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Finite-element modeling of extraordinary magnetoresistance in thin film semiconductors
with metallic inclusions
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Using finite element analysis, the room temperature extraordinary magnetoresistance recently reported for a
modified van der Pauw disk of InSb with a concentric embedded Au inhomogeneity has been calculated, using
no adjustable parameters, as a function of the applied magnetic field and the size/geometry of the inhomoge-
neity. The finite element results are nearly identical to exact analytic results and are in excellent agreement with
the corresponding experimental measurements. Moreover, several important properties of the composite
InSb/Au system such as the field dependence of the current flow and of the potential on the disk periphery have
been deduced. It is found that both the EMR and output voltage depend sensitively on the placement and size
of the current and voltage ports.
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I. INTRODUCTION

It has been shown experimentally1,2 that semiconductor
thin films with metallic inclusions display extraordinar
magnetoresistance~EMR! at room temperature, with en
hancements as high as 100–750 000 % at magnetic fi
ranging from 0.05 to 4 T. The magnetoresistance~MR! is
defined as MR5@R(H)2R(0)#/R(0), where R(H) is the
resistance at finite fieldH. The experiments were initially
performed on a composite van der Pauw disk of a semic
ductor matrix with an embedded metallic circular inhomog
neity that was concentric with the semiconductor disk.
similar enhancement has been reported3 for a rectangular
semiconductor wafer with a metallic shunt on one si
While the rectangular geometry with four contacts can
shown to be derivable from the circular geometry by a c
formal mapping,4 the use of a metallic shunt had not be
considered earlier.

Magnetic materials and artificially layered metals exhi
giant magnetoresistance~GMR! and manganite perovskite
show colossal magnetoresistance~CMR!. However, pat-
terned nonmagnetic InSb shows a much larger geometric
enhanced extraordinary MR even at room temperature.

In Fig. 1~a!, the typical Hall bar configuration is shown
In an applied magnetic field the electrons have a circu
trajectory around the lines of the magnetic field, as displa
in Fig. 1~b!. As soon as the current begins to flow, the spa
charge accumulation on one side gives rise to a~Hall! elec-
tric field Ey which is measured through the voltage diffe
ence across the Hall bar, the Hall voltage. If we assume o
one type of carrier with aD-function velocity distribution,
the force on the carriers from the Hall field cancels the L
entz force and the direct currentj x continues to remain the
same, as indicated in Fig. 1~c!. There is then no magneti
field dependence of the resistance in this case, e.g., the
Dr/r050 wherer is the resistivity andr0 is the zero field
resistivity.

In the Corbino disk, illustrated in Fig. 2, we have tw
0163-1829/2001/64~18!/184410~8!/$20.00 64 1844
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concentric contacts with the current entering atr 50 and
exiting at the periphery. In the presence of a magnetic fi
perpendicular to the Corbino disk the electron trajector
follow circular paths and the resistance is a function of
magnetic field. Moreover, because the conducting electro
are in this case equipotential surfaces, no space charge a
mulates on them and no Hall voltage is developed. Si
there is no Hall field to produce a force that competes w
the Lorentz force there can be a large MR, which in this c
is Dr/r05(mH)2 wherem is the carrier mobility andH is
the applied magnetic field. The geometric differences in
standard Hall geometry and the Corbino geometry yield
significant field dependence of the resistance in the latter.
show here how such geometric effects can be generally
ploited to enhance MR.

An additional feature that we wish to employ for obtai
ing enhanced magnetoresistance is the following. In the p
ence of metallic inhomogeneities the narrow-gap semic
ductors show marked enhancement of the MR. Becaus
their small carrier masses the narrow gap high mobility se
conductors such as InSb and HgCdTe are the preferred
terials to consider. Let us suppose that we have a semi
ducting slab with a cylindrical metal~Au! embedded in it, as
shown in Fig. 3~a!. Suppose that the conductivities of th
semiconductor and the metal aresS andsM , respectively, in
the absence of a magnetic field. In low magnetic fields,
current flowing through the material is focused into meta
regions with the metal acting as a short circuit; the curr
densityj is parallel to the local electric fieldEloc as indicated
in Fig. 3~b!. Note that forsM@sS the surface of the metal is
essentially an equipotential. ThusEloc is normal to the inter-
face between the metal and semiconductor. At finite m
netic field, the current deflection due to the Lorentz for
results in a directional difference betweenj and Eloc , the
angle between them being the Hall angle. For sufficien
high fields the Hall angle approaches 90° in which casej is
parallel to the semiconductor-metal interface and the cur
is deflected around the metal which acts like an open cir
©2001 The American Physical Society10-1
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as indicated in Fig. 3~c!. The transition of the metal from a
short circuit at low field to an open circuit at high field give
rise to the very large MR or EMR which has been repor
by Solin et al.1

Under steady state conditions the problem of determin
the current and the field in the inhomogeneous semicond
tor reduces to the solution of Laplace’s equation for the e
trostatic potential. For some simple structures this prob
can be solved analytically.5 In general, however, the locatio
and material properties of the inhomogeneities can be alt
and the semiconducting material can be shaped to enh
the MR. In order to have this freedom to explore the ge
metrical enhancement of the MR in the device and to be a
to consider semiconductor films and metallic inclusio
shunts of arbitrary shape, we require a numerical approac
the simulation of the enhanced MR. In this paper we sh
that the finite element method is ideally suited to this mo
eling and demonstrate that the modeling agrees very
with the experiments with no adjustable parameters.

FIG. 1. The Hall configuration: the electron trajectories in
rectangular sample, shown in~a!, bend in a magnetic field so tha
negative charges accumulate at the edge of thexy plane, as shown
in ~b!. In the steady state, shown in~c!, this leads to an electric field
Ey , the Hall field, perpendicular to the longitudinal direction
which the currentj x is flowing. This does not give a magnetic fie
dependent conductivity.

FIG. 2. In the Corbino geometry, the electrodes are concen
with a radial current flowing in the absence of a magnetic fie
With a magnetic field present, the electron drift velocity is in t
tangential~to the circular region! direction. This leads to a magneti
field dependent conductivity that is geometry dependent. The m
netoresistanceDr/r0 is proportional toH2 at low field.
18441
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II. FINITE ELEMENT ANALYSIS OF THE MODIFIED
VAN DER PAUW DISK

For the sake of a simple presentation, and for compari
with experiments, we will first consider a circular disk o
InSb of thicknesst containing a concentric disk of Au, with
four contacts, or ports as we refer to them, attached s
metrically to the periphery of the semiconductor~see Fig. 4!.

ic
.

g-

FIG. 3. ~a! The extraordinary magnetoresistance~EMR! is mani-
fested by the effect on the boundary conditions at the me
semiconductor interface as a function of the magnetic field H.~b! At
low magnetic fields (b!1), the current densityj is parallel to the
electric field E and the metal acts as a short circuit.~c! At high
fields, (b@1), the system acts as an open circuit.

FIG. 4. ~a! Circular van der Pauw geometry showing the sy
metrically placed contacts and a concentric Au inclusion in a cir
lar InSb sample.~b! The geometry of the structure and the po
~contacts! are shown.
0-2
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FINITE-ELEMENT MODELING OF EXTRAORDINARY . . . PHYSICAL REVIEW B64 184410
This configuration is called the modified van der Pauw
ometry and was first studied analytically by Wolfe a
Stillman.6 The disk of InSb has a radiusa while the Au
inclusion has a radiusb, with the ratio of the radii denoted b
a5b/a. A current enters port 1 and exits via port 2. T
response of the semiconducting disk is measured by the
age difference between ports 3 and 4. The widths of the p
have been labeled asD i . The disk geometry reduces th
problem to a two-dimensional one.

The constitutive relation between the currentj and the
electric fieldE in the presence of an external magnetic fie
H along thez axis is given by

j i5s i j ~H !Ej , ~1!

where

s i j ~H !5
s~0!

11b2 F 1 2b 0

b 1 0

0 0 1
G ~2!

with

b5mH, ~3!

wherem is again the mobility of the carriers as noted abo
The conductivity is given by

s~0!5
ne2t

m*
5nem5s, ~4!

wheren is the carrier density,m* is the effective mass,e is
the electronic charge, andt is the collision time. Using Eqs
~3! and ~4! the components of the magnetoconductivity te
sor can be written explicitly assxx(H)5syy(H)5s/(1
1b2), syx(H)52sxy(H)5sb/(11b2), szz(H)5s with
the remaining components50.

In the steady state, we have

]

]xi
j i50. ~5!

With Ei52] if, the electrostatic potentialf(x,y) satisfies
the differential equation

]̇ i@s i j ] jf~x,y!#50. ~6!

The boundary conditions at the outer edge at radiusr 5a are
as follows.

~a! At Port 1:

~ j•n̂!52Jin52
I in

D1t
. ~7!

~b! At Port 2:

~ j•n̂!51Jout5
I out

D2t
. ~8!

Here,I in5I out, from current conservation. The quantitiesj in
and j out are positive and their signs have been entered exp
itly in the above.
18441
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~c! At Ports 3, 4: we havef5V3 and f5V4 , respec-
tively, where these potentials have to be determined by
calculations. The entire width of each port is considered
be at the same voltage.

~d! Along the rest of the semiconductor disk’s edge we
j50 along the periphery.

~e! Finally, along the metal-semiconductor interface ar
5b the normal currents are equal. Hence we have

@s i j
~1!] jf~r 5b!#~ n̂r ! i5@s i j

~2!] jf~r 5b!#~ n̂r ! i ~9!

or

~ j•n̂r !ur 5b25~ j•n̂r !ur 5b1. ~10!

Here the material index on the conductivity tensor refers
the semiconductor (index51) and to the metal (index52).

Rather than directly solving Eq.~6!, we begin by setting
up the action integral that gives rise to it. This is done
order that we may employ the finite element method.7 The
action integral is given by

A5
1

2 E E dx dy@] if~x,y!#s i j @] jf~x,y!#

1E
D1

dl@f~x,y!#uD1
j in2E

D2

dl@f~x,y!#uD2
j out.

~11!

The double integral in Eq.~11! is just the electrostatic energ
in the system. It is instructive to apply the principle of lea
action to the above equation in order to verify that the var
tion of the action with respect to the potential function i
deed reproduces Eq.~6!. Setting the variation ofA with re-
spect to the potential functionf(x,y) to zero we obtain

dA505F2E E dx dydf$] is i j @] jf~x,y!#%

1E
G~r 5a!

dl dfn̂•@s i j ~] jf!#G1E
D1

dl df j in

2E
D2

dl df j out. ~12!

An integration by parts has been performed in order to ob
the terms in the square brackets. The variationsdf are arbi-
trary. We therefore choose them as follows.

~i! Choose variations such thatdf50 on the periphery
r 5a. We then obtain the differential equation, Eq.~6!, from
the double integral in Eq.~12!.

~ii ! Now let df50 inside the physical regionand also
along the peripheryD i except at the input port alongD1
where it is chosen to be 1. ThendA50 requires

E
D1

dl~ j in1n̂• j !50.

In other words, we have (n̂• j )D1
52 j in . This is just Eq.~7!.

~iii ! Next, choosedf51 alongD2 and zero elsewhere
Then
0-3
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E
D2

dl~2 j out1n̂• j !50,

implying that (n̂• j )D2
5 j out, as in Eq.~8!.

~iv! Finally, put df50 in the interior and alongD1 and
D2 . ThendA50 requires that (n̂• j ) r 5a50 on the rest of the
circular periphery of the semiconductor.

We have shown that our starting action integral with t
surface terms for the currents, through the principle of le
action, leads to the original differential equation with
boundary conditions including the ‘‘derivative’’ boundar
conditions on the input and output currents. This procedur
similar to that discussed in Courant and Hilbert8 for deriva-
tive boundary conditions. We now employ the above act
in numerical modeling.

In the finite element method, we begin by discretizing t
action integral itself. We break up the physical region in
triangles, or elements, in each of which the physics of
problem holds. This discretization is performed using an
structured triangular mesh that is generated by the so-ca
algebraic integer method.9 The result of this meshing is
shown in Fig. 5. In each of the triangular elements we r
resent the functionf(x,y) in terms of local interpolation
polynomialsNi(x,y). Each triangle has either three node
located at the three vertices of the triangle, or six no
located at the midpoints of the sides of the triangle and at
vertices.

Let

f~x,y!5(
i

f iNi~x,y!, ~13!

whereNi are unity at nodei. The interpolation polynomials
are linear for the three-nodal triangle, and quadratic poly
mials inx andy in the case of a six-nodal triangle. Using th
above functional form in the action integral we integrate o
the spatial dependence and express the action in each
ment@i.e., Eq.~11! limited to the elemental area# in the form

FIG. 5. The discretization of the physical region fora5b/a
5

8
16. The mesh has been made finer in the vicinity of the po

~contacts!. The algebraic integer method was used for the m
generation.
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A~ ielem!5 1
2 f iM i j

~ ielem!f j . ~14!

Next, for continuity at the nodes, we add all the contributio
from each element by setting the nodal values to be the s
for all triangles having a common node. This amounts to
overlay of each element matrixMi j

~telem! into a global matrix
such that we add the nodal contributions from all triang
having that node in common. We then obtain

A5
1

2
faMabfb1E

D1

dl@f~x,y!#uD1
j in

2E
D2

dl@f~x,y!#uD2
j out. ~15!

The integrals in Eq.~15!, that may be designated as ‘‘su
face’’ terms, need further elaboration. If we assume a c
stant linear current density across the port the surface te
are readily evaluated as follows. In Fig. 6~a!, we show the
edge of the physical region along port 1. We have to in
grate along the port in order to evaluate the first cont
integral in Eq.~15!. Consider one of the triangles with on
edge coinciding with the contour at port 1. The physical ed
is along the sideBC of the triangleABCof Fig. 6~b!. We map
this on to a ‘‘standard’’ right-angled triangleabcof Fig. 6~c!.
If side BC corresponds to sideab of the standard triangle, we
have

s
h

FIG. 6. ~a! One edge-triangle from the triangulated physic
region near port 1 is highlighted.~b! The selected triangleABC is
shown.~c! The edge-triangle is mapped onto a standard right
angle for computation of the action integrals.
0-4
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E
B

C

dl f~x,y! j in5 j inE
a

b

dj
dl

dj (
i

f iNi~j,o!

5 1
2 l ~fC1fB! j in . ~16!

Here l is the length of the edgeBC. The same result obtain
if the side BC corresponds to the sideac of the standard
triangle. In the case where the sideBC corresponds to the
hypotenusebc of the standard triangle we obtain

E
B

C

dlf~x,y! j in5 j inE
b

c

dl
dl

dl (
i

f iNi~j,h512j!.

~17!

Here

dl5A~dj!21~dh!25djA11S d

dj
~12j! D 2

5&dj

and

dl

dl
5

l

&
,

so that again Eq.~17! reduces to the right side of Eq.~16!.
The above calculations can be performed for quadratic in
polation functions when these are employed in represen
the potential over each triangle. We thus have an expres
for the discretized action given by

A5
1

2
faMabfb1 j inF (

edge
sides

on D1

l i H 1

6
f1

~ i !1
2

3
f2

~ i !1
1

6
f3

~ i !J G
2 j outF (

edge
sides

on D2

l i H 1

6
f1

~ i !1
2

3
f2

~ i !1
1

6
f3

~ i !J G . ~18!

Now our variational principle is implemented by varying th
discretized actionA of Eq. ~18! with respect to the noda
variablesfa . We obtain

dA

dfa
505Mabfb1Ci j ind ia2Cj j outd j a . ~19!

Here Ci and Cj are constants determined by evaluating
surface terms as described above. We then have a s
simultaneous equations for the nodal variablesfa .

Due to the connectivity of the triangular mesh the resu
ing coefficient matrix is sparsely occupied. We first perfo
a bandwidth reduction of the matrix and then decompos
into the standardLU form for Gauss elimination.10

We also equate all the nodal values for nodes appearin
ports 3 and 4 in order to define a unique potential at the p
over the lengthsD3 and D4 . Since no absolute potentia
values are set in the problem, we assign one of the port
have zero potential with respect to which all other potent
are measured. The solution of the simultaneous equat
now provides us with a unique solution.
18441
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III. COMPARISON WITH EXPERIMENTAL RESULTS

The principle quantity of interest is the field and geome
dependence of the effective resistanceRmn(H,a)
5@DVmn(H,a)#/ i , where DVmn(H,a)5Vm(H,a)
2Vn(H,a), n andm define the voltage ports,i is a constant
current and as beforea5b/a @see Figs. 4~a! and 4~b!#. Once
the effective resistance is known, the EMR can be read
determined from

EMRmn~H,a!5S Rmn~H,a!2Rmn~0,a!

Rmn~0,a! D . ~20!

The effective resistanceR43(H,a) ~see Fig. 4!, is plotted in
Fig. 7~a! using the parameters for InSb and Au specified
Table I ~with values for Cu shown for reference! correspond-
ing to experimental measurements to be described be
Thus the influence of the metallic inhomogeneity is det
mined by varying the radius of the inner metallic region
change the ratioa. Note that fora.13/16R43(H,a) is very
small and field independent up to an onset field above wh
it increases very rapidly. This diodelike behavior may off
the opportunity for employing such constructs as a magn
switch. The physical origin of this diode effect is understoo
For a sufficiently large conducting inhomogeneity, deflec

FIG. 7. A plot of the resistance as a function of the magne
field for a8516(b/a) ranging from 0 to 15, as obtained from~a!
finite element method calculations and~b! directly from experi-
ments. The symbols in~b! correspond to the following values o
a8ª02h, 6—j, 8—,, 9—., 10—n, 11—m, 12—s,
13—d, 14—L, 15—l.
0-5
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TABLE I. Material parameters used in the calculations.

Conductivity
~300 K!

s ~V m!21

Mobility
m

~m2/V sec!

Carrier
conc.

n ~m23!

Collision
time

t ~sec!

Effective
mass

m* /m0

Fermi
level

EF ~eV!

InSb 1.8563104 4.55 2.5531022 3.87310213 0.015
Au 4.523107 5.331023 5.9031028 3.0310214 1.0 5.51
Cu 5.883107 3.3431023 8.4531028 1.9310214 1.0 7.0
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current will only flow in the correspondingly small annul
ring of semiconductor when the field exceeds a critical val
Below that value the current is completely shunted by
inhomogeneity and its path through the semiconductor fr
the input to the output ports provides a negligible contrib
tion to the resistance.

The calculations ofR43(H,a) described above are com
pared with the corresponding experimental results show
Fig. 7~b!. Those experimental results were obtained from
composite van der Pauw disk of InSb with fourfold symm
ric 80 wide current and voltage ports~i.e., D i58°, i
5124! and an embedded Au inhomogeneity which h
been fabricated using methods described in de
elsewhere.1 The agreement between experiment and the fi
element calculation is remarkable in view of the fact that
adjustable parameters were employed in the calculation.
slight shift in the relative values of the abcissae in Figs. 7~a!
and 7~b! is probably due to a finite contact resistance b

FIG. 8. A plot of the resistance as a function of the magne
field for a8516(b/a) ranging from 0 to 15, as obtained from~a!
finite element method calculations and~b! analytical calculations.
18441
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tween the metal inhomogeneity and the semiconductor wh
has not been included in the calculation. Moreover, one
notice that the calculated effective resistance fora50 is
totally field independent whereas the corresponding exp
mental result shows a slight field dependence. This dif
ence results from the fact that the physical contribution to
effective resistance from the field dependence of the intrin
parameters such as the mobility and carrier concentratio
small but finite and has not been included in the calcula
results.

IV. COMPARISON WITH ANALYTICAL CALCULATIONS

For the highly symmetric centered van der Pauw struct
shown in Fig. 4 one can analytically compute the mag
totransport properties as has been described in detail for
low field region (H,0.1 T) elsewhere.5 It is useful to com-
pare the analytic results in the both the low and high fi
range (0<H<1 T) with the finite element method discusse
above. The analytic solution for the resistance of the cente
van der Pauw structure shown in Fig. 4 with four identic
ports of widthD is5

DV43~a,g,h,b,s0 ,f,t,u!

5
11b2

s0

i

ptD (
n51

`
1

n2

1

J21K2 $@~JU2KW!~12a2ng!

2a2nh~KU1JW!#cos~nu!1@~KU1JW!

3~12a2ng!1a2nh~JU2KW!#sin~nu!%, ~21!

where

J511a2ng1ba2nh,

K5b1a2nh2ba2ng,

U5sin~np/21nD/2!2sin~np/22nD/2!22 sin~nD/2!,

W5cos~np/22nD/2!2cos~np/21nD/2!, ~22!

g5@~v0
22v2!1~v0b02vb!2#/

@~v01v!21~v0b02vb!2#,

h5@2v~v0b02vb#/@~v01v!21~v0b02vb!2#,

c

0-6



in

el
rl
ni
uc

i
f

al

d
o
ow
to
o
o
th
en
th

th
u

vo
ru

us
to
ent

f the
and

gral
o

ent
g-
ed

al-
the

the
d by
l
re-
the

hin

nd
uter
i-
e a
s
sh

r a
nd

m-

FINITE-ELEMENT MODELING OF EXTRAORDINARY . . . PHYSICAL REVIEW B64 184410
while b05m0H, v5s/(11b2), v05s0 /(11b0
2), t is the

thickness of the disk andm0 , and s0 are the mobility and
conductivity of the metal, respectively.

The effective resistance for the configuration shown
Fig. 4 calculated from Eqs.~20!–~22! using no adjustable
parameters is compared with the corresponding finite
ment analysis in Fig. 8. While, the two methods yield nea
identical results, as can be seen from that figure, the fi
element method is not restricted to highly symmetric str
tures such as that shown in Fig. 4.

V. SUMMARY REMARKS AND CONCLUSION

It is clear from the results that the finite element method
able to accurately reproduce the experimental results
Rmn(H,a). Indeed, given the solution for the potenti
Vm(H,a) we can compute not only the EMR@see Eq.~20!#
but also a number of other interesting properties of the mo
fied van der Pauw disk. In Fig. 9 we show the flow lines
the current. The arrows indicate the direction of current fl
at H50 and atH51T. The lengths of the arrows are not
scale in the figure. The effect of the applied magnetic field
the current deflection at the interface between the semic
ductor and the inhomogeneity can be readily seen from
figure. The large perturbation to the potential at the curr
ports caused by the applied field as shown in Fig. 10 for
two casesH50 andH51 T for a value ofa50.5 indicates
that the EMR will be very sensitive to the position and wid
of the voltage ports. Indeed, for the modified van der Pa
structure addressed here, the output voltage,DVmn(H,a) de-
creases as the EMR is increased by the selection of the
age and current port locations. The current through the st

FIG. 9. The current flow in the van der Pauw geometry fo
circular InSb wafer with a concentric metallic inhomogeneity a
a8516(b/a)58, ~a! at H50 and~b! at H51 T. The lengths of the
arrows are not to scale.
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ture provides the driving terms in the set of simultaneo
equations obtained from the variational principle applied
the discretized action. Here we see that the finite elem
approach is able to capture the important dependence o
response of the structure to the geometrical placement
location of the current ports.

We have demonstrated an advantage of the action inte
formulation of the finite element analysis in its ability t
apply the current~derivative! boundary conditions very di-
rectly in specific sections of the boundary, i.e., at the curr
ports, while allowing the values of the potential at other se
ments of the periphery to be self-consistently determin
from the variation of the discretized action integral. The v
ues of the potential at all the nodes located just at
voltage-measuring ports are equated to each other since
voltage is the same across the leads. This is implemente
‘‘folding in,’’ or adding together, of columns of the globa
matrix generated in the finite element method that cor
spond to the nodes at the voltage ports. Such details of
boundary conditions can be accounted for with ease wit
the framework of the finite element method.

Finally note that the use of a bandwidth reducer a
sparse matrix LU solvers substantially reduces the comp
time for the calculations. With 6000 nodal points in the typ
cal unstructured mesh used in the calculations, we hav
600036000~sparse! matrix that is solved for over 60 value
of the magnetic field. The global matrix is evaluated afre

FIG. 10. The potential distribution in the van der Pauw geo
etry for a steady state current through ports 1 and 2~a! in the
absence of an applied magnetic field and~b! at H51 T.
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each time and calculations for a single curve, for a giv
value ofa, is completed in about 240 s on a 500 MHz Pe
tium PC running the NT operating system.

The true flexibility and the power of the finite eleme

FIG. 11. The four-contact van der Pauw geometry for an a
trarily shaped InSb thin film with distributed metallic inclusions
arbitrary shape and with a hole in it of arbitrary shape.
nc

T
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method comes into its own when the physical semicondu
film is not only of arbitrary shape but contains both fille
~conducting! and empty~insulating! embedded inhomogene
ities of arbitrary shape as shown schematically in Fig.
Given that the EMR discussed here is geometrically
hanced, in the finite element method we now have the me
of designing and exploring geometrically more complex h
erostructures for additional improvements in the perf
mance of EMR-based magnetic devicesbeforethey are fab-
ricated for electronic applications.
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