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Fluctuation theory of magnetic relaxation for two-dimensional ensembles of dipolar
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The fluctuation theory of magnetic relaxation has been developed for the two-dimensional ensembles of
ferromagnetic nanoparticles. The particles have random locations on a square lattice, interact via dipolar
interaction, and their easy axes of magnetization are perpendicular to the lattice plane. The derivation of the
equation that describes the time evolution of the magnetization has been based on the Fokker-Planck equation
for the distribution function of a nanoparticle magnetic moment. The influence of the mean value and the
fluctuations of the dipolar magnetic field on the process of magnetic relaxation is studied in detail. It has been
shown that, in contrast to the case of noninteracting nanoparticles which is characterized by the single relax-
ation time, magnetic relaxation in those ensembles is characterized by two different relaxation times, and that
the rate of relaxation decreases with time.
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I. INTRODUCTION nanoparticles is always carried out by approximate methods.
Within those methods different versions of the mean-field
The study of ferromagnetic nanopatrticles, i.e., nanometerapproximation are usually used and, as a rule, the final phase
sized single-domain ferromagnetic particles, has both themf magnetic relaxation is studied. The mean-field approxima-
retical and experimental interest stimulated by their technotion has two main drawbacks. Firstly, as a result of the dipo-
logical applications in data storage, composite materialsiar interaction the directions of the nanoparticle magnetic
ferrofluids, etct? The magnetic properties of ensembles ofmoments are correlated, i.e., a dynamical correlation exists
noninteracting nanoparticles are fully defined by their indi-between the magnetic moments. This means that different
vidual characteristics such as magnetic moments and magroups of nanoparticles can be under the influence of differ-
netic anisotropy. A nanoparticle with uniaxial anisotropy isent local dipolar fields and, consequently, in nanoparticle en-
characterized by an internal potential that has two stable staembles the long-range spatial and temporal fluctuations in
tionary points which correspond to the antiparallel orienta-the local field exist. But within the mean-field approximation
tion of the magnetic moment along the easy axis of magnethis fact is ignored. Secondly, since under thermal agitation
tization and which are separated by a potential barrier. Amagnetic moments perform random rotations, the dipolar
nonzero temperatures the nanoparticle magnetic momefield contains a high-frequency fluctuating part. The fluctua-
overcomes the barrier due to thermal agitation, as describeibns of the dipolar field act on the magnetic moments in a
by Neel®> A mathematically correct description of this phe- way similar to the thermal agitation, but within the mean-
nomenon, known for the low-barrier case as superparamadield approximation they are not taken into account. One ex-
netism, first was given by BrowhHe derived and in specific pects that for ensembles of close-packed nanopartislesn
cases solved the Fokker-Planck equation for the distributiothe average distance between the nanoparticles is comparable
function of the magnetic moment based on the stochastiwith the nanoparticle sizeboth the long- and short-range
Landau-Lifshitz equation. Now this approach is widely usedfluctuations of the local dipolar field can strongly influence
for the study of the magnetic properties of ensembles of nonthe magnetic relaxation.
interacting nanoparticles and, specifically, of the magnetic During the last years much attention is paid to the two-
relaxation>™° dimensional(2D) nanoparticle ensembles that has been mo-
The approach of noninteracting nanoparticles is validtivated by the significant developments in the fabrication
when the mean dipolar field acting on a nanoparticle is muchechniques of such ensembles including ordered &hés,
less than the anisotropy field. If this condition is violatedand by their interesting physical properties arising, in par-
then, as the analytical resufts'® and Monte Carlo ticular, from the dipolar interaction between nano-
simulation€®~?® have demonstrated, the dipolar interactionparticles®*~3* Among the 2D ensembles there is a class in
essentially changes the magnetic properties of the threavhich the easy axes of magnetization are perpendicular to
dimensional nanoparticle ensembles. From the mathematicétie plane where the nanoparticles are distributed. For such
point of view, the solution of the problem of magnetic relax- ensembles the influence of the dipolar interactions at low
ation requires the solution of the Fokker-Planck equation fotemperatures had been already investigated through the mag-
the joint distribution function of the magnetic moments. netization curves of thin films including the CoCr and
Since this equation does not have exact solutions the study &oCrPt nanoparticle® 3’ Thermally activated magnetic re-
magnetic relaxation for ensembles of dipolar interactinglaxation from the initial state, when all magnetic moments
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are oriented along a certain direction of the easy axis, to the
demagnetized ground state was considered within a simpli-
fied version of the mean-field approximati&hThe authors
numerically showed that magnetic relaxation, in the re-
stricted time interval, occurs slower than a simple Debye
relaxation model predicts and they approximated the relax-
ation law by the stretched-exponential time dependence. But
this stretched-exponential form does not hold for all times,
therefore the behavior of magnetic relaxation for those en-
sembles remains an open question even within the mean-
field theory.

In this paper we develop the fluctuation theory of mag-
netic relaxation for the 2D ensembles of uniaxial nanopar-
ticles with easy axes of magnetization which are perpendicu-
lar to the lattice plane, which takes into account the influence
of the high-frequency fluctuations of the dipolar field. In our
approach, for the description of the dynamics of the nano-
particle magnetic moment we use the stochastic Landau-
Lifshitz equation that takes into account the thermal agita-
tion. We consider the dipolar interaction by means of the FIG. 1. Schematic representation of our model.
dipolar field, which we write as the sum of the mean and the
fluctuating fields. We approximate the components of thQ']etiC field acting onm;, W is the magnetic energy of a
fluctuating dipolar field by effective white noises and we nanopartic|e ensemble, and(t) is the thermal magnetic
derive the Fokker-Planck equation for the distribution func-field which models the action of the heat bath. The thermal
tion of the magnetic moment. In the general case this €qUanagnetic field is defined by its zero mean vaI@ZO

tion is not closed with respect to that distribution function the overbar denotes averaging with respect to the thermal
since it contains the intensities of the components of thefield) and by the correlation functions

fluctuating dipolar field, which are defined by the joint dis-

tribution function. We perform the closing of this equation, NN 5(t+ 7)=2A 6, 8,56(7). )
i.e., the representation of these intensities via the distribution

function, in the case when the potential barrier between thé&leren;,(t) (a=Xx,y,z) are the components of(t), A is the
equilibrium directions of the magnetic moment essentiallyintensity of the thermal fields;; is the Kronecker symbol,
exceeds the thermal energy. In this approximation we solvand () is the dfunction. Within this model we write the
the Fokker-Planck equation by the Kramers meffladid we = magnetic energyV in the form

derive the law of magnetic relaxation.

The paper is organized as follows. In Sec. Il we introduce,,, ﬁz 2, 12 (mymp)rE =3(m;ri)(myri;)
the basic equations. We derive the equation for the distribu-"" 2y 4 (mie,) 2& r? !
tion function of the magnetic moment in Sec. lll, where we : (3)

also express the intensities of the components of the fluctu- ] o ) )

ating dipolar field through the correlation functions of the 8(>0) is the uniaxial anisotropy constait,is the nanopar-
magnetic moment, and for the high-barrier case we calculatticle volume, k is the unit vector along the axis, rj;
these intensities. In Sec. IV we derive the law of magneticz|r.j|1 ry=r;—r;, andr; (r;k=0) is the position vector of

relaxation. Concluding remarks are contained in Sec. V, anghe Ilattice site where thieh nanoparticle is sitting.

some technical details are given in the Appendixes. Since|m;| are conserved values, we can describe the dy-
namics of the magnetic moments by a system of stochastic
Il. MEAN MAGNETIC MOMENT equations for polany;;= ;,(t) and azimuthalf;,= i;,(t)
. . . ngl fm;
We consider the 2D ensemble of spherical nanopar'ucleg gies oim;

with a radiusr randomly distributed on the sites of a square -
lattice with a lattice cor)(stami (see Fig. L The easy axeg of k=il + Oual v, i) Nial1) (k=1,2). )

the nanoparticles magnetization are perpendicular taxshe Here, and further on, twice repeated indices, which are not
plane. A lattice site is occupied by a nanoparticle with prob-nanoparticle labels, imply summation, ands@:,<, 0
ability p. We describe the dynamics of the magnetic mo-< y.,< 2. The functionsgy,, (i1, ¥:,) andf,{#} (¢ in an-
mentsm; =m;(t) (the indexi labels the nanoparticleby the  gular brackets denotes the polar and azimuthal angles of all
system of stochastic Landau-Lifshitz equations magnetic moments in the nanoparticle ensembidich we
= — ym X [H 4 iD= (L y/mym X m X H: L (1) will write as g,, andf,, respectively, are defined as follows:
ﬁmia Y ﬁmia

wherey(>0) is the gyromagnetic ratio,(<1) is the damp- 9 :.L & gy — ———
ing parametenn=|m;|, H;=— dW/Jm; is an effective mag- “omsingip dip” T msingy iy

®)
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_ 9 9 particle at the origin and we give it the numbet 0. Then,

fi=- msing., A siny; e + e W, gg}{/;?r? designategro,= ¢, and ¢g,= t,, from Eq.(13) we
fom 2 sing— =W ©6) ™ (27

Z_mSinz lﬁil l’bllalﬂil alﬂiz ' mz(t):mfo fO COSlﬂlPO( ¢1-¢21t)d¢1d¢2- (14)

Since the thermal magnetic field approximates the realyhere
one having finite correlation time, the stochasti;:i%equa(tlbn
should be interpreted according to Stratonovichn this
case using the known from Ref. 39 techniques we find the PO(‘pl"ﬂZ’t):f <P({¢}*t)>il;lo diadirz (19

Fokker-Planck equation
is the distribution function of the selected nanoparticle.

P 9 IOka 9
E:Z alpik[_(fﬁAgha(wih ) P4 Z (9haOkaP) lll. EQUATION FOR THE DISTRIBUTION FUNCTION

@) Since the calculation of the distribution functioR,
for the joint distribution functiorP=P({},t) of the angles = Po(#1,1>,t), using the exact expressi¢hb), is not pos-
ik - The solution of this equation must satisfy the normal-sible, we obtain first the equation fét, using the approxi-

ization condition mation of the Gaussian fluctuations of the dipolar field.
Within this approximation, the dipolar magnetic field
J P({lﬂ},t)ﬂ d¢idigip=1 tS) 3ri(myry) —rZm
| ht)=3, ——5—— (16
I

and the initial condition which fom;(0)=mk has the form . )
acting on the magnetic momem=mgy(t) located at the

1 origin is represented by the sum of the mean fiel¢t)
P({’ﬁ}’O)ZH 5 0in). 9 —(h(t)) and the Gaussian fie,(t) with zero mean value.
Notice that, since the dipolar interaction is long ranged, the
Using Eq.(5) we find Gaussian approximation fdr(t) is quite justified. In addi-

tion, if the conditionw,,/wt<1 [w,, is the characteristic
frequency of the macroscopic evolution mof and wy is the
characteristic frequency diy(t)] holds, then we can ap-
proximate the total thermal field(t) = ny(t) +Ty(t) by the
Ghaka= Y2(n16k1+ Sn2bia SIN 2 hig). (100  ¢&correlated one with the following correlation functions:

égka 2
gham = Oy cotyiq,

Now it is not dlfflc_:ult to show that the stationary solution Au(0)G(t+7)=2AA ,4(1) 8(7), (17)
Ps({#}) of Eq.(7) is given by _
where A, 4(t) are the functions to be calculated. As;
) ~KkT/h. (h is the Planck constantEq. (17) is valid for
P({yh)=Z texp—\W/Aym]] singiy (1) o, #/kT<1. Specifically, if B>1 then wy~yH, (H,
' =mp/V is the anisotropy field and the latter condition
(Z is the normalization constant=rom Eq.(11), identifying  yields T> yAH,/k~10 *H, ([H.]=0e).
P.({y}) with the Boltzmann distribution, we find the inten- ~ Within the considered approximation we can write the
sity of the thermal fiel system of stochastic equations for polar= 1 (t) and azi-
muthal ¢, = i,(t) angles ofm in the form
A=\KT/ym, (12

wherek is the Boltzmann constant, arflis the absolute =192, + Gea(Y1.42)0a(V) (k=12 (18)
temperature. Here the functiongy,= gx.(¥1,¥5) and fi =1 (1, ¥5,1)
With the help of the joint distribution functioR the mean are given by Eqgs(5) and(6) in which the index should be
value m,(t) =(mj,(t)) of the z component of the magnetic dropped andV should be replaced bW,= —(H./2m) m§
moment of a nanoparticle is written in the form —m-H(t) (W, is the magnetic energy of the nanoparticle in
the mean-field approximationThe equation for the distribu-
—_— tion function P, corresponding to Eq.18) can be obtained
mz(t)—mf COS¢]1<P({¢},I)>H dinddiz. (13 by transforming Eq.18) to the form of Eq.(4). For this
reason we use the representatmp(t) =\, (t)n,(t) [n(t)
Here the angular brackets denote an average over the posmn,(t)], and from Eq.(17) we find that the functions
sible locations of nanoparticles, which are supposed to bgan(t) are defined by

equiprobable. In Eq(13) the choice of the particle with the
numberj is arbitrary, so for convenience we consider the Nan(DNg, (1) =A5(1). (19
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Denotinggys\ s.(t) asy, by analogy with Eq(7) we ob-  component of the magnetic moment in the sitesm{)(t).
tain Then, since the probability of each permutation is equal to

P 1/R, we can rewrite Eq(21) in the form

PO+A&_(§ha§kaPO) : R
n R 1135 —p

L—o

Tka
fit+ Aflhmi

Py 9 [
Iy

r T ay

Now we express the functiortd(t) and A ,4(t), which  As L —o the ratioR, /R tends tap, and the expression in the

tics of m. From the form of the initial conditioi9) and the

equiprobability of the nanoparticle distributions it follows 1
that H(t) = H(t)k and SﬁgnlEM g~ 1129, (23)
Miz (1 from Eq. (22 [
H(t):—<2 .rzef )>. (21 rom Eq.(22) we obtain
i#0 i
| H(t) = —8pS,my(t)/d?. (24)

In order to perform the average in EQ1), we consider the

lattice region of sizé X L containingS sites. The number of In order to find the connection betwee, 5(t) and the
permutations oN—1 indistinguishable particles ov&—1  statistical characteristics h we first replace in Eq(17) 7

sites (the sites=0 is occupied by a particlds equal toR by —7andt by t+ 7. This yieldsA , 5(t) = A z,(t), and so we
= (S_ 1)'/(N — 1) ! (S_ N)| . The number of permutations in can define the functionAaB(t) as

which two sitess=0 ands=d(n;i+n,j) (i and] are the unit

vectors along the andy axis, respectivelyn; andn, are 1 (=

integers, not equal to zero simultaneolisiye occupied by Agp(t) = 2A Jo [Kap(t,t+ 1)+ Kpga(t,t+ 7 ]d7, (29

nanoparticles, equals ®,=R(N—1)/(S—1). Let us num-

ber the last permutations by the indéxand denote the  with

Kap(t,t+ 7)=((n,(t)+h,(t) —h, (1)) (ng(t+ 7) + hg(t+ 7) —hg(t+ 7))

=2A8,50(7)+ (N () hg(t+ 7)) +(Ng(t+ 1), (1)) + (N (Dhg(t+7) = h, (1) -hg(t+ 7). (26)

For the calculation of the mean values in E26) we use the are the correlation functions of the componentsmfandl
Chandrasekhar approximatfBraccording to which the mag- =x or y. Equations(27)—(30) show that, in contrast to the
netic moments of nanoparticles are considered noncorrelateghean fieldH (t), the functionsh «p(t) are not defined b,,.
Within this approximation, Eq25) yields (see Appendix A This means that the Fokker-Planck equati®@®) is not
208,p (= closed with respect t@.
Ay()=1+ —% | Ry(t,t+ndr, (27) We shall carry out the closing of this equation, which is
Ad® Jo necessary for its solution, in the case that the he&ihtof
the potential barrier between the equilibrium directions of
A )=1+ E{,E wRZZ(t,H Adr, (28) the magnetic mqment essen_tially exceeds the thermal energy
Ad® Jo kTes, Where T is the effective temperature of the thermal
field q(t) (see Sec. IV. For e= 8U/kTg>>1 the magnetic
moments perform random fluctuations inside small solid
angles along the positive and negative directions of zhe
axis. In this case the average time, which the magnetic mo-
+Ryx(t,t+7)]d7, (29 ments spend in these directions, essentially exceeds the av-
erage time of their reorientatidifior noninteracting particles
25,p the order of these times ‘s (\yH,) ‘a “2expa(a
Ad® =H,m/2kT) and \yH,) "1, respectively. Therefore we can
(30 write m=m7(t), with m(t)=m7(t)i+mJ(t)]+omk,
where |m?(t) — omk|<m, ando=+ or — indicating fluctuations
of the vectorm along the positive+) or negative(—) di-
Ryp(t,t+7)=m, (t)mg(t+7) —m,(t) - mg(t+7) (31 rection of thez axis. This behavior om allows us to write

8p >
Axy(t): - W(SZ_QSQ J;) [ny(t,t+ 7)

A|Z(t):_ JOW[R|Z(t!t+ ’T)+Rz|(t,t+ T)]dT,

184433-4
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the functionsR ,4(t,t+ 7) in the form of the weighted aver-
age values

Rug(t,t+7)=p (DR 5(t, ) +p_ (DR 4(t,7). (32

Here
Oo(t) (27
p+(t):fo jo Po(th1, 92, )dipdips,

p_(t)=1—p4(1) (33

are the probabilities thamn fluctuates in the positive and
negative direction of the axis, respectively,

H(t)
H

Ho(t)=arcco%— ) (H(0)|<H,) (39

is the angle where the energW,=—(1/2)H,mcos
—H(t)mcosy, has the maximum value, and
RY (1, 7)=mo(t)MG(t+7) = 8,5, 8,5m°. (35)

Since my(t)=om and mJ(t)=omé,,, Egs. (32 and
(35 give R,,=R,,=0 and from Egs.(B1) and (B3) we
obtainA ,(t)=4,,. The solution of the linearized Landau-
Lifshitz equation showgsee Appendix B that the matrix
[A.p(t)] has the diagonal form andA,,(t)=A,(t)
=A,(t). The functionA(t) is defined by Eq(27). Using
Egs.(35), (B5), and(B8) we obtain

t
thlr(tyT) :A'yzmzf [ekg(t)t'ﬂg(lﬂ)(t'ﬂ)
0

+e)\g(t)t,+)\Z(t+T>(t,+7)]Al(t_t,)dt,. (36)

On the time intervals of the ordgk yH , ()]~ * the function
H(t) and, consequently, the functions,(t) and A7 (t)

PHYSICAL REVIEW B64 184433

IV. LAW OF MAGNETIC RELAXATION

According to the results of the previous section, for
>1 the components of the matrpd ,4(t)] are expressed
through the functionA(t), which is fully defined by the
distribution functionP,. This means that the Fokker-Planck
equation(20) now is closed with respect tB,. Let us find
its solution in this case. Using the expressions

~ Jgka
Ona 5, S y?Aq(t)cotyry,
h

Thalka= Y On18k1A1(1) + Snadiol 1+ A (t)cOP ‘;[/1]}£39)

which follow from Egs.(5) and(B7), we can rewrite E¢(20)
in the form

(9P0_ J )\ ’ydWO ZAA P
T ag\m dgy Y 1(tycotyy | Py
&ZPO Y dWO t?PO
+v2A A4 (t — - —_—
Y AL ay?  msingy, dgy dy,
X 9?Py
+ y?A[1+ A (t)cot lpl]a—wz. (40)
2

Since the magnetic energy, and the initial distribution
Po(¢1,4,,0) do not depend ony,, we define Pg
=Q(¢n,t)[27, where the distribution functionQ(6,t)
obeys the initial conditiorQ(4,0)=4(6#) and satisfies the
equation

IO . |

it ta(t) a6 {a(t)[sin 26+ 2b(t)sin #]—cot 6}
dQ(6,t)

XQ(“)*T]- (@1

practically do not change. This means that for the Calc‘“atio'?-lerea(t)=a/A1(t) b(t)=H(t)/H,, andt,=2/\yH,.

of the integrals in Eqs(27) and (36) we can replace the
functions A7 (t+7) by N7 4t), and the functiomA,(t—t")
by A4(t). In this approximation

_ e72)\yH(r(t)t

CHOEET R

f RO (t,7)d7=AA(t)m?
0

and Eq.(27) yields

1— e 2MH (Ot
O—m2
P () HZ (D)

I

2
Ay()={1- 2R (

1_(1+)\2)d5

1— e72)\'yH,(t)

H2 (t) (38

+p-(1)

We define also the distribution function

Qqe( 0,t) — C(t)Sln aea(t)[cosz 0+ 2b(t)cos 6] (42)

[C(t) is the normalization factdy which satisfies the equa-
tion

—‘?qu;’t) +{a(t)[sin 20+ 2b(t)sin ] —cot#}Q.d 4,t) =0
(43

and att>t,.~t,a(t) describes the quasiequilibriutfor t

= oo — equilibrium) distribution ofm. Expressing the function
Qqd 0,t) in the form of the Boltzmann distribution, i.e.,
Qqd 0,1) =C(t)sin g exp(—Wy /kTe), and using the relation

As A,(t)=1 (the equality holds for non-interacting nanopar- Wo= — (1/2)H,m[ cog 6+ 2b(t)cosd] we find the connection
ticles), the dipolar interaction increases the intensity of thosebetween the effective and absolute temperaturg;
components of the total thermal field which lie on the lattice=TA(t).

plane.

Using Eq.(43) we rewrite Eq.(41) as

184433-5
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®
aQe _ 1 i~q o i~Q(0,t) (42 P
ot ta(t) 96 90 Qqd 0,1)

and with the help of the Kramers methddor the value
p(t)=2p, (t)—1 we obtain the following equatiofsee Ap-

pendix O: 0.5+
3
p(t)= (t)( R ) H— (45)
S IO RENCIAE ORI 1 ;
Here
0 T T T T T
\/_ 0 1 2 t/T,
tVa/a(t
ts(t)= o © exp{a(t)[ 1+ ob(1)]%} i -
2[1-b%(t)][1+ob(t)] FIG. 2. Time dependence pft) for ensembles of Co nanopar

(46) ticles with the parameter®ef. 4) H,=6400 Oe,m/V=1400 G,
T=300 K, A=0.2,r=40 A, d=6r (a~28.995,£~0.03%, x°p
are the times that the magnetic momentspends on the =~0.137,7,~28.6 9 andp=1 (curve 1, p=0.5 (curve 3, p=0
average in the positives(= +) and negative ¢= —) direc-  (curve 3.
tions of thez axis. According to Eq(C5) m,(t)=mp(t),
consequently Eq45) describes the process of the magneticwill characterize the differenc€gl,—o from T by the param-
relaxation. eteru=Tqxl—o/T—1, which, as it follows from Eq(49), is
Equation(45) defines the functiop(t) att>t, when the given by
quasiequilibrium distribution o has already been formed.

2¢2
The characteristic timg, satisfies the conditiontsqe/ts+ (1) U= X“¢ (49)
<1 and\ yH,(t)tee> 1. The former shows that far-tqe the (1-&)°—x¢
probability for transition ofm from the stateoc=+ to the N2 242
stateo= — is negligible. Hence, having transferred the ori- Ifwe use the parametar=(1_¢)"— x"¢" (0<«=1), then

E=(1-x»)"1-V1-(1-x*)(1—«)] [since H,(0)>0
(see Appendix Bwe chose the solution of equation=(1
— £)%— x2£% which satisfies the condition9¢<1] and Eq.

gin of time to an arbitrary point~tq, we can write the
initial condition for Eq. (45 as p(0)=1. From the latter
condition it follows that, fort>t,., the exponential func-

. : ae ; (49) yields

tions in Eq.(38) can be neglected, so the right-hand part of

Eq. (45 depends ort only by means op(t). Denoting this 1§

part by —F[p(t)] and using the conditiop(0)=1, we can u [1-V1-(1—-x?)(1-x)]> (50

transform Eq.(45) to the form K (1=x%)?
L dx According to Eq.(50) uis a decreasing function af and
J " ¢ (47) u~(1—«)?x%/4—0 for k—1, and u~x 1y?(1+yx) ?

p(F(X) —o for k—0. But the parametex cannot take very small
values. Indeed, the conditior=a(t)[1+b(t)]>>1 is

With the help of Eq.(46) it is easy to verify that=(x)  equivalent taa(0)(1— £)?>1 which in turn leads to the con-
>0 if 0<x=1, andF(0)=0. This means that the solution of dition ax> 1. Usuallya~ 10— 10?, therefore mink~0.1 and

Eq. (47) is a decreasing function of timei(t;)>p(t,)(t;  the parameten, as a rule, does not exceed unity. AED)

<tp), p()=0. Using this fact and rewriting Eq38) as =a/(u+1) anda>1, from Eq.(46) it follows that even in
this case the fluctuations of dipolar field essentially enhance
o 1T 2Ep%(1) +E%p(1)] 71 magnetic relaxation in comparison with that which predicts

Ay()=)1-x [1-£2p2(1)]? (48 the mean-field approximatioivhenu=0 or T¢=T). In par-

ticular, if u~1 then, designatingf(0) in the mean-field ap-
[x?=5S,/16(1+\?)S%p, and £=—b(0)=8pS;m/H,d® is  proximation as [tJ(0)]n;, we obtain [tZ(0)]m/tZ(0)
the parameter characterizing the intensity of the dipolar in~exga(1—o#)?%2]>1. If u<1 then the fluctuations of the
teractior] it is not difficult to show thatA(t;)>A,(t,). dipolar field are small and we can describe the magnetic
Thus, the effective temperaturd .x=TA;(t) decreases relaxation within the mean-field approximation.

with time while the height of the potential barriefU The dependence qi(t) ont for different ensembles of
=(H,m/2)[1—&p(t)]? increases, therefore the process ofCo nanoparticles is shown in Fig. 2. As can be seen the
the magnetic relaxation delays. decrease op, leading to the decrease of the intensity of the

Notice that, within the developed approach the degree oflipolar interaction, gives rise to reduction of magnetic relax-
influence of dipolar field fluctuations on the process of mag-ation.
netic relaxation is determined by that how strongly the effec- Equation (47) can be solved analytically fop=0, t
tive temperature at=0 differs from the absolute one. We <tJ(0), andt>tJ(«). In the first casd-(x)=(1/7,)x, and
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Eq. (47 vyields p(t)=exp(-t/n), where 7, exceeds the thermal energy we exprestgdand the noise
=t,\/m/16a expa is the relaxation time in the case of non- intensities through the distribution functionwi. Solving the
interacting nanoparticles. Fdr<tZ(0) the conditionp(t)  Fokker-Planck equation for that distribution function we de-
~1 holds. Therefore, replacing(x) by F(1)=1/7, (7, rived the equation for magnetization and we found its solu-

=t7(0)/2) in Eq.(47), we obtainp(t)=1—t/7y, where tion in the limiting cases. We showed that the effective tem-
perature decreases with time and the height of the potential
e ea(0(1-9)? barrier increases. Consequently, the rate of magnetic relax-
o=t \/ 0) 41-)(1-8) (51)  ation in such ensembles decreases with time. Also, we have

derived a simple approximate expression for the law of mag-
Finally if t>tJ(«) then p(t)~0, consequently, the main netic relaxation which is valid for all times.
contribution into the left part of Eq47) comes from the

lower limit region of the integration. Sindeé(0)=0, in this ACKNOWLEDGMENTS
region we can approximate the functibiix) by the function )
XF/(O) [FI(O):dF(X)/dX|X:0]. For this case Eq(47) One of the aUthOfS(S.l.D.) would like to thank

V.L. Safonov for helpful discussion and comments.
This work was supported in part by NATO Grant No.

1 T () PST.CLG.978108.
=0~ Va(@ a1t (2a=) - 02

givesp(t) ~exp(—t/z.), where

APPENDIX A

The analysis of expression$l) and (52) shows that for ) .
a(0)(1- £)2>1 and£#0 the inequalitiesry< .. <, hold From Eq.(16), using the Chandrasekhar approximatfon
(7= 1= 1y for £€=0), and 7y< 7., for not very smallé. we can write

The asymptotic expressions fpi(t) att—0 andt—co
allow us to derive the approximate expressiongd¢r) which (ha(D)hg(t+7)=h,(t) -h4(t+ 7))
is valid for all the times .

<E lO(r 6(185,87] 3r rlarletsﬁﬂ
(L 53 -
pLY) = ", —
et +TO/TDO i _3ririﬁrin5a8+9riariﬁrisrin)

[the exact solution of Eq47) slightly exceeds it Equation
(53 shoyvs that, _in (;ontrast to Fhe case of 'noninteracti_ng XMy (tym;(t+ 7) — My (t) - My (t+7)]
nanoparticles, which is characterized by the single relaxation
time 7,, magnetic relaxation in ensembles of dipolar inter- (A1)

acting nanoparticles can be approximately characterized by -

two different relaxation times, viz., the initial relaxation time and, becausa,(t)m;(t')=0 (i# =0), we obtain
79 and the final one-, . In the meanfield approximation Eg.
(53) is also valid but the valuea(0) anda(e) must be (Na(Dhg(t+ 7)) =(ng(t+7)h,(1))=0. (A2)
replaced bya. Notice that from a mathematical point of view ysing the same approximations as for the calculation of
deceleration of magnetic relaxation occurs due to a transitiopy(t), we transform Eq(A1) to the form

from one asymptotic behavior gf(t) characterized by the

relaxation timergy, to another asymptotic behavior character- (ho(D)hg(t+7)—h,(t)-hg(t+ 7))

ized by the larger relaxation time, .

=P i(|s|45 85y~ 3|925,8,6

V. CONCLUSIONS EE aserh

We have developed an analytical theory of the magnetic — 3902845, 00+ 95,555,5,) R, (1, t+ 7).
relaxation for the 2D ensembles of nanoparticles with (A3)
uniaxial anisotropy that takes into account the fluctuations of
the dipolar magnetic field. Our approach is based on thé&rom this, having defined the lattice sums as
consideration that each nanopatrticle is an isolated one and its
magnetic momentn interacts with the mean dipolar field of E
the other nanoparticles and with an effective heat bath hav- 8nlm, (n1+ 2)3
ing the effective temperature.;. The difference ol ¢ from
the absolute temperatufieresults from the contribution of
the dipolar field fluctuations into the total fluctuating mag- nEn (nZ+n)s ~0.0174 (Ad)
netic field acting orm. We have approximated the compo- vz A2
nents of the total fluctuating field by the white noises, and weand using the relations
have described the dynamicsrmafby the stochastic Landau-
Lifshitz equation. In the case when the height of the potential > SaSe _ 32(5 548, 5)
barrier between two equilibrium directions of essentially s |9° e ye

~0.5824,

2 2
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S,S4S.S 4 - A—N\J(D)I - A—N\T(D)I
a>B9eO7 ’ ’ 2 4 1
—J10  — -2 Oy Ox 3 Oxz O eAl=pht (' 27 Nt 2 7
2 TP %2 bty MORYO ORI
(B4)
853
+8ya0ypdyeOyy) T 5 (Oxadxpdye Oyy (I is the unit matrix which follows from the Sylvester
theoren** we obtain from Eq(B3)
+ Oya Oy pOxe Oyt OxaOypSys Oxy m
oy At NS (Dt Y
+ 8,00y 3 Ose Oyt By Oy pdse Oy my (D)= fo[(e 1 -2 )gu(t—t')

+ Oy 30, A O Tt
6ya XB Xs‘syn) ( 5) +(Ti(e)\1(t)t +e)\2(t)t )qy(t_t,)]dt,,

[at their proof we took into account thaksy/|s°

= 25)/|9"%=4(S,~ 25y)/d%), we find my(t) = ? f;ueﬁ*w“—ehé’“)t’)qy(t—t')
<ha(t)hﬁ(t+ 7)—hy(t)- h,B(t+ 7')> — i (e)\i'(t)t’ +e}‘g(t)t’)qx(t—t’)]dt’. (B5)
= 4F;_GSZ[zRaﬁ_35MRX5—35yaRyB Lef[ us make the assumption that the mafu, 5(t) | has
the diagonal form
—38xgRax—36ypRay T 90xadysRuxt 99y 8y gRy ] [A.5(t)]=diad A (t),A(t),1]. (B6)
i 72dLGS3[5xa:3x,B(Ryy_ Riod + 8yadys(Ro— Ryy) Then according to Eq19) we have
(Baypt SyuBug) (Rt Ry (A6) DhepV]=clad VA, B0 @)

and, consequently,
Finally, using Eqs(26), (31), and(A6) we obtain Eqs(27)—

(30). Ax(t)=VAL(D)N(1), gy(t)=VAs(t)ny(1),

APPENDIX B q(t)=n,(t). (B8)

Using Egs.(B5), (B8), and(2) it is not difficult to show that
Ry(t,7)=—R{\(t,7), therefore,A, (t)=0. Hence, taking
into account the condition ,,(t) = 6,, derived earlier, we
confirm that the matriXA ,4(t) ] has the diagonal form.

Neglecting the terms~mg(t)qg(t), the linearized
Landau-Lifshitz equation takes the form

M(t)=Apu(t)+Bw(t) [m(0)=0]. (B1)
Here u(t) is a vector with componentsi7(t) and my(t), APPENDIX C
w(t) is a vector with components,(t) andqy(t), In accordance to the Kramers metfidde find the solu-
tion of Eq. (44) for t>t, in the form
A Hoo )( A 01) 5 ( 0 1)
=—vyH(t , =oym , - pL(H)/n (), 0<O<0y(1),
—0'1 A -1 0 Q(0,t)=Qqe(0,t) + + 0
(B2) p_(t)/n_(t), 6H(t)<b=m,

(Cy
andH,(t)=H,+ oH(t). The matrixA has the eigenvalues ~
A {t)=—yH,(t) (A Fi) [since both directions of theaxis whereQqe(6,1) = Qqd 6,1)/C(1), and
must correspond to the minimum &%, we suppose that 6ot) _—
Re\{ (1) <0, i.e.,, H.(0)>0] to which the characteristic n+(t)=J Qqd 0,1)d8, ni(t)zj‘ Qe 6, 1)d0.
times [N yH(t)]"! and [ yH,(t)] ! of the macroscopic 0 fo(t)
evolution ofm?(t) correspond. The maximum characteristic (€2
time [\ yH , (t)]7*, is much less than the characteristic time According to Eqs(24),(39) the functionsa(t) andb(t) are

of the change oH(t) (see Sec. IY¥so in Eq.(B1) we can  expressed through the probabilities(t) and the mean mag-
consider the matrixA as a constant one. In this case theetic momen'm_z(t) which satisfies the equation

solution of Eq.(B1) is given by the expressiéh

t m,(t)=m p+(t) x (DX +2b(t)x] 4
"(t):f eXpAL ) Bw(t—t')dt". (83) n(0) b
0
+m P-(1) _b(t)xea(t)[x2+2b(t)x]dx_ (C3)
Using the relation S
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Since e=a(t)[1+b(t)]2  (SU=W,|,- f,om—wo|9:0
=(H,m/2)[1+b(t)]?) and fore>1 the asymptotic expres-
sions

1 D+ 2h(0x] ea(h[1+2b(1)]
x e2(Wx“+ = —————— _=—n t),
fb(t) 2a(t)[1+b(t)] +()
=b(t) 5 ea(O[1-2b(1)]
Xea(t)[x +2b(t)x]dx: _ ——n_(t
I, 2aori-bo] Y
(C4
hold, Eq.(C3) is reduced to
m,(t)=mp.(t)—p-(t)]. (CH)

As p_(t)=1-p.(t), the single unknown function in Eq.
(CY) is the probabilityp. (t). Using the equation

PHYSICAL REVIEW B64 184433

Oo(t)

)

N
Q(6,1)

1 feomi(
0 40 (N?qe(ﬁ,t)

tat)
which follows from Egs.(44) and (C1), the asymptotic ex-
1 d

pression
4
ST fQ(ﬂ,t)da de
Qqe( 0!t) at 0
ea(t)bz(t)

S S il
—P+(03 a(t) 1—b(t)

and the relation

( J':Q(ﬁ,t)dﬁ) dé

de, (Co)

bo(t)

)

(e>1) (CY)

p-(H) p+(t)
n_(t) ny(t)

)5[0— bo(t)], (C8)
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