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We present a microscopic theory of the long-wavelength magnetic properties of the ferromagnetic diluted
magnetic semiconduct¢Ga,MnAs. Details of the host semiconductor band structure, described by a six-band
Kohn-Luttinger Hamiltonian, are taken into account. We relate our quantum-mechanical calculation to the
classical micromagnetic energy functional and determine anisotropy energies and exchange constants. We find
that the exchange constant is substantially enhanced compared to the case of a parabolic heavy-hole-band
model.
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[. INTRODUCTION at wave vectoik. Here, g is the g factor andug the Bohr
magneton. There is an energy gap that is determined by the
The recent discovery of carrier-mediated ferromagnetisn@inisotropyK. The spin-exchange constahidefines the cur-
in diluted magnetic semiconductors has generated intense iNature of the spin-wave dispersion. . .
terest, in part because it suggests the prospect of developing The purpose of this paper is to present a microscopic
devices that combine information processing and storagf€ory for the phenomenological parameters that characterize
functionalities in one materid:2* Ferromagnetism has been (G&MnAs as a ferromagnet. The form of the micromagnetic
observed in Mn doped GaAs up to critical temperatargsf ~ €nergy functional appropriate to the symmetry of the crystal
110 K (see Ref. 1L Doping a Ill-V compound semiconduc- will be addressed in Sec. IV. We expect that these predictions

tor with Mn introduces both local magnetic moments, with Vil b€ useful in interpreting experimental studies of these
concentrationN,,, and spinS=5/2, and itinerant valer’me- semiconductor’s magnetic properties. The search for the car-

band carriers with densitp and spins=1/2. An antiferro- rier density, Mn concentration andll,Mn)V’ compound

o . : . . semiconductor material for which the critical temperature
magnetic interaction between both kinds of spin mediates afj,q its maximum value is perhaps, the most important en-

effective ferromagnetic interaction between Mnspins. deavor in this research area. It has been guided to date by
A phenomenological long-wavelength description of fer- mean-field-theors? 28 considerations that neglect the low-
romagnets usually requires only a small set of characteristienergy-correlated magnetization fluctuations characterized
parameters. For example, a ferromagnet that possesses g9 M., K, and A. However, as we have emphasized
uniaxial anisotropy can be modeled by a classical micromagearlier?*-3? small exchange can also limit the temperature at
netic energy functionaE[n(r)], which long-range magnetic order exists.
In recent work& 3! we developed a theory of diluted
. . magnetic semiconductor ferromagnetism that accounts for
E[n(r)]= Eo+f d*r[K sif+A(V-n)?], (1 dynamic correlations in the ordered state. For simplicity we
used parabolic bands for the itinerant carriers, leading to iso-
tropic ferromagnetism. We found, in addition to the usual
spin-wave mode, a continuum of Stoner excitations, and an-

respect to the easy axis. The dependence on the orientatiOt'e" collectiveﬁt;r?znch of excitations, optical spin waves. As
of the magnetic moment is parametrized by the anisotropy’¢ have shown,= the low-energy Goldstone modes can
constantk. The exchange constaur spin stiffnessA gov-  SUPPress the critical temperature in comparison to r_nean-ﬂeld
erns the energy cost to twist the orientations of adjacent spir@Stimates and can even change trendgqims a function of
relative to each other. Together with the saturation momenf{1€ System's parameters. .
1oM. and the magnetostatic energy, dropped for conve- To address anisotropy, one has to go beyond a pa_lrabohc-
nience in Eq(1), the parameter andA determine a whole band model and take details of the band structure into ac-
variety of magnetic properties such?asomain-wall width count. The itinerant-carrier bands apetype and refleqt the '
55, domain-wall energy per ares, exchange length,,, crysta_ll symmetry of the underlying lattice. Due to spin-orbit
hardness parametet, single-domain radiuRgy, and anisot- coupling the spin degrees of freedom also feel the crystal
ropy field ugHy. In addition they determine the energy cost amﬁotropy. we wil u_?e a six-band ((jjelscrr]lptlon based on the
O, of collective long-wavelength spin excitations, spin Kohn-Luttinger Hamiltonian to_model théGa,MnAs va-

oy : : - lence bands. States near the Fermi energy in our model in-
waves. For uniaxial anisotropy the quantized energy is . s . .
by a 9y clude substantial mixing with the split-off valence band mak-

oK oA ing the six-band model we employ the minimal band model.
= + K2, (2) Mean-field calculations}*"*® as well as Monte Carlo
Ms/(gus)  Ms/(gus) studie$® based on this more realistic band structure have

where n(r) is the unit vector that specifies th@pace-
dependentlocal Mn spin orientation, and is its angle with

Oy
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been performed recently to address magnetic anisotropy efnainly influence short-distance spin excitations that are not
fects and explore trends in the critical temperature. in any case the focus of this work.

In Sec. Il we set the starting point of our theory by deriv- We note that local-spin-density-approximation electronic-
ing a formal expression for the effective action for the Mn- structure calculation®, taken at face value, find a strong
impurity spins after integrating out the itinerant carriers. Thishybridization betweerp and d carriers, which is not com-
formal development generalizes earlier work' to general pletely consistent with the model we use. However, given the
spin-orbit coupled band models. Using the effective actioroverwhelming succes$ of the present model in the case of
we numerically determine the zero-temperature spin-wav@aramagnetidll,Mn)VI materials, we find it unlikely that
dispersion in Sec. Ill. Then, in Sec. IV we establish the conthe Mnd electrons are itinerant. If they were, the phenom-
nection between our spin-wave results and the classical menological approach we study here would be incomplete.
cromagnetic energy functional, adjusted to the symmetry de- Our treatment of the Mn spin system as a continuum
fined by the crystal structure. Finally, in Sec. V, we presenfgreatly simplifies our calculation by eliminating disorder as-
numerical results for the spin-wave dispersion and the exsociated with randomness in the Mn positions. We do antici-
change constant. We find that for the parameter range gdate that the disorder can influence both anisotropy and ex-
interest the exchange constant is enhanced by up to an ordelnange constant at the low- and high-carrier-concentration
of magnitude compared to naive results obtained earlier, iextremes. These effects are, however, outside the scope of
which light-hole bands were neglected and the heavy-hol¢he present study. We will identify several important features

bands were approximated as parabolic. of the microscopic physics in the disorder-free model that we
expect to be robust.
Il. HAMILTONIAN AND EEFECTIVE ACTION Ouir first goal is to integrate out the itinerant carriers and

to arrive at an effective description for the impurity-spin de-
Our theory is based on the following model. Magneticgrees of freedom. This procedure follows the analysis pre-
ions with spinS=5/2 at positionsR, are antiferromagneti- sented in Ref. 29 for thésimplep two-band model. For
cally coupled to valence-band carriers described by amssmall fluctuations around its mean-field polarization, we can
envelope-function approach approximate the spin operators & (r)~b(r)v2Ny,S,
S (r)=[S"(r)]', and S¥r)=Ny,S—b'(r)b(r), where
5 b'(r),b(r) are bosonic Holstein-Primakdff fields. The
H= H0+def d*rS(r)-s(r), () quantization axig is chosen here along the zero-temperature
spin orientation. After integrating out the itinerant carriers
whereS(r) =%,5(r —R,) is the impurity-spin density and the partition function,Z= [ D[zz]exp(— S zz]), is gov-
Jpe>0. We approximate the impurity-spin density by a con-erned by the effective action for the impurity spins;
tinuous function(instead of a sum o#é functions. Provided
thatJgis not strong enough to Iocaliz_e valence-band carriers s _[77]= S {zz] - Indef(GMF) "1+ G 1(z2)], (4)
near the Mn sites and the average distance between two Mn . .
ions is small in comparison to the Fermi wavelength of thewhere SBp[zz]zfgdq-fd3rz(?Tz is the usual Berry’'s phase

itinerant carriers, this approximation can be justified. Theterm, and the complex numbersand z label the bosonic

itinerant-carrier spin density is expressed in terms of carriefegrees of freedom. In E), we have already split the total
field operators bys(r)==2;;W(r)s;¥;(r) wherei andj la-  kerelG~ into a mean-field part@“F) ! and a fluctuating

bel the basis in Hilbert space of spin and orbital angulamart 5G6-1;

momentum, ang; is the corresponding representation of the

spin operator. The envelope-function Hamiltontag for the (GMF)Hl:(&—M)@j +(i[Holj)+ NMandS% ., (5
valence bands can be parametrized by a small number of

symmetry-adapted parameters, the Luttinger parametgrs — Jp _ _

Y2, 7v3, and the spin-orbit coupling, that splits the six 8G (z2)= 7[(ZS]+ZSH)\/2NMnS— 22z], (6)

states at the band edge into a quartet and a doublet. For

explicit expressions oH, as well as representations of the where u denotes the chemical potential, anéndj range

spin matrices in a coordinate system in which xhg, andz  over a complete set of hole-band states. In the following we

axes are along the crystal axes, we refer to £48)-(A10)  define the mean-field energy=Ny,J,.S to flip the spin of

of Ref. 27, based on the Kohn-Luttinger Hamiltonién. an itinerant carrier. The physics of the itinerant carriers is
Phenomenological Hamiltonians of this form have provenembedded in the effective action of the magnetic ions. It is

successful in understanding optical properties of the closelyesponsible for the retarded and nonlocal character of the

related magnetically doped I1-VI semiconductdfsin that  interactions between magnetic ions.

case however, the inclusion of direct antiferromagnetic inter-

actions between Mn spins that lie on neighboring lattice sites Ill. INDEPENDENT SPIN-WAVE THEORY

proved to be important. This interaction appears to be much

weaker in the IlI-V case, although this difference is not fully  Independent spin-wave theory is obtained by expanding

understood® We do not include these spin-spin interactionsEq. (4) up to quadratic order iz and performing Matsubara

in our calculations, because we have no knowledge of thémaginary time and space Fourier transforms. Siéée * is

strength of the coupling coefficient. If included, they would at least linear irg, the series
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seﬁ[?z]=n§0 si[zz], (7

can be truncated aftar=2, wheren denotes the order in

5G~!. The zeroth-order contributionS[zz]=Sgd zz]
—Indet(GMF) ! contains the Berry’s phase term

Sl 2z]= mEk (—ivmz(k, vmz(k,vy), ®)

PHYSICAL REVIEW B 64 184423

plus terms linear irz andz. Here,w,, and v, are fermionic

and bosonic Matsubara frequencies, respectively. To deter-
mine the mean-field Green’s functions we diagonalize the
matrix (i|Hy(q) +As?j) for each wave vectoq and denote
eigenvalues and eigenstates &)(q) and|a), respectively.
Since  the itinerant-carrier  spin  density (s)
=(IN)242 . fl€,(0) [ a|g ) is aligned antiparallel to the
impurity-spin polarization axigotherwise this would not be

an easy axis the terms linear iz and?drop out, and we get

and the mean-field contribution from the itinerant carriers,

which is independent of the bosonic fieldandz. Here,v,,
are the bosonic Matsubara frequencies.

The next term of the expansion,SY[zz]=
—tr(GMFSG 1), reads in Fourier representation

‘”[zz]—— Eq 2] M (g S
XE‘,k?(k,vmn(k,vm), (9)
|
NunJ5eS fleqa(a)]—

fleg(a+k)]

pdpg

SHlzzl= 55y

EK?(k,wz(k,vm), (10

where é=—2(s?*)/p is the fractional itinerant-carrier polar-
ization, O<¢<1.

For the second-order term of the expansi@¥)[zz]
=1tr(GMF6G1GMFSG 1), we find

Sl zz]=

+5,55p,2(K, V) Z(—

with s;;=(a|s"|B) andsg,=(B|s"|a). Note, that the in-

dices @ and B label the single-particle eigenstates for

valence-band carriers witthifferentwave vectors, namely
andg+k, respectively.
The Matsubara frequency,, in the denominator on the

4[«3V2 m,q.k ap iVm+fa(Q) Eﬁ(q+k)

[zsaﬁsﬁa (K,vm)z(k, vpy)

ky - Vm) +S;,BS;3aZ(ka Vm)z( - k1 - Vm)] + 0(23) (ll)
|
Q. Jpa_ [[PE ? ’
A= (X—Ek —ES T2 (13
From the definition Eq(12) we see thaE, ~ is real and
E, =(E, ")*. Equation(13) is the central result of this

right-hand sidérhs) of Eq. (11) accounts for the dynamics of Section. The remaining task is to evaluate the fractional
the itinerant carriers. This frequency dependence is crucial ujlnerant carrier polarizatior and the quantitie€, ~ and
account for the existence of the Stoner spin-flip continuunE, * numerically.

and the optical spin-wave mode. On the other hand, the ex- Before we carry on with establishing the relation between
istence of the usual spin wave follows already from the statid=q. (13) and micromagnetic parameters of a classical energy
limit [i.e., when the frequency dependence in the denomingunctional, we make three remarks.

tor in Eq. (11) is dropped, and the spin-wave dispersion is

described rather accurately.
The sum of Eqs(8), (10), and(11) is a quadratic form in

(i) Correlation effects among the Mn spins, which are not
described by the mean-field picture, enter our theory via the

contributionS{Z)[ zz]. To reduce our theory to the mean-field

the bosonic fieldg andz. The zeros of the kernel define the level we would have to neglect this term, i.e., truncate the

spin-wave energief), as a function of momenturk (after
analytic continuation v,,—Q+i0"). In the following we

series Eq.(7) already aftern=1. In this case, the energy
OMF=J,p&/2 of a Mn spin excitation would be dispersion-

go by the static limit as discussed above. We define the quarhess and by a factor ghé/(2Ny,,S) smaller than the mean-

tities field energyA to flip an itinerant-carrier spin. Due to corre-
lations between Mn and band-spin orientations, however, the
ver 1 fle(@]—flega+k)] spin-wave energy}, is always smaller tha@MF.
Ey" =- v % aEB €.(0)— e5(q+K) SapSpa (i) In the absence of spin-orbit coupling all products of
(12  the form SapSpa OF S,5Sp, Vanish. As a consequendg, *

=E, =0 for all k. This statement is even true for finite
spin-orbit coupling in case when the valence bands are iso-
tropic.

with o,0’=*, and perform a Bogoliubov transformation,
which eventually yields
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(i) To go beyond the static limit, we may expand the K, =—(9/4)K,
fraction on the rhs of Eq11) up to linear order inv,,. As
shown in Appendix A, this linear correction simply amounts
to a renormalization of the Berry's phase term by replacing
0 —Q(1-x). In the absence of spin-orbit coupling we find
thatx is just the ratio of the spin densities= (s*)/(NynS),
where (---)=(IN)2,2,f[€,(a) (el --|a). For finite
spin-orbit coupling but with a band Hamiltonian that is in-
variant under rotation in space, the spfrhas to be replaced
by the total angular momentusf+17, i.e., we findx=(s*
+15/(NynS).-

The renormalization factor (2x) indicates that in a
semiclassical picture, as employed in Sec. IV, the effective
spin density is not quite given by the Mn impurities, but has
to be reduced due to coupling to the valence-band carriers.
On the other hands is always small since the impurity-spin
densityN,,, is larger than the itinerant-carrier concentration
p and the Mn spir6=5/2 is comparatively large. We, there- 2 1
fore, stick to the static limit in the following discussion.

K,

FIG. 1. Easy-axis direction as a function Kf andK,.

IV. EASY AXIS, ENERGY GAP, AND SPIN STIFFNESS find an easy-p]ane anisotropy in the p|am§go, ny:O or
=0, and, of course, the isotropic casge=K,=0). In Fig.

The purpose of this section is to establish the connectior)? . 2 . .
purp Iiwe show how the mean-field polarization direction de-

between the spin-wave dispersions evaluated later and t
micromagnetic energy functional. The nonlocal magnetoP€nds orK; andK. _ .
static contribution that is omitted from our theory can be NOW we consider small fluctuations around the mean-field
added as needed in applications. The short-range part of tigientationn™". The kernel of the quadratic forra®"{n]
functional is a symmetry-adapted gradient expansion of the-e®[nF] has two eigenvalues, andX,. We find forn™F
energy densitg[n]. In magnetism literature the nonconstant 2long (100 that A;=X,=Kj, for (110 we get\;=—-K,
portion of the zeroth-order teraf™[ ] is known as the mag- aNd A2=(2K1+K5)/4, and for(111) we obtaink;=X,=

. . . . - —(6K1+2K5)/9. In all cases); andX\, are positive. Quan-
netic anisotropy energy, and the leading gradient teffim] tizing the collective spin coordinate at long wavelengths, it

is known as the exchange energy. As shown in Ref. 27 Magy iows that
netic anisotropy effect in ferromagnetic semiconductors are,
in the absence of strain, very well described by a cubic har-
) - .' X 24NN A
monic expansion that is truncated after sixth order, Q.= 172 k?+ O(k%). (16)

K" NynS  NynS

anir ~7— 2.2 2.2 2.2 2
e*[n]=Ky(mnj+mnz+nynz) +Ka(nmyn)® (14 There are two alternative ways to determine the energy gap
with anisotropy parameteté; and K. Correlation of spin  {k=o. One can either perform thie=0 limit of the spin-
polarizations at different positions is described by the gradiwave dispersion Eq13) or evaluate the coefficients; and

ent terme®{n]. In order to address long-wavelength spatial))z from calculating the energy for mean-field orientation

fluctuations, we expand the gradient term up to lowest nond"" along the three high-symmetry ax¢s00), (110, and

vanishing order (113). The numerical effort of the latter procedure, which
has been used previously in Ref. 27, is lesser for the given
accuracy. The virtue of the spin-wave calculation is to deter-

exr A — 2
e X[”]_a ) % Aap| dalb|*, (19 mine the exchange constaht
Jbe{xy,z} - . .
We conclude this section with two remarks.
with exchange parameteis,,. We find in our numerical (i) In the case that the easy axis is aldii§0 or (111)

calculations that anisotropy in the exchange constant is nedas it is for all parameter sets considered in Seg,. te
ligibly small, i.e., we can choosé,,=A for all a,b, as  energy cost of tilting the polarization axis by small angles is
generally assumed in the magnetism literature. independent of the direction of the deflection. This is re-
To establish the connection of the energy functional to ougjuired by symmetry and indicated by the fact thatequals
microscopic spin-wave calculation, we first have to deter-\,. As shown in Appendix B, the terr, ', then vanishes,
mine the direction of the mean-field spin polarization andgnd thek=0 limit of Eq. (13) is identical to the energy gap
then to Study small fluctuations. The first Step is achieved bba|cu|ated from standard perturbation theory where the per-
minimizing the energy Eq(14). It is easy to show that the turbation describes the deviation of the spin polarization
mean-field orientatiomM" can only point along a high- from the mean-field direction.
symmetry axig(100), (110), (111), or an equivalent direc- (iil) The denominatorsly,,S in Eq. (16) correspond to the
tion (except for the special cage,=0 andK,>0, where we  static limit employed in our calculation. The renormalization
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FIG. 2. Spin-wave dispersion for the isotropic model for FIG. 3. Main panel: Spin-wave dispersion for the six-band
itinerant-carrier densityp=0.35 nm 3, impurity-spin concentra- model for itinerant-carrier densitp=0.35 nm 3, impurity-spin
ton Ny,=1.0 nmt® and exchange coupling Jpd concentration Ny,=1.0 nm 3 and exchange couplingJd g
=0.068 eV nm? (which yieldsA=0.17 eV). =0.068 eV nm?3 (which yieldsA=0.17 eV). The momenturk
is chosen to be parallel to the easy a{d90). Inset: Spin-wave
pispersion on a log-log plotcircles and the fit 9.x107°

of the Berry’s phase term due to corrections to the static limi 1 0.16(/kg)? (solid line),

(see discussion in the preceding sectioould be accounted
for by multiplying Ny,,S with (1—Xx).
By fitting a parabola at small momenta we fifitl /A
=0.0068k/kp)? that yields A=0.095 meV nm?
V. NUMERICAL RESULTS FOR THE SPIN-WAVE =0.015 pJ ml
DISPERSION Now we use the six-band Kohn-Luttinger Hamiltonian

In this section we present numerical results for the spinWith Luttinger parameters, =6.85, y,=2.1, andy;=2.9
wave dispersion ofGa,MnAs. From these calculations we and spin-orbit couplinghs,=0.34 eV. In the absence of the
extract the spin stiffness as a function of the itinerant-carrieMn ion, this model has anisotropic heavy- and light-hole
concentratiorp and on the exchange couplidgy. To model ~ bands with masses,~0.498n, and m;~0.086n.. The
the sample that showed the highest transition temperature &pirit of the naive parabolic band model is the hope that only
110 K so far, we choose as parametefs,,,=1 nm 2, p  the band with the larger density of states matters and the
=0.35 nm 3, and Jpe=0.068 eV nm3. As a conse- anisotropy is unimportant. We will see that these hopes are
guence, the mean-field spin-splitting gap for the itinerant carnot fulfilled.
riers isA=NypJpS=0.17 eV. We find a much lower Fermi energg=0.25 eV than
obtained for the isotropic model, and, therefore, a much
higher itinerant-carrier spin polarizatiaf=0.73. By calcu-
lating the mean-field energy for a Mn spin polarization along

The origin of ferromagnetism, the nature of the spin ex-the three high-symmetry axes we determine the anisotropy
citations, and trends in the critical temperatures can be exparameters askK;=19.6x 10°% eV nm 3 and K,=1.6
plained within a simple model that describes the itinerant<10 ¢ eV nm 3. As a consequence, the easy axi§li§0)
carriers by parabolic band$-3%" For more quantitative and the energy gaf),_o/A=9.2x10" >, is very small in
statements, a more realistic description of the band structureomparison to the bandwidth of the spin-wave dispersion.
should be employed. In Fig. 3 we show the spin-wave dispersion for wave

In Fig. 2 we show results for the isotropic model with two vectorsk along the easy axis. We observe that the effect of
parabolic band with effective mass* =0.5m, (a Debye cut- E; " in Eq. (13) is negligibly small and can, therefore, be
off kp with k%szZNMn ensures that we include the correct dropped. Furthermore, we find that the dispersion for a spin
number of magnetic ion degrees of freedokive find for the  wave perpendicular to the easy axis cannot be distinguished
majority-spin Fermi energyr=0.44 eV measured from the from the dispersion of spin waves along the easy axis within
bottom of the band. This yields the itinerant-carrier polariza-numerical accuracy. By fitting a parabola at small momenta
tion £=0.35. The dashed line in Fig. 2 marks the mean-fieldwve find Q,/A=Q,_o/A+0.16(k/kp)? that yields A
spin-flip energy, obtained by neglecting correlation. Since=2.2 meV nm'=0.36 pJ m?! (see inset of Fig. 8 Fur-
the spin-wave energies are far below the mean-field resulthermore, we see that the energy dap_,/A determined in
the isotropic model suggests that for these parameters corrbere before paragraph is consistent with our spin-wave re-
lation is very important and the critical temperature is limitedsults. Employing the six-band model we see that for the
by collective fluctuations. According to the classification given parameters the spin-wave energies are much closer to
scheme introduced in Ref. 32, the system would be in thé¢he mean-field value than for the isotropic model. According
(Ruderman-Kittel-Kasuya-Yosiglaollective regime. to our classification given in Ref. 32 the system is rather in

A. Isotropic vs six-band model
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1.2 . T T sen range of itinerant-carrier densities the trend is different:
I Lo in the two-band model the exchange constant decreases with
1.0 - O,/O/ T increasing density, while for the six-band description we ob-

serve an increase with a subsequent saturation.

_ 08 o ]o--0 6-band model, large J, || Experimental estimates fdk,q vary from 0.054 eV nrh
e 06 | |o—©6-band model, small J,, || to 0.15 eV nmi, with more recent work suggesting a value
- 0--02-band model, large J,, toward the lower end of this rand®:?° To address the de-
: 0—~a 2-band model, small J, d f th . tiff P h in Fia. 4
04 pendence of the spin stiffness dpy, we show in Fig.
I results for two values o,y which differ by a factor of 2.
0.2 To understand the different behaviors of the two-band
model and the six-band model, we re¢ff that the two-
0.0 band model predictA=p#2/(8m*) for low densitiesp,
0.1 0.2 03 0.4 0.5 while at high densitied\ decreases as a function pf(note

p [nm™] that in Refs. 30 and 31 the spin stiffness was characterized
FIG. 4. Exchange constart as a function of itinerant-carrier by p=2A). The crossover occurs nedr~eg . The differ-
densityp for the six-band and the two-band model for two different €NC€ in the trends seen for the two- and six-band model in
values ofJ,q=0.068 eV nmi? (solid lineg and 0.136 eV nm® Fig. 4 is consistent with .the observathn that, at given
(dashed lines The impurity-spin concentration is chosen Mg,  itinerant-carrier concentratiop, the Fermi energyeg is
=1.0 nm 3, which yields A=0.17 eV (solid line§ and A much smaller when the six-band model is employed, where
=0.34 eV(dashed lines respectively. more bands are available for the carriers, than in the two-
band case. Furthermore, we emphasize that, even in the limit
the “mean-field regime,” which explains the success ofof low carrier concentration, it is not only thaeavy-holg
mean-field theory to reproduce the critical temperature.  mass of the lowest band, which is important for the spin
stiffness. Instead, a collective state in which the spins of the
B. Six-band model plus strain itinerant carriers follow the spatial variation of a Mn spin-

. wave configuration will involve the light-hole band, too.
The lattice constants ofGa,MnAs and GaAs do not g g
match. Since low-temperature molecular beam epitaxy
(MBE) has to be used to overcome the low solubility of Mn

in GaAs, even thick films ofGa,MnAs grown on GaAs In conclusion we present a microscopic calculation of mi-

cannot relax to their equilibrium. The lattice @a,MnAs is Cromagnetic parameters for ferromagnq@a,Mn)As_ We

instead locked to that of the underlying substrate. This indraw the connection of the anisotropy and exchange constant

duces strain that breaks the cubic symmetry. The influence aff a classical energy functional to the gap and curvature of

MBE growth lattice-matching strain on hole bands of cubicthe spin-wave dispersion. Numerical results for the spin stiff-

semiconductors is well understodt:® This effect can easily ness as a function of itinerant-carrier concentration prti

be accounted for by addlng a strain term to the Hamiltoniaréxchange Coup”ng are shown. We find that the energy gap is

[we use Eq.(32) of Ref. 27 with strain paramete=  much smaller than the bandwidth, the spin stiffness is nearly

—0.0028 and’=—3.24 e\l isotropic, and strain does not effect the dispersion much. Fur-
We choose the growth direction to be alo(@01) and  thermore, we see that a model with isotropic valence bands

compute the energy for five different directioqd00),  underestimates the spin stiffness considerably.

(001, (110, (011, and(111). The lowest energy is found

for (100), i.e., we find an easy-axis anisotropy where the ACKNOWLEDGMENTS
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CONCLUSION

APPENDIX A: RENORMALIZATION
C. Spin stiffness OF BERRY'S PHASE TERM

In Fig. 4 we show the exchange const&at spin stiff- In this section, we show that a linear correction beyond
ness A as a function of the itinerant-carrier density for both the static limit yields a correction to the Berry’s phase. This
the isotropic two-band and the full six-band model. We findaccounts for the fact that the effective spin in a semiclassical
that the spin stiffness is much larger for the six-band calcuapproach does not have the len@tof the Mn impurities
lation than for the two-band model. Furthermore, for the choreduced by a factor (2 x) due to coupling to the itinerant-
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carrier spin degree of freedom. We expand the rhs of ELj.
up to linear order inv,,. The terms withzz and zz vanish
since it is an odd function under the following operation: we
shift g— —q—k, use the fact that,(—q—k)=e€,(q+k)
and ez(—q)=€5(q) and, eventually, exchanger« (.
Hence, we only have to deal with the term that involees
Assume that there is an opera@rsuch thalNMandSs*
=[H,Q] and NMandSs‘=—[H,QT]. Then the renormal-
ization for the Berry’s phase is given by {Ix) with

symmetry of the crystal, the spectrumcgtlabeled bya (or
B), is identical to that a, i.e., =€, . The corresponding

eigenstates are connected hy)=U|a) with U=exdi(s’
+19)¢].

Since the spin operata™ and the operator for the orbital
angular momenturtf commute, the following relation is sat-
isfied,

S.555,=(alU s U|B)(BIU s Ulay=e s s, .
1 (B2)
XZW/% ; fle((l[QT,Qlle) (A1)

As a consequence, the partial summation in(®Bd,) over all

wave vectorg) that are equivalent due to symmetry yields a

factor (1+e '""+e 2 7+e 37 =0 for the easy axi$100)

and (1+e 4™3+e 873 =0 for (111), i.e., E; =0 in
(s pé both cases. In contrast, the corresponding factor (1

X= = , (A2)  +e 2™ for (110 is nonzero, an&,_ is, in general, finite.
NunS  2NwnS

independent ok. In the absence of spin-orbit coupling we
chooseQ=s", which yields

i.e.,xis just the ratio of itinerant-carrier spin concentration to 2. Relation between energy gap and;
Mn spin density. For finite spin-orbit coupling the spin of the : - . .
itinerant carrier is coupled to the orbital angular momentum. To determine the energy cost of t|!t|ng t_he spin polariza-
If the band Hamiltonian is invariant under rotation in space,tlon by sma_ll an.gle9 out of the mgan-ﬂeld direction, we add
we can choos®=s*+1* and find to the Hamiltonian the perturbation

- (s*+17) H =A| — 0_252+ 0(s*cosp+ Y sing) (B3)
=Yg (A3) 2 '

In this case the correction is given by the ratio of the totaland use standard perturbation theory. Here[0,27) is the
angular momentum density of the itinerant carriers and th@zimuth, andA = Ny,,J,¢S. The linear order ing does not
Mn concentration. contribute, sincés*)=(s')=0. To obtain the quadratic or-
If the valence bands are described by the Kohn-Luttingeder in 6§ we use the first-order perturbation theory for gfe
Hamiltonian, however, the total angular momentum is noterm in Eq.(B3) and the second-order perturbation theory for
longer a conserved quantity. Or, equivalently, the orbital anthes* cose+9’ sinp=(s"e '*+s €%)/2 contribution. For the
gular momentum of the valence-band carriers couples to thiaermer we get
crystal lattice, and the simple form EG\3) no longer holds.

. 6PA D L, 0PAp¢
APPENDIX B:  SPIN-WAVE DISPERSION GAP ‘=" 22 fledla)Kals?a)=—7—
The goal of this section is to rederive tke 0 limit of the (B4)
spin-wave energy EQ(13) by the standard-perturbation g4 the result for the latter reads
theory where the perturbation describes the deviation of the
spin polarization from the mean-field directigii00 or 62A2 l(alste ¢+ el*|B)|2
117). SBE"= —— fle,
( P (I SR ]
1. Proof that E;f*,=0 for (100) or (111) easy axis 0?A% | it
= —— iy —zle o~ —
We start by showing that g (2Bk-ote "Eiote i) (BY

If the easy axis is along100) or (111), thenE, ,=E,
=0, and the energy is independent ¢f The spin wave
energy atk=0 can now be obtained from the ratio of the
vanishes, if the mean-field polarization is alo(®00 or  energy changeSE’+ SE” and the change of the spifS

£t = 1 >y f[ea(fl)]—f[eg(Q)]s+

_ - +
STV 2T el ey SeSee (BY

(111). Note thata and 8 now label thesamebasis states. = #°N,,,S/2, which yields
Let q be a wave vector that is obtained frapby rotation
about thez axis (which is defined by the mean-field Mn-spin- Qy-o B Jpa( PE L
polarization directiopnby an anglee that respects the sym- A 2 A Ev-o (B6)

metry of the crystal. If the axis is(100) or (111), then the
allowed angles are €{0,7/2,7,37/2} or{0,27/3,7,47/3},  and, as desired, we recover the 0 limit of Eq. (13) for an
respectively. FoR110) it would be ¢ €{0,77}. Due to the easy-axis directiod100) or (111).
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