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Renormalization group and 1ÕN expansion for the three-dimensional
Ginzburg-Landau-Wilson model
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A renormalization-group scheme is developed for the three-dimensionalO(2N)-symmetric Ginzburg-
Landau-Wilson model, which is consistent with the use of a 1/N expansion as a systematic method of approxi-
mation. It is motivated by an application to the critical properties of superconductors, reported in a separate
paper. Within this scheme, the infrared stable fixed point controlling critical behavior appears atz50, where
z5l21 is the inverse of the quartic coupling constant, and an efficient renormalization procedure consists of
the minimal subtraction of ultraviolet divergences atz50. This scheme is implemented at next-to-leading
order, and the standard results for critical exponents calculated by other means are recovered. An apparently
novel result of this nonperturbative method of approximation is that corrections to scaling~or confluent
singularities! do not, as in perturbative analyses, appear as simple power series in the variabley5ztvn. At least
in three dimensions, the power series are modified by powers of lny.
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I. INTRODUCTION

Renormalization-group techniques have long been es
lished as the standard formal framework for understand
critical phenomena.1–4 Those based on effective Hamilto
nians of the Ginzburg-Landau-Wilson type require so
kind of supplementary approximation if concrete informati
is to be extracted from them, and this is normally provid
by perturbation theory, in the form either of thee expansion
introduced originally by Wilson and Fisher5 or of a fixed-
dimension calculation.6 For O(N) symmetric models, a sys
tematic expansion in powers of 1/N provides an alternative
method of approximation.7–10 While the methods that hav
been used to extract estimates of critical exponents as po
series in 1/N are informed by renormalization-group idea
there seems to exist no method for implementing this
proximation scheme within a systematic renormalizatio
group analysis. The purpose of this paper is to describ
renormalization scheme which does this.

As is well known, the few terms of the 1/N expansions for
critical exponents that it has been possible to calculate
plicitly do not yield accurate results for the small values ofN
that characterize physically interesting systems, so the de
opment of a formal technique is not especially useful fro
this point of view. Our motivation for developing thi
scheme arises from our efforts to estimate critical-point s
ing functions for thermodynamic properties of supercondu
ors in applied magnetic fields, in particular the specific he
for which experimental data have been available for so
time ~see, for example, Ref. 11!. For this problem, it turns
out that perturbation theory does not yield a well-control
sequence of approximations. As reported in an accompa
ing paper,12 the 1/N expansion is advantageous in this r
spect, and yields qualitatively encouraging results, altho
quantitative agreement with existing data is still hard
achieve.

In outline, the renormalization-group strategy we propo
works as follows. Consider, for example, the order-param
0163-1829/2001/64~18!/184505~11!/$20.00 64 1845
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susceptibility x(t0 ,l0 ,L), where t0 is proportional toT
2TC , l0 is a coupling constant which can be taken as te
perature independent in the critical region, andL is a mo-
mentum cutoff of the order of the inverse of a typical inte
atomic distance. In the limit t→0, we expect this
susceptibility to diverge asx;t0

2g , whereg is a universal
exponent which we would like to determine. In general
renormalization scheme introduces a renormalized susc
bility xR , together with renormalized parameterst and l,
which depend on an arbitrary length scale, saym21. The fact
that physics is independent ofm leads to a relation of the
form

xR~ t,l,L/m!5Px~ l !xR~ t~ l !,l~ l !,L/~ lm!!, ~1!

wherel is an arbitrary number. The prefactorPx( l ) and the
running variablest( l ) andl( l ) depend on how the renorma
ization has been implemented. Now, the functi
xR(t,l,L/m) diverges when its first argument,t, approaches
zero, but the nature of this singularity is hard to determ
directly. Suppose, however, that the renormalization sche
has been constructed in such a way that

Px~ l !; l 2g* /n* , t~ l !;t l 21/n* , l~ l !→l* ~2!

in the limit l→0, whereg* , n* , andl* ~the ‘‘fixed-point’’
coupling! are constants. By settingl 5tn* , we find in the
limit t→0

xR~ t,l,L/m!;t2g* xR~1,l* ,L/~ tn* m!!. ~3!

The exponentg* will be equal to the true critical exponentg
if xR(1,l* ,`) has a finite, nonzero value and the renorm
ization scheme must be designed to ensure that this is so.
exponentn* will then be equal to the critical exponentn,
which characterizes the divergence of the correlation len

These calculations cannot be carried out exactly, s
renormalization scheme must be supplemented by some
tematic means of approximation and its details will depe
on this method of approximation. Perturbative methods
©2001 The American Physical Society05-1
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approximation, involving an expansion in powers ofl, rely
on the possibility of expressing exponents such asg as
power series ine542d, whered is the spatial dimension
ality ~although in practice it proves possible also to imp
ment them directly in three dimensions!. Near four dimen-
sions, the bare susceptibilityx(t0 ,l0 ,L) and other
thermodynamic functions diverge asL→`, so the principal
requirement of a renormalization scheme is to remove th
divergences from renormalized functions such asxR . One
then finds thatl* is of ordere, so the perturbative analysi
can be implemented self-consistently.

For the reasons outlined above, we wish to make use o
alternative approximation scheme consisting of an expan
in powers of 1/N with d53. A systematic means of obtain
ing the 1/N expansion is reviewed in Sec. II. It is facilitate
by an integral transformation of the Hubbard-Stratonov
type which expresses the partition function as a functio
integral over an auxiliary fieldC, with an effective Hamil-
tonianHeff(C). This partition function can be calculated as
power series in 1/N by the method of steepest desce
Within this expansion, thermodynamic quantities are m
naturally expressed as functions not of the temperature v
able t, but rather of the exact inverse susceptibilityt̃ 0

5x21. The temperature dependence oft̃ 0 is given implicitly
by solving a constraint equation of the formt0

5F( t̃ 0 ,l0 ,L). At lowest order, this constraint equatio
simply locates the saddle pointC52 i ( t̃ 02t0) of the effec-
tive HamiltonianHeff(C).

In Sec. III, a renormalization scheme is exhibited whi
manifestly extracts the correct critical exponents at lead
order. In the case of the susceptibility, the renormalized c
straint equationt5FR( t̃ ,l,L/m)5FR(xR

21 ,l,L/m) obeys
a relation equivalent to Eq.~1!, but with the roles oft and
xR

21 reversed. The substantive issue, addressed in Sec.
how this renormalization scheme can properly be exten
to higher orders. The usual perturbative strategy fails at
point, because in three dimensions the constraint functioF
and other thermodynamic quantities remain finite asL→`.
For this reason, we shall actually omit the cutoff altogeth
in subsequent sections. We find, however, that the fixed-p
coupling strengthl* is infinite, and that divergences appe
in the limit l→`. For this reason, we find it convenient
deal with the inverse of the renormalized coupling,z5l21,
so that the fixed point appears atz* 50. In the context of the
1/N expansion, then, the primary requirement of a renorm
ization scheme is not to remove divergences that appea
L→`, but rather to remove those that appear asz→0. This
crucial observation is the first result that we wish to repo
The second is a concrete renormalization scheme that a
ally does remove the divergences atz50. As shown in Sec.
IV, this can be achieved economically by means of a ‘‘mi
mal subtraction’’ scheme which subtracts powers of lnz.

We have, of course, checked that the critical expone
obtained from our renormalization scheme agree with th
obtained long ago by other methods. However, our purp
in devising this renormalization-group strategy is not sim
to reproduce old results by a different method. The appli
18450
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tion of this formalism that we have mainly in view is th
calculation of scaling functions. In particular, the speci
heat of a superconductor near its critical point, and in
presence of a magnetic fieldB, is expected to assume th
scaling formC(T,B)'B2a/2nC(tB21/2n) and we wish to es-
timate the scaling functionC(x), for which experimental data
are available. When the Ginzburg-Landau model is enlar
to include the magnetic field, the renormalized specific h
obeys a relation similar to Eq.~1!, namely,

CR~ t̃ ,z,B!5PC~ l !CR~ t̃ ~ l !,z~ l !,Bl22!

→
l→0

l 2a/nCR~ l 2(22h) t̃ ,0,l 22B!. ~4!

By setting t̃ ( l )51 andl 5B1/2L, we can identify the scaling
function asC(x)5L2a/2nCR(1,0,L22), with L determined as
a function ofx by solution of the constraint equation, whic
then has the formx5L1/nF(1,0,L22). Details of this calcu-
lation are presented in Ref. 12; here, our principal concer
to explain the renormalization-group formalism that make
feasible. It happens that special considerations apply to
critical behavior of the specific heat18 and the impact of these
on the renormalization-group formalism is discussed
Sec. V.

While the main purpose of this paper is to expose det
of the renormalization scheme that will be applied in Ref. 1
we also wish to report what we believe to be a novel feat
of the renormalization group, revealed by the nonpertur
tive nature of the 1/N expansion, that is of some theoretic
interest. The leading corrections to asymptotic critical sing
larities ~sometimes described as confluent singularities! ap-
pear in the form of a scaling variabley5(l2l* )uT
2TCuvn. According to conventional wisdom, the orde
parameter susceptibility, say, has a singular part which
be expressed asxsing5uT2TCu2gX(y), where the scaling
function X(y) has a power-series expansion iny. In pertur-
bation theory, this is automatically true, but the 1/N expan-
sion suggests otherwise. In three dimensions, at least,
find thatX(y) contains, in addition to powers ofy, singular
terms which at next-to-leading order are of the formynln y.
This is shown in Sec. IV and further discussed, along w
our other principal findings, in Sec. VI.

II. THE 1 ÕN EXPANSION

We consider the standard Ginzburg-Landau-Wilson the
for N complex fields, defined by the Hamiltonian density

H5(
i 51

N

u¹f i~r !u21t0uf i~r !u21
l0

4N S (
i 51

N

uf i~r !u2D 2

,

~5!

in which t0 is taken to be linear in temperature (t0}T2T0,
where T0 is the mean-field transition temperature! and the
coupling strengthl0 to be temperature independent. This
actually anO(2N)-symmetric model; we have assembled
2N real fields intoN complex fields merely to facilitate the
application to a Ginzburg-Landau superconductor which
have ultimately in view. Introducing sourcesj i(r) and j i* (r)
5-2
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RENORMALIZATION GROUP AND 1/N EXPANSION FOR . . . PHYSICAL REVIEW B 64 184505
for the fieldsf i(r) and f i* (r), we arrive at the generatin
functional for correlation functions

Z@ j i , j i* #5)
i 51

N E Df iE Df i* expH E d3r

3F2H1(
i 51

N

~ j i~r!f i* ~r!1 j i* ~r!f i~r!!G J .

~6!

The 1/N expansion is generated by the procedure describ
for example, by Bre´zin et al.13 A Hubbard-Stratonovich
transformation

expF2E d3r
l0

4N S (
i 51

N

uf i u2D 2G
5NE DC expF2E d3r

N

l0
C22 iC(

i 51

N

uf i u2G ,

~7!

whereN is a normalization factor whose value is of no co
sequence, brings the integral overf i andf i* to a Gaussian
form. On computing this integral, we obtain

Z@ j i , j i* #5NE DC expF2NHeff~C!

1E d3r E d3r 8(
i 51

N

j i~r !D~r,r8;C! j i* ~r8!G ,

~8!

where the effective Hamiltonian is

Heff~C!5E d3r
1

l0
C2~r!2Trr,r8ln D~r,r8;C! ~9!

and the propagatorD(r,r8;C) is the solution of

@2¹21t01 iC~r!#D~r,r8;C!5d~r2r8!. ~10!

The connected correlation functionsGi 1••• i n
(r1•••rn)

5^f i 1
* (r1)•••f i n

(rn)&c are, of course, obtained by differen

tiation of Z@ j i , j i* #. For example, the two-point functio
Gi j (r,r8)[d i j G

(2)(r2r8) is given by

G(2)~r12r2!5^f1* ~r1!f1~r2!&c5
d2 ln Z

d j 1~r1!d j 1* ~r2!
U

j 5 j* 50

5

E DC D~r1 ,r2 ;C!e2NHeff(C)

E DC e2NHeff(C)

. ~11!

Similarly, we can define a four-point function
18450
d,

G(4)~r1 ,r2 ;r3 ,r4!

5

E DC D~r1 ,r2 ;C!D~r3 ,r4 ;C!e2NHeff(C)

E DC e2NHeff(C)

. ~12!

Owing to the factor ofN that multipliesHeff(C), the 1/N
expansion is now generated by the method of steepest
scent. It proves convenient to formulate this expansion
terms of a parametert̃ 0, defined by

t̃ 05G (2)~0!, ~13!

where G (2)(p) is the inverse of the Fourier transform o
G(2)(r2r8). We write

C~r!52 i S t̃ 02t02
1

N
d D1~2N!21/2c~r!, ~14!

where d is defined by imposing the constraint^c(r)&50.
Since d has contributions of all orders in 1/N, we setd
5d01N21d11•••. The position-independent valueC05

2 i ( t̃ 02t0) locates the saddle point ofHeff up to corrections
of order 1/N, and the propagatorD(r,r8;C) is given by
D(r,r8;C)5D(r2r8)1O(N21/2), where

D~r!5E d3p

~2p!3

eip•r

~p21 t̃ 0!
. ~15!

The two quantitiesNHeff(C) and D(r,r8;C) can now be
expanded in powers of 1/N. For NHeff(C), discarding irrel-
evant terms that are independent ofc(r), the result is

NHeff5 iN1/2
A2

l0
@ t02 f ~ t̃ 0 ,l0!#E d3rc~r!

1
1

2E d3rd3r 8c~r!D21~r2r8!c~r8!

2 iN21/2
1

6A2
E d3rd3r 8d3r 9D3~r,r8,r9!

3c~r!c~r8!c~r9!2N21F 1

16E d3rd3r 8d3r 9d3r-

3D4~r,r8,r9,r-!c~r!c~r8!c~r9!c~r-!

2
1

2
d0E d3rd3r 8d3r 9D3~r,r8,r9!c~r!c~r8!G

1O~N23/2!, ~16!

where thec propagator is given by

D21~r2r8!5l0
21d~r2r8!1

1

2
D~r2r8!D~r82r! ~17!

and the vertex functions are

Dn~r1 , . . . ,rn!5D~r12r2!D~r22r3!•••D~rn2r1!.
~18!
5-3
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The functionf ( t̃ 0 ,l0) is

f ~ t̃ 0 ,l0!5 t̃ 02
1

N
d02

1

2
l0D~0!2

1

2
l0d0E d3rD2~r!.

~19!

Although in principle the countertermd is determined by the
constraint̂ c(r)&50 while the definition~13! determinest̃ 0
as a function oft0 andl0, we see from the expansion~16!
that practical calculations invert this logic. Thus, the te
proportional toN21d0 is quadratic inc(r), so we arrange for
Eq. ~13! to be true by adjusting the value ofd0. On the other
hand, the term that is linear inc(r) provides a counterterm
that is adjusted to makêc(r)& vanish, yielding a constrain
~or gap! equation

t05 f ~ t̃ 0 ,l0!1O~N21! ~20!

that implicitly determinest̃ 0 as a function oft0 andl0.
For the propagatorD(r,r8;C) we have the expansion

D~r,r8;C!5D~r2r8!2 iN21/2
1

A2
E d3r 1D̄2~r,r8;r1!c~r1!

2N21F1

2E d3r 1d3r 2D̄3~r,r8;r1 ,r2!c~r1!c~r2!

1d0E d3r 1D̄2~r,r8;r1!G
1 iN23/2F 1

2A2
E d3r 1d3r 2d3r 3D̄4

3~r,r8;r1 ,r2 ,r3!c~r1!c~r2!c~r3!

1A2d0E d3r 1d3r 2D̄3~r,r8;r1 ,r2!c~r1!G
1O~N22!, ~21!

FIG. 1. Elements of Feynman diagrams in the 1/N expansion:

~a! thec propagator,~b! the countertermf ( t̃ 0 ,l0), ~c! the first few
terms in the expansion of the propagatorD(r,r8;C), and ~d! el-
ementary vertex functions arising from the expansion ofNHeff .
Solid lines represent the lowest-orderf propagatorD(r2r8) and
filled circles represent the countertermd. In ~c! and~d!, the dashed
lines are the legs to whichc propagators can be attached; arbitra
sequences of these lines and the dashed legs are allowed.
18450
with

D̄n~r,r8;r1 , . . . ,rn21!5D~r2r1!D~r12r2!•••D~rn212r8!.

~22!

The two expansions given in Eqs.~16! and ~21! can be
summarized diagrammatically by the Feynman rules giv
schematically in Fig. 1 for calculating the correlation fun
tions Gi 1••• i n

(r1 , . . . ,rn). In practice, it is most convenien

to interpret these in momentum space. Then thef and c
propagators are

D~p!5~p21 t̃ 0!21, ~23!

D~p!5@l0
211P~p!#21, ~24!

with

P~p!5
1

2E d3k

~2p!3

1

@k21 t̃ 0#@~k1p!21 t̃ 0#

5
1

8pupu
tan21S upu

2 t̃ 0
1/2D . ~25!

For future use, we note thatP(0)5a t̃0
21/2, with a51/16p,

while for large momenta we can write

P~p!5
b

upu
2

t̃ 0
1/2

p2
P̃S t̃ 0

p2D , ~26!

with b51/16 and

P̃~t!5
1

8p
t21/2 tan21~2t1/2!54aS 12

4

3
t1••• D .

~27!

For our immediate purposes, we require explicit expr
sions at next-to-leading order in 1/N for the constraint equa
tion ^c(r)&50, the two-point functionG(2)(p), and the trun-
cated four-point functionG (4)(pi)5G(4)(pi)/) j 51

4 G(2)(pj ),
which is one-particle irreducible with respect to thef propa-
gatorD(p). These are shown diagrammatically in Figs. 2,

FIG. 2. Diagrammatic representation of the constraint equa
at next-to-leading order.

FIG. 3. Diagrammatic representation of the order-parame
two-point function at next-to-leading order.
5-4
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and 4 respectively. The constraint equation is

t05 f ~ t̃ 0 ,l0!1
l0

4N
A1O~N22!

5 t̃ 02
l0

2 E d3k

~2p!3
D~k!1N21Fl0

4
A~ t̃ 0 ,l0!2l0d0P~0!

2d0G1O~N22!, ~28!

whereA( t̃ 0 ,l0) is the integral

A~ t̃ 0 ,l0!5E d3k

~2p!3

d3k8

~2p!3
D~k!2D~k8!D~k1k8!.

~29!

The inverse two-point functionG (2)(p)5G(2)(p)21 is given
by

G (2)~p!5p21 t̃ 01N21@S~p; t̃ 0 ,l0!2d0#1O~N22!,
~30!

with

S~p; t̃ 0 ,l0!5
1

2E d3k

~2p!3
D~k1p!D~k!. ~31!

Thus, the definition~13! of t̃ 0 allows us to identify

d05S~0; t̃ 0 ,l0!, ~32!

and the constraint equation is given explicitly by

t05 t̃ 02
l0

2 E d3k

~2p!3
D~k!1N21Fl0

4
A~ t̃ 0 ,l0!2S~0; t̃ 0 ,l0!

3@11l0P~0!#G1O~N22!. ~33!

We shall need the four-point functionG (4)(pi) evaluated at
pi50. For this case, the multiloop integrals shown in Fig
can be simplified by using the results

E d3k8

~2p!3
D~k8!2D~k1k8!52

d

d t̃0

P~k!5
2a t̃0

21/2

k214 t̃ 0

,

~34!

FIG. 4. Diagrammatic representation of the vertex functionG (4)

at next-to-leading order.
18450
E d3k8

~2p!3
@D~k8!2D~k1k8!212D~k8!3D~k1k8!#

5
d2

d t̃ 0
2
P~k!

5a t̃0
23/2F 1

k214 t̃ 0

1
8 t̃ 0

~k21 t̃ 0!2G ~35!

together with the value ofd0 given in Eq.~32!. We then find

G (4)~0!5N21D~0!1N22@B1~ t̃ 0 ,l0!1B2~ t̃ 0 ,l0!

1B3~ t̃ 0 ,l0!#1O~N23!, ~36!

where the remaining integrals are

B1~ t̃ 0 ,l0!5
1

4
a t̃0

21/2D~0!2E d3k

~2p!3
D~k!F 8

~k214 t̃ 0
2!2

2
3

~k21 t̃ 0!~k214 t̃ 0!
G , ~37!

B2~ t̃ 0 ,l0!52D~0!E d3k

~2p!3
D~k!

1

~k21 t̃ 0
2!2

, ~38!

B3~ t̃ 0 ,l0!52E d3k

~2p!3
D~k!2F 1

k21 t̃ 0

2a t̃0
21/2D~0!

1

k214 t̃ 0
G 2

, ~39!

with D(0)5(l0
211a t̃0

21/2)21.

III. RENORMALIZATION GROUP AT LEADING ORDER

In the limit N→`, the one-particle-irreducible four-poin
function G (4)(pi) vanishes, and so do the higher multipoi
functions. The theory is therefore effectively Gaussian,
correlations being determined by the two-point functi
G(2)(p)5(p21 t̃ 0)21. The analysis of critical-point behavio
now reduces essentially to determining the dependence ot̃ 0
on the temperaturelike variablet0 from the constraint Eq.
~33!. This equation can be written as

t02t0c5 t̃ 012al0 t̃ 0
1/2, ~40!

wheret0c is the critical value oft0, corresponding tot̃ 050.
It represents fluctuation corrections to the mean-field tra
tion temperature and is given formally by the divergent in
gral

t0c52
l0

2 E d3k

~2p!3

1

k2
. ~41!
5-5
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Near the critical temperature, the leading behavior oft̃ 0 is
clearly t̃ 0}(t02t0c)

g, with g52. According to standard
renormalization-group ideas, we should be able to find
fixed-point value of the coupling strength,l0* , for which this
power law is exact, and this value is clearlyl0* 5`. Within a
suitable renormalization scheme, we might expect this fi
point to correspond to a finite value of a renormalized c
pling l. The usual motivations for renormalization, name
the removal of ultraviolet divergencies or the exponentiat
of logarithms of t02t0c are absent here, because the co
straint equation and correlation functions are finite, and c
tain no logarithms. Nevertheless, let us define a renormal
temperature variablet, a renormalized couplingl, and a
renormalized inverse susceptibilityt̃ by

l05mZl~l!l, ~42!

t05t0c1m2Zt~l!t, ~43!

t̃ 05m2 t̃ , ~44!

where, as usual,m is an arbitrary renormalization sca
which serves to maket, t̃ , andl dimensionless. We specif
the renormalization factorsZt and Zl by the normalization
conditions

G (2)~p250,t51!5m2, ~45!

lim
N→`

NG (4)~pi50,t51!5ml. ~46!

In practice, our Feynman rules yield correlation functions
functions of t̃ rather thant, and these conditions are mo
conveniently expressed as the requirements thatt02t0c

5Ztm
2 andD(0)5ml when t̃ 51. We find

Zl~l!5~12al!21, ~47!

Zt~l!5
11al

12al
. ~48!

Expressed in terms ofl and t, the constraint Eq.~40! is

t5~11al!21@~12al! t̃ 12al t̃ 1/2#. ~49!

Clearly, on settingl5l* 5a21, we do find the exact power
law behaviort5 t̃ 1/g. More generally, using the scaling field
z5l212a and t5(11z/2a)t, we can express the invers
susceptibility t̃ in the scaling form

t̃ 5tgT ~x!, ~50!

where the scaling variable isx5ztvn/2a with vn51 and
the universal scaling function is given by

T~x!5~2x!22@112x2A114x#5122x15x21O~x3!.
~51!

Formally, the scaling relation~50! and the values of the ex
ponents can be deduced from the renormalization-gr
equation, which we find convenient to formulate in terms
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the variablest̃ and z. Typically, given a thermodynamic

quantity A(l0 , t̃ 0), its renormalized counterpartAR(z, t̃ ) is
given by

A~l0 , t̃ 0!5ZA~z!mDAAR~z, t̃ !, ~52!

whereDA is the canonical dimension ofA. The criterion for
determining the renormalization factorZA(z) will be dis-
cussed in the next section. The fact thatA(l0 , t̃ 0) is inde-
pendent of the renormalization scalem is expressed by the
renormalization-group equation

Fb~z!
]

]z
2~22h~z!! t̃

]

] t̃
1DA1sA~z!GAR~z, t̃ !50,

~53!

where

b~z!5mS ]z

]m D
l0 , t̃ 0

, ~54!

22h~z!52
m

t̃
S ] t̃

]m
D

l0 , t̃ 0

, ~55!

sA~z!5b~z!
d ln ZA~z!

dz
. ~56!

Solution of this equation by the method of characterist
yields the relation

AR~z, t̃ !5PA~ l !AR~z~ l !, t̃ ~ l !!, ~57!

wherel is an arbitrary number andz( l ) is the solution of

l
dz~ l !

dl
5b~z~ l !! ~58!

with the initial conditionz(1)5z, while t̃ ( l ) and the prefac-
tor PA( l ) are given by

t̃ ~ l !5 t̃ l 22expF E
1

l dl8

l 8
h~z~ l 8!!G , ~59!

PA~ l !5expH E
1

l dl8

l 8
@DA1sA~z~ l 8!!#J . ~60!

In the case at hand, takingA5t02t0c , we find b(z)5z,
h(z)50, Dt52, ands t(z)522a/(z12a). The character-
istic functions are

z~ l !5zl, t̃ ~ l !5 t̃ l 22, Pt~ l !5 l S zl12a

z12a D , ~61!

and it is easy to verify by substitution into Eq.~49! that the
relation~57! is satisfied. To obtain the scaling form~50!, we
can choose the arbitrary parameterl as the solution of the
equation t̃ ( l )51. The neighborhood of the critical pointt̃
5-6
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50 then corresponds@assuming thath(z),2# to the limit l
→0. In this limit, we will generally expect that

z~ l !;zlv, ~62!

t̃ ~ l !; t̃ l 2(22h), ~63!

Pt~ l !; l 1/n, ~64!

where v5b8(0), h5h(0), andn5@21s t(0)#21 are the
usual critical exponents.~Here, of course, we havev51,
h50, and n51.! On settingl; t̃ 1/(22h), the relation~57!
becomes

t~z, t̃ !; t̃ 1/gt~z t̃vn/g,1!, ~65!

with g5(22h)n, which can be inverted to expresst̃ in the
scaling form~50!.

IV. EXTENSION TO HIGHER ORDERS

It is well known that the exponents obtained in the pre
ous section are modified whenN is finite, and can be ex
pressed as power series in 1/N. The series for correlation
functions contain infrared singularities, in the form of log
rithms of t̃ 0, which must be exponentiated to obtain the c
rect power laws, and our aim is to find a renormalizati
prescription that will effect this exponentiation. Experien
with perturbation theory and thee expansion suggests tha
application of normalization conditions such as Eqs.~45! and
~46! should achieve this, but a strategy of this kind is uns
isfactory for two reasons. At a purely practical level, o
obtains renormalization-group functionsb(z), etc., that are
cumbersome~and, indeed, singular! functions of z. More
fundamentally, we have, so far, no reason within the 1N
expansion to expect that a renormalization scheme of
kind really will produce the correct exponentiation. W
should therefore consider just what kind of renormalizat
scheme is needed.

A simple criterion becomes apparent, if we assume t
the renormalization-group analysis will produce relations
the kind exhibited in Eq.~57!. On the left-hand side, the
function A(z, t̃ ) has infrared singularities when its seco
argument,t̃ , approaches zero. On the right-hand side, th
singularities are removed by the conditiont̃ ( l )51, but there
remains the danger that they might reappear through the
z( l )→0. Evidently, the singularities will be correctly expo
nentiated into the prefactorPA( l ), provided thatA(z( l ),1)
remains finite and nonzero in the limitz( l )→0. The primary
requirement of a renormalization scheme is to ensure
this is so.

To see how a renormalization scheme might work, let
examine the divergences that might occur in the unrenorm
ized theory whent̃ 0 is fixed to a nonzero value. The Feyn
man diagrams generated by the 1/N expansion are topologi
cally similar to those in a theory of two fieldsf andc, with
propagatorsD(p)5(p21 t̃ 0)21 and D(p)5@z01P(p)#21,
respectively, and a single interaction vertex correspondin
18450
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f2c. Here, we use the notationz05l0
21. With t̃ 0 fixed, there

are no infrared divergences. In the ultraviolet regimeupu
→`, we haveD(p);1/p2 and, provided thatz0Þ0, D(p)
;const. Consider, then, a subintegral that is one-particle
reducible with respect to both propagators, that attachesm
externalf legs andn externalc legs, and hasL loop inte-
grations. It is simple to show that the superficial degree
ultraviolet divergence of this integral is

Vuv~z0Þ0!542L2m22n. ~66!

There are in fact only two diagrams that diverge, name
those withL51 and (m,n)5(0,1) or (m,n)5(2,0). These
divergences are subtracted by the constraint^c&50 and by
the additive mass renormalization corresponding tot0c . The
remaining theory is ultraviolet finite in three dimension
Whenz050, however, the limiting behavior of thec propa-
gator isD(p);upu. In that case, we have

Vuv~z050!5322n2
m

2
. ~67!

There are now additional divergences which will appear
singularities atz050, and these must be removed by furth
renormalization. Unfortunately, the freedom that we have
rescale the original fieldf and the parameterst02t0c andz0
does not yield a set of independent counterterms corresp
ing to the divergent subintegrals. Indeed, we can offer
direct proof that this rescaling will suffice to remove all th
divergences. An indirect~and admittedly heuristic! argument
suggesting that all the divergences can nevertheless be
moved is afforded by the observation that the limitz→0 is
equivalent~with t0c;2const3l0) to a limit l0→`, t0→
2`, in which the model studied here should be equivalen
the nonlinears model whose renormalizability to all order
of the 1/N expansion is proven in Ref. 14.

Here, we adopt the following pragmatic approach. Fir
we introduce a wave-function renormalization factorZf(z),
so that correlation functionsG (n) are renormalized accordin
to

G (n)~pi ;l0 ,t0!5Zf~z!2n/2GR
(n)~pi ;z, t̃ ,m!. ~68!

~TheseG (n) are defined as usual by Legendre transformat
of the generating functional lnZ@ j i ,j i* # and would be one-
particle irreducible when calculated in perturbation theor!

The definition~13! then implies thatt̃ 0 is renormalized ac-
cording to

t̃ 05Zf
21~z!m2 t̃ ~69!

and we introduce renormalized parametersz andt defined by

z05Zz~z!m21z, ~70!

t05t0c1m2
~z12a!

z
Zt~z!t. ~71!

The renormalization factorsZf(z), Zz(z), andZt(z) must be
chosen so as to make the two renormalized correlation fu
tionsGR

(2)(pi50) andG (4)(p50) and the constraint equatio
5-7
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for the renormalized temperature variablet finite when z

→0 with t̃ fixed to some nonzero value. As usual, there
many ways in which this might be achieved. Here, we p
pose a ‘‘minimal subtraction’’ scheme which, however, m
well be susceptible to further refinement for specific p
poses. At relative order 1/N, we show in the Appendix tha
the singular parts of the relevant Feynman diagrams ar
the form (lnz)3(infinite power series inz). The minimal
way of ensuring finite limits asz→0 is to subtract just the
leading singular terms, proportional to lnz. Proceeding in
this way, we obtain for the renormalization factors

Zf~z!511
1

N

1

6b
S3 ln z1O~N22!, ~72!

Zt~z!512
1

N

2

3b
S3 ln z1O~N22!, ~73!

Zz~z!511
1

N

4

3b
S3 ln z1O~N22! ~74!

and hence for the renormalization-group functions

b~z!5vz1O~N22!, ~75!

h~z!5h1O~N22!, ~76!

21s t~z!5
1

n
1

vz

z12a
1O~N22!, ~77!

where the exponents are given by

v512
1

N

4

3b
S31O~N22!512

32

3p2N
1O~N22!,

~78!

h5
1

N

1

6b
S31O~N22!5

4

3p2N
1O~N22!, ~79!

n512
1

N

2

3b
S31O~N22!512

16

3p2N
1O~N22!

~80!

in agreement with standard results~bearing in mind that our
N complex fields correspond to 2N real fields!. The charac-
teristic functions that were given at leading order by Eq.~61!
become

z~ l !5zlv, t̃ ~ l !5 t̃ l 2(22h), Pt~ l !5 l 1/nS zlv12a

z12a D .

~81!

It is at least of formal interest to obtain the scaling form
the inverse susceptibility~50! at next-to-leading order for the
following reason. At leading order, the scaling function~51!
has a simple series expansion in powers ofx;ztvn. In per-
turbative realizations of the renormalization group, whet
formulated as a systematic expansion ine542d or directly
in d53 dimensions, the corresponding corrections to
18450
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leading scaling behavior automatically appear as a po
series in the scaling variable (l2l* )tvn. These corrections
have been studied in great detail, for example, in Refs. 1
17. In the 1/N expansion studied here, this is not so. After t
minimal renormalization that removes terms proportional
ln z from the correlation functions, there remain weaker s
gularities of the formzn ln z, which will give rise to correc-
tions of the formxnln x. Keeping only the leading term, pro
portional toz ln z, the renormalized version of the constrai
Eq. ~33! is

t~z, t̃ !5
1

z12a F2a t̃1/2S 11
c8

N
1••• D

1z t̃S 11
c

N
ln z1••• D G , ~82!

where

c5S 12
8a2

b2 D S3

2b
5

4

p2 S 12
8

p2D , ~83!

and c8 is a number which must be evaluated numerica
though its exact value is immaterial for our present purpos
The ellipses in Eq.~82! indicate both terms of higher order i
N21 and higher powers ofz. To obtain the scaling form of
the inverse susceptibilityt̃ , we express the right-hand side o
Eq. ~82! in the form of Eq.~57! using the explicit character
istic functions~81! and choosel 5 t̃ 1/(22h) to obtain

t5
t̃ 1/g

z12a F2aS 11
c8

N
1••• D1z t̃vn/g

3S 11
c

N
ln~z t̃vn/g!1••• D G . ~84!

On defining the scaling fieldt and the scaling variabley by

t5S 11z/2a

11c8/N1•••

D t, y5
ztvn

2a~11c8/N1••• !
,

~85!

and the scaling functionT(y) through t̃ 5tgT(y), we find
that this scaling function is the solution of

T 1/gH 11yT vn/gF11
c

N
ln y1

c

N
ln~2aT vn/g!1•••G J 51.

~86!

For smally, it has the expansion

T ~y!512gyS 11
c

N
ln yD1•••. ~87!

The presence of the term proportional toy ln y seems, to the
best of our knowledge, to be a novel result, which is d
cussed further in Sec. VI.
5-8
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FIG. 5. Diagrammatic representation of the specific heat at next-to-leading order. In the first diagram, the cross indicates tha
contains twof propagators.
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V. RENORMALIZATION OF THE SPECIFIC HEAT

The specific-heat exponent is given in three dimensi
by

a5223n5211
16

p2N
1O~N22!. ~88!

As discovered long ago by Abe and Hikami,18 the fact that
t2a5t1O(N21) is associated with a kind of degenerac
When exponents are obtained in the 1/N expansion by expo-
nentiating logarithms oft̄ 0[t02t0c , it is essential to ac-
count correctly for a regular contribution proportional tot̄ 0.
Specifically, writing

C~ t̄ 0!5C0 t̄ 0
2a1C1 t̄ 0 , ~89!

it is argued in Ref. 18 that the coefficientsC0 andC1, con-
sidered as functions of dimensiond, have discontinuities a
d53 that give rise to ‘‘anomalous’’ logarithms oft̄ 0 when
the whole expression is expanded in powers of 1/N. Within
the renormalization scheme proposed here, there are sim
‘‘anomalous’’ logarithms ofz, which prevent the specific hea
from being multiplicatively renormalized. To be concrete, w
define

C~l0 , t̄ 0!5N21E d3r ^f2~r!f2~0!&, ~90!

wheref25( if i* f i , and find that it is given to relative or
der 1/N by the sum of diagrams shown in Fig. 5. We w
define a renormalized functionCR(z, t̃ ) by

C~l0 , t̄ 0!5C~l0,0!1C1~l0! t̄ 01m21Z̄t
22~z!CR~z, t̃ !,

~91!

where Z̄t(z)5(112a/z)Zt(z) is the same renormalizatio
factor that appears in Eq.~71!. Dimensional analysis tells u
that C1(l0)5C1l0

23, whereC1 is a number. Were we abl
to supply it, an analysis to all orders in 1/N of the diver-
gences of the theory asz→0 would tell us whether an ap
propriate choice of this number~at each order in 1/N) is
sufficient to makeCR(0,t̃ ) finite. This is beyond our presen
skill, but we have verified that the procedure does work~with
C1524/b2) at next-to-leading order. In perturbative reno
malization schemes, as is well known, an additive renorm
ization is also required to make a quantity analogous toCR
finite in the limit d→4. In that case, the additive term d
pends on the renormalization scalem and, in consequence
the renormalized specific heat obeys an inhomogene
renormalization-group equation~see, for example, Ref. 13!.
Here, by contrast, the first two terms on the right-hand s
of Eq. ~91! are functions only ofl0 and t0, so CR obeys a
homogeneous equation of the form~53!.
18450
s

.

lar

l-

us

e

Finally, let us write Eq.~91! in the form

Z̄t
2@C~l0 , t̄ 0!2C~l0,0!#5C̄0t2a1C̄1t, ~92!

with C̄05CR(0,1) andC̄15C1Z̄t
3l0

23 . It is somewhat reas-
suring to find that the amplitude ratio can be written as

C̄0

C̄1

5
p2

4
211O~N21! ~93!

in agreement with that given in Ref. 18, thoughC̄1 does not,
in general, have a well-defined limit asz→0.

VI. DISCUSSION

We have proposed a renormalization scheme within wh
critical exponents and scaling functions for anN-vector
Ginzburg-Landau model can be estimated by means of a
tematic expansion in 1/N. From the field-theoretic point o
view, the essential function of the renormalization group is
relate the values of correlation functions in the critical r
gion, where infrared singularities arise from the vanishi
‘‘mass’’ t;T2Tc , to their values whent is of order 1, as
exhibited in Eq.~57!. To ensure that critical singularities ar
correctly exponentiated, a renormalization scheme must
sure that these singularities do not reappear from the run
of other parameters. In the context of the 1/N expansion, this
potentially happens when the inverse quartic coupling c
stantz;l21 vanishes, and the essential feature of our ren
malization scheme is to ensure that renormalized correla
functions have finite limits whenz→0. In three dimensions
the minimal way of achieving this is to subtract leading po
ers of lnz, and this procedure does indeed serve to reco
the standard results for critical exponents.

The main purpose of this paper is to explain how t
scheme works, in preparation for a detailed investigation
the critical properties of high-temperature superconductor
be described in Ref. 12. However, in the course of the form
investigation reported here, we have encountered a gen
feature that seems to have been unsuspected hitherto. I
usually been taken for granted that the approach to a crit
point can be described by expressing the Hamiltonian in
form H5H* 1( igiOi , where H* is an infrared-stable
fixed-point Hamiltonian and theOi are eigenoperators of th
renormalization group at this fixed point~see, for example,
Refs. 1 and 4!. By expanding correlation functions in powe
of the coefficientsgi , one expects to obtain corrections
the asymptotic critical singularities in the form of powers
the scaling variablesgit

D i, with exponentsD i determined by
the eigenvalues of theOi . In treatments based on perturb
tive expansions in the coupling constantl, this expectation
is realized automatically in the case of corrections of
form (l2l* )tvn associated with departures ofl from its
fixed-point valuel* . Within the nonperturbative approxima
5-9
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tion scheme afforded by the 1/N expansion, however, thi
does not happen. We see explicitly that the fixed point c
responds toz5l2150, and that correlation functions do no
possess power-series expansions inz. Although scaling is
maintained, in the sense that corrections appear in term
the scaling variabley}ztvn, scaling functions such as tha
exhibited in Eq.~87! for the inverse susceptibility are no
expressible as power series iny.

At relative order 1/N, the nonanalyticity of the scaling
functions is logarithmic, and this is probably true at high
orders also. These are not, however, the same as the
known logarithmic corrections that occur at the upper criti
dimensiond54 ~Refs. 19, 20, and 13! wheref4 is a mar-
ginal operator. The latter arise from a degeneracy in
renormalization-group equations which destroy the sca
property, yielding logarithms oft rather than of a scaling
variable such asy. In fact, our renormalization scheme
restricted tod53; we do not know in detail how to formu
late a similar scheme in general dimensions. Quite poss
the singularities we encountered appear, like the Abe-Hik
specific-heat anomaly, only at special, rational values od,
and it is not clear whether they need be logarithmic in g
eral. It is also far from clear whether they are of more th
academic interest. In principle, they should presumably
present in, for example, the specific heat of4He near the
lambda transition~corresponding toN51), where rather pre-
cise measurements of critical properties have been made21,22

The data are reasonably consistent with the assumed po
law correction, but may well not be precise enough to de
a logarithmic factor. Unfortunately, while the nonperturb
tive nature of the 1/N expansion is helpful in indicating th
presence of these logarithms, its notoriously poor conv
gence makes it hard to estimate the likely sizes of the c
ficients that multiply them.
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APPENDIX: SINGULAR PARTS OF FEYNMAN
INTEGRALS

To implement our renormalization scheme at next-
leading order in the 1/N expansion, we need to know th
singularities of the integrals~29! and ~37!–~39! nearz50.
Each of them can be expressed in terms of integrals of
form

I K5E d3k

~2p!3 Fz1
b

k
2

m

k2
P̃S m2

k2 D G21
1

k4
KS m2

k2 D ,

~A1!

or dIK /dz, wherek5uku andK(m2/k2) is proportional tok4

ask→0, but approaches a finite value ask→`. The singu-
larities arise from the region of integration wherek is large.
To evaluate them, we write
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I K5S3E
1

` dk

k~zk1b!
F12

~m/k!P̃~m2/k2!

zk1b G21

KS m2

k2 D 1reg,

~A2!

where S351/2p2 and ‘‘reg’’ denotes contributions that ar
regular whenz→0, arising here from the integration regio
0<k<1. Defining

f ( l )S m

k D5F S m

k D 2

P̃S m2

k2 D G l

KS m2

k2 D , ~A3!

and using the series expansionf ( l )(x)5(nf n
( l )(x), we have

I K5(
l ,n

f n
( l )I l ,n1reg, ~A4!

where

I l ,n5S3E
1

` dk

k~zk1b! l 11 S m

k D n2 l

5
1

l ! S 2
1

m

]

]zD
l

I n .

~A5!

I n5S3E
1

` dk

k~zk1b! S m

k D n

. ~A6!

The integralI 0 is

I 05S3E
1

` dk

k~zk1b!
52

S3

b
ln z1reg ~A7!

and forn>1, the recursion relation

I n5
S3m

b E
1

`dk

k S 1

k
2

z

zk1bD S m

k D n21

5
S3mn

nb
2

mz

b
I n21

~A8!

is readily solved to yield

I n5
S3mn

b (
j 50

n21
~21! j

~n2 j ! S z

bD n2 j

1S 2
mz

b D n

I 0

52
S3

b S 2
mz

b D n

ln z1reg. ~A9!

With these results in hand, we can evaluateI K as

I K52
S3

b (
l ,n

1

l !
f n

( l )S 2
1

m

]

]zD
lF S 2

mz

b D n

ln zG1reg

52
S3

b
ln z(

l

1

l ! S 2
1

m

]

]zD
l

f ( l )S 2
mz

b D1reg

52
S3

b
ln z(

l

1

l ! S 2
1

m

]

]zD
l H F S mz

b D 2

P̃S m2z2

b2 D G l

3KS m2z2

b2 D J 1reg
5-10
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52
S3

b
ln zE

2`

`

dq K~q2!(
l

1

l ! Fq2P~q2!

b G l S ]

]qD l

3dS q2
mz

b D1reg

52
S3

b
ln zE

2`

`

dq K~q2!dS q2
mz

b
1

1

b
q2P̃~q2! D1reg.

~A10!

The factor of lnz can be extracted because (]/]z) l(zp ln z)
5ln z(] lzp/]zl)1reg whenp>2l . Carrying out theq integral,
we finally obtain

I K
sing52

S3 ln z

b
K~Q2!H 11

1

b

d

dQ
@Q2P̃~Q2!#J 21

,

~A11!
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