalization scaleis expressed by the
straint equation and correlation functions are finite, and conrenormalization-group equation

tain no logarithms. Nevertheless, let us define a renormalized
temperature variablé, a renormalized coupling., and a

J ~ 0 ~
renormalized inverse susceptibilityby B2) 5~ (2 n(z))tﬁ DAt UA(Z)lAR(Z’t) =0,

53
No=uZy(MX, (42) (53)
where
to=toct m?Zy(Mt, (43)
Jz
where, as usualu is an arbitrary renormalization scale B
which serves to make t, and\ dimensionless. We specify 9 _ m A 55
the renormalization factorg; and Z, by the normalization 7(2)= T ﬁ ~ (59
conditions ho-to
r@(p2=0t=1)=u? 45 dinZu(z)
» ) 9 oAZ)=B(2) . (56
lim NT'®)(p;=0,t=1)= uA. (46) . . . -
N— oo Solution of this equation by the method of characteristics

. . . . g/ields the relation
In practice, our Feynman rules yield correlation functions a

functions oft rather thant, and these conditions are more Ar(z,1)=PA(DAR(Z(1),T(1)), (57)
conveniently expressed as the requirements thattg,

=742 andD(0)=u\ whenT=1. We find wherel is an arbitrary number anz{l) is the solution of

Z,(\)=(1—an) 7}, 47) azl) _
A =5 =B (58)
1+an ~
Z(M =70 (48)  with the initial conditionz(1)=z, whilet(l) and the prefac-

tor PA(l) are given by
Expressed in terms of andt, the constraint Eq40) is

~ -~ dl’ ,
t=(1+an) {(1—an)T+2ant¥?). (49) t(h)=tl ZEXP[ Ll—,n(Z(l ))], (59
Clearly, on settingo=\* =a "%, we do find the exact power-
law behaviort=t%?. More generally, using the scaling fields _ idl’ ,
z=\"'—a and r=(1+z/2a)t, we can express the inverse Pa(l)=ex ll_,[DA+‘TA(Z(| N1 (60)

susceptibilityt in the scaling form
In the case at hand, taking=ty—ty., we find B(z) =z,
T=7"T(x), (50) 7n(z)=0, D;=2, ando(z)= —2al/(z+2a). The character-
] ] ] ) istic functions are
where the scaling variable s=z7°"/2a with wv=1 and

the universal scaling function is given by zl4+2a

z(h=zl, TH=1172 P()=I o

. (6]

T(X)=(2X) " ?[1+2x— J1+4x]=1—2x+5x*>+0(x3).
(51)  and it is easy to verify by substitution into E@9) that the
Formally, the scaling relatiof60) and the values of the ex- relation(57) is satisfied. To obtain the scaling fors0), we
ponents can be deduced from the renormalization-grouf@n choose the arbitrary parameleas the solution of the
equation, which we find convenient to formulate in terms ofequationt(l)=1. The neighborhood of the critical poirt

184505-6
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=0 then correspondsassuming thaty(z) <2] to the limit|
—0. In this limit, we will generally expect that

z(l)~zl®, (62)
T(H)~11- @, (63
Py~ 1, (64)

where w='(0), »=7(0), andv=[2+0,(0)] ! are the
usual critical exponentgHere, of course, we have=1,
7=0, andv=1.) On settingl ~tY~ 7 the relation(57)
becomes

t(z,'"t')N'fl/yt(Z"iwv/yyl)' (65)

with y=(2— ) v, which can be inverted to expressn the
scaling form(50).

IV. EXTENSION TO HIGHER ORDERS

PHYSICAL REVIEW B 64 184505

¢%. Here, we use the notatiag=\, *. With 1, fixed, there
are no infrared divergences. In the ultraviolet regihpe
—o, we haveA(p)~1/p? and, provided thazy#0, D(p)
~const. Consider, then, a subintegral that is one-patrticle ir-
reducible with respect to both propagators, that attaches to
external¢ legs andn externalys legs, and has loop inte-
grations. It is simple to show that the superficial degree of
ultraviolet divergence of this integral is

Q(z2p#0)=4—L—m—2n. (66)

There are in fact only two diagrams that diverge, namely,
those withL=1 and (m,n)=(0,1) or (m,n)=(2,0). These
divergences are subtracted by the constrgifjt=0 and by
the additive mass renormalization corresponding,{o The
remaining theory is ultraviolet finite in three dimensions.
Whenzy=0, however, the limiting behavior of thg propa-
gator isD(p)~|p|. In that case, we have

m
QW (2p=0)=3-2n— .

> (67)

It is well known that the exponents obtained in the previ-There are now additional divergences which will appear as

ous section are modified whe is finite, and can be ex-
pressed as power series inN1/The series for correlation

singularities atzy=0, and these must be removed by further
renormalization. Unfortunately, the freedom that we have to

funct|ons~conta|n infrared singularities, in the form of loga- rescale the original fielep and the parametetg—to, andz,
rithms of ty, which must be exponentiated to obtain the cor-does not yield a set of independent counterterms correspond-
rect power laws, and our aim is to find a renormalizationing to the divergent subintegrals. Indeed, we can offer no
prescription that will effect this exponentiation. Experiencedirect proof that this rescaling will suffice to remove all the
with perturbation theory and the expansion suggests that divergences. An indiredand admittedly heuristjcargument

application of normalization conditions such as E4$) and

suggesting that all the divergences can nevertheless be re-

(46) should achieve this, but a strategy of this kind is unsatmoved is afforded by the observation that the limit0 is
isfactory for two reasons. At a purely practical level, oneequivalent(with to.~—constx\g) to a limit A\g— o, tg—

obtains renormalization-group functiof¥z), etc., that are
cumbersome(and, indeed, singularfunctions of z. More

— oo, in which the model studied here should be equivalent to
the nonlinears model whose renormalizability to all orders

fundamentally, we have, so far, no reason within thE 1/ of the 1N expansion is proven in Ref. 14.

expansion to expect that a renormalization scheme of this Here, we adopt the following pragmatic approach. First,
kind really will produce the correct exponentiation. We we introduce a wave-function renormalization facZ(z),
should therefore consider just what kind of renormalizationso that correlation functionE(™ are renormalized according

scheme is needed.

to

A simple criterion becomes apparent, if we assume that

the renormalization-group analysis will produce relations of
the kind exhibited in Eq(57). On the left-hand side, the

function A(z,t) has infrared singularities when its second
argument,t, approaches zero. On the right-hand side, thes

singularities are removed by the conditibfl) =1, but there

I (pihote)=Z4(2) "I D(p;zT,p). (68

(Thesel'(™ are defined as usual by Legendre transformation
of the generating functional Ifj;,j*] and would be one-

Barticle irreducible when calculated in perturbation theory.

The definition(13) then implies that, is renormalized ac-

remains the danger that they might reappear through the limgorging to

z(1)—0. Evidently, the singularities will be correctly expo-

nentiated into the prefactd?, (1), provided thatA(z(l),1)
remains finite and nonzero in the linzfl)— 0. The primary

=2, (2)p’t (69)

requirement of a renormalization scheme is to ensure th&nd we introduce renormalized parameteandt defined by

this is so.

To see how a renormalization scheme might work, let us
examine the divergences that might occur in the unrenormal-

ized theory whert, is fixed to a nonzero value. The Feyn-

man diagrams generated by théll¢xpansion are topologi-
cally similar to those in a theory of two fields and ¢, with

propagatorsA(p) = (p?+1to) "% and D(p)=[zo+I1(p)]

20=Z(2)p" 'z, (70)

Z(2)t. (71)

(z+2a)
to=toc+ u? 7

The renormalization factoi,(z), Z,(z), andZ,(z) must be
chosen so as to make the two renormalized correlation func-

respectively, and a single interaction vertex corresponding tu'onsl“(Rz)(pi =0) andI'”(p=0) and the constraint equation
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for the renormalized temperature varialildinite whenz  leading scaling behavior automatically appear as a power
—0 with T fixed to some nonzero value. As usual, there areseries in the scaling variable. {-\*)t“". These corrections
many ways in which this might be achieved. Here, we proave been studied in great detail, for example, in Refs. 15—
pose a “minimal subtraction” scheme which, however, may17 In the 1IN expansion studied here, this is not so. After the
well be susceptible to further refinement for specific pur-minimal renormalization that removes terms proportional to
poses. At relative order i, we show in the Appendix that [nzfrom the correlation functions, there remain weaker sin-
the singular parts of the relevant Feynman diagrams are dfularities of the fornz" Inz which will give rise to correc-
the form (Inz)x(infinite power series im). The minimal  tions of the formx"Inx. Keeping only the leading term, pro-
way of ensuring finite limits ag—0 is to subtract just the portional tozInz, the renormalized version of the constraint
leading singular terms, proportional toznProceeding in  EQ. (33) is

this way, we obtain for the renormalization factors

!

~ ~ c
11 t(z,1)= 2at¥ 1+ —+---
— - - -2 Z+2a N
Z,(2)=1+ N 6bS3 Inz+O(N™9), (72
~ c
Lo +zt{1+ =Inz+--- ||, (82
Z(2)=1— — =—S; Inz+O(N?) (73 N
! N 3b :
where
14 _2
Zz(z)=1+N%83Inz+O(N ) (74) ga?\s, 4 3
c= 1——2 %:_2 1——2 s (83)
and hence for the renormalization-group functions b 7" m
B(2)=wz+O(N?), (75) andc’ is a number which must be evaluated numerically,
though its exact value is immaterial for our present purposes.
7(z)=n+O(N"?), (76)  The ellipses in Eq(82) indicate both terms of higher order in

N~! and higher powers af. To obtain the scaling form of

the inverse susceptibility, we express the right-hand side of
Eq. (82 in the form of Eq.(57) using the explicit character-

istic functions(81) and choosé =12~ to obtain

+O(N7?), (77

1

where the exponents are given by
32 "fl/'y
-2 =
7TZN +O(N )’ t z+2a

!

I+ —+---

710y
N

2a

14
w=1-—=-S;+O(N ?)=1— 2

(78 c
X 1+—In(zt“‘”’7)+---) . (84)
11 N
=— —S,+0O(N" 3= +0O(N™?), 79
TN 6b53 ( ) 372N ( ) (79 On defining the scaling fielet and the scaling variablg by
1 2 S+ O(N?)=1 LON?) 1+2z/2a ) z7
v= —_—— — = — T= —_—_— s = ,
N 3b 372N 1+C/IN+ - 2a(1+Cc//N+--)
(80) (85

in agreement with standard resultsearing in mind that our
N complex fields correspond to\2real fields. The charac-
teristic functions that were given at leading order by &4)
become

and the scaling functiof{y) throught=77(y), we find
that this scaling function is the solution of

c c
1ly wvly _ — wvly el | =
O 7194 2a T 1+yT 1+Nlny+NIn(2aT )+ H 1.
z(h=zI*, t()=t o PO=1"— =] (86)
(81 . ,
For smally, it has the expansion
It is at least of formal interest to obtain the scaling form of
the inverse susceptibilityp0) at next-to-leading order for the T(v)= c |
following reason. At leading order, the scaling functi@i) Y =1-yy| I+ gy [+ (87)

has a simple series expansion in powersefz7*”. In per-

turbative realizations of the renormalization group, whetheiThe presence of the term proportionalyttn y seems, to the
formulated as a systematic expansiorein4—d or directly  best of our knowledge, to be a novel result, which is dis-
in d=3 dimensions, the corresponding corrections to thecussed further in Sec. VI.
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2C= NO- - 7»01[% D+ D = 28-CO) - %OO]

FIG. 5. Diagrammatic representation of the specific heat at next-to-leading order. In the first diagram, the cross indicates that the loop
contains two¢ propagators.

V. RENORMALIZATION OF THE SPECIFIC HEAT Finally, let us write Eq(91) in the form
byThe specific-heat exponent is given in three dimensions ZZ[C()\O,I_O)—C()\O,O)]=Eot’“+61t, (92)
16 with Co=Cg(0,1) andC,=C,Z3\; 3. It is somewhat reas-
a=2-3v=—-1+ — +O(N"2). 88) suring to find that the amplitude ratio can be written as
7N — )
CO T -1
As discovered long ago by Abe and Hikatfiithe fact that c - 7 ~1+O(N ) (93
1

t"*=t+O(N"1) is associated with a kind of degeneracy.
When exponents are obtained in thél Expansion by €xpo- i agreement with that given in Ref. 18, though does not,
nentiating logarithms oto=t,—to., it is essential to ac- in general, have a well-defined limit as-0.

count correctly for a regular contribution proportionalttp

Specifically, writing VI. DISCUSSION

C(t_0)=C0t_5“+Clt_o, (89) We have proposed a renormalization scheme within which
critical exponents and scaling functions for &hvector

it is argued in Ref. 18 that the coefficierty andC,, con-  Ginzburg-Landau model can be estimated by means of a sys-
sidered as functions of dimensiah have discontinuities at tematic expansion in . From the field-theoretic point of
d=3 that give rise to “anomalous” logarithms g_fo when  view, the essential function of the renormalization group is to
the whole expression is expanded in powers of. Within relate the values of correlation functions in the critical re-
the renormalization scheme proposed here, there are simil@fon, where infrared singularities arise from the vanishing
“anomalous” logarithms of, which prevent the specific heat “mass” t~T—T., to their values wher is of order 1, as

from being multiplicatively renormalized. To be concrete, weexhibited in Eq.(57). To ensure that critical singularities are
define correctly exponentiated, a renormalization scheme must en-

sure that these singularities do not reappear from the running
U I ) of other parameters. In the context of th&l Hxpansion, this
C(Xo,to)=N j d*r{#%(r)¢°(0)), (90) potentially happens when the inverse quartic coupling con-
, . ] o . stantz~\ "1 vanishes, and the essential feature of our renor-
where =X ¢ ¢;, and find that it is given to relative or- mgjization scheme is to ensure that renormalized correlation
der 1N by the sum of diagrams shown in Fig. 5. We will fynctions have finite limits whem— 0. In three dimensions,

define a renormalized functioBz(z,t) by the minimal way of achieving this is to subtract leading pow-
o o _ 5 ers of Inz, and this procedure does indeed serve to recover
C(N\g,tg)=C(N\g,0)+C1(Ng)tgt+ ,uflzt’z(z)CR(z,t), the standard results for critical exponents.
(97 The main purpose of this paper is to explain how the

— ) o scheme works, in preparation for a detailed investigation of
where Z,(z) = (1+2a/z)Z,(2) is the same renormalization the critical properties of high-temperature superconductors to
factor that appears in E¢71). Dimensional analysis tells Us pe described in Ref. 12. However, in the course of the formal
that C;(\o) =Ci\ °, whereCy is a number. Were we able jnvestigation reported here, we have encountered a general
to supply it, an analysis to all orders inNL/of the diver-  feature that seems to have been unsuspected hitherto. It has
gences of the theory as—0 would tell us whether an ap- uysually been taken for granted that the approach to a critical
propriate choice of this numbeat each order in N) is  point can be described by expressing the Hamiltonian in the
sufficient to makeCg(0:t) finite. This is beyond our present form H=H*+=,g9;0;, where H* is an infrared-stable
skill, but we have verified that the procedure does warith  fixed-point Hamiltonian and thé; are eigenoperators of the
C,=—4/b?) at next-to-leading order. In perturbative renor- renormalization group at this fixed poifgee, for example,
malization schemes, as is well known, an additive renormalRefs. 1 and % By expanding correlation functions in powers
ization is also required to make a quantity analogou€to of the coefficientsg;, one expects to obtain corrections to
finite in the limit d—4. In that case, the additive term de- the asymptotic critical singularities in the form of powers of
pends on the renormalization scaleand, in consequence, the scaling variableg; i, with exponents\; determined by
the renormalized specific heat obeys an inhomogeneoube eigenvalues of thé;. In treatments based on perturba-
renormalization-group equatidisee, for example, Ref. 13  tive expansions in the coupling constantthis expectation
Here, by contrast, the first two terms on the right-hand sidés realized automatically in the case of corrections of the
of Eg. (91) are functions only ofy andty, soCg obeys a form (A—\*)7“" associated with departures ®ffrom its
homogeneous equation of the fol&B). fixed-point valuer* . Within the nonperturbative approxima-

184505-9



IAN D. LAWRIE AND DOMINIC J. LEE PHYSICAL REVIEW B 64 184505

tion scheme afforded by the N/expansion, however, this (m/k)ﬁ(mzlkz) 1 ;2
does not happen. We see explicitly that the fixed point cor-l K:S3f ke k+b b K| — | treg,
responds ta=\"1=0, and that correlation functions do not (z ) z k

possess power-series expansionszirAlthough scaling is (A2)
maintained, in the sense that corrections appear in terms @fhere S;=1/272 and “reg” denotes contributions that are

the scaling variablg/ecz7*”, scaling functions such as that regular wherz— 0, arising here from the integration region
exhibited in Eq.(87) for the inverse susceptibility are not g<k<1. Defining
expressible as power seriesyin

At relative order 1IN, the nonanalyticity of the scaling B[ m m\ 2. [ m2) ]’ 2
functions is logarithmic, and this is probably true at higher fO | = Rl P K P (A3)
orders also. These are not, however, the same as the well-

known logarithmic corrections that occur at the upper criticaland using the series expansitfl(x) == ,f{’(x), we have
dimensiond=4 (Refs. 19, 20, and 23where ¢* is a mar-
ginal operator. The latter arise from a degeneracy in the _Z 0
renormalization-group equations which destroy the scaling le= o fn'lintreg,
property, yielding logarithms of rather than of a scaling
variable such ag. In fact, our renormalization scheme is Where
restricted tod=3; we do not know in detail how to formu- nel |
late a similar scheme in general dimensions. Quite possibly, | = J“‘ dk (T) :i( _ 1 a) |
the singularities we encountered appear, like the Abe-Hikami L 1 k(zk+b)' 1 I n
specific-heat anomaly, only at special, rational valuesl,of (A5)
and it is not clear whether they need be logarithmic in gen-
eral. It is also far from clear whether they are of more than
academic interest. In principle, they should presumably be SEJ k(zk+ b)
present in, for example, the specific heat e near the
lambda transitioricorresponding tdN= 1), where rather pre- The integrall is
cise measurements of critical properties have been ffade.
The data are reasonably consistent with the assumed power- lo= sz
law correction, but may well not be precise enough to detect k(zk+b) k+ b)
a logarithmic factor. Unfortunately, while the nonperturba-
tive nature of the N expansion is helpful in indicating the
presence of these logarithms, its notoriously poor conver-

: . . . S3m
gence makes it hard to estimate the likely sizes of the coef- | = (
ficients that multiply them. bk

(A4)

) (A6)

%In z+reg (A7)

and forn=1, the recursion relation

z
k zk+b

m\""! sm" mz
kKl “b bt
(A8)
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APPENDIX: SINGULAR PARTS OF FEYNMAN b
INTEGRALS

With these results in hand, we can evalugteas

2

To implement our renormalization scheme at next-to-
leading order in the N expansion, we need to know the
singularities of the integral&9) and (37)—(39) nearz=0. 33 z 1 f(l)( 1 5)

. ; k=
Each of them can be expressed in terms of integrals of the K b 1! m 9z

form |
d3k b m~(m2\]7'1 [m? =—%Inzz ﬁ(___) f(l)(_%z)+reg

ordlx /dz, wherek=|k| andK(m?/k?) is proportional tck*
ask—0, but approaches a finite value las>o. The singu- m?2z2
XK +reg

ke i

larities arise from the region of integration wheeés large.
To evaluate them, we write
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S Joc ) ALRICRINEAS whereQ(z) is the solution of
——Flnz wdq K(q )Zﬁ o % B
bQ+Q2II(Q% =mz (A12)
mz
X8l q— o +reg Solving for Q as a power series i we obtain
Ss ” mz 1 mz 4a 3232
=-5n ZLqu K(qz)é(q— 5 T pdT(a?) | +reg. Q2)= 5| 1= 5 mz+ —-(mZ)+0((m2°) |,
The factor of Inz can be extracted becausé/ {z)'(z” In2)
=Inz(9'216Z)+reg whenp=2l. Carrying out they integral, . S, 8a 9632
we finally obtain I3"9=— —Inz| 1- —mz+ (m2)?
b b2 b*
. S;Inz 1d ~ ]1
Ismg:_ K 2 1+ — — 21—[ 2 ,
« p (@)1 gl AL +0((M2)?%) [K(Q?). (A14)
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