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Recursion method for nonhomogeneous superconductors: Proximity effect
in superconductor-ferromagnet nanostructures
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We present a theoretical method to study the electronic local spectral density of hybrid nanostructures
consisting of a normaNN) or ferromagneti¢F) region deposited on top of a superconduct®y. Our approach
is based on a lattice Hamiltonian model which allows to describe the spatial variation of the superconducting
order parameter in nanostructures of arbitrary geometry. In order to obtain the local density of states we
develop a generalization of the recursion method valid for systems containing superconducting and ferromag-
netic regions. As a first step we analyze the proximity effect and the detailed behavior of Andreev states in
one-dimensionallD) N-S andF-S structures. We study the transition from the 1D case to the limit of infinite
lateral dimensions in the ballistic regime. Finally we analyze the spatial variation of the proximity effect as a
function of the exchange field iR-S nanostructures. It is found that the oscillations in the induced pairing
amplitude in the scale of the ferromagnetic coherence length can be correlated to the crossing of Andreev states
through the Fermi energy as a function of the ferromagnetic region size.
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[. INTRODUCTION order parameté? and to incorporate electron-correlation
effects’* Furthermore, itinerant magnetism has been tradi-
A normal metalN) in good contact with a superconductor tionally analyzed by means of model Hamiltonians written in
(9 is known to acquire superconducting properties in a rea local representation such as the Hubbard model or its many
gion close to the interface. This effect, known as the proxextensioné.2 These lattice models thus provide an adequate
imity effect, has been extensively studied for more than 3Gramework for a more microscopic description of the inter-
years' With the development of nanofabrication techniquesplay between superconductivity and ferromagnetism in ac-
it has become possible to analyze the proximity effect withtual nanostructures.
spatial resolution in the mesoscopic regimehich has On the other hand, the recursion method introduced by
stimulated a renewed interest in more detailed theories. Onaydock et al® for the evaluation of the local density of
the other hand, the proximity effect in ferromagnéfs has  states in normal systems is a powerful computational Yool,
remained so far a less understood phenomenon. Many receparticularly suitable to analyze systems with an arbitrary ge-
experiments have been conducted in order to test the proxmetry as it does not rely on translational symmetry assump-
imity effect onF-S structures—® Some of these experiments tions. It is thus desirable to extend this method to situations
seem to be in contradiction with the general “wisdom” stat- where superconducting correlations are present. Although
ing that superconducting correlations should be destroyedome attempts in this direction have already been fade
beyond distances of the order §f=%v/7E.,, WhereE,,  further developments seem to be necessary, specially for
is the exchange field in the ferromagnet, which is of thedealing with the combination of superconductors and ferro-
order of a few nanometers in usual ferromagnets. On theagnets.
theoretical side, the proximity effect has been mainly The aim of the present work is twofold: first, we introduce
analyzed using the Usadel equatibfs semiclassical Green a generalization of the recursion method for the case of hy-
functions. This approach has allowed a rather complete urbrid N-S andF-S structures. Secondly, we use this method to
derstanding of the proximity effect in normal diffusive con- study the proximity effect in the ballistic limit for different
ductors. However, actual nanostructures with typical dimengeometries irN-S and F-S structures.
sions of the order or smaller than the elastic mean free path The paper is organized as follows. In Sec. Il we introduce
can be closer to a ballistic situatiSrzurther theoretical de- the microscopic model. Section Ill is devoted to the analysis
velopments covering the range between diffusive and ballisef the quasiparticle spectrum of one-dimensional models for
tic regimes are thus desirable. At the same time, the theor{-S and F-S structures. In Sec. IV we discuss the generali-
should be able to account for geometrical effects that can beation of the recursion method for the calculation of local
relevant in real nanostructures. Green functions inN-S or F-S structures. In Sec. V we
To get a microscopic insight it is convenient to start frompresent results for different 3N-S and F-S nanostructures
a model Hamiltonian incorporating the essential physical inwhich illustrate the behavior of the induced pairing ampli-
gredients. For the description of nonhomogeneous systemstitde and local densities of states for different geometries.
is useful to formulate this model using a local orbital basis.The conclusions are finally presented in Sec. VI.
This type of approach has been introduced in the context of
superconductivity in Refs..9,10 and is specially well spitgd to II. THE MICROSCOPIC MODEL
analyze transport properties when a detailed description of
the geometry is needed. This approach naturally allows for a In the present work we analyze the proximity effect in
self-consistent determination of the spatial variation of thedifferent hybrid nanostructures such as the one depicted in
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N or F region a hole with spin up. However, when the magnetism is intro-
duced by means of a diagonal exchange field, symmetry re-
\ lations between the propagators for electrons and Heks

below) make it possible to restrict the analysis to the usual
Nambu space.

In terms of these operators the generic Hamiltonian can
be written as

X 000X Superconductor N ~t ~
: <— Bulk H= . Ui Hij i (4
where
FIG. 1. Typical geometry for a hybrib(F)-S nanostructure. o (s”—,u. A, 15 )(tij 0
. . . . T A, —€,+ Yo —tX)”
Fig. 1. For describing the electronic states in such systems ! e 'l
we introduce a model Hamiltonian in a local representation
which, for a ferromagnetic region, adopts the form Although in principle one could choose an arbitrary lattice
structure, we shall adopt the simple cubic lattice for the sake
" of simplicity.
HF:_E (ei,O'_lu’)CiTUCia'_l— ; tijCiTO'CJ'O'! (1) P y
I,o i#j,0

. _ ) [l. ANALYSIS OF 1D N-S AND F-S STRUCTURES
wherei,j run over the different sites of the system

1,are the

hopping parameters connecting the different SiFIES.S the As a starting point it is instructive to analyze simple one
chemical potential and; ,, is a spin dependent site energy dimensional models foN-S and F-S structures. These ex-
which can take into account the presence of an exchangamples would also allow to introduce the Green function
field (¢, — €, =Ee). The Hamiltonian for a normal metal formalism' adapted to deal with superconducting and/or fer-
Hy is simply recovered by makin@e=0. On the other romagnetic correlations. The retarded and advanced

hand, for the superconducting regions one’fi3s frequency-dependent Green functions in the Nambu repre-
sentation are defined as

0= —udel e ol e . . - -

HS_LEO' (él MI)C'UCIU_’_i;j'a- tI]Cm'CJO' G:’J’a(w):$f dt elwfa(iT)<[l//i(7'),l//j1-(0)]+>. (6)

+> Ai(CiTLCiTT"'CiTCu): 2) In this definition,éij .11 corresponds to the propagation of
! an up spin electron, whiléijvzz describe the propagation of

whereA, is the local superconducting order parameter. @ down spin hole. The remaining propagators can be ob-
Within this model, the coupling between thie (F) andS tained from the previous ones by simple reI_anrys. Thus,

regions is introduced by means of hopping elements connecti® propagator for down spin electrons is given by

ing sites on both sides of the interface. By choosing appro—Gjj ,(— ) while the one for up spin holes is equal to

priately the hopping elements on the different regions one- é.ﬁ u(— o).

can model different situations and in particular to control the  wjithin our local description we associate a finteor F

transparency of the interfadéor instance, takindg; =t ev-  region with a linear chain oN sites coupled to a semi-
erywhere would correspond to the ideal interfad@isorder  infinite chain corresponding to the superconducting region.
caused by static impurities can be modeled by a randonrhe sites on thé\ (F) region are labeled by 1 tN, where
distribution of the site energies ,, . N denotes the site connected to the superconductor. The hop-
For the theoretical description of a SyStem Containing SUping element between neighboring sites is takem agery-
perconductors it is useful to introduce the Nambuwhere except at the interface, where it is denotedthy
representatiof which is given in terms of the two- Taking the coupling between té (F) and theSregions as

component spinorg; and fp,T given by a perturbation the retarddddvancedl frequency-dependent
Green functions of the coupled system in a Nambu represen-
- Cip ~ 1 + tation can be obtained from the Dyson equation
=\t | lﬂi:(cm Cii)- ()
il ér,azér,a+ér,a\"/ér,a' (7)

The Nambu representation is adequate to describe a non- . .
magnetic situation. Although it conventionally assigns spinwhere g"® are the retardgdadvance&i Green functions of
up to the electron and spin down to the hole components, thithe uncoupled regions and is the term coupling both re-
choice is irrelevant in the case of spin degeneracy. For gions.
magnetic case one would need to introduce, in principle, two The Green functions on the outermost site of bhe(F)
extra components namely for an electron with spin down andegion are then given by
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. 1[ghD+t{giNghi(9—tigind) —tegingnnf
"D ~t29in0kf 91:D + 12910k (9~ t2gind) |
whereg andf are the diagonal and nondiagonal Green functions on the outermost site of the uncoupled superc@sductor

Appendix A), d=g?—f?, giTj'l are the electron propagators for up and down spins in the uncolpléB) region (see
Appendix B and

8

D=1—t2g(ghn+ghn) + tidglingkin -

The conditionD (w) =0 determines the position of the Andreev states inside the superconducting gap. This condition can
be further simplified taking into account that- A <|t|, which allows one to approximageandf in the usual BCS-like form,
i.e.,g(w)=—w/(tyA?— »?) andf(w)=A/(tVA?— w?). In this case the position of the Andreev states can be obtained from
the following equation:

o BPsin(Ne)sinNg )~ si(N+1)¢,]sin (N+1) ]

AZ—o? BLSiN(Ng)SI(N+1) T+sin(Ne )i (N+1) ¢, 1]’ ©

where B=(t./t)? and ¢,=arccosfw—€,)/2t. In the N-S  The behavior of the induced pairing amplitude for increasing
case (' =g'), the condition for the Andreev states adopts alength is depicted in Fig. 3 for different values of the ex-

more simple form: change field. Some features are worth noticing. In the first
place, the above commented crossing gives rise to oscilla-
,32 Si(N¢) —sir?[ (N+ 1)¢] 10 tions of the order parameter with a typical wavelength of the
w==* . 0 ia-
B2SIrP(NG) + Si[(N+1) &] order of ¢ . However, the overall decay length can be sig

nificantly larger since it is given by, as in theN-S case. As

The number of states inside the superconducting gap i we will show in Sec. IV, these qualitative behavior is still

creases with the length of the normal region, at a typical rat ound_ in 3D sy_stems and is consistent with the available
of a new state when the length is increased by five times thXPerimental evidence. o
superconducting coherence length=2ta/7A, wherea is For the sake of comparison, we also show in Fig) 3he
the lattice spacing. This behavior is illustrated in Figydor ~ SPatial variation of the induced pairing amplitude as a func-
the case of a perfect interface<(t.). As can be observed, tion of the dls'_[ar_lce from_ the interface in an infinite EDS _
the states gradually move from the gap edges towards tmefructure. A similar albeit smO(_)ther oscillatory behav_lor is
Fermi energy. The states closer to the Fermi energy define 'gUnd as compared to the previous case where the thickness
“minigap” whose value for largeN behaves ag g~ wt/4aN. 'S increased.

The transition from the normal to the ferromagnetic case

can be studied as a function of the exchange figld. As 10peT T Tea,. T foqPeeo. | | Poboied
can be observed in Figs(l8, 2(c), and 2d), the behavior of  _ o5l °°°%O o °oooooooooowooom
the Andreev states is significantly modified for increasing §m ja #0990000004000, b o
Eex. In contrast to theN-S case where the states are sym- & oo . 40000°0°°°°°°7]
metrically located with respect to the Fermi energy, in the = .| 4000000000 7 T 00 ooooo°°°°f
F-S case there is an increasing asymmetry for increasing§ 0o’ Doooo°°°°° °°° °o°°° ,00°°°]
E.. The electron states corresponding to the majdrity i B
nority) spins emerge from the gap edges and move with in- g c oodld of o ef Oo°° 00
creasing length towardgg + Eo,/2 (Ef—E/2), thus even- 5 o8 RTTLLE S
tually crossing the Fermi level. Notice that, whef, % 00 c°°° Ooo°°°°°° o 0 o Q°°oo° o
becomes larger thanA2 only states coming from the lower g . o0 Ooo°°° o o " . oo°oc
(uppeb gap edge populate the gap for the majofityinority) < '°'5'° o oooo" TS| SR . AR
spins. o A L 2 | I T A

The crossing of the Andreev states through the Fermi 01234567891 0123456738910
level takes place when the length is increased by five times Thickness (L/¢,)

éc=2tal mE,, approximately and has important physical

consequences: it gives rise to a change in the sign of the FIG. 2. Position of Andreev states in the spectral density for the
induced pairing amplitude given by majority spins as a function of the length of the F region within the

1D model described in the text. Casé®—(d) correspond to

1 (E E./A=0, 0.8, 2, and 6, respectively. The spectral density for the

(cijcip)y= _f F IM(G}) 19 0)dow. (11 minor.ity spins is obtained by specular reflection with respect to the
)~ Fermi energy.
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0.06

2% 2 structure of the Nambu space suggests that one could
0.03 develop a single recursion procedure by introducing a basis

000 M@ Badai S S—. transformation with 4 2 matrix coefficients.

' . 1l /J We begin by rewriting Hamiltoniaf¥) in a 2x2 Nambu
0.03 e P matrix form
0.06 ff a f b jj ¢

0.06 ~ €j Ai ti.
HZZ(A: —eu)|i><i|+; OJ —ij)lix”'

14
Mf"lﬂ R 4
where|i){j| are projection operators in the site space which
f

0
t*

do not operate in the Nambu space. A general basis can be

Induced Pairing Amplitude ( arb. units )

e written in terms of the site bas{$i)} as
1 2 3 4 5 6 12 3 4 5 6 1 2 3 4 5 6
Thickness (L/£) % %1| Ur112|
[} 3 3 .
|Vn>:2 ( 21 22)|'>- (15
FIG. 3. Induced pairing amplitude on the surface of EES b\ Uni Uni

structure as a function of tHeregion thicknessin units &;). Cases Th h i dition b

(a)—(f) correspond to increasing values of the exchange field param- e ort OQOna,'t,y con 't'on, etwegn two S_tate'$>’|vm>
eterE, /A=0, 1, 2, 6, 12, and 18. In case d the triangles corre-MPOSe four conditions on their coefficients given by
spond to the spatial variation of the induced pairing amplitude as
function of the distance to the interface in an infirfteS structure. IE vﬁ}v %,5; _ 5nm5a5- (16)
Y

IV. RECURSION METHOD

In order to generate the local Green functidbsth the

We present in this section a generalization of the recurSio@iiagonal and nondiagonal components in Nambu Spatca
method for the calculation of the Iog:al electronic properties site denoted by 0, the initial state in the recursive procedure
in nonhomogeneous superconducting 3D structures. In thg taken as

normal version, the recursion method consists in the recur-
sive construction of an orthogonal basis in which the Hamil- 1 0
tonian adopts a tridiagonal form. The first state in this basis |v1):< )|o>_ (17
is taken at the site where the local density of states is to be 01

calculated, i.e.|v,)=|0). Then, the states in the new basis

are generated by the recursive equations In the genqralization of the recgr.sive equatioh®) to the
superconducting case the coefficierds and b, become
bivo)=Hlvy)—a|vy), 2X 2 matricesa,,,b,,. One should then take care of the non-
commuting nature of matrix algebra in writing the new equa-
bylvg)=Hlvz) —azlva) —bafvs),- - -, tions which turn out to be given by
bn|Un+1>:H|Un>_an|vn>_bnfl|vnfl>"'1 12 |v2)61=|:||v1)—|v1)51,
where the coefficienta, ,b, are determined by the orthogo- o R R
nality condition between the staté¢s,) and correspond to [Vayb,=H|V,) —|vp)as—|vi)by- - -,

the diagonal and non-diagonal elements of the Hamiltonian
in the new representation. This method thus defines a map-
ping into an effective semi-infinite one-dimensional chain in

which the local Green functions can be evaluated as a con-
tinued fraction given by

|Vn+1>6n:|:||Vn>_|vn>én_|vnfl>6n71'"- (18)

As in the normal case, the matrix coefficierts and b,,
are determined by the orthogonality conditions between con-

Gool @) =[w—a,~bigs(w)] %, secutive states in the new basis. Thaysis obtained trivially
from the last equation by taking the scalar product with the
g1(®)=[w—a,—b3gy(w)] L, state|v,), leading toa,=(v,|H|v,). On the other hand, the
orthogonality conditions only permits one to determﬁén
On-1(®)=[@—a,=bigs(w)] " - -. (13)  |eading to an intrinsic ambiguity in the determinationiof

The extension of the recursion method to deal with non S W€ discuss below. Not|~ce t@bﬁ 'S clalc.ulated from the
homogeneous superconductors is not straightforward. To b&calar product of the stafe,) =[v,)b, with itself.
gin with, there is not a unique way of constructing this gen- _ In the nonmagnetic case it can be shown that the state
eralization. In an earlier attempt, Litadt al® proposed a |v,), which is obtained by successive application of the
generalization in which two recursion basis are constructe¢diamiltonian to the initial state, have components which are
starting from electron and hole like states. However, thesymmetric matrices of the form
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Anj Bni ) 021} a

Bni — Qnpj . (19) O-ZOW
] b

Thus, blb, is a diagonal matrix from which the coeffi-

cientsb,, are directly extracted by taking the square root.
There is an ambiguity in the election of the sign of the square

(|

LDOS (a.u.)
o
®

root. However, this choice does not affect the physical quan- orel 9

tities such as the local densities of states. Since the diagonal v

elements of the matrik,, can be interpreted as the hopping 0152 A [ 1 2

elements of an effective one-dimensional model, we choose (E-E)/A

(bn)13=—(by)2, @s in the hopping matrix of the initial FIG. 4. LDOS on a site at the interface in an infinite N3S
Hamiltonian in the Nambu representation. structure. Case&), (b), and(c) are obtained using the generalized

In the magnetic case the above commented symmetry ipucyrsion method with 300, 600, and 1200 recursion steps vidile
the components df/n> is lost. In this Caségf)n is no longer  corresponds to the exact result obtained by solving the Dyson equa-
a diagonal matrix and, as a consequence, the matrix coeffiion.
cientsb, can acquire nondiagonal elements. To obtain these
coefficients the matrixb'b,, is first diagonalized and then @ F-S structure increase from the 1D to the infinite planar

transformed back to the original basis after taking the squarinction case. For analyzing this transition we have consid-
root. ered a prismatic geometry such as the one depicted in Fig. 1,

Once the coefficients.. and b. are determined. it is in which the cross section is varied by changing the number
" " ’ M of sites on the square side.

straightforward to obtain the local Green function matt It should be noticed that the case of a ballistic normal
by evaluating the matrix continued fraction layer on top of a superconductor was first analyzed by de
Gennes and Saint-Jami&svho showed that the Andreev
states form a continuous band filling the gap region. They
found that the density of states around the Fermi energy be-

Goo @) =[ i —a;—blg;(w)b;]72,

T
g1(w)=[wl —a;=b3gs(w)by] *-- -, haves as-|w| for arbitrary thickness.

. © o age R In Fig. 5 we analyze the transition in the LDOS at the
On-1(w)=[wl —a,=bygn(w)bp] " . (200 surface of the normal region, from the 1D to the infinite

) . . planar geometry. As can be observed, the subgap LDOS

One should finally devote some consideration to the probg,g|yes from a single localized Andreev peak in the 1D case
lem of the truncation of the continued fraction. In practice,y, 4 continuous LDOS in the infinite lateral dimension limit.
one can only calculate exactly a finite number of coefficientsag the |ateral dimension is increased the subgap states tend
In most cases a convergence into certain limiting coefficientg, group themselves into a bunch located at the position of
a.,,b., is observed for a sufficiently large number of itera- the original 1D state with a tail which gradually fills the gap.
tions. In that case the continued fraction can be terminated As can be observed in Fig. 6, for lateral dimensions of the
using the constant termination procedure, which is wellorder of a few times¢, the LDOS can be hardly distin-
known for the normal cas¥.In the superconducting case the
equivalent procedure requires to obtain the local Green func:
tion for a semi-infinite homogeneous superconducting chain ra Ly
(see Appendix A

However, in certain situations which involve localized =
states inside the superconducting gap, the coefficients ca’§ 0sl
exhibit aperiodic long range oscillations. Nevertheless, it cang J
be shown that the local densities of states converge for sufg . .
ficiently large number of iterations even when the individual § 2ef¢ =~ =~ | {ld
coefficients do not tend to an asymptotic value.

In order to illustrate the accuracy of the method we have
calculated the subgap local density of statePOS) for a
N-S 1D example where the exact result can be obtained by o8t
solving the Dyson equation as in the previous section. The

1.6}

LDOS (a

r_esults in Fig. 4 exhibit_ the convergence into the exact solu- %0~ MJ& 06 os o0 oI o o
tion as the number of iterations is increased. Quasiparticle Energy [(E-E.)/A]
V. 3D N-S AND F-S NANOSTRUCTURES FIG. 5. Evolution of the surface subgap LDOS on a BES

. . . S structure when increasing the lateral dimensions. The normal layer
We are interested in analyzing how the distribution ofthickness is 1.56,. Caseda) to (d) correspond to a lateral width
Andreev states evolves as the lateral dimensionshfSor  equal to 0.156, 0.78, 1.404, and 3.2 respectively.
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P e 8 20l d e f
A T . a
0.0 Loee=cz?” : Loesitl - = s
0.00 0.25 0.50 0.75 1.00
Quasiparticle Energy [(E-E)/A] 1.0
FIG. 6. Surface subgap LDOS of ca@h in Fig. 5 compared to 05 Ao Mo
the infinite width limit(dotted ling and the corresponding result of 0.0

-1 0 1 -1 0 1 -1 0 1

the de Gennes—Saint-James the@gshed ling Quasiparticle Energy [(E-Eg)/A]
i 2

e i, et SOl It SXCEBL 17 1. 7. afrysinsrface i L0OS fofe st
P in the infinite width limit for different values of the exchange field

agonal in the parallel wave vector representation: the Corme o meter. Casds)—(f) correspond t&../A=0. 05.1. 2 4. and
sponding LDOS can then be evaluated by direct summatiog0 ' -0 P & e

over this component of the wave vegtoWwhen comparing

the LDOS in the infinite planar limit with the result of the de . . . .
F-S structure. It is possible to conceive two types of experi-

Gennes and Saint-James modete Fig. 6 several differ- : S )
ences become apparent. The most important one is the a[p_ents for testing thes_,e quantities: in one cgsg the_ LDOS IS
measured for increasing thickness of theegion; while in

sence of a linear DOS around the Fermi energy. This is ba; . )
sically due to the fact that the de Gennes—Saint-Jame e other t_he spajual b.ehawor would be. scanned along. the
calculation corresponds to thetal DOS of the normal re- surface at increasing distances from the interface for a given

gion instead of just the surface LDOS. On the other hand, thgickness. So far, experiments have probed the evolution of

; ; P 5
LDOS in the lattice model does not exhibit an abrupt jump a € .LDOS with the size of t.h§ region 'U.F'S 'ayefs- An
the position of the 1D Andreev states as is in the de Gennesgsc'"atory behavior Of. the mducgd pairing amplitude was
Saint-James result. This difference is due to the finite Valugbsgrved. A mct)rr1e detaﬂet?j comt[:r)]ar(ljsonr:/yltk? the }Qetc))ry .WOlfld
of the parameteA/t, which invalidates the Andreev approxi- require using the second method, which cou € imple-
mation, and the deviation from a parabolic energy-mented by means Of. the scanning tunneling microscope.
momentum relation in the perpendicular direction for certain, The spatial behavior of the LDOS forfaS nanostructure

values of the parallel wave vector. In this sense both model§ shown in Fig. 8 We have chosen an exchange _f|eId_par_am-
are not completely equivalent. eterE.,~6A, which is close to the experimental situation in

It is important to notice that in a tunneling experiment theRef. 5. As can be observed, the most significant features are

measured quantity is the surface LDOS instead of the totdfU€ t the evolution of the 1D Andreev states, which origi-

normal region DOS. Therefore, the linear behavior around
the Fermi energy predicted by de Gennes—Saint-Jame ) b
would not be observed even in the ideal ballistic cisie.
contrast our results predict a much faster decay. As a conse
qguence, the distinction between the ballistic and the diffusiveg
case(in which a minigap is predicted to appé&4rcould be
difficult to observe experimentally.

A similar analysis for the transition from 1D to the infinite
planar limit can be performed for the-S case. As in the
case ofN-S structures it is found that the 1D features are
robust, i.e., the LDOS exhibits pronounced peaks around the
position of the original 1D states with tails gradually filling
the gap. The surface LDOS corresponding to the infinite pla-
nar limit is shown in Fig. 7 for different values of the ex-
change field parameter. While fd.,~A the spectrum is
still similar to theN-S case but with a slight e-h asymmetry,
for much larger values oE, the LDOS exhibits a much FIG. 8. Majority spin(full line) and minority spin(dotted ling
more complex structure distributed quite evenly inside thesurface subgap LDOS onFS nanostructure in the infinite width
gap. limit as a function of the F layer thickneds, Casega)—(f) corre-

Spatial behavior of the LDOS and induced pairing ampli- spond tol/£-=0.94, 1.88, 2.83, 4.24, 5.31, 6.37. A smaller energy
tude in 3D RS structuresLet us now analyze the spatial resolution has been used in order to stress the main features of the
behavior of the induced pairing amplitude and LDOS in a 3Dsubgap LDOS.

LDOS (arb. units)

«1 L] 1 -1 0 1 -1 ° 1

Quasiparticle Energy [(E-Eg)/A]
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0.02 T T T T T T T T T T T T the typical length for proximity effect iff-S systems is cur-
= ' R rently under debaté:®
§ 001 T % SR y Although the present results are consistent with the avail-
= SR S f‘% S 1 able experimental data, this theoretical analysis would be-
% 0.00 [ 1k \ O | 4 ‘,’ 6(? %sgga%- come more relevant in connection with new experiments us-
3 . ‘M )| L? % ing local probes such as the scanning tunneling microscope
F 001 Lo s 4 which would provide larger spatial and energy resolution.
E I ] l Il ] Experiments along these lines are starting to be develtped.
%" 002} - -/ i -
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FIG. 9. Induced pairing amplitude on the surface of BES APPENDIX A

structure as a function of the region thicknessin units &;). The
lateral width is equal te./ £,=7.66 which, with the actual choice of
parameters, corresponds to a>x4® sites in the cross section.
Caseqa), (b), and(c) correspond t&,,/A=0, 6, and 12.

In this appendix we obtain the expressions for the diago-
nal and nondiagonalin Nambu spaceGreen functions in
the outermost site of an homogeneous semi-infinite super-
conducting chain. From the Dyson equatiof it can be

hown that these quantities satisfy the matrix equation
nate at the gap edges, move towards the center and events - q fy q

ho

ally cross the Fermi energy. This evolution gives rise to an 2as (A1)
with the results of Ref. 5, the present theory corresponds to a

much larger spatial resolution which cannot be reached in

states leads also to a spatial oscillatory behavior of the in- In the case of electron-hole symmeiey- =0 andgy,
duced pairing amplitude, as illustrated in Fig. 9. Although=02,=9 While g1,=g,,=f. Then, Eq.(A1) can be easily

. . 1-hy—tgt]g=1,
oscillatory sequence of peaks and valleys around the Fermi lo o~ tatlg
energy. Although this behavior is in qualitative agreemenwhere

€E— A R t O

this type of experiment. A —(e—p))’ “lo —t)

As commented in the 1D case, this crossing of Andreev
the overall qualitative behavior is similar to the one found insolved yielding for the advanced component
1D, the amplitude of the oscillations are reduced by a factor

of the order of 3. A similar oscillatory behavior would be _ 2| w?—4t7— A2
obtained when the induced pairing amplitude is scanned as a 9(w)= 2| T 02— A2
function of the distance to the interface in an infinkeS

structure. for |w|<A or |w|>At?+AZ

VI. CONCLUSIONS w
9(w)=—;
2t2

) 412+ A% — w?
1+isgnw) \| ————

A generalized recursion method for the calculation of the w?—A?
local spectral densities in hybrM-S andF-S nanostructures
has been presented. This method allows one to study the for A<|o|<{4t>+A2 (A2)
proximity effect in structures of arbitrary geometry. i ) . )

Using this method we have made a detailed analysis of The nondiagonal Green function is simply given by
the spatial variation of the spectral densities and the inducef(®) = —Ag(w)/w.
pairing amplitude in the region close to the interface in bal-
listic N-S and F-S structures. We have shown that the sim- APPENDIX B
plest 1D models already contain the essential ingredients In this appendix we obtain the electron probadators for
which determine this spatial variation, namely, the evolution,. . PP . . . N propagators for a

S . finite ferromagnetic 1D chain havinyyl sites. The Green

of the Andreev states inside the superconducting gap asfa . for th q . h 1d h
function of theN or F region size. In thé&-S case it has been unctions or.t € up or.down SPirgy,, where enote_s the
shown that the oscillations at the scale&fin the induced outermost site of the chain andgrjs.l\.l, can be obtained
pairing amplitude and in the LDOS at the Fermi energy car{rom ihe propagators of a semi-infinite homogeneous 1D
be correlated to the evolution of the Andreev states inside thehaings, by introducing a perturbation which decouples the
gap. These oscillations exhibit an overall decay length Sigouteimosﬂ\l sites from the rest of the chain. We first notice
nificantly larger thargr, which is controlled by, as in the  that g7, can be expressed in terms of a phase factor in the
N-S case. We believe that this is an interesting result sincéorm
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~ elnds tween theN andN+ 1 sites one readily obtains
g(lrn:T* (B1)
where ¢ ,=arccos— €,)/2t. Solving the Dyson equation (JTn:E S'r{_(N —nt1é,l (B2)
for a perturbation corresponding to subtracting the bond be- t si(N+1)¢,]
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