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Theory of magnetic properties and spin-wave dispersion for ferromagnetic„Ga,Mn…As
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We present a microscopic theory of the long-wavelength magnetic properties of the ferromagnetic diluted
magnetic semiconductor~Ga,Mn!As. Details of the host semiconductor band structure, described by a six-band
Kohn-Luttinger Hamiltonian, are taken into account. We relate our quantum-mechanical calculation to the
classical micromagnetic energy functional and determine anisotropy energies and exchange constants. We find
that the exchange constant is substantially enhanced compared to the case of a parabolic heavy-hole-band
model.
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I. INTRODUCTION

The recent discovery of carrier-mediated ferromagnet
in diluted magnetic semiconductors has generated intens
terest, in part because it suggests the prospect of develo
devices that combine information processing and stor
functionalities in one material.1–21 Ferromagnetism has bee
observed in Mn doped GaAs up to critical temperaturesTc of
110 K ~see Ref. 11!. Doping a III-V compound semiconduc
tor with Mn introduces both local magnetic moments, w
concentrationNMn and spinS55/2, and itinerant valence
band carriers with densityp and spins51/2. An antiferro-
magnetic interaction between both kinds of spin mediates
effective ferromagnetic interaction between Mn21 spins.

A phenomenological long-wavelength description of fe
romagnets usually requires only a small set of character
parameters. For example, a ferromagnet that possesse
uniaxial anisotropy can be modeled by a classical microm
netic energy functionalE@ n̂(r )#,

E@ n̂~r !#5E01E d3r @K sin2u1A~“•n̂!2#, ~1!

where n̂(r ) is the unit vector that specifies the~space-
dependent! local Mn spin orientation, andu is its angle with
respect to the easy axis. The dependence on the orient
of the magnetic moment is parametrized by the anisotr
constantK. The exchange constant~or spin stiffness! A gov-
erns the energy cost to twist the orientations of adjacent s
relative to each other. Together with the saturation mom
m0Ms and the magnetostatic energy, dropped for con
nience in Eq.~1!, the parametersK andA determine a whole
variety of magnetic properties such as22 domain-wall width
dB , domain-wall energy per areag, exchange lengthl ex,
hardness parameterk, single-domain radiusRsd, and anisot-
ropy field m0H0. In addition they determine the energy co
Vk of collective long-wavelength spin excitations, sp
waves. For uniaxial anisotropy the quantized energy is

Vk5
2K

Ms /~gmB!
1

2A

Ms /~gmB!
k2, ~2!
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at wave vectork. Here,g is the g factor andmB the Bohr
magneton. There is an energy gap that is determined by
anisotropyK. The spin-exchange constantA defines the cur-
vature of the spin-wave dispersion.

The purpose of this paper is to present a microsco
theory for the phenomenological parameters that characte
~Ga,Mn!As as a ferromagnet. The form of the micromagne
energy functional appropriate to the symmetry of the crys
will be addressed in Sec. IV. We expect that these predicti
will be useful in interpreting experimental studies of the
semiconductor’s magnetic properties. The search for the
rier density, Mn concentration and~III,Mn !V compound
semiconductor material for which the critical temperatu
has its maximum value is, perhaps, the most important
deavor in this research area. It has been guided to dat
mean-field-theory23–28 considerations that neglect the low
energy-correlated magnetization fluctuations character
by Ms , K, and A. However, as we have emphasize
earlier,29–32small exchange can also limit the temperature
which long-range magnetic order exists.

In recent works29–31 we developed a theory of dilute
magnetic semiconductor ferromagnetism that accounts
dynamic correlations in the ordered state. For simplicity
used parabolic bands for the itinerant carriers, leading to
tropic ferromagnetism. We found, in addition to the usu
spin-wave mode, a continuum of Stoner excitations, and
other collective branch of excitations, optical spin waves.
we have shown,29,32 the low-energy Goldstone modes ca
suppress the critical temperature in comparison to mean-
estimates and can even change trends inTc as a function of
the system’s parameters.

To address anisotropy, one has to go beyond a parab
band model and take details of the band structure into
count. The itinerant-carrier bands arep type and reflect the
crystal symmetry of the underlying lattice. Due to spin-or
coupling the spin degrees of freedom also feel the cry
anisotropy. We will use a six-band description based on
Kohn-Luttinger Hamiltonian to model the~Ga,Mn!As va-
lence bands. States near the Fermi energy in our mode
clude substantial mixing with the split-off valence band ma
ing the six-band model we employ the minimal band mod
Mean-field calculations,25,27,28 as well as Monte Carlo
studies33 based on this more realistic band structure ha
©2001 The American Physical Society23-1
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been performed recently to address magnetic anisotropy
fects and explore trends in the critical temperature.

In Sec. II we set the starting point of our theory by der
ing a formal expression for the effective action for the M
impurity spins after integrating out the itinerant carriers. T
formal development generalizes earlier work29–31 to general
spin-orbit coupled band models. Using the effective act
we numerically determine the zero-temperature spin-w
dispersion in Sec. III. Then, in Sec. IV we establish the c
nection between our spin-wave results and the classical
cromagnetic energy functional, adjusted to the symmetry
fined by the crystal structure. Finally, in Sec. V, we pres
numerical results for the spin-wave dispersion and the
change constant. We find that for the parameter range
interest the exchange constant is enhanced by up to an o
of magnitude compared to naive results obtained earlier
which light-hole bands were neglected and the heavy-h
bands were approximated as parabolic.

II. HAMILTONIAN AND EFFECTIVE ACTION

Our theory is based on the following model. Magne
ions with spinS55/2 at positionsRI are antiferromagneti-
cally coupled to valence-band carriers described by
envelope-function approach

H5H01JpdE d3rS~r !•s~r !, ~3!

whereS(r )5( ISId(r2RI) is the impurity-spin density and
Jpd.0. We approximate the impurity-spin density by a co
tinuous function~instead of a sum ofd functions!. Provided
thatJpd is not strong enough to localize valence-band carr
near the Mn sites and the average distance between two
ions is small in comparison to the Fermi wavelength of
itinerant carriers, this approximation can be justified. T
itinerant-carrier spin density is expressed in terms of car
field operators bys(r )5( i j C i

†(r )si j C j (r ) wherei and j la-
bel the basis in Hilbert space of spin and orbital angu
momentum, andsi j is the corresponding representation of t
spin operator. The envelope-function HamiltonianH0 for the
valence bands can be parametrized by a small numbe
symmetry-adapted parameters, the Luttinger parametersg1 ,
g2 , g3, and the spin-orbit couplingDso that splits the six
states at the band edge into a quartet and a doublet.
explicit expressions ofH0 as well as representations of th
spin matrices in a coordinate system in which thex, y, andz
axes are along the crystal axes, we refer to Eqs.~A8!–~A10!
of Ref. 27, based on the Kohn-Luttinger Hamiltonian.34

Phenomenological Hamiltonians of this form have prov
successful in understanding optical properties of the clos
related magnetically doped II-VI semiconductors.3,4 In that
case however, the inclusion of direct antiferromagnetic in
actions between Mn spins that lie on neighboring lattice s
proved to be important. This interaction appears to be m
weaker in the III-V case, although this difference is not fu
understood.28 We do not include these spin-spin interactio
in our calculations, because we have no knowledge of
strength of the coupling coefficient. If included, they wou
18442
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mainly influence short-distance spin excitations that are
in any case the focus of this work.

We note that local-spin-density-approximation electron
structure calculations,35 taken at face value, find a stron
hybridization betweenp and d carriers, which is not com-
pletely consistent with the model we use. However, given
overwhelming success3,4 of the present model in the case
paramagnetic~II,Mn!VI materials, we find it unlikely that
the Mn d electrons are itinerant. If they were, the pheno
enological approach we study here would be incomplete

Our treatment of the Mn spin system as a continu
greatly simplifies our calculation by eliminating disorder a
sociated with randomness in the Mn positions. We do ant
pate that the disorder can influence both anisotropy and
change constant at the low- and high-carrier-concentra
extremes. These effects are, however, outside the scop
the present study. We will identify several important featu
of the microscopic physics in the disorder-free model that
expect to be robust.

Our first goal is to integrate out the itinerant carriers a
to arrive at an effective description for the impurity-spin d
grees of freedom. This procedure follows the analysis p
sented in Ref. 29 for the~simpler! two-band model. For
small fluctuations around its mean-field polarization, we c
approximate the spin operators byS1(r )'b(r )A2NMnS,
S2(r )5@S1(r )#†, and Sz(r )5NMnS2b†(r )b(r ), where
b†(r ),b(r ) are bosonic Holstein-Primakoff36 fields. The
quantization axisz is chosen here along the zero-temperat
spin orientation. After integrating out the itinerant carrie
the partition function,Z5*D@ z̄z#exp(2Seff@ z̄z#), is gov-
erned by the effective action for the impurity spins;

Seff@ z̄z#5SBP@ z̄z#2 ln det@~GMF!211dG21~ z̄z!#, ~4!

where SBP@ z̄z#5*0
bdt*d3rz̄]tz is the usual Berry’s phase

term, and the complex numbersz̄ and z label the bosonic
degrees of freedom. In Eq.~4!, we have already split the tota
kernelG21 into a mean-field part (GMF)21 and a fluctuating
part dG21;

~GMF! i j
215~]t2m!d i j 1^ i uH0u j &1NMnJpdSsi j

z , ~5!

dGi j
21~ z̄z!5

Jpd

2
@~zsi j

21 z̄si j
1!A2NMnS22z̄zsi j

z #, ~6!

wherem denotes the chemical potential, andi and j range
over a complete set of hole-band states. In the following
define the mean-field energyD5NMnJpdS to flip the spin of
an itinerant carrier. The physics of the itinerant carriers
embedded in the effective action of the magnetic ions. I
responsible for the retarded and nonlocal character of
interactions between magnetic ions.

III. INDEPENDENT SPIN-WAVE THEORY

Independent spin-wave theory is obtained by expand
Eq. ~4! up to quadratic order inz and performing Matsubara
imaginary time and space Fourier transforms. SincedG21 is
at least linear inz, the series
3-2
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Seff@ z̄z#5 (
n50

`

Seff
(n)@ z̄z#, ~7!

can be truncated aftern52, wheren denotes the order in
dG21. The zeroth-order contribution,Seff

(0)@ z̄z#5SBP@ z̄z#
2 ln det(GMF)21 contains the Berry’s phase term

SBP@ z̄z#5(
m,k

~2 inm!z̄~k,nm!z~k,nm!, ~8!

and the mean-field contribution from the itinerant carrie
which is independent of the bosonic fieldsz and z̄. Here,nm
are the bosonic Matsubara frequencies.

The next term of the expansion,S(1)@ z̄z#5
2tr(GMFdG21), reads in Fourier representation

Seff
(1)@ z̄z#5

Jpd

~bV!2 (
n,q

(
i j

Gi j
MF~q,vn!sji

z

3(
m,k

z̄~k,nm!z~k,nm!, ~9!
or

f
l
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plus terms linear inz and z̄. Here,vn andnm are fermionic
and bosonic Matsubara frequencies, respectively. To de
mine the mean-field Green’s functions we diagonalize
matrix ^ i uH0(q)1Dszu j & for each wave vectorq and denote
eigenvalues and eigenstates byea(q) and ua&, respectively.
Since the itinerant-carrier spin density ^s&
5(1/V)(q(a f @ea(q)#^ausua& is aligned antiparallel to the
impurity-spin polarization axis~otherwise this would not be
an easy axis!, the terms linear inz andz̄ drop out, and we get

Seff
(1)@ z̄z#5

Jpdpj

2bV (
m,k

z̄~k,nm!z~k,nm!, ~10!

wherej522^sz&/p is the fractional itinerant-carrier polar
ization, 0<j<1.

For the second-order term of the expansion,Seff
(2)@ z̄z#

5 1
2 tr(GMFdG21GMFdG21), we find
Seff
(2)@ z̄z#5

NMnJpd
2 S

4bV2 (
m,q,k

(
ab

f @ea~q!#2 f @eb~q1k!#

inm1ea~q!2eb~q1k!
@2sab

1 sba
2 z̄~k,nm!z~k,nm!

1sab
1 sba

1 z̄~k,nm!z̄~2k,2nm!1sab
2 sba

2 z~k,nm!z~2k,2nm!#1O~z3!, ~11!
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en
rgy

ot
the
ld
the
y
-

-
-
the

of

e
iso-
with sab
6 5^aus6ub& and sba

6 5^bus6ua&. Note, that the in-
dices a and b label the single-particle eigenstates f
valence-band carriers withdifferentwave vectors, namelyq
andq1k, respectively.

The Matsubara frequencynm in the denominator on the
right-hand side~rhs! of Eq. ~11! accounts for the dynamics o
the itinerant carriers. This frequency dependence is crucia
account for the existence of the Stoner spin-flip continu
and the optical spin-wave mode. On the other hand, the
istence of the usual spin wave follows already from the st
limit @i.e., when the frequency dependence in the denom
tor in Eq. ~11! is dropped#, and the spin-wave dispersion
described rather accurately.

The sum of Eqs.~8!, ~10!, and~11! is a quadratic form in
the bosonic fieldsz and z̄. The zeros of the kernel define th
spin-wave energiesVk as a function of momentumk ~after
analytic continuationinm→V1 i01). In the following we
go by the static limit as discussed above. We define the qu
tities

Ek
ss852

1

V (
q

(
ab

f @ea~q!#2 f @eb~q1k!#

ea~q!2eb~q1k!
sab

s sba
s8

~12!

with s,s856, and perform a Bogoliubov transformatio
which eventually yields
to

x-
ic
a-

n-

Vk

D
5

Jpd

2
AS pj

D
2Ek

12D 2

2uEk
11u2. ~13!

From the definition Eq.~12! we see thatEk
12 is real and

Ek
225(Ek

11)* . Equation~13! is the central result of this
section. The remaining task is to evaluate the fractio
itinerant-carrier polarizationj and the quantitiesEk

12 and
Ek

11 numerically.
Before we carry on with establishing the relation betwe

Eq. ~13! and micromagnetic parameters of a classical ene
functional, we make three remarks.

~i! Correlation effects among the Mn spins, which are n
described by the mean-field picture, enter our theory via
contributionSeff

(2)@ z̄z#. To reduce our theory to the mean-fie
level we would have to neglect this term, i.e., truncate
series Eq.~7! already aftern51. In this case, the energ
VMF5Jpdpj/2 of a Mn spin excitation would be dispersion
less and by a factor ofpj/(2NMnS) smaller than the mean
field energyD to flip an itinerant-carrier spin. Due to corre
lations between Mn and band-spin orientations, however,
spin-wave energyVk is always smaller thanVMF.

~ii ! In the absence of spin-orbit coupling all products
the formsab

1 sba
1 or sab

2 sba
2 vanish. As a consequence,Ek

11

5Ek
2250 for all k. This statement is even true for finit

spin-orbit coupling in case when the valence bands are
tropic.
3-3
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JÜRGEN KÖNIG, T. JUNGWIRTH, AND A. H. MACDONALD PHYSICAL REVIEW B64 184423
~iii ! To go beyond the static limit, we may expand t
fraction on the rhs of Eq.~11! up to linear order ininm . As
shown in Appendix A, this linear correction simply amoun
to a renormalization of the Berry’s phase term by replac
V→V(12x). In the absence of spin-orbit coupling we fin
that x is just the ratio of the spin densities,x5^sz&/(NMnS),
where ^•••&5(1/V)(q(a f @ea(q)#^au•••ua&. For finite
spin-orbit coupling but with a band Hamiltonian that is i
variant under rotation in space, the spinsz has to be replaced
by the total angular momentumsz1 l z, i.e., we findx5^sz

1 l z&/(NMnS).
The renormalization factor (12x) indicates that in a

semiclassical picture, as employed in Sec. IV, the effec
spin density is not quite given by the Mn impurities, but h
to be reduced due to coupling to the valence-band carr
On the other hand,x is always small since the impurity-spi
densityNMn is larger than the itinerant-carrier concentrati
p and the Mn spinS55/2 is comparatively large. We, there
fore, stick to the static limit in the following discussion.

IV. EASY AXIS, ENERGY GAP, AND SPIN STIFFNESS

The purpose of this section is to establish the connec
between the spin-wave dispersions evaluated later and
micromagnetic energy functional. The nonlocal magne
static contribution that is omitted from our theory can
added as needed in applications. The short-range part o
functional is a symmetry-adapted gradient expansion of
energy densitye@ n̂#. In magnetism literature the nonconsta
portion of the zeroth-order termeani@ n̂# is known as the mag
netic anisotropy energy, and the leading gradient termeex@ n̂#
is known as the exchange energy. As shown in Ref. 27 m
netic anisotropy effect in ferromagnetic semiconductors a
in the absence of strain, very well described by a cubic h
monic expansion that is truncated after sixth order,

eani@ n̂#5K1~nx
2ny

21nx
2nz

21ny
2nz

2!1K2~nxnynz!
2 ~14!

with anisotropy parametersK1 and K2. Correlation of spin
polarizations at different positions is described by the gra
ent termeex@ n̂#. In order to address long-wavelength spat
fluctuations, we expand the gradient term up to lowest n
vanishing order

eex@ n̂#5 (
a,bP$x,y,z%

Aabu]anbu2, ~15!

with exchange parametersAab . We find in our numerical
calculations that anisotropy in the exchange constant is n
ligibly small, i.e., we can chooseAab5A for all a,b, as
generally assumed in the magnetism literature.

To establish the connection of the energy functional to
microscopic spin-wave calculation, we first have to det
mine the direction of the mean-field spin polarization a
then to study small fluctuations. The first step is achieved
minimizing the energy Eq.~14!. It is easy to show that the
mean-field orientationn̂MF can only point along a high
symmetry axiŝ 100&, ^110&, ^111&, or an equivalent direc-
tion ~except for the special caseK250 andK1.0, where we
18442
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find an easy-plane anisotropy in the planesnx50, ny50 or
nz50, and, of course, the isotropic caseK15K250). In Fig.
1 we show how the mean-field polarization direction d
pends onK1 andK2.

Now we consider small fluctuations around the mean-fi
orientation n̂MF. The kernel of the quadratic formeani@ n̂#

2eani@ n̂MF# has two eigenvaluesl1 andl2. We find for n̂MF

along ^100& that l15l25K1, for ^110& we getl152K1
and l25(2K11K2)/4, and for ^111& we obtainl15l25
2(6K112K2)/9. In all cases,l1 andl2 are positive. Quan-
tizing the collective spin coordinate at long wavelengths
follows that

Vk5
2Al1l2

NMnS
1

2A

NMnS
k21O~k4!. ~16!

There are two alternative ways to determine the energy
Vk50. One can either perform thek50 limit of the spin-
wave dispersion Eq.~13! or evaluate the coefficientsl1 and
l2 from calculating the energy for mean-field orientatio
n̂MF along the three high-symmetry axes^100&, ^110&, and
^111&. The numerical effort of the latter procedure, whic
has been used previously in Ref. 27, is lesser for the gi
accuracy. The virtue of the spin-wave calculation is to de
mine the exchange constantA.

We conclude this section with two remarks.
~i! In the case that the easy axis is along^100& or ^111&

~as it is for all parameter sets considered in Sec. V!, the
energy cost of tilting the polarization axis by small angles
independent of the direction of the deflection. This is
quired by symmetry and indicated by the fact thatl1 equals
l2. As shown in Appendix B, the termEk50

11 then vanishes,
and thek50 limit of Eq. ~13! is identical to the energy gap
calculated from standard perturbation theory where the p
turbation describes the deviation of the spin polarizat
from the mean-field direction.

~ii ! The denominatorsNMnS in Eq. ~16! correspond to the
static limit employed in our calculation. The renormalizatio

FIG. 1. Easy-axis direction as a function ofK1 andK2.
3-4
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of the Berry’s phase term due to corrections to the static li
~see discussion in the preceding section! could be accounted
for by multiplying NMnS with (12x).

V. NUMERICAL RESULTS FOR THE SPIN-WAVE
DISPERSION

In this section we present numerical results for the sp
wave dispersion of~Ga,Mn!As. From these calculations w
extract the spin stiffness as a function of the itinerant-car
concentrationp and on the exchange couplingJpd. To model
the sample that showed the highest transition temperatur
110 K so far, we choose as parameters20 NMn51 nm23, p
50.35 nm23, and Jpd50.068 eV nm23. As a conse-
quence, the mean-field spin-splitting gap for the itinerant c
riers isD5NMnJpdS50.17 eV.

A. Isotropic vs six-band model

The origin of ferromagnetism, the nature of the spin e
citations, and trends in the critical temperatures can be
plained within a simple model that describes the itiner
carriers by parabolic bands.29–31,37 For more quantitative
statements, a more realistic description of the band struc
should be employed.

In Fig. 2 we show results for the isotropic model with tw
parabolic band with effective massm* 50.5me ~a Debye cut-
off kD with kD

3 56p2NMn ensures that we include the corre
number of magnetic ion degrees of freedom!. We find for the
majority-spin Fermi energyeF50.44 eV measured from th
bottom of the band. This yields the itinerant-carrier polariz
tion j50.35. The dashed line in Fig. 2 marks the mean-fi
spin-flip energy, obtained by neglecting correlation. Sin
the spin-wave energies are far below the mean-field res
the isotropic model suggests that for these parameters c
lation is very important and the critical temperature is limit
by collective fluctuations. According to the classificatio
scheme introduced in Ref. 32, the system would be in
~Ruderman-Kittel-Kasuya-Yosida! collective regime.

FIG. 2. Spin-wave dispersion for the isotropic model f
itinerant-carrier densityp50.35 nm23, impurity-spin concentra-
tion NMn51.0 nm23 and exchange coupling Jpd

50.068 eV nm23 ~which yieldsD50.17 eV).
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By fitting a parabola at small momenta we findVk /D
50.0068(k/kD)2 that yields A50.095 meV nm21

50.015 pJ m21.
Now we use the six-band Kohn-Luttinger Hamiltonia

with Luttinger parametersg156.85, g252.1, andg352.9
and spin-orbit couplingDso50.34 eV. In the absence of th
Mn ion, this model has anisotropic heavy- and light-ho
bands with massesmh'0.498me and ml'0.086me . The
spirit of the naive parabolic band model is the hope that o
the band with the larger density of states matters and
anisotropy is unimportant. We will see that these hopes
not fulfilled.

We find a much lower Fermi energyeF50.25 eV than
obtained for the isotropic model, and, therefore, a mu
higher itinerant-carrier spin polarizationj50.73. By calcu-
lating the mean-field energy for a Mn spin polarization alo
the three high-symmetry axes we determine the anisotr
parameters asK1519.631026 eV nm23 and K251.6
31026 eV nm23. As a consequence, the easy axis is^100&
and the energy gap,Vk50 /D59.231025, is very small in
comparison to the bandwidth of the spin-wave dispersion

In Fig. 3 we show the spin-wave dispersion for wa
vectorsk along the easy axis. We observe that the effect
Ek

11 in Eq. ~13! is negligibly small and can, therefore, b
dropped. Furthermore, we find that the dispersion for a s
wave perpendicular to the easy axis cannot be distinguis
from the dispersion of spin waves along the easy axis wit
numerical accuracy. By fitting a parabola at small mome
we find Vk /D5Vk50 /D10.16(k/kD)2 that yields A
52.2 meV nm2150.36 pJ m21 ~see inset of Fig. 3!. Fur-
thermore, we see that the energy gapVk50 /D determined in
here before paragraph is consistent with our spin-wave
sults. Employing the six-band model we see that for
given parameters the spin-wave energies are much clos
the mean-field value than for the isotropic model. Accordi
to our classification given in Ref. 32 the system is rather

FIG. 3. Main panel: Spin-wave dispersion for the six-ba
model for itinerant-carrier densityp50.35 nm23, impurity-spin
concentration NMn51.0 nm23 and exchange couplingJpd

50.068 eV nm23 ~which yieldsD50.17 eV). The momentumk
is chosen to be parallel to the easy axis^100&. Inset: Spin-wave
dispersion on a log-log plot~circles! and the fit 9.231025

10.16(k/kD)2 ~solid line!.
3-5
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the ‘‘mean-field regime,’’ which explains the success
mean-field theory to reproduce the critical temperature.

B. Six-band model plus strain

The lattice constants of~Ga,Mn!As and GaAs do not
match. Since low-temperature molecular beam epit
~MBE! has to be used to overcome the low solubility of M
in GaAs, even thick films of~Ga,Mn!As grown on GaAs
cannot relax to their equilibrium. The lattice of~Ga,Mn!As is
instead locked to that of the underlying substrate. This
duces strain that breaks the cubic symmetry. The influenc
MBE growth lattice-matching strain on hole bands of cub
semiconductors is well understood.38,39This effect can easily
be accounted for by adding a strain term to the Hamilton
@we use Eq.~32! of Ref. 27 with strain parameterse05
20.0028 andG523.24 eV#.

We choose the growth direction to be along^001& and
compute the energy for five different directions^100&,
^001&, ^110&, ^011&, and^111&. The lowest energy is found
for ^100&, i.e., we find an easy-axis anisotropy where t
easy axis is in the plane perpendicular to the growth dir
tion, in accordance with experiments.40 From the expansion
of the mean-field anisotropy energy for small fluctuatio
around^100& and determining the eigenvalues for small flu
tuations we estimate that the energy gap in the dispersio
larger than in the absence of strain by a factor of 1.4, i.e.,
small. The spin stiffness derived from the curvature of
spin-wave dispersion is identical to that in the absence
strain within the accuracy of our numerical calculations. W
will, therefore, ignore the effect of strain in the following.

C. Spin stiffness

In Fig. 4 we show the exchange constant~or spin stiff-
ness! A as a function of the itinerant-carrier density for bo
the isotropic two-band and the full six-band model. We fi
that the spin stiffness is much larger for the six-band cal
lation than for the two-band model. Furthermore, for the c

FIG. 4. Exchange constantA as a function of itinerant-carrie
densityp for the six-band and the two-band model for two differe
values ofJpd50.068 eV nm23 ~solid lines! and 0.136 eV nm23

~dashed lines!. The impurity-spin concentration is chosen asNMn

51.0 nm23, which yields D50.17 eV ~solid lines! and D
50.34 eV~dashed lines!, respectively.
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sen range of itinerant-carrier densities the trend is differe
in the two-band model the exchange constant decreases
increasing density, while for the six-band description we o
serve an increase with a subsequent saturation.

Experimental estimates forJpd vary from 0.054 eV nm3

to 0.15 eV nm3, with more recent work suggesting a valu
toward the lower end of this range.18–20 To address the de
pendence of the spin stiffness onJpd, we show in Fig. 4
results for two values ofJpd which differ by a factor of 2.

To understand the different behaviors of the two-ba
model and the six-band model, we recall30,31 that the two-
band model predictsA5p\2/(8m* ) for low densitiesp,
while at high densitiesA decreases as a function ofp ~note
that in Refs. 30 and 31 the spin stiffness was character
by r52A). The crossover occurs nearD;eF . The differ-
ence in the trends seen for the two- and six-band mode
Fig. 4 is consistent with the observation that, at giv
itinerant-carrier concentrationp, the Fermi energyeF is
much smaller when the six-band model is employed, wh
more bands are available for the carriers, than in the tw
band case. Furthermore, we emphasize that, even in the
of low carrier concentration, it is not only the~heavy-hole!
mass of the lowest band, which is important for the sp
stiffness. Instead, a collective state in which the spins of
itinerant carriers follow the spatial variation of a Mn spi
wave configuration will involve the light-hole band, too.

CONCLUSION

In conclusion we present a microscopic calculation of m
cromagnetic parameters for ferromagnetic~Ga,Mn!As. We
draw the connection of the anisotropy and exchange cons
of a classical energy functional to the gap and curvature
the spin-wave dispersion. Numerical results for the spin s
ness as a function of itinerant-carrier concentration andp-d
exchange coupling are shown. We find that the energy ga
much smaller than the bandwidth, the spin stiffness is ne
isotropic, and strain does not effect the dispersion much. F
thermore, we see that a model with isotropic valence ba
underestimates the spin stiffness considerably.
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APPENDIX A: RENORMALIZATION
OF BERRY’S PHASE TERM

In this section, we show that a linear correction beyo
the static limit yields a correction to the Berry’s phase. Th
accounts for the fact that the effective spin in a semiclass
approach does not have the lengthS of the Mn impurities
reduced by a factor (12x) due to coupling to the itinerant
3-6
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carrier spin degree of freedom. We expand the rhs of Eq.~11!

up to linear order ininm . The terms withz̄z̄ andzz vanish
since it is an odd function under the following operation: w
shift q→2q2k, use the fact thatea(2q2k)5ea(q1k)
and eb(2q)5eb(q) and, eventually, exchangea↔b.
Hence, we only have to deal with the term that involvesz̄z.

Assume that there is an operatorQ such thatNMnJpdSs1

5@H,Q# and NMnJpdSs252@H,Q†#. Then the renormal-
ization for the Berry’s phase is given by (12x) with

x5
1

2NMnSV (
q

(
a

f @ea~q!#^au@Q†,Q#ua& ~A1!

independent ofk. In the absence of spin-orbit coupling w
chooseQ5s1, which yields

x5
^sz&

NMnS
5

pj

2NMnS
, ~A2!

i.e.,x is just the ratio of itinerant-carrier spin concentration
Mn spin density. For finite spin-orbit coupling the spin of th
itinerant carrier is coupled to the orbital angular momentu
If the band Hamiltonian is invariant under rotation in spa
we can chooseQ5s11 l 1 and find

x5
^sz1 l z&
NMnS

. ~A3!

In this case the correction is given by the ratio of the to
angular momentum density of the itinerant carriers and
Mn concentration.

If the valence bands are described by the Kohn-Luttin
Hamiltonian, however, the total angular momentum is
longer a conserved quantity. Or, equivalently, the orbital
gular momentum of the valence-band carriers couples to
crystal lattice, and the simple form Eq.~A3! no longer holds.

APPENDIX B: SPIN-WAVE DISPERSION GAP

The goal of this section is to rederive thek50 limit of the
spin-wave energy Eq.~13! by the standard-perturbatio
theory where the perturbation describes the deviation of
spin polarization from the mean-field direction̂100& or
^111&.

1. Proof that EkÄ0
¿¿ Ä0 for Š100‹ or Š111‹ easy axis

We start by showing that

Ek50
11 52

1

V (
q

(
ab

f @ea~q!#2 f @eb~q!#

ea~q!2eb~q!
sab

1 sba
1 ~B1!

vanishes, if the mean-field polarization is along^100& or
^111&. Note thata andb now label thesamebasis states.

Let q̃ be a wave vector that is obtained fromq by rotation
about thez axis~which is defined by the mean-field Mn-spin
polarization direction! by an anglew that respects the sym
metry of the crystal. If thez axis is^100& or ^111&, then the
allowed angles arewP$0,p/2,p,3p/2% or $0,2p/3,p,4p/3%,
respectively. For̂ 110& it would be wP$0,p%. Due to the
18442
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symmetry of the crystal, the spectrum atq̃, labeled byã ~or
b̃), is identical to that atq, i.e., eã5ea . The corresponding
eigenstates are connected byuã&5Uua& with U5exp@i(sz

1lz)w#.
Since the spin operators1 and the operator for the orbita

angular momentuml z commute, the following relation is sat
isfied,

sãb̃
1

sb̃ã
1

5^auU21s1Uub&^buU21s1Uua&5e22iwsab
1 sba

1 .
~B2!

As a consequence, the partial summation in Eq.~B1! over all
wave vectorsq that are equivalent due to symmetry yields
factor (11e2 ip1e22ip1e23ip)50 for the easy axiŝ100&
and (11e24ip/31e28ip/3)50 for ^111&, i.e., Ek50

11 50 in
both cases. In contrast, the corresponding factor
1e22ip) for ^110& is nonzero, andEk50

11 is, in general, finite.

2. Relation between energy gap andEkÄ0
¿À

To determine the energy cost of tilting the spin polariz
tion by small angleu out of the mean-field direction, we ad
to the Hamiltonian the perturbation

H85DF2
u2

2
sz1u~sx cosw1sy sinw!G , ~B3!

and use standard perturbation theory. Here,wP@0,2p) is the
azimuth, andD5NMnJpdS. The linear order inu does not
contribute, sincê sx&5^sy&50. To obtain the quadratic or
der in u we use the first-order perturbation theory for thesz

term in Eq.~B3! and the second-order perturbation theory
thesx cosw1sy sinw5(s1e2iw1s2eiw)/2 contribution. For the
former we get

dE852
u2D

2V (
q

(
a

f @ea~q!#^auszua&5
u2Dpj

4
,

~B4!

and the result for the latter reads

dE95
u2D2

4V (
q

(
ab

f @ea~q!#
u^aus1e2 iw1s2eiwub&u2

ea~q!2eb~q!

52
u2D2

8
~2Ek50

12 1e22iwEk50
11 1e2iwEk50

22 !. ~B5!

If the easy axis is alonĝ100& or ^111&, thenEk50
11 5Ek50

22

50, and the energy is independent ofw. The spin wave
energy atk50 can now be obtained from the ratio of th
energy changedE81dE9 and the change of the spindS
5u2NMnS/2, which yields

Vk50

D
5

Jpd

2 S pj

D
2Ek50

12 D ~B6!

and, as desired, we recover thek50 limit of Eq. ~13! for an
easy-axis direction̂100& or ^111&.
3-7
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