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Recursion method for nonhomogeneous superconductors: Proximity effect
in superconductor-ferromagnet nanostructures

E. Vecino, A. Martı´n-Rodero, and A. Levy Yeyati
Departamento de Fı´sica Teo´rica de la Materia Condensada C-V, Universidad Auto´noma de Madrid, E-28049 Madrid, Spain

~Received 11 June 2001; published 9 October 2001!

We present a theoretical method to study the electronic local spectral density of hybrid nanostructures
consisting of a normal~N! or ferromagnetic~F! region deposited on top of a superconductor (S). Our approach
is based on a lattice Hamiltonian model which allows to describe the spatial variation of the superconducting
order parameter in nanostructures of arbitrary geometry. In order to obtain the local density of states we
develop a generalization of the recursion method valid for systems containing superconducting and ferromag-
netic regions. As a first step we analyze the proximity effect and the detailed behavior of Andreev states in
one-dimensional~1D! N-S andF-S structures. We study the transition from the 1D case to the limit of infinite
lateral dimensions in the ballistic regime. Finally we analyze the spatial variation of the proximity effect as a
function of the exchange field inF-S nanostructures. It is found that the oscillations in the induced pairing
amplitude in the scale of the ferromagnetic coherence length can be correlated to the crossing of Andreev states
through the Fermi energy as a function of the ferromagnetic region size.

DOI: 10.1103/PhysRevB.64.184502 PACS number~s!: 74.50.1r, 74.80.2g, 75.70.2i
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I. INTRODUCTION

A normal metal~N! in good contact with a superconduct
~S! is known to acquire superconducting properties in a
gion close to the interface. This effect, known as the pr
imity effect, has been extensively studied for more than
years.1 With the development of nanofabrication techniqu
it has become possible to analyze the proximity effect w
spatial resolution in the mesoscopic regime2 which has
stimulated a renewed interest in more detailed theories.
the other hand, the proximity effect in ferromagnets~F! has
remained so far a less understood phenomenon. Many re
experiments have been conducted in order to test the p
imity effect onF-S structures.3–6 Some of these experimen
seem to be in contradiction with the general ‘‘wisdom’’ sta
ing that superconducting correlations should be destro
beyond distances of the order ofjF5\vF /pEex, whereEex
is the exchange field in the ferromagnet, which is of t
order of a few nanometers in usual ferromagnets. On
theoretical side, the proximity effect has been main
analyzed using the Usadel equations7 for semiclassical Green
functions. This approach has allowed a rather complete
derstanding of the proximity effect in normal diffusive co
ductors. However, actual nanostructures with typical dim
sions of the order or smaller than the elastic mean free p
can be closer to a ballistic situation.8 Further theoretical de
velopments covering the range between diffusive and ba
tic regimes are thus desirable. At the same time, the the
should be able to account for geometrical effects that can
relevant in real nanostructures.

To get a microscopic insight it is convenient to start fro
a model Hamiltonian incorporating the essential physical
gredients. For the description of nonhomogeneous system
is useful to formulate this model using a local orbital bas
This type of approach has been introduced in the contex
superconductivity in Refs. 9,10 and is specially well suited
analyze transport properties when a detailed description
the geometry is needed. This approach naturally allows f
self-consistent determination of the spatial variation of
0163-1829/2001/64~18!/184502~8!/$20.00 64 1845
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order parameter10 and to incorporate electron-correlatio
effects.11 Furthermore, itinerant magnetism has been tra
tionally analyzed by means of model Hamiltonians written
a local representation such as the Hubbard model or its m
extensions.12 These lattice models thus provide an adequ
framework for a more microscopic description of the inte
play between superconductivity and ferromagnetism in
tual nanostructures.

On the other hand, the recursion method introduced
Haydock et al.13 for the evaluation of the local density o
states in normal systems is a powerful computational too14

particularly suitable to analyze systems with an arbitrary
ometry as it does not rely on translational symmetry assu
tions. It is thus desirable to extend this method to situatio
where superconducting correlations are present. Altho
some attempts in this direction have already been ma15

further developments seem to be necessary, specially
dealing with the combination of superconductors and fer
magnets.

The aim of the present work is twofold: first, we introduc
a generalization of the recursion method for the case of
brid N-S andF-S structures. Secondly, we use this method
study the proximity effect in the ballistic limit for differen
geometries inN-S andF-S structures.

The paper is organized as follows. In Sec. II we introdu
the microscopic model. Section III is devoted to the analy
of the quasiparticle spectrum of one-dimensional models
N-S andF-S structures. In Sec. IV we discuss the genera
zation of the recursion method for the calculation of loc
Green functions inN-S or F-S structures. In Sec. V we
present results for different 3DN-S andF-S nanostructures
which illustrate the behavior of the induced pairing amp
tude and local densities of states for different geometr
The conclusions are finally presented in Sec. VI.

II. THE MICROSCOPIC MODEL

In the present work we analyze the proximity effect
different hybrid nanostructures such as the one depicte
©2001 The American Physical Society02-1
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Fig. 1. For describing the electronic states in such syst
we introduce a model Hamiltonian in a local representat
which, for a ferromagnetic region, adopts the form

ĤF5(
i ,s

~e i ,s2m!cis
† cis1 (

iÞ” j ,s
t i j cis

† cj s , ~1!

wherei , j run over the different sites of the system,t i j are the
hopping parameters connecting the different sites;m is the
chemical potential ande i ,s is a spin dependent site energ
which can take into account the presence of an excha
field (e i ,↑2e i ,↓5Eex). The Hamiltonian for a normal meta
ĤN is simply recovered by makingEex50. On the other
hand, for the superconducting regions one has9,10

ĤS5(
i ,s

~e i2m i !cis
† cis1 (

iÞ j ,s
t i j cis

† cj s

1(
i

D i~ci↓
† ci↑

† 1ci↑ci↓!, ~2!

whereD i is the local superconducting order parameter.
Within this model, the coupling between theN (F) andS

regions is introduced by means of hopping elements conn
ing sites on both sides of the interface. By choosing app
priately the hopping elements on the different regions o
can model different situations and in particular to control
transparency of the interface~for instance, takingt i j 5t ev-
erywhere would correspond to the ideal interface!. Disorder
caused by static impurities can be modeled by a rand
distribution of the site energiese i ,s .

For the theoretical description of a system containing
perconductors it is useful to introduce the Nam
representation,16 which is given in terms of the two
component spinorsĉ i and ĉ i

† given by

ĉ i5S ci↑
ci↓

† D , ĉ i
†5~ ci↑

† ci↓! . ~3!

The Nambu representation is adequate to describe a
magnetic situation. Although it conventionally assigns s
up to the electron and spin down to the hole components,
choice is irrelevant in the case of spin degeneracy. Fo
magnetic case one would need to introduce, in principle,
extra components namely for an electron with spin down

FIG. 1. Typical geometry for a hybridN(F)-S nanostructure.
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a hole with spin up. However, when the magnetism is int
duced by means of a diagonal exchange field, symmetry
lations between the propagators for electrons and holes~see
below! make it possible to restrict the analysis to the us
Nambu space.

In terms of these operators the generic Hamiltonian
be written as

Ĥ5(
i , j

ĉ i
†Hi j ĉ j , ~4!

where

Hi j 5d i j S e i↑2m D i

D i 2e i↓1m D 1~12d i j !S t i j 0

0 2t i j*
D .

~5!

Although in principle one could choose an arbitrary latti
structure, we shall adopt the simple cubic lattice for the s
of simplicity.

III. ANALYSIS OF 1D N-S AND F -S STRUCTURES

As a starting point it is instructive to analyze simple o
dimensional models forN-S and F-S structures. These ex
amples would also allow to introduce the Green functi
formalism adapted to deal with superconducting and/or
romagnetic correlations. The retarded and advan
frequency-dependent Green functions in the Nambu re
sentation are defined as

Ĝi j
r ,a~v!57E dt eivtu~6t!^@ĉ i~t!,ĉ j

†~0!#1&. ~6!

In this definition,Ĝi j ,11 corresponds to the propagation
an up spin electron, whileĜi j ,22 describe the propagation o
a down spin hole. The remaining propagators can be
tained from the previous ones by simple relations. Th
the propagator for down spin electrons is given
2Ĝi j ,22* (2v) while the one for up spin holes is equal to

2Ĝi j ,11* (2v).
Within our local description we associate a finiteN or F

region with a linear chain ofN sites coupled to a semi
infinite chain corresponding to the superconducting regi
The sites on theN (F) region are labeled by 1 toN, where
N denotes the site connected to the superconductor. The
ping element between neighboring sites is taken ast every-
where except at the interface, where it is denoted bytc .
Taking the coupling between theN (F) and theS regions as
a perturbation the retarded~advanced! frequency-dependen
Green functions of the coupled system in a Nambu repres
tation can be obtained from the Dyson equation

Ĝr ,a5ĝr ,a1ĝr ,aV̂Ĝr ,a, ~7!

where ĝr ,a are the retarded~advanced! Green functions of
the uncoupled regions andV̂ is the term coupling both re
gions.

The Green functions on the outermost site of theN (F)
region are then given by
2-2
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Ĝ115
1

D S g11
↑ D1tc

2g1N
↑ gN1

↑ ~g2tc
2gNN

↓ d! 2tc
2g1N

↑ gN1
↓ f

2tc
2g1N

↑ gN1
↓ f g11

↓ D1tc
2g1N

↓ gN1
↓ ~g2tc

2gNN
↑ d!

D , ~8!

whereg and f are the diagonal and nondiagonal Green functions on the outermost site of the uncoupled supercondu~see
Appendix A!, d5g22 f 2, gi j

↑,↓ are the electron propagators for up and down spins in the uncoupledN (F) region ~see
Appendix B! and

D512tc
2g~gNN

↑ 1gNN
↓ !1tc

4dgNN
↑ gNN

↓ .

The conditionD(v)50 determines the position of the Andreev states inside the superconducting gap. This condit
be further simplified taking into account thatv;D!utu, which allows one to approximateg andf in the usual BCS-like form,
i.e., g(v)52v/(tAD22v2) and f (v)5D/(tAD22v2). In this case the position of the Andreev states can be obtained
the following equation:

v

AD22v2
5

b2 sin~Nf↑!sin~Nf↓!2sin@~N11!f↑#sin@~N11!f↓#

b@sin~Nf↑!sin@~N11!f↓#1sin~Nf↓!sin@~N11!f↑##
, ~9!
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where b5(tc /t)2 and fs5arccos(v2es)/2t. In the N-S
case (g↑5g↓), the condition for the Andreev states adopts
more simple form:

v56D
b2 sin2~Nf!2sin2@~N11!f#

b2 sin2~Nf!1sin2@~N11!f#
. ~10!

The number of states inside the superconducting gap
creases with the length of the normal region, at a typical r
of a new state when the length is increased by five times
superconducting coherence lengthj052ta/pD, wherea is
the lattice spacing. This behavior is illustrated in Fig. 2~a! for
the case of a perfect interface (t5tc). As can be observed
the states gradually move from the gap edges towards
Fermi energy. The states closer to the Fermi energy defi
‘‘minigap’’ whose value for largeN behaves asEg;pt/4N.

The transition from the normal to the ferromagnetic ca
can be studied as a function of the exchange fieldEex. As
can be observed in Figs. 2~b!, 2~c!, and 2~d!, the behavior of
the Andreev states is significantly modified for increas
Eex. In contrast to theN-S case where the states are sy
metrically located with respect to the Fermi energy, in t
F-S case there is an increasing asymmetry for increas
Eex. The electron states corresponding to the majority~mi-
nority! spins emerge from the gap edges and move with
creasing length towardsEF1Eex/2 (EF2Eex/2), thus even-
tually crossing the Fermi level. Notice that, whenEex
becomes larger than 2D only states coming from the lowe
~upper! gap edge populate the gap for the majority~minority!
spins.

The crossing of the Andreev states through the Fe
level takes place when the length is increased by five tim
jF52ta/pEex approximately and has important physic
consequences: it gives rise to a change in the sign of
induced pairing amplitude given by

^ci↓ci↑&5
1

pE2`

EF
Im~Gii

a !12~v!dv. ~11!
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The behavior of the induced pairing amplitude for increas
length is depicted in Fig. 3 for different values of the e
change field. Some features are worth noticing. In the fi
place, the above commented crossing gives rise to osc
tions of the order parameter with a typical wavelength of
order of jF . However, the overall decay length can be s
nificantly larger since it is given byj0 as in theN-S case. As
we will show in Sec. IV, these qualitative behavior is st
found in 3D systems and is consistent with the availa
experimental evidence.

For the sake of comparison, we also show in Fig. 3~d! the
spatial variation of the induced pairing amplitude as a fu
tion of the distance from the interface in an infinite 1DF-S
structure. A similar albeit smoother oscillatory behavior
found as compared to the previous case where the thick
is increased.

FIG. 2. Position of Andreev states in the spectral density for
majority spins as a function of the length of the F region within t
1D model described in the text. Cases~a!–~d! correspond to
Eex/D50, 0.8, 2, and 6, respectively. The spectral density for
minority spins is obtained by specular reflection with respect to
Fermi energy.
2-3
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IV. RECURSION METHOD

We present in this section a generalization of the recurs
method13 for the calculation of the local electronic properti
in nonhomogeneous superconducting 3D structures. In
normal version, the recursion method consists in the re
sive construction of an orthogonal basis in which the Ham
tonian adopts a tridiagonal form. The first state in this ba
is taken at the site where the local density of states is to
calculated, i.e.,uv1&5u0&. Then, the states in the new bas
are generated by the recursive equations

b1uv2&5Huv1&2a1uv1&,

b2uv3&5Huv2&2a2uv2&2b1uv1&,•••,

bnuvn11&5Huvn&2anuvn&2bn21uvn21&•••, ~12!

where the coefficientsan ,bn are determined by the orthogo
nality condition between the statesuvn& and correspond to
the diagonal and non-diagonal elements of the Hamilton
in the new representation. This method thus defines a m
ping into an effective semi-infinite one-dimensional chain
which the local Green functions can be evaluated as a c
tinued fraction given by

G00~v!5@v2a12b1
2g1~v!#21,

g1~v!5@v2a22b2
2g2~v!#21

•••,

gn21~v!5@v2an2bn
2gn~v!#21

•••. ~13!

The extension of the recursion method to deal with n
homogeneous superconductors is not straightforward. To
gin with, there is not a unique way of constructing this ge
eralization. In an earlier attempt, Litaket al.15 proposed a
generalization in which two recursion basis are construc
starting from electron and hole like states. However,

FIG. 3. Induced pairing amplitude on the surface of 1DF-S
structure as a function of theF region thickness~in unitsj0). Cases
~a!–~f! correspond to increasing values of the exchange field par
eter Eex/D50, 1, 2, 6, 12, and 18. In case d the triangles cor
spond to the spatial variation of the induced pairing amplitude
function of the distance to the interface in an infiniteF-S structure.
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232 structure of the Nambu space suggests that one c
develop a single recursion procedure by introducing a b
transformation with 232 matrix coefficients.

We begin by rewriting Hamiltonian~4! in a 232 Nambu
matrix form

Ĥ5(
i

S e i↑ D i

D i 2e i↓
D u i&^ iu1(

i j
S t i j 0

0 2t i j*
D u i&^ j u,

~14!

whereu i&^ j u are projection operators in the site space wh
do not operate in the Nambu space. A general basis ca
written in terms of the site basis$u i&% as

uvn&5(
i

S vn,i
11 vn,i

12

vn,i
21 vn,i

22 D u i&. ~15!

The orthogonality condition between two statesuvn&,uvm&
impose four conditions on their coefficients given by

(
i ,g

vn,i
agvm,i

gb 5dnmdab . ~16!

In order to generate the local Green functions~both the
diagonal and nondiagonal components in Nambu space! at a
site denoted by 0, the initial state in the recursive proced
is taken as

uv1&5S 1 0

0 1D u0&. ~17!

In the generalization of the recursive equations~12! to the
superconducting case the coefficientsan and bn become
232 matricesân ,b̂n . One should then take care of the no
commuting nature of matrix algebra in writing the new equ
tions which turn out to be given by

uv2&b̂15Ĥuv1&2uv1&â1 ,

uv3&b̂25Ĥuv2&2uv2&â22uv1&b̂1•••,

uvn11&b̂n5Ĥuvn&2uvn&ân2uvn21&b̂n21•••. ~18!

As in the normal case, the matrix coefficientsân and b̂n
are determined by the orthogonality conditions between c
secutive states in the new basis. Thus,ân is obtained trivially
from the last equation by taking the scalar product with
stateuvn&, leading toân5^vnuĤuvn&. On the other hand, the
orthogonality conditions only permits one to determineb̂n

†b̂n

leading to an intrinsic ambiguity in the determination ofb̂n

as we discuss below. Notice thatb̂n
†b̂n is calculated from the

scalar product of the stateuṽn&5uvn&b̂n with itself.
In the nonmagnetic case it can be shown that the s

uṽn&, which is obtained by successive application of t
Hamiltonian to the initial state, have components which
symmetric matrices of the form

-
-
s

2-4
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RECURSION METHOD FOR NONHOMOGENEOUS . . . PHYSICAL REVIEW B 64 184502
^ iuṽn&5S ani bni

bni 2ani
D . ~19!

Thus, b̂n
†b̂n is a diagonal matrix from which the coeffi

cients b̂n are directly extracted by taking the square ro
There is an ambiguity in the election of the sign of the squ
root. However, this choice does not affect the physical qu
tities such as the local densities of states. Since the diag
elements of the matrixb̂n can be interpreted as the hoppin
elements of an effective one-dimensional model, we cho
(b̂n)1152(b̂n)22 as in the hopping matrix of the initia
Hamiltonian in the Nambu representation.

In the magnetic case the above commented symmetr
the components ofuṽn& is lost. In this caseb̂n

†b̂n is no longer
a diagonal matrix and, as a consequence, the matrix co
cientsb̂n can acquire nondiagonal elements. To obtain th
coefficients the matrixb̂n

†b̂n is first diagonalized and the
transformed back to the original basis after taking the squ
root.

Once the coefficientsân and b̂n are determined, it is
straightforward to obtain the local Green function matrixĜ00
by evaluating the matrix continued fraction

Ĝ00~v!5@v Î 2â12b̂1
†ĝ1~v!b̂1#21,

ĝ1~v!5@v Î 2â22b̂2
†ĝ2~v!b̂2#21

•••,

ĝn21~v!5@v Î 2ân2b̂n
†ĝn~v!b̂n#21

•••. ~20!

One should finally devote some consideration to the pr
lem of the truncation of the continued fraction. In practic
one can only calculate exactly a finite number of coefficien
In most cases a convergence into certain limiting coefficie
â` ,b̂` is observed for a sufficiently large number of iter
tions. In that case the continued fraction can be termina
using the constant termination procedure, which is w
known for the normal case.17 In the superconducting case th
equivalent procedure requires to obtain the local Green fu
tion for a semi-infinite homogeneous superconducting ch
~see Appendix A!.

However, in certain situations which involve localize
states inside the superconducting gap, the coefficients
exhibit aperiodic long range oscillations. Nevertheless, it
be shown that the local densities of states converge for
ficiently large number of iterations even when the individu
coefficients do not tend to an asymptotic value.

In order to illustrate the accuracy of the method we ha
calculated the subgap local density of states~LDOS! for a
N-S 1D example where the exact result can be obtained
solving the Dyson equation as in the previous section. T
results in Fig. 4 exhibit the convergence into the exact so
tion as the number of iterations is increased.

V. 3D N-S AND F -S NANOSTRUCTURES

We are interested in analyzing how the distribution
Andreev states evolves as the lateral dimensions of aN-S or
18450
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a F-S structure increase from the 1D to the infinite plan
junction case. For analyzing this transition we have cons
ered a prismatic geometry such as the one depicted in Fi
in which the cross section is varied by changing the num
M of sites on the square side.

It should be noticed that the case of a ballistic norm
layer on top of a superconductor was first analyzed by
Gennes and Saint-James18 who showed that the Andree
states form a continuous band filling the gap region. Th
found that the density of states around the Fermi energy
haves as;uvu for arbitrary thickness.

In Fig. 5 we analyze the transition in the LDOS at th
surface of the normal region, from the 1D to the infini
planar geometry. As can be observed, the subgap LD
evolves from a single localized Andreev peak in the 1D c
to a continuous LDOS in the infinite lateral dimension lim
As the lateral dimension is increased the subgap states
to group themselves into a bunch located at the position
the original 1D state with a tail which gradually fills the ga

As can be observed in Fig. 6, for lateral dimensions of
order of a few timesj0 the LDOS can be hardly distin

FIG. 4. LDOS on a site at the interface in an infinite 1DN-S
structure. Cases~a!, ~b!, and~c! are obtained using the generalize
recursion method with 300, 600, and 1200 recursion steps while~d!
corresponds to the exact result obtained by solving the Dyson e
tion.

FIG. 5. Evolution of the surface subgap LDOS on a 3DN-S
structure when increasing the lateral dimensions. The normal la
thickness is 1.56j0. Cases~a! to ~d! correspond to a lateral width
equal to 0.156, 0.78, 1.404, and 3.276j0, respectively.
2-5
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guished from the infinite planar geometry limit except f
some minor structure~in this limit the problem becomes di
agonal in the parallel wave vector representation: the co
sponding LDOS can then be evaluated by direct summa
over this component of the wave vector!. When comparing
the LDOS in the infinite planar limit with the result of the d
Gennes and Saint-James model~see Fig. 6! several differ-
ences become apparent. The most important one is the
sence of a linear DOS around the Fermi energy. This is
sically due to the fact that the de Gennes–Saint-Ja
calculation corresponds to thetotal DOS of the normal re-
gion instead of just the surface LDOS. On the other hand,
LDOS in the lattice model does not exhibit an abrupt jump
the position of the 1D Andreev states as is in the de Genn
Saint-James result. This difference is due to the finite va
of the parameterD/t, which invalidates the Andreev approx
mation, and the deviation from a parabolic energ
momentum relation in the perpendicular direction for cert
values of the parallel wave vector. In this sense both mod
are not completely equivalent.

It is important to notice that in a tunneling experiment t
measured quantity is the surface LDOS instead of the t
normal region DOS. Therefore, the linear behavior arou
the Fermi energy predicted by de Gennes–Saint-Ja
would not be observed even in the ideal ballistic case.19 In
contrast our results predict a much faster decay. As a co
quence, the distinction between the ballistic and the diffus
case~in which a minigap is predicted to appear20! could be
difficult to observe experimentally.

A similar analysis for the transition from 1D to the infinit
planar limit can be performed for theF-S case. As in the
case ofN-S structures it is found that the 1D features a
robust, i.e., the LDOS exhibits pronounced peaks around
position of the original 1D states with tails gradually fillin
the gap. The surface LDOS corresponding to the infinite p
nar limit is shown in Fig. 7 for different values of the ex
change field parameter. While forEex;D the spectrum is
still similar to theN-S case but with a slight e-h asymmetr
for much larger values ofEex the LDOS exhibits a much
more complex structure distributed quite evenly inside
gap.

Spatial behavior of the LDOS and induced pairing amp
tude in 3D F-S structures. Let us now analyze the spatia
behavior of the induced pairing amplitude and LDOS in a

FIG. 6. Surface subgap LDOS of case~d! in Fig. 5 compared to
the infinite width limit ~dotted line! and the corresponding result o
the de Gennes–Saint-James theory~dashed line!.
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F-S structure. It is possible to conceive two types of expe
ments for testing these quantities: in one case the LDO
measured for increasing thickness of theF region; while in
the other the spatial behavior would be scanned along
surface at increasing distances from the interface for a gi
thickness. So far, experiments have probed the evolution
the LDOS with the size of theF region in F-S layers.5 An
oscillatory behavior of the induced pairing amplitude w
observed. A more detailed comparison with the theory wo
require using the second method, which could be imp
mented by means of the scanning tunneling microscope.

The spatial behavior of the LDOS for aF-S nanostructure
is shown in Fig. 8. We have chosen an exchange field par
eterEex;6D, which is close to the experimental situation
Ref. 5. As can be observed, the most significant features
due to the evolution of the 1D Andreev states, which ori

FIG. 7. Majority spin surface subgap LDOS for aF-S structure
in the infinite width limit for different values of the exchange fie
parameter. Cases~a!–~f! correspond toEex/D50, 0.5, 1, 2, 4, and
20.

FIG. 8. Majority spin~full line! and minority spin~dotted line!
surface subgap LDOS on aF-S nanostructure in the infinite width
limit as a function of the F layer thickness,L. Cases~a!–~f! corre-
spond toL/jF50.94, 1.88, 2.83, 4.24, 5.31, 6.37. A smaller ener
resolution has been used in order to stress the main features o
subgap LDOS.
2-6
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nate at the gap edges, move towards the center and ev
ally cross the Fermi energy. This evolution gives rise to
oscillatory sequence of peaks and valleys around the Fe
energy. Although this behavior is in qualitative agreem
with the results of Ref. 5, the present theory corresponds
much larger spatial resolution which cannot be reached
this type of experiment.

As commented in the 1D case, this crossing of Andre
states leads also to a spatial oscillatory behavior of the
duced pairing amplitude, as illustrated in Fig. 9. Althou
the overall qualitative behavior is similar to the one found
1D, the amplitude of the oscillations are reduced by a fac
of the order of 3. A similar oscillatory behavior would b
obtained when the induced pairing amplitude is scanned
function of the distance to the interface in an infiniteF-S
structure.

VI. CONCLUSIONS

A generalized recursion method for the calculation of
local spectral densities in hybridN-S andF-S nanostructures
has been presented. This method allows one to study
proximity effect in structures of arbitrary geometry.

Using this method we have made a detailed analysis
the spatial variation of the spectral densities and the indu
pairing amplitude in the region close to the interface in b
listic N-S andF-S structures. We have shown that the sim
plest 1D models already contain the essential ingredie
which determine this spatial variation, namely, the evolut
of the Andreev states inside the superconducting gap
function of theN or F region size. In theF-S case it has been
shown that the oscillations at the scale ofjF in the induced
pairing amplitude and in the LDOS at the Fermi energy c
be correlated to the evolution of the Andreev states inside
gap. These oscillations exhibit an overall decay length s
nificantly larger thanjF , which is controlled byj0 as in the
N-S case. We believe that this is an interesting result si

FIG. 9. Induced pairing amplitude on the surface of 3DF-S
structure as a function of theF region thickness~in units j0). The
lateral width is equal toL/j057.66 which, with the actual choice o
parameters, corresponds to a 49349 sites in the cross section
Cases~a!, ~b!, and~c! correspond toEex/D50, 6, and 12.
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the typical length for proximity effect inF-S systems is cur-
rently under debate.3–6

Although the present results are consistent with the av
able experimental data, this theoretical analysis would
come more relevant in connection with new experiments
ing local probes such as the scanning tunneling microsc
which would provide larger spatial and energy resolutio
Experiments along these lines are starting to be develope21
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APPENDIX A

In this appendix we obtain the expressions for the dia
nal and nondiagonal~in Nambu space! Green functions in
the outermost site of an homogeneous semi-infinite su
conducting chain. From the Dyson equation~7! it can be
shown that these quantities satisfy the matrix equation

@v Î 2ĥ02 t̂ ĝt̂ #ĝ5 Î , ~A1!

where

ĥ05S e2m D

D 2~e2m!
D , t̂5S t 0

0 2t D .

In the case of electron-hole symmetrye2m50 andg11
5g225g while g125g215 f . Then, Eq.~A1! can be easily
solved yielding for the advanced component

g~v!5
v

2t2 F12Av224t22D2

v22D2 G
for uvu,D or uvu.A4t21D2,

g~v!5
v

2t2 F11 i sgn~v!A4t21D22v2

v22D2 G
for D,uvu,A4t21D2. ~A2!

The nondiagonal Green function is simply given b
f (v)52Dg(v)/v.

APPENDIX B

In this appendix we obtain the electron propagators fo
finite ferromagnetic 1D chain havingN sites. The Green
functions for the up or down spinsg1n

s , where 1 denotes the
outermost site of the chain and 1<n<N, can be obtained
from the propagators of a semi-infinite homogeneous
chaing̃1n

s by introducing a perturbation which decouples t
outermostN sites from the rest of the chain. We first notic
that g̃1n

s can be expressed in terms of a phase factor in
form
2-7
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g̃1n
s 5

einfs

t
, ~B1!

where fs5arccos(v2es)/2t. Solving the Dyson equation
for a perturbation corresponding to subtracting the bond
H.

e

tt.

.

18450
e-

tween theN andN11 sites one readily obtains

g1n
s 5

1

t

sin@~N2n11!fs#

sin@~N11!fs#
. ~B2!
e
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