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Fluctuation theory of magnetic relaxation for two-dimensional ensembles of dipolar
interacting nanoparticles
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The fluctuation theory of magnetic relaxation has been developed for the two-dimensional ensembles of
ferromagnetic nanoparticles. The particles have random locations on a square lattice, interact via dipolar
interaction, and their easy axes of magnetization are perpendicular to the lattice plane. The derivation of the
equation that describes the time evolution of the magnetization has been based on the Fokker-Planck equation
for the distribution function of a nanoparticle magnetic moment. The influence of the mean value and the
fluctuations of the dipolar magnetic field on the process of magnetic relaxation is studied in detail. It has been
shown that, in contrast to the case of noninteracting nanoparticles which is characterized by the single relax-
ation time, magnetic relaxation in those ensembles is characterized by two different relaxation times, and that
the rate of relaxation decreases with time.
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I. INTRODUCTION

The study of ferromagnetic nanoparticles, i.e., nanome
sized single-domain ferromagnetic particles, has both th
retical and experimental interest stimulated by their tech
logical applications in data storage, composite materi
ferrofluids, etc.1,2 The magnetic properties of ensembles
noninteracting nanoparticles are fully defined by their in
vidual characteristics such as magnetic moments and m
netic anisotropy. A nanoparticle with uniaxial anisotropy
characterized by an internal potential that has two stable
tionary points which correspond to the antiparallel orien
tion of the magnetic moment along the easy axis of mag
tization and which are separated by a potential barrier.
nonzero temperatures the nanoparticle magnetic mom
overcomes the barrier due to thermal agitation, as descr
by Néel.3 A mathematically correct description of this ph
nomenon, known for the low-barrier case as superparam
netism, first was given by Brown.4 He derived and in specific
cases solved the Fokker-Planck equation for the distribu
function of the magnetic moment based on the stocha
Landau-Lifshitz equation. Now this approach is widely us
for the study of the magnetic properties of ensembles of n
interacting nanoparticles and, specifically, of the magn
relaxation.5–9

The approach of noninteracting nanoparticles is va
when the mean dipolar field acting on a nanoparticle is m
less than the anisotropy field. If this condition is violat
then, as the analytical results10–19 and Monte Carlo
simulations20–25 have demonstrated, the dipolar interacti
essentially changes the magnetic properties of the th
dimensional nanoparticle ensembles. From the mathema
point of view, the solution of the problem of magnetic rela
ation requires the solution of the Fokker-Planck equation
the joint distribution function of the magnetic momen
Since this equation does not have exact solutions the stud
magnetic relaxation for ensembles of dipolar interact
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nanoparticles is always carried out by approximate metho
Within those methods different versions of the mean-fi
approximation are usually used and, as a rule, the final ph
of magnetic relaxation is studied. The mean-field approxim
tion has two main drawbacks. Firstly, as a result of the di
lar interaction the directions of the nanoparticle magne
moments are correlated, i.e., a dynamical correlation ex
between the magnetic moments. This means that diffe
groups of nanoparticles can be under the influence of dif
ent local dipolar fields and, consequently, in nanoparticle
sembles the long-range spatial and temporal fluctuation
the local field exist. But within the mean-field approximatio
this fact is ignored. Secondly, since under thermal agitat
magnetic moments perform random rotations, the dipo
field contains a high-frequency fluctuating part. The fluctu
tions of the dipolar field act on the magnetic moments in
way similar to the thermal agitation, but within the mea
field approximation they are not taken into account. One
pects that for ensembles of close-packed nanoparticles~when
the average distance between the nanoparticles is compa
with the nanoparticle size! both the long- and short-rang
fluctuations of the local dipolar field can strongly influen
the magnetic relaxation.

During the last years much attention is paid to the tw
dimensional~2D! nanoparticle ensembles that has been m
tivated by the significant developments in the fabricati
techniques of such ensembles including ordered ones,26–29

and by their interesting physical properties arising, in p
ticular, from the dipolar interaction between nan
particles.30–34 Among the 2D ensembles there is a class
which the easy axes of magnetization are perpendicula
the plane where the nanoparticles are distributed. For s
ensembles the influence of the dipolar interactions at
temperatures had been already investigated through the m
netization curves of thin films including the CoCr an
CoCrPt nanoparticles.35–37Thermally activated magnetic re
laxation from the initial state, when all magnetic momen
©2001 The American Physical Society33-1



th
p

re
y

la
B

es
en
ea

g
a
ic
nc
ur
no
a
ita
th
th
th
e
c
u

on
th
s-
n,
tio
th
ll
lv

c
ib

e
ct
he
la
ti

an

cle
re
f
e
b
o

al

mal

dy-
stic

not

f all

s:

S. I. DENISOV AND K. N. TROHIDOU PHYSICAL REVIEW B64 184433
are oriented along a certain direction of the easy axis, to
demagnetized ground state was considered within a sim
fied version of the mean-field approximation.38 The authors
numerically showed that magnetic relaxation, in the
stricted time interval, occurs slower than a simple Deb
relaxation model predicts and they approximated the re
ation law by the stretched-exponential time dependence.
this stretched-exponential form does not hold for all tim
therefore the behavior of magnetic relaxation for those
sembles remains an open question even within the m
field theory.

In this paper we develop the fluctuation theory of ma
netic relaxation for the 2D ensembles of uniaxial nanop
ticles with easy axes of magnetization which are perpend
lar to the lattice plane, which takes into account the influe
of the high-frequency fluctuations of the dipolar field. In o
approach, for the description of the dynamics of the na
particle magnetic moment we use the stochastic Land
Lifshitz equation that takes into account the thermal ag
tion. We consider the dipolar interaction by means of
dipolar field, which we write as the sum of the mean and
fluctuating fields. We approximate the components of
fluctuating dipolar field by effective white noises and w
derive the Fokker-Planck equation for the distribution fun
tion of the magnetic moment. In the general case this eq
tion is not closed with respect to that distribution functi
since it contains the intensities of the components of
fluctuating dipolar field, which are defined by the joint di
tribution function. We perform the closing of this equatio
i.e., the representation of these intensities via the distribu
function, in the case when the potential barrier between
equilibrium directions of the magnetic moment essentia
exceeds the thermal energy. In this approximation we so
the Fokker-Planck equation by the Kramers method39 and we
derive the law of magnetic relaxation.

The paper is organized as follows. In Sec. II we introdu
the basic equations. We derive the equation for the distr
tion function of the magnetic moment in Sec. III, where w
also express the intensities of the components of the flu
ating dipolar field through the correlation functions of t
magnetic moment, and for the high-barrier case we calcu
these intensities. In Sec. IV we derive the law of magne
relaxation. Concluding remarks are contained in Sec. V,
some technical details are given in the Appendixes.

II. MEAN MAGNETIC MOMENT

We consider the 2D ensemble of spherical nanoparti
with a radiusr randomly distributed on the sites of a squa
lattice with a lattice constantd ~see Fig. 1!. The easy axes o
the nanoparticles magnetization are perpendicular to thxy
plane. A lattice site is occupied by a nanoparticle with pro
ability p. We describe the dynamics of the magnetic m
mentsmi5mi(t) ~the indexi labels the nanoparticles! by the
system of stochastic Landau-Lifshitz equations

ṁi52gmi3@H i1ni~ t !#2~lg/m!mi3mi3H i , ~1!

whereg(.0) is the gyromagnetic ratio,l(!1) is the damp-
ing parameter,m5umi u, H i52]W/]mi is an effective mag-
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netic field acting onmi , W is the magnetic energy of a
nanoparticle ensemble, andni(t) is the thermal magnetic
field which models the action of the heat bath. The therm
magnetic field is defined by its zero mean valuesni(t)50
~the overbar denotes averaging with respect to the ther
field! and by the correlation functions

nia~ t !nj b~ t1t!52Dd i j dabd~t!. ~2!

Herenia(t) (a5x,y,z) are the components ofni(t), D is the
intensity of the thermal field,d i j is the Kronecker symbol,
and d(t) is the dfunction. Within this model we write the
magnetic energyW in the form

W52
b

2V (
i

~miez!
21

1

2 (
iÞ j

~mimj !r i j
2 23~mir i j !~mj r i j !

r i j
5 ,

~3!

b(.0) is the uniaxial anisotropy constant,V is the nanopar-
ticle volume, k̂ is the unit vector along thez axis, r i j

5ur i j u, r i j 5r i2r j , andr i (r i k̂50) is the position vector of
the lattice site where thei th nanoparticle is sitting.

Sinceumi u are conserved values, we can describe the
namics of the magnetic moments by a system of stocha
equations for polarc i15c i1(t) and azimuthalc i25c i2(t)
angles ofmi

ċ ik5 f k$c%1gka~c i1 ,c i2!nia~ t ! ~k51,2!. ~4!

Here, and further on, twice repeated indices, which are
nanoparticle labels, imply summation, and 0<c i1<p, 0
<c i2,2p. The functionsgka(c i1 ,c i2) and f k$c% (c in an-
gular brackets denotes the polar and azimuthal angles o
magnetic moments in the nanoparticle ensemble!, which we
will write as gka and f k , respectively, are defined as follow

g1a5
g

m sinc i1

]mia

]c i2
, g2a52

g

m sinc i1

]mia

]c i1
, ~5!

FIG. 1. Schematic representation of our model.
3-2
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f 152
g

m sinc i1
Fl sinc i1

]

]c i1
1

]

]c i2
GW,

f 25
g

m sin2 c i1
Fsinc i1

]

]c i1
2l

]

]c i2
GW. ~6!

Since the thermal magnetic field approximates the r
one having finite correlation time, the stochastic equation~4!
should be interpreted according to Stratonovich.40 In this
case using the known from Ref. 39 techniques we find
Fokker-Planck equation

]P

]t
5(

i

]

]c ik
F2S f k1Dgha

]gka

]c ih
D P1D

]

]c ih
~ghagkaP!G

~7!

for the joint distribution functionP5P($c%,t) of the angles
c ik . The solution of this equation must satisfy the norm
ization condition

E P~$c%,t !)
i

dc i1dc i251 ~8!

and the initial condition which formi(0)5mk̂ has the form

P~$c%,0!5)
i

1

2p
d~c i1!. ~9!

Using Eq.~5! we find

gha

]gka

]c ih
5dk1g2 cotc i1 ,

ghagka5g2~dh1dk11dh2dk2 sin22 c i1!. ~10!

Now it is not difficult to show that the stationary solutio
Ps($c%) of Eq. ~7! is given by

Ps~$c%!5Z21 exp~2lW/Dgm!)
i

sinc i1 ~11!

~Z is the normalization constant!. From Eq.~11!, identifying
Ps($c%) with the Boltzmann distribution, we find the inten
sity of the thermal field4

D5lkT/gm, ~12!

where k is the Boltzmann constant, andT is the absolute
temperature.

With the help of the joint distribution functionP the mean
value mz(t)5^mjz(t)& of the z component of the magneti
moment of a nanoparticle is written in the form

mz~ t !5mE cosc j 1^P~$c%,t !&)
i

dc i1dc i2 . ~13!

Here the angular brackets denote an average over the
sible locations of nanoparticles, which are supposed to
equiprobable. In Eq.~13! the choice of the particle with the
number j is arbitrary, so for convenience we consider t
18443
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particle at the origin and we give it the numberj 50. Then,
having designatedc015c1 andc025c2 , from Eq. ~13! we
obtain

mz~ t !5mE
0

pE
0

2p

cosc1P0~c1 ,c2 ,t !dc1dc2 , ~14!

where

P0~c1 ,c2 ,t !5E ^P~$c%,t !&)
iÞ0

dc i1dc i2 ~15!

is the distribution function of the selected nanoparticle.

III. EQUATION FOR THE DISTRIBUTION FUNCTION

Since the calculation of the distribution functionP0
5P0(c1 ,c2 ,t), using the exact expression~15!, is not pos-
sible, we obtain first the equation forP0 using the approxi-
mation of the Gaussian fluctuations of the dipolar fie
Within this approximation, the dipolar magnetic field

h~ t !5(
iÞ0

3r i~mir i !2r i
2mi

r i
3 ~16!

acting on the magnetic momentm5m0(t) located at the
origin is represented by the sum of the mean fieldH(t)
5^h(t)& and the Gaussian fieldñ0(t) with zero mean value.
Notice that, since the dipolar interaction is long ranged,
Gaussian approximation forh(t) is quite justified. In addi-
tion, if the conditionvm /vT!1 @vm is the characteristic
frequency of the macroscopic evolution ofm, andvT is the
characteristic frequency ofñ0(t)# holds, then we can ap
proximate the total thermal fieldq(t)5n0(t)1ñ0(t) by the
d-correlated one with the following correlation functions:

qa~ t !qb~ t1t!52DDab~ t !d~t!, ~17!

where Dab(t) are the functions to be calculated. AsvT
;kT/\. ~\ is the Planck constant!, Eq. ~17! is valid for
vm\/kT!1. Specifically, if b@1 then vm;gHa ~Ha
5mb/V is the anisotropy field! and the latter condition
yields T@g\Ha /k;1024Ha (@Ha#5Oe).

Within the considered approximation we can write t
system of stochastic equations for polarc15c1(t) and azi-
muthalc25c2(t) angles ofm in the form

ċk5 f k~c1 ,c2 ,t !1gka~c1 ,c2!qa~ t ! ~k51,2!. ~18!

Here the functionsgka5gka(c1 ,c2) and f k5 f k(c1 ,c2 ,t)
are given by Eqs.~5! and~6! in which the indexi should be
dropped andW should be replaced byW052(Ha/2m)mz

2

2m•H(t) ~W0 is the magnetic energy of the nanoparticle
the mean-field approximation!. The equation for the distribu
tion function P0 corresponding to Eq.~18! can be obtained
by transforming Eq.~18! to the form of Eq.~4!. For this
reason we use the representationqa(t)5lah(t)nh(t) @n(t)
[n0(t)#, and from Eq. ~17! we find that the functions
lah(t) are defined by

lah~ t !lbh~ t !5Dab~ t !. ~19!
3-3
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Denotinggkblba(t) as g̃ka by analogy with Eq.~7! we ob-
tain

]P0

]t
5

]

]ck
F2S f k1Dg̃ha

]g̃ka

]ch
D P01D

]

]ch
~ g̃hag̃kaP0!G .

~20!

Now we express the functionsH(t) and Dab(t), which
are contained in Eq.~20!, through the statistical characteri
tics of m. From the form of the initial condition~9! and the
equiprobability of the nanoparticle distributions it follow
that H(t)5H(t) k̂ and

H~ t !52K (
iÞ0

miz~ t !

r i
3 L . ~21!

In order to perform the average in Eq.~21!, we consider the
lattice region of sizeL3L containingSsites. The number o
permutations ofN21 indistinguishable particles overS21
sites ~the sites50 is occupied by a particle! is equal toR
5(S21)!/(N21)!(S2N)!. The number of permutations in
which two sitess50 ands5d(n1 î1n2ĵ ) ~î and ĵ are the unit
vectors along thex and y axis, respectively,n1 and n2 are
integers, not equal to zero simultaneously! are occupied by
nanoparticles, equals toR15R(N21)/(S21). Let us num-
ber the last permutations by the indexl and denote thez
-
te

18443
component of the magnetic moment in the sites asmsz
( l )(t).

Then, since the probability of each permutation is equa
1/R, we can rewrite Eq.~21! in the form

H~ t !52 lim
L→`

R1

R (
s

1

usu3 S 1

R1
(
l 51

R1

msz
~ l !~ t !D . ~22!

As L→` the ratioR1 /R tends top, and the expression in th
brackets tends tomz(t). Therefore, by introducing

S15
1

8 (
n1 ,n2

1

~n1
21n2

2!3/2'1.1291, ~23!

from Eq. ~22! we obtain

H~ t !528pS1mz~ t !/d3. ~24!

In order to find the connection betweenDab(t) and the
statistical characteristics ofm we first replace in Eq.~17! t
by 2t andt by t1t. This yieldsDab(t)5Dba(t), and so we
can define the functionsDab(t) as

Dab~ t !5
1

2D E
0

`

@Kab~ t,t1t!1Kba~ t,t1t!#dt, ~25!

with
Kab~ t,t1t!5^„na~ t !1ha~ t !2ha~ t !…„nb~ t1t!1hb~ t1t!2hb~ t1t!…&

52Ddabd~t!1^na~ t !hb~ t1t!&1^nb~ t1t!ha~ t !&1^ha~ t !hb~ t1t!2ha~ t !•hb~ t1t!&. ~26!
is
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For the calculation of the mean values in Eq.~26! we use the
Chandrasekhar approximation42 according to which the mag
netic moments of nanoparticles are considered noncorrela
Within this approximation, Eq.~25! yields ~see Appendix A!

D l l ~ t !511
20S2p

Dd6 E
0

`

Rll ~ t,t1t!dt, ~27!

Dzz~ t !511
8S2p

Dd6 E
0

`

Rzz~ t,t1t!dt, ~28!

Dxy~ t !52
8p

Dd6 ~S229S3!E
0

`

@Rxy~ t,t1t!

1Ryx~ t,t1t!#dt, ~29!

D lz~ t !52
2S2p

Dd6 E
0

`

@Rlz~ t,t1t!1Rzl~ t,t1t!#dt,

~30!

where

Rab~ t,t1t!5ma~ t !mb~ t1t!2ma~ t !•mb~ t1t! ~31!
d.

are the correlation functions of the components ofm, and l
5x or y. Equations~27!–~30! show that, in contrast to the
mean fieldH(t), the functionsDab(t) are not defined byP0 .
This means that the Fokker-Planck equation~20! is not
closed with respect toP0 .

We shall carry out the closing of this equation, which
necessary for its solution, in the case that the heightdU of
the potential barrier between the equilibrium directions
the magnetic moment essentially exceeds the thermal en
kTeff , whereTeff is the effective temperature of the therm
field q(t) ~see Sec. IV!. For «5dU/kTeff@1 the magnetic
moments perform random fluctuations inside small so
angles along the positive and negative directions of thz
axis. In this case the average time, which the magnetic
ments spend in these directions, essentially exceeds the
erage time of their reorientation@for noninteracting particles
the order of these times is4 (lgHa)21a21/2expa(a
5Ham/2kT) and (lgHa)21, respectively#. Therefore we can
write m5ms(t), with ms(t)5mx

s(t) î1my
s(t) ĵ1smk̂,

ums(t)2smk̂u!m, ands51 or 2 indicating fluctuations
of the vectorm along the positive~1! or negative~2! di-
rection of thez axis. This behavior ofm allows us to write
3-4
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the functionsRab(t,t1t) in the form of the weighted aver
age values

Rab~ t,t1t!5p1~ t !Rab
1 ~ t,t!1p2~ t !Rab

2 ~ t,t!. ~32!

Here

p1~ t !5E
0

u0~ t !E
0

2p

P0~c1 ,c2 ,t !dc1dc2 ,

p2~ t !512p1~ t ! ~33!

are the probabilities thatm fluctuates in the positive an
negative direction of thez axis, respectively,

u0~ t !5arccosS 2
H~ t !

Ha
D „uH~0!u,Ha… ~34!

is the angle where the energyW052(1/2)Ham cos2 c1
2H(t)mcosc1 has the maximum value, and

Rab
s ~ t,t!5ma

s~ t !mb
s~ t1t!2dzadzbm2. ~35!

Since mz
s(t)5sm and ma

s(t)5smdza , Eqs. ~32! and
~35! give Raz5Rza50 and from Eqs.~B1! and ~B3! we
obtainDaz(t)5daz . The solution of the linearized Landau
Lifshitz equation shows~see Appendix B! that the matrix
@Dab(t)# has the diagonal form andDxx(t)5Dyy(t)
[D1(t). The functionD1(t) is defined by Eq.~27!. Using
Eqs.~35!, ~B5!, and~B8! we obtain

Rll
s~ t,t!5Dg2m2E

0

t

@el1
s

~ t !t81l2
s

~ l 1t!~ t81t!

1el2
s

~ t !t81l1
s

~ t1t!~ t81t!#D1~ t2t8!dt8. ~36!

On the time intervals of the order@lgH1(t)#21 the function
H(t) and, consequently, the functionsD1(t) and l1,2

s (t)
practically do not change. This means that for the calcula
of the integrals in Eqs.~27! and ~36! we can replace the
functionsl1,2

s (t1t) by l1,2
s (t), and the functionD1(t2t8)

by D1(t). In this approximation

E
0

`

Rxx
s ~ t,t!dt5DD1~ t !m2

12e22lgHs~ t !t

Hs
2~ t !~11l2!

, ~37!

and Eq.~27! yields

D1~ t !5H 12
20pS2m2

~11l2!d6 S p1~ t !
12e22lgH1~ t !t

H1
2 ~ t !

1p2~ t !
12e22lgH2~ t !t

H2
2 ~ t ! D J 21

. ~38!

As D1(t)>1 ~the equality holds for non-interacting nanopa
ticles!, the dipolar interaction increases the intensity of tho
components of the total thermal field which lie on the latt
plane.
18443
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IV. LAW OF MAGNETIC RELAXATION

According to the results of the previous section, for«
@1 the components of the matrix@Dab(t)# are expressed
through the functionD1(t), which is fully defined by the
distribution functionP0 . This means that the Fokker-Planc
equation~20! now is closed with respect toP0 . Let us find
its solution in this case. Using the expressions

g̃ha

]g̃ka

]ch
5dk1g2D1~ t !cotc1 ,

g̃hag̃ka5g2$dh1dk1D1~ t !1dh2dk2@11D1~ t !cot2 c1#%
~39!

which follow from Eqs.~5! and~B7!, we can rewrite Eq.~20!
in the form

]P0

]t
5

]

]c1
S l

m

gdW0

dc1
2g2DD1~ t !cotc1D P0

1g2DD1~ t !
]2P0

]c1
2 2

g

m sinc1

dW0

dc1

]P0

]c2

1g2D@11D1~ t !cot2 c1#
]2P0

]c2
2 . ~40!

Since the magnetic energyW0 and the initial distribution
P0(c1 ,c2,0) do not depend onc2 , we define P0
5Q(c1 ,t)/2p, where the distribution functionQ(u,t)
obeys the initial conditionQ(u,0)5d(u) and satisfies the
equation

]Q~u,t !

]t
5

1

t ra~ t !

]

]u H $a~ t !@sin 2u12b~ t !sinu#2cotu%

3Q~u,t !1
]Q~u,t !

]u J . ~41!

Herea(t)5a/D1(t), b(t)5H(t)/Ha , andt r52/lgHa .
We define also the distribution function

Qqe~u,t !5C~ t !sinuea~ t !@cos2 u12b~ t !cosu# ~42!

@C(t) is the normalization factor#, which satisfies the equa
tion

]Qqe~u,t !

]u
1$a~ t !@sin 2u12b~ t !sinu#2cotu%Qqe~u,t !50

~43!

and at t.tqe;t ra(t) describes the quasiequilibrium~for t
5`2equilibrium! distribution ofm. Expressing the function
Qqe(u,t) in the form of the Boltzmann distribution, i.e
Qqe(u,t)5C(t)sinu exp(2W0 /kTeff), and using the relation
W052(1/2)Ham@cos2 u12b(t)cosu# we find the connection
between the effective and absolute temperatures:Teff
5TD1(t).

Using Eq.~43! we rewrite Eq.~41! as
3-5
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]Q~u,t !

]t
5

1

t ra~ t !

]

]u
Q̃qe~u,t !

]

]u

Q~u,t !

Q̃qe~u,t !
~44!

and with the help of the Kramers method39 for the value
r(t)52p1(t)21 we obtain the following equation~see Ap-
pendix C!:

ṙ~ t !52r~ t !S 1

ts
1~ t !

1
1

ts
2~ t ! D 2

1

ts
1~ t !

1
1

ts
2~ t !

. ~45!

Here

ts
s~ t !5

t rAp/a~ t !

2@12b2~ t !#@11sb~ t !#
exp$a~ t !@11sb~ t !#2%

~46!

are the times that the magnetic momentm spends on the
average in the positive (s51) and negative (s52) direc-
tions of thez axis. According to Eq.~C5! mz(t)5mr(t),
consequently Eq.~45! describes the process of the magne
relaxation.

Equation~45! defines the functionr(t) at t.tqe when the
quasiequilibrium distribution ofm has already been formed
The characteristic timetqe satisfies the conditionstqe/ts

1(t)
!1 andlgHs(t)tqe@1. The former shows that fort;tqe the
probability for transition ofm from the states51 to the
states52 is negligible. Hence, having transferred the o
gin of time to an arbitrary pointt;tqe, we can write the
initial condition for Eq. ~45! as r(0)51. From the latter
condition it follows that, fort.tqe, the exponential func-
tions in Eq.~38! can be neglected, so the right-hand part
Eq. ~45! depends ont only by means ofr(t). Denoting this
part by2F@r(t)# and using the conditionr(0)51, we can
transform Eq.~45! to the form

E
r~ t !

1 dx

F~x!
5t. ~47!

With the help of Eq.~46! it is easy to verify thatF(x)
.0 if 0,x<1, andF(0)50. This means that the solution o
Eq. ~47! is a decreasing function of time:r(t1).r(t2)(t1
,t2), r(`)50. Using this fact and rewriting Eq.~38! as

D1~ t !5H 12x2j2
112jr2~ t !1j2r2~ t !

@12j2r2~ t !#2 J 21

~48!

@x255S2/16(11l2)S1
2p, and j52b(0)58pS1m/Had3 is

the parameter characterizing the intensity of the dipolar
teraction# it is not difficult to show thatD1(t1).D1(t2).
Thus, the effective temperatureTeff5TD1(t) decreases
with time while the height of the potential barrierdU
5(Ham/2)@12jr(t)#2 increases, therefore the process
the magnetic relaxation delays.

Notice that, within the developed approach the degree
influence of dipolar field fluctuations on the process of m
netic relaxation is determined by that how strongly the eff
tive temperature att50 differs from the absolute one. W
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will characterize the differenceTeffut50 from T by the param-
eter u5Teffut50 /T21, which, as it follows from Eq.~48!, is
given by

u5
x2j2

~12j!22x2j2 . ~49!

If we use the parameterk5(12j)22x2j2 (0,k<1), then
j5(12x2)21@12A12(12x2)(12k)# @since H1(0).0
~see Appendix B! we chose the solution of equationk5(1
2j)22x2j2 which satisfies the condition 0<j,1# and Eq.
~49! yields

u5
1

k

x2

~12x2!2 @12A12~12x2!~12k!#2. ~50!

According to Eq.~50! u is a decreasing function ofk and
u;(12k)2x2/4→0 for k→1, and u;k21x2(11x)22

→` for k→0. But the parameterk cannot take very smal
values. Indeed, the condition«5a(t)@11b(t)#2@1 is
equivalent toa(0)(12j)2@1 which in turn leads to the con
dition ak@1. Usuallya;102102, therefore mink;0.1 and
the parameteru, as a rule, does not exceed unity. Asa(0)
5a/(u11) anda@1, from Eq.~46! it follows that even in
this case the fluctuations of dipolar field essentially enha
magnetic relaxation in comparison with that which predi
the mean-field approximation~whenu50 or Teff5T!. In par-
ticular, if u;1 then, designatingts

s(0) in the mean-field ap-
proximation as @ ts

s(0)#m f , we obtain @ ts
s(0)#m f /ts

s(0)
;exp@a(12sj)2/2#@1. If u!1 then the fluctuations of the
dipolar field are small and we can describe the magn
relaxation within the mean-field approximation.

The dependence ofr(t) on t for different ensembles o
Co nanoparticles is shown in Fig. 2. As can be seen
decrease ofp, leading to the decrease of the intensity of t
dipolar interaction, gives rise to reduction of magnetic rela
ation.

Equation ~47! can be solved analytically forp50, t
!ts

s(0), andt@ts
s(`). In the first caseF(x)5(1/tn)x, and

FIG. 2. Time dependence ofr(t) for ensembles of Co nanopar
ticles with the parameters~Ref. 41! Ha56400 Oe,m/V51400 G,
T5300 K, l50.2, r 540 Å, d56r ~a'28.995,j'0.038p, x2p
'0.137,tn'28.6 s! and p51 ~curve 1!, p50.5 ~curve 2!, p50
~curve 3!.
3-6
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Eq. ~47! yields r(t)5exp(2t/tn), where tn

5t rAp/16a expa is the relaxation time in the case of no
interacting nanoparticles. Fort!ts

s(0) the conditionr(t)
'1 holds. Therefore, replacingF(x) by F(1)51/t0 (t0

5ts
1(0)/2) in Eq.~47!, we obtainr(t)512t/t0 , where

t05t r A p

a~0!

ea~0!~12j!2

4~12j2!~12j!
. ~51!

Finally if t@ts
s(`) then r(t)'0, consequently, the mai

contribution into the left part of Eq.~47! comes from the
lower limit region of the integration. SinceF(0)50, in this
region we can approximate the functionF(x) by the function
xF8(0) @F8(0)5dF(x)/dxux50#. For this case Eq.~47!
givesr(t);exp(2t/t`), where

t`5
1

F8~0!
5t r A p

a~`!

ea~`!

4@11~2a~`!21!j#
. ~52!

The analysis of expressions~51! and ~52! shows that for
a(0)(12j)2@1 andjÞ0 the inequalitiest0,t`,tn hold
~t05t`5tn for j50!, andt0!t` for not very smallj.

The asymptotic expressions forr(t) at t→0 and t→`
allow us to derive the approximate expression forr(t) which
is valid for all the times

r~ t !5
t0 /t`

et/t`1t0 /t`21
~53!

@the exact solution of Eq.~47! slightly exceeds it#. Equation
~53! shows that, in contrast to the case of noninteract
nanoparticles, which is characterized by the single relaxa
time tn , magnetic relaxation in ensembles of dipolar int
acting nanoparticles can be approximately characterized
two different relaxation times, viz., the initial relaxation tim
t0 and the final onet` . In the meanfield approximation Eq
~53! is also valid but the valuesa(0) and a(`) must be
replaced bya. Notice that from a mathematical point of vie
deceleration of magnetic relaxation occurs due to a transi
from one asymptotic behavior ofr(t) characterized by the
relaxation timet0 , to another asymptotic behavior charact
ized by the larger relaxation timet` .

V. CONCLUSIONS

We have developed an analytical theory of the magn
relaxation for the 2D ensembles of nanoparticles w
uniaxial anisotropy that takes into account the fluctuations
the dipolar magnetic field. Our approach is based on
consideration that each nanoparticle is an isolated one an
magnetic momentm interacts with the mean dipolar field o
the other nanoparticles and with an effective heat bath h
ing the effective temperatureTeff . The difference ofTeff from
the absolute temperatureT results from the contribution o
the dipolar field fluctuations into the total fluctuating ma
netic field acting onm. We have approximated the comp
nents of the total fluctuating field by the white noises, and
have described the dynamics ofm by the stochastic Landau
Lifshitz equation. In the case when the height of the poten
barrier between two equilibrium directions ofm essentially
18443
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exceeds the thermal energy we expressedTeff and the noise
intensities through the distribution function ofm. Solving the
Fokker-Planck equation for that distribution function we d
rived the equation for magnetization and we found its so
tion in the limiting cases. We showed that the effective te
perature decreases with time and the height of the pote
barrier increases. Consequently, the rate of magnetic re
ation in such ensembles decreases with time. Also, we h
derived a simple approximate expression for the law of m
netic relaxation which is valid for all times.
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APPENDIX A

From Eq.~16!, using the Chandrasekhar approximation42

we can write

^ha~ t !hb~ t1t!2ha~ t !•hb~ t1t!&

5K (
iÞ0

1

r i
10~r i

4da«dbh23r i
2r iar i«dbh

23r i
2r ibr ihda«19r iar ibr i«r ih!

3@mi«~ t !mih~ t1t!2mi«~ t !•mih~ t1t!#L
~A1!

and, becausena(t)mib(t8)50 (iÞ50), we obtain

^na~ t !hb~ t1t!&5^nb~ t1t!ha~ t !&50. ~A2!

Using the same approximations as for the calculation
H(t), we transform Eq.~A1! to the form

^ha~ t !hb~ t1t!2ha~ t !•hb~ t1t!&

5P(
s

1

usu10~ usu4da«dbh23usu2sas«dbh

23usu2sbshda«19sasbs«sh!R«h~ t,t1t!.

~A3!

From this, having defined the lattice sums as

S25
1

8 (
n1 ,n2

1

~n1
21n2

2!3 '0.5824,

S35
1

8 (
n1 ,n2

n1
2n2

2

~n1
21n2

2!5 ;0.0174 ~A4!

and using the relations

(
s

sas«

usu8
5

4S2

d6 ~dxadx«1dyady«!,
3-7
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(
s

sasbs«sh

usu10 5
4

d6 ~S222S3!~dxadxbdx«dxh

1dyadybdy«dgh!1
8S3

d6 ~dxadxbdy«dyh

1dxadybdx«dyh1dxadybdy«dxh

1dyadybdx«dxh1dyadybdx«dxh

1dyadxbdx«dyh! ~A5!

@at their proof we took into account that(ssx
4/usu10

5(ssy
4/usu1054(S222S3)/d6#, we find

^ha~ t !hb~ t1t!2ha~ t !•hb~ t1t!&

5
4pS2

d6 @2Rab23dxaRxb23dyaRyb

23dxbRax23dybRay19dxadxbRxx19dyadybRyy#

1
72pS3

d6 @dxabxb~Ryy2Rxx!1dyadyb~Rxx2Ryy!

1~dxadyb1dyadxb!~Rxy1Ryz!#. ~A6!

Finally, using Eqs.~26!, ~31!, and~A6! we obtain Eqs.~27!–
~30!.

APPENDIX B

Neglecting the terms;ma
s(t)qb(t), the linearized

Landau-Lifshitz equation takes the form

ṁ~ t !5Am~ t !1Bw~ t ! @m~0!50#. ~B1!

Here m(t) is a vector with componentsmx
s(t) and my

s(t),
w(t) is a vector with componentsqx(t) andqy(t),

A52gHs~ t !S l s1

2s1 l
D , B5sgmS 0 1

21 0D ,

~B2!

and Hs(t)5Ha1sH(t). The matrixA has the eigenvalue
l1,2

s (t)52gHs(t)(l7 i ) @since both directions of thez axis
must correspond to the minimum ofW0 we suppose tha
Rel1,2

s (t),0, i.e., H1(0).0# to which the characteristic
times @lgHs(t)#21 and @gHs(t)#21 of the macroscopic
evolution ofms(t) correspond. The maximum characteris
time @lgH1(t)#21, is much less than the characteristic tim
of the change ofH(t) ~see Sec. IV! so in Eq.~B1! we can
consider the matrixA as a constant one. In this case t
solution of Eq.~B1! is given by the expression43

m~ t !5E
0

t

exp~At8!Bw~ t2t8!dt8. ~B3!

Using the relation
18443
eAt85el1
s

~ t !t8
A2l2

s~ t !I

l1
s~ t !2l2

s~ t !
2el2

s
~ t !t8

A2l1
s~ t !I

l1
s~ t !2l2

s~ t !
~B4!

~I is the unit matrix! which follows from the Sylvester
theorem,44 we obtain from Eq.~B3!

mx
s~ t !5

gm

2i E
0

t

@~el1
s

~ t !t82el2
s

~ t !t8!qx~ t2t8!

1s i ~el1
s

~ t !t81el2
s

~ t !t8!qy~ t2t8!#dt8,

my
s~ t !5

gm

2i E
0

t

@~el1
s

~ t !t82el2
s

~ t !t8!qy~ t2t8!

2s i ~el1
s

~ t !t81el2
s

~ t !t8!qx~ t2t8!#dt8. ~B5!

Let us make the assumption that the matrix@Dab(t)# has
the diagonal form

@Dab~ t !#5diag@D1~ t !,D1~ t !,1#. ~B6!

Then according to Eq.~19! we have

@lab~ t !#5diag@AD1~ t !,AD1~ t !,1# ~B7!

and, consequently,

qx~ t !5AD1~ t !nx~ t !, qy~ t !5AD1~ t !ny~ t !,

qz~ t !5nz~ t !. ~B8!

Using Eqs.~B5!, ~B8!, and~2! it is not difficult to show that
Rxy

s (t,t)52Ryx
s (t,t), therefore,Dxy(t)50. Hence, taking

into account the conditionDaz(t)5daz derived earlier, we
confirm that the matrix@Dab(t)# has the diagonal form.

APPENDIX C

In accordance to the Kramers method39 we find the solu-
tion of Eq. ~44! for t.tqe in the form

Q~u,t !5Q̃qe~u,t !H p1~ t !/n1~ t !, 0<u<u0~ t !,

p2~ t !/n2~ t !, u0~ t !,u<p,
~C1!

whereQ̃qe(u,t)5Qqe(u,t)/C(t), and

n1~ t !5E
0

u0~ t !
Q̃qe~u,t !du, n2~ t !5E

u0~ t !

p

Q̃qe~u,t !du.

~C2!

According to Eqs.~24!,~38! the functionsa(t) andb(t) are
expressed through the probabilitiesp6(t) and the mean mag
netic momentmz(t) which satisfies the equation

mz~ t !5m
p1~ t !

n1~ t ! E2b~ t !

1

xea~ t !@x212b~ t !x#dx

1m
p2~ t !

n2~ t ! E21

2b~ t !
xea~ t !@x212b~ t !x#dx. ~C3!
3-8
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Since «5a(t)@11b(t)#2
„dU5W0uu5u0(t)

2W0uu50

5(Ham/2)@11b(t)#2
… and for«@1 the asymptotic expres

sions

E
2b~ t !

1

xea~ t !@x212b~ t !x#dx5
ea~ t !@112b~ t !#

2a~ t !@11b~ t !#
5n1~ t !,

E
21

2b~ t !
xea~ t !@x212b~ t !x#dx52

ea~ t !@122b~ t !#

2a~ t !@12b~ t !#
52n2~ t !

~C4!

hold, Eq.~C3! is reduced to

mz~ t !5m@p1~ t !2p2~ t !#. ~C5!

As p2(t)512p1(t), the single unknown function in Eq
~C1! is the probabilityp1(t). Using the equation
v,

f

.

er

18443
E
0

u0~ t ! 1

Q̃qe~u,t !

]

]t
S E

0

u

Q~q,t !dq D du

5
1

t ra~ t !
E

0

u0~ t ! ]

]u S Q~u,t !

Q̃qe~u,t !
D du, ~C6!

which follows from Eqs.~44! and ~C1!, the asymptotic ex-
pression

E
0

u0~ t ! 1

Q̃qe~u,t !

]

]t
S E

0

u

Q~q,t !du D du

5 ṗ1~ t !
1

2
A p

a~ t !

ea~ t !b2~ t !

12b2~ t !
~«@1! ~C7!

and the relation

]

]u S Q~u,t !

Q̃qe~u,t !
D 5S p2~ t !

n2~ t !
2

p1~ t !

n1~ t !
D d@u2u0~ t !#, ~C8!

we obtain Eq.~45!.
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