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Finite-element modeling of extraordinary magnetoresistance in thin film semiconductors
with metallic inclusions
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Using finite element analysis, the room temperature extraordinary magnetoresistance recently reported for a
modified van der Pauw disk of InSb with a concentric embedded Au inhomogeneity has been calculated, using
no adjustable parameters, as a function of the applied magnetic field and the size/geometry of the inhomoge-
neity. The finite element results are nearly identical to exact analytic results and are in excellent agreement with
the corresponding experimental measurements. Moreover, several important properties of the composite
InSb/Au system such as the field dependence of the current flow and of the potential on the disk periphery have
been deduced. It is found that both the EMR and output voltage depend sensitively on the placement and size
of the current and voltage ports.
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I. INTRODUCTION concentric contacts with the current enteringratO and
exiting at the periphery. In the presence of a magnetic field
It has been shown experimentdifythat semiconductor perpendicular to the Corbino disk the electron trajectories
thin films with metallic inclusions display extraordinary follow circular paths and the resistance is a function of the
magnetoresistancéEMR) at room temperature, with en- magnetic field. Moreover, because the conducting electrodes
hancements as high as 100—-750000% at magnetic fieldse in this case equipotential surfaces, no space charge accu-
ranging from 0.05 to 4 T. The magnetoresistaiibtR) is  mulates on them and no Hall voltage is developed. Since
defined as MR-[R(H)—R(0)]/R(0), where R(H) is the there is no Hall field to produce a force that competes with
resistance at finite fieltH. The experiments were initially the Lorentz force there can be a large MR, which in this case
performed on a composite van der Pauw disk of a semiconis Ap/po=(uH)? where u is the carrier mobility andH is
ductor matrix with an embedded metallic circular inhomoge-the applied magnetic field. The geometric differences in the
neity that was concentric with the semiconductor disk. Astandard Hall geometry and the Corbino geometry yield a
similar enhancement has been repottéat a rectangular significant field dependence of the resistance in the latter. We
semiconductor wafer with a metallic shunt on one sideshow here how such geometric effects can be generally ex-
While the rectangular geometry with four contacts can beploited to enhance MR.
shown to be derivable from the circular geometry by a con- An additional feature that we wish to employ for obtain-
formal mappind the use of a metallic shunt had not beening enhanced magnetoresistance is the following. In the pres-
considered earlier. ence of metallic inhomogeneities the narrow-gap semicon-
Magnetic materials and artificially layered metals exhibitductors show marked enhancement of the MR. Because of
giant magnetoresistand&MR) and manganite perovskites their small carrier masses the narrow gap high mobility semi-
show colossal magnetoresistan€EMR). However, pat- conductors such as InSb and HgCdTe are the preferred ma-
terned nonmagnetic InSb shows a much larger geometricallierials to consider. Let us suppose that we have a semicon-
enhanced extraordinary MR even at room temperature.  ducting slab with a cylindrical met#Au) embedded in it, as
In Fig. 1(a), the typical Hall bar configuration is shown. shown in Fig. 8a). Suppose that the conductivities of the
In an applied magnetic field the electrons have a circulasemiconductor and the metal arg ando, , respectively, in
trajectory around the lines of the magnetic field, as displayethe absence of a magnetic field. In low magnetic fields, the
in Fig. 1(b). As soon as the current begins to flow, the spacecurrent flowing through the material is focused into metallic
charge accumulation on one side gives rise télall) elec-  regions with the metal acting as a short circuit; the current
tric field E, which is measured through the voltage differ- densityj is parallel to the local electric fielf,. as indicated
ence across the Hall bar, the Hall voltage. If we assume onlin Fig. 3(b). Note that foroy,> o5 the surface of the metal is
one type of carrier with a\-function velocity distribution, essentially an equipotential. Thi&,. is normal to the inter-
the force on the carriers from the Hall field cancels the Lor-face between the metal and semiconductor. At finite mag-
entz force and the direct curreft continues to remain the netic field, the current deflection due to the Lorentz force
same, as indicated in Fig(d. There is then no magnetic results in a directional difference betwegrand E,,., the
field dependence of the resistance in this case, e.g., the MRngle between them being the Hall angle. For sufficiently
Aplpo=0 wherep is the resistivity angpg is the zero field high fields the Hall angle approaches 90° in which daie
resistivity. parallel to the semiconductor-metal interface and the current
In the Corbino disk, illustrated in Fig. 2, we have two is deflected around the metal which acts like an open circuit
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FIG. 1. The Hall configuration: the electron trajectories in a o ——
rectangular sample, shown {a), bend in a magnetic field so that Short Circuit Open Circuit
negative charges accumulate at the edge ofkthglane, as shown JIE ilE
in (b). In the steady state, shown (o), this leads to an electric field (b) (©)

E,, the Hall field, perpendicular to the longitudinal direction in

which the curreni, is flowing. This does not give a magnetic field FIG. 3. (a) The extraordinary magnetoresistatE®/R) is mani-
dependent conductivity. fested by the effect on the boundary conditions at the metal-
semiconductor interface as a function of the magnetic fieltbHAt

low magnetic fields §<<1), the current densityis parallel to the
electric fieldE and the metal acts as a short circyit) At high
ields, (8>1), the system acts as an open circuit.

as indicated in Fig. &). The transition of the metal from a
short circuit at low field to an open circuit at high field gives
rise to the very large MR or EMR which has been reporte
by Solinet all

Under steady state conditions the problem of determining
the current and the field in the inhomogeneous semiconduc-
tor reduces to the solution of Laplace’s equation for the elec- For the sake of a simple presentation, and for comparison
trostatic potential. For some simple structures this problemwith experiments, we will first consider a circular disk of
can be solved analyticalfym general, however, the location InSb of thicknesg containing a concentric disk of Au, with
and material properties of the inhomogeneities can be alterd@ur contacts, or ports as we refer to them, attached sym-
and the semiconducting material can be shaped to enhangegetrically to the periphery of the semiconductsee Fig. 4.
the MR. In order to have this freedom to explore the geo-
metrical enhancement of the MR in the device and to be able H InSb Film
to consider semiconductor films and metallic inclusions/
shunts of arbitrary shape, we require a numerical approach to
the simulation of the enhanced MR. In this paper we show
that the finite element method is ideally suited to this mod-
eling and demonstrate that the modeling agrees very well
with the experiments with no adjustable parameters.

Il. FINITE ELEMENT ANALYSIS OF THE MODIFIED
VAN DER PAUW DISK

H. X

FIG. 2. In the Corbino geometry, the electrodes are concentric
with a radial current flowing in the absence of a magnetic field.
With a magnetic field present, the electron drift velocity is in the  FIG. 4. (a) Circular van der Pauw geometry showing the sym-
tangentialto the circular regiondirection. This leads to a magnetic metrically placed contacts and a concentric Au inclusion in a circu-
field dependent conductivity that is geometry dependent. The madar InSb sample(b) The geometry of the structure and the ports
netoresistanca p/p, is proportional toH? at low field. (contact$ are shown.
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This configuration is called the modified van der Pauw ge- (c) At Ports 3, 4: we havep=V; and ¢=V,, respec-
ometry and was first studied analytically by Wolfe andtively, where these potentials have to be determined by the
Stilman® The disk of InSb has a radius while the Au  calculations. The entire width of each port is considered to
inclusion has a radius, with the ratio of the radii denoted by be at the same voltage.
a=Db/a. A current enters port 1 and exits via port 2. The (d) Along the rest of the semiconductor disk’s edge we set
response of the semiconducting disk is measured by the volj=0 along the periphery.
age difference between ports 3 and 4. The widths of the ports (e) Finally, along the metal-semiconductor interfacer at
have been labeled a8;. The disk geometry reduces the =b the normal currents are equal. Hence we have
problem to a two-dimensional one.

The constitutive relation between the currgnand the [0 0;(r=b)1(A)i=[o(l'3;p(r=b)](A);  (9)
electric fieldE in the presence of an external magnetic fieldOr
H along thez axis is given by

A —p-=(-0)]=p+. 10
ji:Uij(H)Ej- (1) -(J .r)|r b (J r)|r b+- - ( )
Here the material index on the conductivity tensor refers to
where the semiconductor (index1) and to the metal (index2).
1 -8 0 Rather than directly solving Eq6), we begin by setting
a(0) up the action integral that gives rise to it. This is done in
aij(H):m B 1 0 (2)  order that we may employ the finite element metfidkhe
B 1 action integral is given by
with 1
A=3 dx dy[d;d(x,y) ]oij[9;(X,Y) ]
B=pH, ()
whereu is again the mobility of the carriers as noted above. +f di[o(x, )| jm_f dI[ Y A out-
The conductivity is given by Ay ! Ap z
ne’r (11
0(0)= 5 =neu=o, (4 The double integral in Eq11) is just the electrostatic energy

in the system. It is instructive to apply the principle of least
wheren is the carrier densityn* is the effective massis  action to the above equation in order to verify that the varia-
the electronic charge, andis the collision time. Using EQs. tion of the action with respect to the potential function in-
(3) and(4) the components of the magnetoconductivity ten-deed reproduces E6). Setting the variation oA with re-
sor can be written explicitly asry(H)=oy,,(H)=0/(1  spect to the potential functiop(x,y) to zero we obtain
+B?), oy(H)=—oy(H)= aBl(1+ B?), o,{H)=0c with

the remaining componert. _all

In the steady state, we have OA=0= f f dx dys{dioy[9;¢(xy)1}

. . :
Klizo- 5 +f dl 6¢n-[oi(d;¢)] +f dl 6¢jin
i I'(r=a) Aq
With E;=—4d,¢, the electrostatic potentiab(x,y) satisfies
the differential equation - L dl 8¢jout- (12
2
il ojd(x,y)]1=0. (6)  Anintegration by parts has been performed in order to obtain

the terms in the square brackets. The variatipsare arbi-
trary. We therefore choose them as follows.

(i) Choose variations such tha®h=0 on the periphery
r=a. We then obtain the differential equation, Ef), from
the double integral in Eq12).

The boundary conditions at the outer edge at radiaa are
as follows.
(a) At Port 1:

(J-)y=—=Jj,=— At (7) (i) Now let 5¢=0 inside the physical regioand also
1 along the peripheryA; except at the input port along ;
(b) At Port 2: where it is chosen to be 1. The?A=0 requires
FN I t I N . I =

(J.n)=+30ut=AL:t. (8) lel(l.ﬁn j)=0.
Here,1;,=1,, from current conservation. The quantitigs N other words, we have(j),= —jin. This is just Eq(7).
andj . are positive and their signs have been entered explic- (iii) Next, chooseS¢=1 alongA, and zero elsewhere.
itly in the above. Then
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FIG. 5. The discretization of the physical region far=b/a
:%. The mesh has been made finer in the vicinity of the ports
(contact$. The algebraic integer method was used for the mesh 18
generation. ()
S b
Azdl(_Jout+n'J)_0: 0 1
implying that (1+j)a, = jou, as in Eq.(8). FIG. 6. (8 One edge-triangle from the triangulated physical

region near port 1 is highlightedb) The selected triangl&BC is
shown.(c) The edge-triangle is mapped onto a standard right tri-
angle for computation of the action integrals.

(iv) Finally, put 5¢=0 in the interior and along\; and
A,. ThensA=0 requires thatft-j),—-,=0 on the rest of the
circular periphery of the semiconductor.

We have shown that our starting action integral with the
surface terms for the currents, through the principle of least Al — £ h M e b (14)
action, leads to the original differential equation with its
boundary conditions including the “derivative” boundary
conditions on the input and output currents. This procedure idext, for continuity at the nodes, we add all the contributions
similar to that discussed in Courant and HilBdtr deriva- ~ from each element by setting the nodal values to be the same
tive boundary conditions. We now employ the above actiorfor all triangles having a common node. This amounts to an
in numerical modeling. overlay of each element matriM i@e'e“"’ into a global matrix

In the finite element method, we begin by discretizing thesuch that we add the nodal contributions from all triangles
action integral itself. We break up the physical region intohaving that node in common. We then obtain
triangles, or elements, in each of which the physics of the
problem holds. This discretization is performed using an un- .
structured triangular mesh that is generated by the so-called _ .
algebraic integer methatThe result of this meshing is A=5PaMapdpt lelw(x’y)]'AlJi”
shown in Fig. 5. In each of the triangular elements we rep-

resent the functionp(x,y) in terms of local interpolation B .

polynomialsN;(x,y). Each triangle has either three nodes, del[d)(x’y)]lAzJ out: (15

located at the three vertices of the triangle, or six nodes

located at the midpoints of the sides of the triangle and at the

vertices. The integrals in Eq(15), that may be designated as “sur-
Let face” terms, need further elaboration. If we assume a con-

stant linear current density across the port the surface terms
are readily evaluated as follows. In Figah we show the
¢(X’y):§i: PiNi(x,y), (131 edge of the physical region along port 1. We have to inte-

grate along the port in order to evaluate the first contour
whereN; are unity at nodé. The interpolation polynomials integral in Eq.(15). Consider one of the triangles with one
are linear for the three-nodal triangle, and quadratic polynoedge coinciding with the contour at port 1. The physical edge
mials inx andy in the case of a six-nodal triangle. Using the is along the sid8C of the triangleABC of Fig. 6(b). We map
above functional form in the action integral we integrate outthis on to a “standard” right-angled triangkbc of Fig. 6(c).
the spatial dependence and express the action in each eléside BC corresponds to sidab of the standard triangle, we
ment[i.e., Eq.(11) limited to the elemental aréan the form  have
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c N
[Ca ¢<x,y>1m—1injadfd—§2 $iNi(£,0)

=3 (et dB)iin- (16)

Herel is the length of the edgBC. The same result obtains
if the side BC corresponds to the sidac of the standard

triangle. In the case where the si8€ corresponds to the
hypotenusédc of the standard triangle we obtain

Resistance (Ohms)

fdl¢(xy>1.n fdx S oN(En-1-¢).

-1 -0.5 0 0.5 1

(17) Field (Tesla)
Here
2 ~~
dh=(d&)*+(dn)*= dg\/1+( (1- 5)) =v2dé E ]
€ 100
and 8
5
a1
(o DNV,
so that again Eq(17) reduces to the right side of E¢L6). 10
The above calculations can be performed for quadratic inter- -1
polation functions when these are employed in representing Field (Tesla)

the potential over each triangle. We thus have an expression

for the discretized action given by FIG. 7. A plot of the resistance as a function of the magnetic

field for @’ =16(b/a) ranging from 0 to 15, as obtained frofa)

1 1 . 2 finite element method calculations atfd) directly from experi-
A= §¢aMaB¢B+jin 2 |i[g (1')-1— §¢> )+ = (ﬁ(')] ments. The symbols iib) correspond to the following values of
edge a'=0-0, 6—M, 8—V, 9—V, 10—A, 11—A, 12-0,
on A, 13—@, 14—, 15— ¢ .
2 .1
—iout E [ ¢(|)+ _¢(2|)+ g¢g)] ) (18) Ill. COMPARISON WITH EXPERIMENTAL RESULTS
sides The principle quantity of interest is the field and geometry
on Az dependence of the effective resistancB,,(H,a)

Now our variational principle is implemented by varying the =[AVmn(H,@)]/i,  where AV (H,a)=Vn(H,«q)

discretized actionA of Eq. (18) with respect to the nodal — Va(H.a), nandmdefine the voltage ports,is a constant
variablesg,, . We obtain current and as before=b/a [see Figs. @) and 4b)]. Once

the effective resistance is known, the EMR can be readily
determined from

5b =0=M,pbs+Cijindia= Cjloutdja - (19
“ _ Rmn(H,@) —=Rn(0,@)
Here C; and C; are constants determined by evaluating the EMRyn(H, )= R (0.) . (20
surface terms as described above. We then have a set of
simultaneous equations for the nodal variahtes The effective resistanc®,3(H,a) (see Fig. 4, is plotted in
Due to the connectivity of the triangular mesh the result-Fig. 7(a) using the parameters for InSb and Au specified in
ing coefficient matrix is sparsely occupied. We first performTable | (with values for Cu shown for referenceorrespond-
a bandwidth reduction of the matrix and then decompose iing to experimental measurements to be described below.
into the standardlU form for Gauss eliminatiof Thus the influence of the metallic inhomogeneity is deter-
We also equate all the nodal values for nodes appearing imined by varying the radius of the inner metallic region to
ports 3 and 4 in order to define a unique potential at the portshange the ratia. Note that fora>13/16R,3(H, ) is very
over the lengthsA; and A4. Since no absolute potential small and field independent up to an onset field above which
values are set in the problem, we assign one of the ports ftib increases very rapidly. This diodelike behavior may offer
have zero potential with respect to which all other potentialshe opportunity for employing such constructs as a magnetic
are measured. The solution of the simultaneous equatiorswitch. The physical origin of this diode effect is understood:
now provides us with a unique solution. For a sufficiently large conducting inhomogeneity, deflected
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TABLE |. Material parameters used in the calculations.

Conductivity Mobility Carrier Collision Effective Fermi
(300 K) " conc. time mass level
o (@Qm)?t (m?IV sed n(m3 7 (sed m*/my Er (eV)
InSb 1.856<10" 4.55 2.55¢ 1072 3.87x10 13 0.015
Au 4.52x 10 5.3x10°3 5.90%x 1078 3.0x10 1.0 5.51
Cu 5.88x 10’ 3.34x10°° 8.45x 1078 1.9x10 1.0 7.0

current will only flow in the correspondingly small annular tween the metal inhomogeneity and the semiconductor which
ring of semiconductor when the field exceeds a critical valuehas not been included in the calculation. Moreover, one can
Below that value the current is completely shunted by thenotice that the calculated effective resistance dot 0 is
inhomogeneity and its path through the semiconductor frontotally field independent whereas the corresponding experi-
the input to the output ports provides a negligible contribu-mental result shows a slight field dependence. This differ-
tion to the resistance. ence results from the fact that the physical contribution to the
The calculations oR45(H,a) described above are com- effective resistance from the field dependence of the intrinsic
pared with the corresponding experimental results shown iparameters such as the mobility and carrier concentration is
Fig. 7(b). Those experimental results were obtained from asmall but finite and has not been included in the calculated
composite van der Pauw disk of InSb with fourfold symmet-results.
ric 80 wide current and voltage port§.e., A;=8°, i
=1-4) and an embedded Au inhomogeneity which has
been fabricated using methods described in detall
elsewheré.The agreement between experiment and the finite  For the highly symmetric centered van der Pauw structure
element calculation is remarkable in view of the fact that noshown in Fig. 4 one can analytically compute the magne-
adjustable parameters were employed in the calculation. Thetransport properties as has been described in detail for the
slight shift in the relative values of the abcissae in Figa) 7 |ow field region H<0.1T) elsewherg.lt is useful to com-
and qb) is probably due to a finite contact resistance be-pare the analytic results in the both the low and high field
range (O<H<1T) with the finite element method discussed
above. The analytic solution for the resistance of the centered
van der Pauw structure shown in Fig. 4 with four identical
ports of widthA is®

IV. COMPARISON WITH ANALYTICAL CALCULATIONS

2

=

9 AV43(ay’Y17];ByO-O;¢lt10)

: 1+B2i§11 JU-KW)(1-a*"
s = oy a2 ekl 1=y

—a®"p(KU+JIW)]cognd) +[(KU+IW)
X (1—a®y)+a®p(JU—KW)]sinng)}, (21

W=cog nnw/2—nA/2)—cognw/2+nA/2), (22

T T T where

10!
. J=1+a’"y+Ba*"y,
E 100
% K=B+a®"n— Ba’y,
é 10"
% : U=sin(n7/2+nA/2) —sin(nm7/2—nA/2) — 2 siNnA/2),
. [

107k

Ts 005 y=[(wh= )+ (woBo—wB)Y

Field (Tesla)
+ )2+ _ 2
FIG. 8. A plot of the resistance as a function of the magnetic [(0ot @)™+ (woBo~ @B)],

field for «’=16(b/a) ranging from 0 to 15, as obtained frofa)
finite element method calculations affy) analytical calculations. 7=[20(weBo— 0B/ (wo+ ®)2+ (woBo— ®B)?],
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FIG. 9. The current flow in the van der Pauw geometry for a 0.0005
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FIG. 10. The potential distribution in the van der Pauw geom-

while Bo=puoH, o=0/(1+ B?), we=0o/(1+B3), tis the
thickness of the disk ango, and o, are the mobility and etry for a steady state current through ports 1 an?2in the

conductivity qf the ”?eta" respectively. . . ._absence of an applied magnetic field dbgatH=1T.
The effective resistance for the configuration shown in

Fig. 4 calculated from Eq920)—(22) using no adjustable

parameters is compared with the corresponding finite eleture provides the driving terms in the set of simultaneous
ment analysis in Fig. 8. While, the two methods yield nearlyequations obtained from the variational principle applied to
identical results, as can be seen from that figure, the finitéhe discretized action. Here we see that the finite element
element method is not restricted to highly symmetric struc2pproach is able to capture the important dependence of the

tures such as that shown in Fig. 4. response of the structure to the geometrical placement and
location of the current ports.
V. SUMMARY REMARKS AND CONCLUSION We have demonstrated an advantage of the action integral

formulation of the finite element analysis in its ability to
It is clear from the results that the finite element method isapply the curren{derivative boundary conditions very di-

able to accurately reproduce the experimental results forectly in specific sections of the boundary, i.e., at the current
Rmn(H,@). Indeed, given the solution for the potential ports, while allowing the values of the potential at other seg-
Vi(H,«) we can compute not only the EMRee Eq(20)] ments of the periphery to be self-consistently determined
but also a number of other interesting properties of the modifrom the variation of the discretized action integral. The val-
fied van der Pauw disk. In Fig. 9 we show the flow lines ofues of the potential at all the nodes located just at the
the current. The arrows indicate the direction of current flowvoltage-measuring ports are equated to each other since the
atH=0 and atH=1T. The lengths of the arrows are not to voltage is the same across the leads. This is implemented by
scale in the figure. The effect of the applied magnetic field orffolding in,” or adding together, of columns of the global
the current deflection at the interface between the semicormatrix generated in the finite element method that corre-
ductor and the inhomogeneity can be readily seen from thepond to the nodes at the voltage ports. Such details of the
figure. The large perturbation to the potential at the currenboundary conditions can be accounted for with ease within
ports caused by the applied field as shown in Fig. 10 for thehe framework of the finite element method.
two casedH=0 andH=1T for a value ofe=0.5 indicates Finally note that the use of a bandwidth reducer and
that the EMR will be very sensitive to the position and width sparse matrix LU solvers substantially reduces the computer
of the voltage ports. Indeed, for the modified van der Pauwtime for the calculations. With 6000 nodal points in the typi-
structure addressed here, the output voltagé,,(H,«) de-  cal unstructured mesh used in the calculations, we have a
creases as the EMR is increased by the selection of the vol6000x 6000 (spars¢ matrix that is solved for over 60 values
age and current port locations. The current through the stru@f the magnetic field. The global matrix is evaluated afresh
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Jin H method comes into its own when the physical semiconductor
film is not only of arbitrary shape but contains both filled
(conducting and empty(insulating embedded inhomogene-
ities of arbitrary shape as shown schematically in Fig. 11.
o Given that the EMR discussed here is geometrically en-
\ hanced, in the finite element method we now have the means
of designing and exploring geometrically more complex het-
E— erostructures for additional improvements in the perfor-
mance of EMR-based magnetic deviteforethey are fab-
FIG. 11. The four-contact van der Pauw geometry for an arbi-ricated for electronic applications.
trarily shaped InSb thin film with distributed metallic inclusions of

arbitrary shape and with a hole in it of arbitrary shape.
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