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Critical behavior of two-dimensional frustrated spin models with noncollinear order
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We study the critical behavior of frustrated spin models with noncollinear order in two dimensions, includ-
ing antiferromagnets on a triangular lattice and fully frustrated antiferromagnets. For this purpose we consider
the correspondingO(N)3O(2) Landau-Ginzburg-Wilson~LGW! Hamiltonian and compute the field-theoretic
expansion to four loops and determine its large-order behavior. We show the existence of a stable fixed point
for the physically relevant cases of two- and three-component spin models. We also give a prediction for the
critical exponenth which is h50.24(6) andh50.29(5) forN53 and 2, respectively.
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I. INTRODUCTION

The critical behavior of frustrated spin systems with no
collinear or canted order has been the object of intens
theoretical and experimental studies. An important and
bated issue is the nature of the universality of the ph
transition~see, e.g., Refs. 1 and 2 for reviews on this issue
the three-dimensional case!.

In physical magnets, noncollinear order is due to frust
tion that may arise either because of the special geometr
the lattice, or from the competition of different kinds of in
teractions. Typical examples of systems of the first type
two-dimensional triangular antiferromagnets~AFT!, where
magnetic ions are located at each site of a two-dimensio
triangular lattice. At the chiral transition, they can be d
scribed by using short-ranged Hamiltonians f
N-component spin variables defined on a triangular lattice

HAFT52J(̂
i j &

sW i•sW j , ~1!

whereJ,0 and the sum is over nearest-neighbor pairs.
In these spin systems the Hamiltonian is minimized

noncollinear configurations, showing a 120° spin structu
Frustration is partially released by mutual spin canting, a
the degeneracy of the ground state is limited to global O(N)
spin rotations and reflections. As a consequence, at critic
there is a breakdown of the symmetry from O(N) in the
high-temperature phase to O(N-2) in the low-temperature
phase, implying a matrixlike order parameter. Frustration
to interactions may be realized in the frustratedXY model on
a square lattice, governed by the Hamiltonian:

HFXY52J(̂
i j &

cos~u i2u j2Ai j !, ~2!

whereu i is the angle ofsW i with a datum direction,Ai j is the
quenched vector potential, and the sum is over near
neighbor pairs. The frustration is determined by the sum
Ai j around a plaquette: in the fully frustrated case (FFXY)
this sum is equal top. The large number of studies on th
Hamiltonian is mainly motivated by the fact that it describ
0163-1829/2001/64~18!/184408~11!/$20.00 64 1844
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the statistical properties of a superconducting Joseph
junction in a transverse magnetic field.

Field theoretical~FT! studies of systems with nonco
linear order are based on the O(N)3O(M ) symmetric
Hamiltonian1,3

H5E ddxH 1

2(a
@~]mfa!21rfa

2#1
1

4!
u0S (

a
fa

2D 2

1
1

4!
v0(

a,b
@~fa•fb!22fa

2fb
2#J , ~3!

wherefa (1<a<M ) are M sets ofN-component vectors
We will consider the caseM52, that, forv0.0, describes
frustrated systems with noncollinear ordering such as AFT
Negative values ofv0 correspond to simple ferromagnetic o
antiferromagnetic ordering, and to magnets with sinusoi
spin structures.3 The same LGW Hamiltonian has also be
used in other problems such as that of the phase transitio
the dipole-locked A phase of helium three.4

Even if the critical behavior of the noncollinear two
dimensionalXY frustrated systems has been the subject
many recent theoretical and experimental5 studies, there is
still no definite conclusion about the nature of the pha
transitions that occur in these systems. It can be shown
these models possess a twofold degenerate ground stat
cording to the chiral degeneracy;6,1 chirality is invariant un-
der global spin rotationSO(2), while it changes sign unde
global spin reflectionZ2. This situation leads to having a
order parameter space~defined as a topological space is
morphic to the set of ordered states4! V5Z23S1[Z2
3SO(2) different from the one of the normalXY model.

Monte Carlo simulations performed using the AF
model,7,8,6 the FFXY model,9–18 or other related models
~some exotic realizations of the frustratedXY model are the
Coulomb gas with half integer charge,19,20 the coupled
XY-Ising model,21–23 the 19-vertex version,24,25 the frus-
trated XY model with zig-zag coupling,26 the frustrated
model with next-nearest-neighbor interaction,27,28 and the
XXZ model29–31 for particular values of certain parameter!
have partially clarified the nature of the transition. A strong
debated question is whether there is only one critical te
peratureTc , in which both theSO(2) and theZ2 symmetries
©2001 The American Physical Society08-1
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PASQUALE CALABRESE AND PIETRO PARRUCCINI PHYSICAL REVIEW B64 184408
are simultaneously broken, or there are two successive p
transitions at critical temperaturesTSO(2) andTZ2

. In the case
of two transitions, even the order in which they occur and
numerical values of the critical exponents are very con
versial ~in many papers14,7,29 it is claimed that the highe
temperature transition is a standard Ising one!. The main
problem is that, if two transitions exist, they have very clo
critical temperatures and a precise detection of them b
Monte Carlo simulation is very difficult, in fact all the au
thors that observe a single transition do not exclude the p
sibility of two very close ones@e.g., a recent upper limit fo
the difference of the critical temperatures isDT;53103

~Ref. 18!#. We summarize all Monte Carlo results in Table
while in Table II we report the results of other kinds
works. At last we want to mention that in some studies32 it
has been argued that the FFXY model is equivalent to a

TABLE I. Monte Carlo results for frustratedXY system.no is
the number of transitions observed in the simulation. When
transitions are detected the subscripts 1 and 2 are related to the
and to the second one. Where different exponents are reporte
use scaling laws to obtainn andh.

Model ~Ref.! no Exponents

FFXY9 a50
AFT7 1 b50.123(3),g51.73(5)
AFT6 2 a150,h251/4
AFT8 2 n150.9(2),h150.24(11)
FFXY11 2 n150.898(3),h150.216,

s250.3069,h250.1915
FFXY14 2 n151
CG19 1
CG20 2 n150.84(5),h150.26(4)
XY Ising21 1 n50.82,h50.35
XY Ising22 1 n50.84,h50.30
FFXY13 1 n50.80(4),h50.38(3)
FFXY10 1 n50.85(3),h50.31(3)
FFXY tr10 1 n50.83(4),h50.28(4)
FFXY17 1 n50.852(2),h50.20(1)
FFXY tr16 2 n150.83(1),h150.25(2)
XXZ29 2 consistent with Ising
FFXY18 1
FFXY12 1 c51.66~4!, n;1, h50.40(4)
FXY zz26 (r51.5) 1 n50.80(1),h50.29(2)
FXY zz26 (r50.7) 1 n50.78(2),h50.32(4)

TABLE II. Other results for frustratedXY systems.

Model ~Ref.! Method no Exponents

FFXY15 pos. space RG 2 first nonconsistent with Isi
second consistent with KT

19v24 transfer matrix 1 h50.28(2),n50.81(3)
c51.55(3)

19v25 transfer matrix 1 h50.26(1),
n51.0(1),c51.50(5)
18440
se

e
-

e
a

s-

superconformal field theory with central chargec53/2, but
also this issue is not fully understood.

The critical behavior of the Heisenberg frustrated antif
romagnet is clearer; many experiments33 agree with theoret-
ical predictions based on topological considerations,34–36

Monte Carlo simulations,34,35,37–40,30the application of ap-
propriateNLs models,41–45 and by the use of ERG.46 The
order parameter space of this model is the group of 3D ro
tions, in fact O(3)/Z2[SO(3)[P3.34 Homotopy analysis
shows that the system bears a topological stable point de
„p1@SO(3)#5Z2; see, for an exhaustive discussion, Refs.
and 1… characterized by a two valued topological quantu
number and exhibits a phase transition driven by the dis
ciation of the vortices. This analysis suggests the occurre
of a KT phase transition mediated byZ2 vortices~while the
standard KT transition forXY unfrustrated ferromagnet bea
Z vortices47,4!: this observation strongly suggests that t
frustrated noncollinear magnets might exhibit a novel ph
transition, possibly belonging to a new universality class.34 A
strong difference between the standard KT transition and
frustrated Heisenberg model is that the last one presen
mass gap also in the low temperature phase.34,35Monte Carlo
simulations seem to confirm this scenario with the occ
rence of a novel phase transition,34,40,30 although some
authors36,39 think that it is a standard KT transition.

TheNLs model is not able to describe a defect media
transition,48 in fact the perturbativeb function that we obtain
from a NLs model for a system which in the high temper
ture phase has a symmetry described by the groupG and in
the low temperature phase has the symmetry ofH, subgroup
of G, depends only on the local structure of the cosetG/H.
For the AFT model the order parameter space@SO(3)# is
locally isomorphic to the order parameter space of theO(4)
vector model~the four-dimensional sphereS3), but these two
spaces have different first homotopy groups:

p1„SO~3!…5Z2 , p1~S3!50.

For this reason the AFT model and theO(4) vector model
have the sameb function,45 even if topological excitations
take to a different energy spectra. When these excitations
activated, theNLs model approach leads to wrong predi
tions. Instead the perturbativeb function of the LGW model
depends only on the representation ofG and could be sensi
tive to the topological degrees of freedom. Let us emphas
that there is no general consensus on the effectiveness o
perturbative treatment of the LGW model with these top
logical degrees of freedom. We can only mention the f
that the estimate forg* ~the critical four point renormalized
coupling! obtained in Ref. 49 for theXY unfrustrated model
from the five-loop perturbative expansion directly in two d
mensions, and the resummation of the same observab
the framework of thee expansion at the ordere3 ~Refs. 50
and 51! are in perfect agreement with all the other results
nonperturbative methods.52

The LGW Hamiltonian~3! has been extensively studie
in the framework ofe542d expansion,1,3,53,54 in the 1/N
expansion,1,3,54 and at fixed dimensiond53.55,56 The exis-
tence and the stability properties of the fixed points dep

o
rst
we
8-2
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CRITICAL BEHAVIOR OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 64 184408
on the numberN and on the spatial dimensionality~see, for
an exhaustive discussion, Refs. 1 and 2!. In thee expansion,
for sufficiently large values ofN, there are four fixed points
the Gaussian one, theO(2N) (v50) one, and two new fixed
points situated in the regionu,v.0, called chiral and anti-
chiral. In fixed dimensiond53, for the physically relevan
cases ofN52,3,56 the six-loop perturbative analysis show
the existence of the four fixed points cited above, of wh
the chiral is the stable one.

In this paper we present a field-theoretic study based
an expansion performed directly in two dimensions, as p
posed for theO(N) models by Parisi.57

The paper is organized as follows. In Sec. II we derive
perturbative series for the renormalization-group function
four loops and discuss the singularities of the Borel tra
form. The results of the analysis are presented in Sec. III
Sec. IV we draw our conclusions and we discuss some fu
and unsolved issues.

II. THE FIXED DIMENSION PERTURBATIVE EXPANSION
IN TWO DIMENSIONS

A. Renormalization of the theory

The fixed-dimension field-theoretical approach57 repre-
sents an effective procedure in the study of the critical pr
erties in the symmetric phase of systems belonging to
O(N) universality class~see, e.g., Ref. 58!. So the idea is to
extend this procedure to frustrated models where there
two f4 couplings with different symmetry.55,56One performs
an expansion in powers of appropriately defined ze
momentum quartic couplings and renormalizes the theory
a set of zero-momentum conditions for the~one-particle ir-
reducible! two-point and four-point correlation functions:

Gai,b j
(2) ~p!5dai,b jZf

21@m21p21O~p4!#, ~4!

Gai,b j ,ck,dl
(4) ~0!5Zf

22mFu

3
Sai,b j ,ck,dl1

v
6

Cai,b j ,ck,dlG , ~5!

wheredai,b j5dabd i j and

Sai,b j ,ck,dl5dai,b jdck,dl1dai,ckdb j ,dl1dai,dldb j ,ck ,

Cai,b j ,ck,dl5dabdcd~d ikd j l 1d i l d jk!1dacdbd~d i j dkl1d i l d jk!

1daddbc~d i j dkl1d ikd j l !22Sai,b j ,ck,dl . ~6!

The above relations allow to relate the second-mom
massm, and the zero-momentum quartic couplingsu andv
to the corresponding bare parametersr, u0, and v0 of the
Hamiltonian~3!.

In addition one introduces a renormalization condition
G (1,2), the one-particle irreducible two-point function with a
insertion of the operator12 f2:

Gai,b j
(1,2)~0!5dai,b jZt

21 . ~7!

From the perturbative knowledge of the functionsG (2), G (4),
and G (1,2) one can determine the RG functions as series
the two couplingsu andv.
18440
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The fixed points of the model are defined by the comm
zeros of theb functions,

bu~u,v !5m
]u

]mUu0 ,v0
, bv~u,v !5m

]v
]mU

u0 ,v0

, ~8!

while the stability properties of these points are determin
by the eigenvaluesv i of the matrixV:

V5S ]bu~u,v !

]u

]bu~u,v !

]v

]bv~u,v !

]u

]bv~u,v !

]v

D . ~9!

A fixed point with two positive eigenvalues is stable~totally
attractive!, and it determines the behavior of the system
criticality. The eigenvaluesv i are connected to the leadin
scaling corrections, which go asj2v i;utuD i where D i
5nv i , with few exceptions as the two dimensional Isin
model ~see for a discussion Ref. 59!.

The RG functionshf andh t are defined in the usual way

hf~u,v !5
] ln Zf

] ln mU
u0 ,v0

5bu

] ln Zf

]u
1bv

] ln Zf

]v
, ~10!

h t~u,v !5
] ln Zt

] ln mU
u0 ,v0

5bu

] ln Zt

]u
1bv

] ln Zt

]v
. ~11!

These functions are related to the critical exponents
can be obtained using the scaling laws in the following w

h5hf~u* ,v* !, ~12!

n5@22hf~u* ,v* !1h t~u* ,v* !#21, ~13!

g5n~22h!, ~14!

where (u* ,v* ) is the position of the stable fixed point.

B. The four loop series

In this section we report our results on the perturbat
expansion of the RG functions~8!, ~10!, and~11! up to four
loops. The results are reported in terms of the rescaled c
plings

u[
8p

3
R2Nū, v[

8p

3
R2Nv̄, ~15!

whereRN59/(81N). We use these rescaled couplings, d
ferent from the usual ones,56 because they have finite fixe
point values in the limitN→`.

The series are

b̄ ū52ū1ū21
12N

~41N!
ūv̄2

12N

~812N!
v̄21 (

i 1 j >3
bi j

(u)ūi v̄ j ,

~16!
8-3
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TABLE III. Coefficientsbi j
(u) of the four-loop expansion ofb̄ ū .

i , j R2N
2 i 2 jbi j

(u)

3,0 20.5231830120.35762725N20.05670787N2

2,1 10.2762234210.20716756N10.06905585N2

1,2 10.2442115020.18315862N20.06105287N2

0,3 20.0617398910.04630492N10.01543497N2

4,0 10.6393861710.52357610N10.11532026N210.00609697N3

3,1 10.5297224520.34404956N20.17236232N220.01331057N3

2,2 20.6097105310.40445539N10.19204827N210.01320688N3

1,3 10.2598801920.18091027N20.075469945N220.00349997N3

0,4 20.0252385110.02158825N10.00431510N220.00066484N3

5,0 21.0284487420.96463436N20.27426277N220.02444185N320.00002407294N4

4,1 21.1673346110.63874480N10.46960694N210.05903441N320.00005154248N4

3,2 11.5718870820.87883974N20.61913519N220.07418884N310.0002766848N4

2,3 20.9145490510.53282094N10.34517685N210.03698163N320.000430362N4

1,4 10.2180703420.13987590N20.07359806N220.00492708N310.0003307098N4

0,5 20.0224328810.01659580N10.006205439N220.0002619636N320.0001063929N4
fo

he

.

ing
s

hi-
b̄ v̄52 v̄1
261N

~41N!
v̄21

6

~41N!
ūv̄1 (

i 1 j >3
bi j

(v)ūi v̄ j ,

~17!

hf5
1.83417~11N!

~812N!2 ū21
1.83417~12N!

~812N!2 ūv̄

2
1.37563~12N!

~812N!2 v̄21 (
i 1 j >3

ei j
(f)ūi v̄ j , ~18!

h t52
2~11N!

~41N!
ū2

~12N!

~41N!
v̄1

13.5025~11N!

~812N!2 ū2

1
13.5025~12N!

~812N!2 ūv̄2
10.1269~12N!

~812N!
v̄2

1 (
i 1 j >3

ei j
(t)ūi v̄ j , ~19!

where

b̄ ū5
3

16p
R2N

21bu , b̄ v̄5
3

16p
R2N

21bv . ~20!

The coefficientsbi j
(u) , bi j

(v) , ei j
(f) , andei j

(t) are reported in the
Tables III, IV, and V. Note that due to the rescaling~20!, the
matrix element ofV are two times the derivative ofb̄ with
respect toū and v̄.

We have verified the exactness of our series by the
lowing relations.

For N51 the functionsb ū , hf , and h t reproduce the
corresponding functions of the standardO(2) model.49

For v̄50, the functionsb ū(ū,0), hf(ū,0), andh t(ū,0)
reproduce the corresponding functions of t
O(2N)-symmetric model.49
18440
l-

For N5M52 one can transform the Hamiltonian~3! into
two independentXY models via the transformation3

f115
f118 2f228

A2
, f125

f128 1f218

A2
,

f215
f218 2f128

A2
, f225

f228 1f118

A2
, ~21!

and with the conditionv0522u0. One can easily verify
that, calling x05u02v0/2 the new bare coupling, the RG
function b̄ x̄ reduce to the one of theXY model:

b̄ x̄5
5

6
b̄ ū~ 3

5 x̄,2 6
5 x̄!2

5

12
b̄ v̄~ 3

5 x̄,2 6
5 x̄!. ~22!

In the limit N→` the RG functions reduce to

b̄ ū52ū1ū22ūv̄1
1

2
v̄2, ~23!

b̄ v̄52 v̄S 12
v̄
2
D , ~24!

hf50, ~25!

h t522ū1 v̄. ~26!

The zeros of the twob̄ functions are reported in Fig. 1
There are four fixed points: the Gaussian one~0,0! that is
unstable withv15v2522, theO(2N) symmetric one that
is unstable in thev direction with v152v252, the chiral
one that is the only stable with corrections to the scal
given by v15v252 and the antichiral fixed point that i
unstable with the same eigenvalues of theV matrix of the
O(2N) one. We note that the region of attraction of the c
8-4
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TABLE IV. Coefficientsbi j
(v) of the four-loop expansion ofb̄ v̄ .

i , j R2N
2 i 2 jbi j

(v)

2,1 21.0171021920.38232322N20.03201192N2

1,2 10.7610068610.17012363N20.005032022N2

0,3 20.1756198010.00823505N10.01303500N2

3,1 11.498099810.66351375N10.06331414N220.0022332645N3

2,2 21.4903135820.52140551N20.012396398N210.006202595N3

1,3 10.5969270410.15592619N20.006944004N220.002154403N3

0,4 20.0706207420.00996809N10.000144371N220.0004443507N3

4,1 22.8075744821.43132297N20.19616848N220.004346583N320.0002234496N4

3,2 13.3950175811.49420844N10.13249155N220.004523054N310.00067373429N4

2,3 21.948104120.78279460N20.05338075N210.002303844N320.00070912608N4

1,4 10.5014754810.18762207N10.01554819N210.001191026N310.0002987006N4

0,5 20.0497552620.01162418N20.000186500N220.000278729N320.000045297366N4
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ral fixed point is not all the (ū,v̄) plane but only the region
with ū.0 andz5 v̄/ū,2; if the system is located out of thi
region it undergoes first order phase transition. The crit
indices of the Gaussian and antichiral fixed points are m
field ~i.e., h50 andh t50), while theO(2N) and the chiral
fixed point have nontrivial exponents given byh50 and
h t52, as it is already known from largeN expansion.1 This
is another check of exactness of the series.

C. Resummations of the series

The field theoretic perturbative expansion genera
asymptotic series that must be resummed to extract
physical information about the critical behavior of the re
systems.

Exploiting the property that these series are Borel su
mable forf4 theories in two and three dimensions,60 one can
resum these perturbative expressions using a Borel tran
mation combined with a method for the analytical extens
of the Borel transform. If the domain of analyticity of th
Borel transform is known, one can perform a mapping wh
maps the domain of analyticity~cut at the instanton singular
ity! gb onto a circle, in order to have the maximal analytici
In the case of theO(N) symmetric model, letF(g)
5( f kg

k be any Borel summable function, whose expans
in series has to be resummed; exploiting the knowledge
the large order behavior of the coefficientsf k ~Ref. 58!

f k;k! ~2a!kkb@11O~k21!# with a521/gb ~27!

~a large order behavior related to the singularitygb of the
Borel transform closest to the origin! one can perform the
following mapping61

y~g!5
A12g/gb21

A12g/gb11
~28!

to extend the Borel transform ofF(g) to all positive values
of g. The singularitygb depends only on the considere
model and can be obtained from a steepest-descent cal
tion in which the relevant saddle point is a finite-energy
18440
l
n

s
e

l

-

or-
n

h

n
of

la-
-

lution ~instanton! of the classical field equations with neg
tive coupling.62,63 Instead the coefficientb depends on which
Green’s function is considered.

Note that the functionF(g) can be Borel summable onl
if there are no singularities of the Borel transform on t
positive real axis.

This resummation procedure has worked successfully
theO(N) symmetric theory, for which accurate estimates
the critical exponents and other physical quantities have b
obtained.

For this reason, the idea is to extend the resumma
procedure cited above to the frustrated model, as it has b
done for the three-dimensional case,56 considering a double
expansion inū andv̄ at fixedz5 v̄/ū, and studying the large
order behavior~following the same procedure used in Re
64 and 56! of the new expansion in powers ofū to calculate
the singularity of the Borel transform closest to the orig
ūb . The results are

1

ūb

52aR2N for 0,z,4,

1

ūb

52aR2NS 12
1

2
zD for z,0, z.4, ~29!

wherea50.238659217 . . . .
We find that forz.2 there is a singularity on the rea

positive axis which however is not the closest one to
origin for z,4. Thus, forz.2 the series are not Borel sum
mable.

An important issue in the fixed dimension approach
critical phenomena concerns the analytic properties of thb
functions. As shown in Ref. 59 for theO(N) model, the
presence of confluent singularities in the zero of the per
bative b function causes a slow convergence of the resu
mation of the perturbative series to the correct fixed po
value. TheO(N) two-dimensional field-theory estimates o
physical quantities61,49 are less accurate than the ones of t
three-dimensional case, due to the stronger nonanalytic
8-5
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TABLE V. Coefficientsei j
(f) andei j

(t) of the four-loop expansion ofhf andh t .

i , j R2N
2 i 2 jei j

(f)

3,0 20.0011985520.00149819N20.000299637N3

2,1 20.0017978210.00134837N10.000449456N2

1,2 10.0017978220.00157301N20.000224728N2

0,3 20.00059927510.000636729N20.0000374547N2

4,0 10.0063306210.00891668N10.00247304N220.000113013N3

3,1 10.0126612420.00748913N20.00539814N210.000226025N3

2,2 20.0154965110.00967682N10.00598920N220.000169519N3

1,3 10.0072252920.00531519N20.00196661N210.0000565063N3

0,4 20.0010550710.00116599N20.0000897290N220.0000211899N3

i , j R2N
2 i 2 jei j

(t)

3,0 20.1326618820.17878908N20.04612721N2

2,1 20.1989928110.12980200N10.06919081N2

1,2 10.1773899120.13415335N20.04323656N2

0,3 20.0512089010.04833365N10.00287525N2

4,0 10.1729987810.25743030N10.08514284N210.000711326N3

3,1 10.3459975720.17713453N20.16744038N220.00142265N3

2,2 20.3941081910.21062748N10.18241372N210.00106699N3

1,3 10.1699940520.10189909N20.06869231N210.000597349N3

0,4 20.0202899210.01767450N10.00343506N220.000819639N3
e

o
-
o

w
g
s
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e

te

s

f
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op
at the fixed point.59,65,50 In Ref. 59 it is shown that the
nonanalytic terms cause a large deviation in the estimat
the right correction to the scaling, i.e., the exponentv; in-
stead the result for the fixed point value is a rather go
approximation of the correct one~the systematic error is al
ways less than 10%!. We think that this scenario holds als
for frustrated models.

III. FOUR-LOOP EXPANSION ANALYSIS

A. The analysis method

The analysis of the four-loop series is performed follo
ing the procedure used in Ref. 56: we exploit the knowled
of the value of the singularity of the Borel transform close
to the origin~a value given in the previous section!, and we
generate a set of approximants to our asymptotic series, v
ing the two parametersa andb.

If

R~ ū,v̄ !5 (
k50

(
h50

Rhkū
hv̄k, ~30!

is our asymptotic expression for one of the functionsb̄ or h,
then our approximants can be written as

E~R!p~a,b;ū,v̄ !5 (
k50

p

Bk~a,b; v̄/ū!

3E
0

`

dttbe2t
y~ ūt; v̄/ū!k

@12y~ ūt; v̄/ū!#a
,

~31!
18440
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e
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where

y~x;z!5
A12x/ūb~z!21

A12x/ūb~z!11
. ~32!

The coefficientBk are determined by the condition that th
expansion ofE(R)p(a,b;ū,v̄) in powers ofū and v̄ gives
R(ū,v̄) to orderp.

In order to find the fixed points of the theory we compu
the series~31!, with R5b̄ i , for many values ofa andb ~and
for several values ofN), obtaining many different estimate
of the b̄ functions in all the plane (ū,v̄). We note that for
a>3, the estimates strongly oscillates with varyingb. For
this reason we choose to keepa in the range 0<a<2. Then
we look for the values ofb, at fixed a, which make the
series, at small values ofū and v̄ ~i.e., ū,v̄<1), more stable
while varying the orderp. We realize that all values ofb
between 0 and 20 give reasonable estimates of theb̄ func-
tions. For the estimates of the functions for larger values oū

and v̄ we take the approximants in this range ofa andb.
At the end of this exploratory analysis, the strategy

obtain reasonable values and error bars for the fixed po
is to divide the domain 0<ū<4, 0< v̄<6 in 402 rectangles,
then to take 18 different approximants withb
55,7,9,11,13,15 anda50,1,2 for theb̄ functions, and to
mark all the sites in which at least two approximants forb̄ ū

and b̄ v̄ vanish. This procedure is applied to the three-lo
and four-loop series.
8-6
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We adopt this method also for the values ofz for which
the series are not Borel summable. It should provide a
sonable estimate ifz,4, because we take into account t
leading large order behavior.

B. Instability of the symmetric fixed point

To begin with, we present the results related to the ins
bility of the O(2N) fixed point. An accurate estimate of it
location already exists from the Pade´-Borel analysis of the
five-loop series of Ref. 49. In Table VI we report our es
mates for

vv52
]b̄ v̄

] v̄
u ū5ū

O(2N)* ,v̄50 ,

where ūO(2N)* is the fixed point value obtained in Ref. 4

The missingūO(2N)* values are computed by the standa
resummation procedure of Ref. 61. These results cle
show that this fixed point is always unstable.

C. Large N analysis „NÐ4…

We begin our analysis of the four loop series from largeN
values, because all these systems are free of topologica
fects and they are well described by appropriateNLs mod-
els. In fact, being the order parameter spaceV
[O(N)/O(N22), the first homotopy group isp1(V)50
for all N>4 @this is a consequence of a simple theorem
differential geometry, for which thep1(G/H)50 if H is a
continuous subgroup of a Lie groupG#. We expect that, for
these values ofN, the chiral fixed point exists and it is stab
with critical indices and corrections to the scaling equal
the ones found forN5`. ~See Sec. II B.!

FIG. 1. Zeros of theb̄ functions forN5` in the (ū,v̄)
18440
a-

-

ly

e-

f

We apply the procedure illustrated above forN equal to
32, 16, 8, 6, and 4~the choice of these particular values ofN
will be clear in the following!. The results for the zeros o
the b̄ functions, obtained from the analysis of three and fo
loop series are reported in Figs. 2, 3, 4, 5, and 6. The

merical estimates of the common zeros of theb̄ ’s are in
Table VII.

For N532 the presence of the four fixed points predict
by the 1/N analysis is clear. From Fig. 2 emerges a n
characteristic ofb̄ ū : the appearance of a second branch
zeros in the region of upper values ofv̄. This second branch
exists only for the four-loop series, as in the thre
dimensional case,56 but it is present for almost all the con
sidered approximants. ForN532 this upper branch has n
particular importance, but it will become fundamental f
lower values ofN.

The evaluation of theV matrix shows that the chiral fixed
point is stable with corrections to scaling given byv1
52.2(2) andv251.7(2). Theantichiral fixed point is un-
stable with crossover exponentsv151.7(2) and v25
21.3(2). We use a large set ofapproximants~all those used
for the b̄ ’s! to take into account the strong effect of nonan
lyticities. In this way we have a big error with respect to t
one obtained by using only stability criteria, but our es
mates are very close to the correct valuesv15v252.

For N516 the four fixed points of the 1/N expansion
appear but the curve of zeros ofb̄ v̄ cross the upper branch o
the zeros ofb̄ ū in the point @0.4(2),5.0(3)#. We call this
new fixed point antichiral II fixed point. We cannot exclud
the possibility that this fixed point is a numerical artifact
the resummation procedure since it belongs to the reg
with z.4, i.e., the region in which the singularity of th
Borel transform closest to the origin is on the positive re
axis. This problem is not so relevant because this fixed p
is found to be unstable and it does not influence the crit
behavior of the system. Figure 4 shows that the shape of
zeros of theb̄ functions forN58 is similar to the one of
N516. The stability properties being the same for these t
cases we conclude that the critical behavior should be
same for all values ofN between 8 and 16.

For N56 the two antichiral fixed points seem to coalesc
but probably this is a consequence of the large error ba
these zeros. To solve this problem it is necessary to know
b̄ functions at higher order. However, one eigenvalue of
stability matrix, in all this wide zone, is always negative,
this problem does not influence our understanding of
critical properties of the model. The chiral fixed point
always the only stable one, nevertheless the estimates o
corrections to scaling are now quite different from the ex
ones, in fact we obtainv152.4(6) andv250.8(4) instead
of v15v252. This is probably due to the nonanalytic term
that, as shown in Ref. 59, have larger effects whenN de-
creases.

In the case ofN54 ~see Fig. 6!, the exact number of the
fixed points is not known and it is not clear if they are l
cated on the upper or on the lower branch of zeros ofb̄ ū .
From our homotopy analysis, we expect that this mode
8-7
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connected withN5` and as a consequence the stable z
should be on the lower branch ofb̄ ū . Reasonable estimate
of fixed points are not feasible from Fig. 6. Anyway, if w
mark the sites in which at least 3, 4, etc. approximants for
b̄ ’s vanish, we find two distinct regions located nearū;2
and ū;1. The existence of at least two fixed points is cle
but their estimate is not possible.

Having established the existence of a stable fixed po
we compute the critical exponents from the perturbative
ries reported in the previous section. We consider a la
number of approximants varyinga and b in the range 0
<a<5 and 0<b<30 and we choose for the final estimat
the ones more stable varying the number of loops. VaryinN
we find that the exponenth takes small values@e.g., h
50.040(2) forN532 andh50.11(4) forN58# which are
close to the ones found for theO(N) models forN>3, but
different from the exact oneh50, expected for asymptotic
free theory. We think that these erroneous predictions are
to nonanalytic terms ofh(u,v) at (u* ,v* ), as for theO(N)
models.

D. Frustrated Heisenberg model

The zeros of theb̄ functions forN53 are reported in Fig.
7. It is apparent that the chiral fixed point is located on
upper branch of zeros ofb̄ ū , so this value ofN is not con-
nected withN5`. For this reason the exponenth could be
different from zero. We have already stressed the strong
dence for a topological phase transition for this frustra
system and so the physical reason for this nontrivial ex
nent is clear.

The standard structure involving only four common ze
of the b functions is restored since we find only one an
chiral fixed point. The chiral fixed point is located at

ū* 52.3~3!, v̄* 53.9~5!. ~33!

TABLE VI. Crossover exponentvv at theO(2N) fixed point.

N ūO(2N)* vv

2 1.70~2! 20.36~4!

3 1.62~1! 20.7~2!

4 1.52~1! 20.9~2!

6 1.407~3! 21.2~2!

8 1.313~3! 21.3~1!

16 1.170~2! 21.70~4!

TABLE VII. Fixed points forN.4.

N Chiral fixed point Antichiral fixed point

(ū* ,v̄* ) (ū* ,v̄* )

32 @2.15~5!, 2.18~8!# @1.05~5!, 2.25~15!#

16 @2.2~1!, 2.40~15!# @1.05~15!, 2.48~8!#

8 @2.3~1!, 2.70~15!# @1.15~25!, 3.08~22!#

6 @2.2~2!, 3.38~22!# @1.2~3!, .3.6]
18440
o

e

,

t,
-
e

ue

e

i-
d
-

s

FIG. 2. Zeros of theb̄ functions forN532 in the (ū,v̄) plane.

Pluses (1) and crosses (3) correspond to zeros ofb̄ v̄(ū,v̄) and

b̄ ū(ū,v̄), respectively.

FIG. 3. Zeros of theb̄ functions forN516 in the (ū,v̄) plane.

Pluses (1) and crosses (3) correspond to zeros ofb̄ v̄(ū,v̄) and

b̄ ū(ū,v̄), respectively.

FIG. 4. Zeros of theb̄ functions forN58 in the (ū,v̄) plane.

Pluses (1) and crosses (3) correspond to zeros ofb̄ v̄(ū,v̄) and

b̄ ū(ū,v̄), respectively.

FIG. 5. Zeros of theb̄ functions forN56 in the (ū,v̄) plane.

Pluses (1) and crosses (3) correspond to zeros ofb̄ v̄(ū,v̄) and

b̄ ū(ū,v̄), respectively.

FIG. 6. Zeros of theb̄ functions forN54 in the (ū,v̄) plane.

Pluses (1) and crosses (3) correspond to zeros ofb̄ v̄(ū,v̄) and

b̄ ū(ū,v̄), respectively.
8-8
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CRITICAL BEHAVIOR OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 64 184408
The eigenvaluesv i vary significantly with the two param
etersa and b and turn out to be complex in several cas
Reasonable estimates ofv i are not feasible, nonetheless th
sign of their real part is positive for the majority of the a
proximants.

The critical behavior of this topological phase transition
expected to be of the KT type, i.e., the correlation length a
the susceptibility diverge, fort.0 according to the
asymptotic law:

j;ebt2s
, x;j22h, ~34!

whereh is the standard exponent. This means that we can
define the conventional exponentsn andg sincej diverges
faster than any power oft.

For the O(2) unfrustrated model Kosterlitz an
Thouless47 have shown thath51/4 ands51/2. Exact values
do not exist for the Heisenberg frustrated model. The re
of a very recent and accurate Monte Carlo simulation40 is
s;0.600,66 even if the standard KT form of thermodynam
quantities has been used in the past to fit Monte Carlo d
finding a reasonable agreement.35,39,38

Our estimate forh is

h50.24~6!. ~35!

Note that this value is consistent with the standard KT s
nario.

This value ofh, which is very different from zero, seem
to confirm that the LGW model is able to describe a top
logical phase transition.67 We have already said in the Intro
duction that there is no general consensus on this issue
think that this nontrivial result is a possible evidence in fav
of this thesis.

E. Frustrated XY model
As discussed in the Introduction, the frustratedXY model

breaks two symmetries. If there are two transitions we
only able to describe the one that occurs at higher temp
ture, since we explore the critical properties of the mode
the high temperature phase.

Figure 8 shows the zeros of theb̄ functions. The chiral
fixed point is located at

ū* 52.3~2!, v̄* 55.0~5!. ~36!

In the region that is not shown (v.6) we find another fixed
point that can be identified with the antichiral.

To describe the critical behavior of these systems we h
studied the stability of these two fixed points, evaluating
eigenvalues of theV matrix defined in Eq.~9! and varyinga

FIG. 7. Zeros of theb̄ functions forN53 in the (ū,v̄) plane.

Pluses (1) and crosses (3) correspond to zeros ofb v̄(ū,v̄) and

b̄ ū(ū,v̄), respectively.
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andb as explained above. For the shortness of our pertu
tive series the results obtained are quite unstable to pres
reasonable estimate, anyway we find that one of the
eigenvalues calculated at the antichiral fixed point is alw
negative, while for the chiral one the majority of the resu
are in agreement with its stability.

The evaluation of the critical exponenth at the chiral
fixed point gives

h50.29~5!. ~37!

This value is consistent with many Monte Carlo reported
Table I. We note that this estimate is substantially higher th
0.146 obtained by the Pade´-Borel analysis of five-loop serie
for the one-componentf4 theory.49 We cannot give a reason
able value for the exponentn because of the big oscillation
observed when varying the two parametersa and b. We
think that longer series could solve this problem and partia
clarify the nature of this phase transition.

IV. CONCLUSIONS

In the present paper we have studied the critical beha
of frustrated spin models with noncollinear order by app
ing the field-theoretic renormalization-group technique
rectly in two dimensions.

We have begun our analysis from large values ofN, since
these systems are free of topological defects, and they
well described by appropriateNLs models. We have consid
eredN5`, 32, 16, 8, 6, and 4, always finding the presen
of the chiral and antichiral fixed points. In order to verify th
stability properties of these fixed points we have evalua
the eigenvalues of the matrixV, which demonstrate the ful
stability of the chiral fixed point. We have also shown t
nonstability of theO(2N) fixed point forN>2, computing
the crossover exponentvv .

Then we have focused our attention on the frustratedXY
model (N52) and on the Heisenberg model (N53), which
are expected to undergo continuous phase transitions
cannot be described by the use ofNLs models.

For theXY model we have found the presence of a sta
fixed point located in@2.3(2),5.0(5)#, in which the critical
exponenth takes the value 0.29~5!.

Even in the case of the frustrated Heisenberg model,
have found the existence of a stable fixed point
@2.3(3),3.9(5)#. We have evaluated the critical exponenth
50.24(6). This nontrivial result confirms the validity of the
LGW approach in describing defect mediated transitions

The issue of the universality class of these systems m
be clarified by the computation of the universal quantit

FIG. 8. Zeros of theb̄ functions forN52 in the (ū,v̄) plane.

Pluses (1) and crosses (3) correspond to zeros ofb̄ v̄(ū,v̄) and

b̄ ū(ū,v̄), respectively.
8-9
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ū* ,v̄* , related to the four point renormalized coupling co
stants, with a Monte Carlo simulation. In fact these quan
ties, which have been estimated in this work, have fin
values at the critical point and a precise determination
them may be more simple than the evaluation of expone
,
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J. S. Feldman and K. Osterwalder, Ann. Phys.~N.Y.! 97, 80
~1976!; J. Magnen and V. Rivasseau, Commun. Math. Phys.102,
59 ~1985!.

61J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett.39, 95
18440
.

~1977!; Phys. Rev. B21, 3976~1980!.
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