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Critical behavior of two-dimensional frustrated spin models with noncollinear order

Pasquale Calabrese and Pietro Parruccifif
IScuola Normale Superiore and INFN, Piazza dei Cavalieri 7, 1-56126 Pisa, Italy
ZDipartimento di Fisica dell’'Universitadi Pisa and INFN, Via Buonarroti 2, I-56127 Pisa, Italy
(Received 4 June 2001; published 17 October 2001

We study the critical behavior of frustrated spin models with noncollinear order in two dimensions, includ-
ing antiferromagnets on a triangular lattice and fully frustrated antiferromagnets. For this purpose we consider
the correspondin@®(N) X O(2) Landau-Ginzburg-WilsofLGW) Hamiltonian and compute the field-theoretic
expansion to four loops and determine its large-order behavior. We show the existence of a stable fixed point
for the physically relevant cases of two- and three-component spin models. We also give a prediction for the
critical exponenty which is »=0.24(6) andp=0.29(5) forN=3 and 2, respectively.
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[. INTRODUCTION the statistical properties of a superconducting Josephson
junction in a transverse magnetic field.

The critical behavior of frustrated spin systems with non- Field theoretical(FT) studies of systems with noncol-
collinear or canted order has been the object of intensivéinear order are based on the )X O(M) symmetric
theoretical and experimental studies. An important and deHamiltoniart-3
bated issue is the nature of the universality of the phase
transition(see, e.g., Refs. 1 and 2 for reviews on this issue in gl 2 o 1 at
the three-dimensional case H‘f d"x 52;4 [(0uba) +r¢a]+mu0 ; ba

In physical magnets, noncollinear order is due to frustra-
tion that may arise either because of the special geometry of 1
the lattice, or from the competition of different kinds of in- + ﬂvog [(¢a bp)?— ¢§¢ﬁ]]- ()
teractions. Typical examples of systems of the first type are '
two-dimensional triangular antiferromagng&FT), where  where ¢, (1<=a<M) are M sets ofN-component vectors.
magnetic ions are located at each site of a two-dimensionale will consider the cas& =2, that, forvy>0, describes
triangular lattice. At the chiral transition, they can be de-frustrated systems with noncollinear ordering such as AFT’s.
scribed by using short-ranged Hamiltonians for Negative values of, correspond to simple ferromagnetic or
N-component spin variables defined on a triangular lattice aantiferromagnetic ordering, and to magnets with sinusoidal

spin structures.The same LGW Hamiltonian has also been
. used in other problems such as that of the phase transition of
Hapr=—3 Si°S;, (1) the dipole-locked A phase of helium thrée.
w Even if the critical behavior of the noncollinear two-
dimensionalXY frustrated systems has been the subject of

whereJ<0 and the sum is over nearest-neighbor pairs. . . : )
J P many recent theoretical and experimentstudies, there is

In these spin systems the Hamiltonian is minimized by

noncollinear configurations, showing a 120° spin structure.s'tIII no definite conclusion about the nature of the phase

Frustration is partially released by mutual spin canting, and[[]ans't'onsd tf|1at oceurin ﬂ:\?vsi T()j/séems. It ctan be sk(;om;ntthat
the degeneracy of the ground state is limited to globalO( €S€ MOUEIS possess a twolod degenerate ground state ac-

spin rotations and reflections. As a consequence, at criticalit ording to th? ch|ral_degeneraﬁﬁ;_ch[rallty IS '”Vaf'a”‘ un-
there is a breakdown of the symmetry from N)(in the er global spin rotatiols O(2), while it changes sign under

high-temperature phase to {2) in the low-temperature global spin reflectionz,. T_his situation Ieadsf to having an
phase, implying a matrixlike order parameter. Frustration dué’rder parameter spadeefined as a topological space iso-

to interactions may be realized in the frustra¥d model on morphic to the set of ordered stallesv=2,% $,=7,
a square lattice, governed by the Hamiltonian: X S0O(2) different from the one of the normalY model.

Monte Carlo simulations performed using the AFT
model/8® the FIXY model®® or other related models
Heyy=—J>, oS 60— 0;—Aj), (2)  (some exotic realizations of the frustraté’ model are the
a Coulomb gas with half integer chard®?®® the coupled
A XY-Ising modeP'~23 the 19-vertex versiofi*?° the frus-
where¢; is the angle of; with a datum directionA;; is the  trated XY model with zig-zag coupling® the frustrated
quenched vector potential, and the sum is over nearestodel with next-nearest-neighbor interactféri® and the
neighbor pairs. The frustration is determined by the sum oXXZ modef°~3!for particular values of certain parameters
A;; around a plaquette: in the fully frustrated case XMy  have partially clarified the nature of the transition. A strongly
this sum is equal tar. The large number of studies on this debated question is whether there is only one critical tem-
Hamiltonian is mainly motivated by the fact that it describesperatureT ., in which both theSQ(2) and theZ, symmetries
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TABLE I. Monte Carlo results for frustratedY system.n° is
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superconformal field theory with central charge 3/2, but

the number of transitions observed in the simulation. When twogl|so this issue is not fully understood.
transitions are detected the subscripts 1 and 2 are related to the first The critical behavior of the Heisenberg frustrated antifer-

and to the second one. Where different exponents are reported Wgmagnet is clearer; many experimeniagree with theoret-
use scaling laws to obtain and 7.

Model (Ref) n° Exponents

FFXY® a=0

AFT’ 1 B=0.1233),y=1.73(5)

AFT® 2 a,;=0,7,=1/4

AFT® 2 v1=0.9(2),7,=0.24(11)

FRX Y 2 v,=0.8943),7,=0.216,
0,=0.30697,=0.1915

FRX Y4 2 vi=1

CcGY 1

cG*® 2 v1=0.845),7,=0.26(4)

XY Ising?? 1 v=0.82,7=0.35

XY Ising?? 1 »=0.84,7=0.30

FRX Y3 1 »=0.8Q4),7=0.38(3)

FRX Y0 1 »=0.853),7=0.31(3)

FFXY trt® 1 v=0.834),7=0.28(4)

FRXYY? 1 »=0.8542),7=0.20(1)

FFXY tr'6 2 v1=0.831),%7,=0.25(2)

XXZ%° 2 consistent with Ising

FFX Y18 1

FRX Y2 1 c=1.664), v~1, =0.40(4)

FXY z2% (p=15) 1 »=0.8Q1),7=0.29(2)

FXY z25 (p=0.7) 1 »=0.792),7=0.32(4)

ical predictions based on topological consideratiths®
Monte Carlo simulationd?3®37=40-3%he application of ap-
propriateNLo models*~*° and by the use of ER&. The
order parameter space of this model is the group of 3D rota-
tions, in factO(3)/Z,=SO(3)=P5.3* Homotopy analysis
shows that the system bears a topological stable point defect
(m1[SO(3)]=2Z,; see, for an exhaustive discussion, Refs. 34
and ) characterized by a two valued topological quantum
number and exhibits a phase transition driven by the disso-
ciation of the vortices. This analysis suggests the occurrence
of a KT phase transition mediated By vortices(while the
standard KT transition foXY unfrustrated ferromagnet bears

Z vorticed”¥: this observation strongly suggests that the
frustrated noncollinear magnets might exhibit a novel phase
transition, possibly belonging to a new universality ci¥ss.
strong difference between the standard KT transition and the
frustrated Heisenberg model is that the last one presents a
mass gap also in the low temperature phdséMonte Carlo
simulations seem to confirm this scenario with the occur-
rence of a novel phase transitidh'®*° although some
authors®°think that it is a standard KT transition.

The NLo model is not able to describe a defect mediated
transition?® in fact the perturbativg function that we obtain
from aNLo model for a system which in the high tempera-
ture phase has a symmetry described by the g@w@nd in
the low temperature phase has the symmetriy aubgroup
of G, depends only on the local structure of the caSét.

are simultaneously broken, or there are two successive phaser the AFT model the order parameter spa&&)(3)] is

transitions at critical temperaturégq ;) andez. In the case

locally isomorphic to the order parameter space ofG{d)

of two transitions, even the order in which they occur and the/&Ctor modetthe four-dimensional sphef), but these two
numerical values of the critical exponents are very controSPaces have different first homotopy groups:

versial (in many paperé"?°it is claimed that the higher
temperature transition is a standard Ising JorEhe main

m(SO3)=2Z,, my(S})=0.

problem is that, if two transitions exist, they have very close )
critical temperatures and a precise detection of them by O this reason the AFT model and thg4) vector model

Monte Carlo simulation is very difficult, in fact all the au-

have the samg function® even if topological excitations

thors that observe a single transition do not exclude the podake to a different energy spectra. When these excitations are

sibility of two very close one$e.g., a recent upper limit for
the difference of the critical temperatures AST~5x 10°

activated, theNLo model approach leads to wrong predic-
tions. Instead the perturbatiy®function of the LGW model

(Ref. 18]. We summarize all Monte Carlo results in Table | depends only on the representationGand could be sensi-
while in Table Il we report the results of other kinds of tive to the topological degrees of freedom. Let us emphasize

works. At last we want to mention that in some stutfiés
has been argued that the ¥ model is equivalent to a

TABLE Il. Other results for frustrateXY systems.

Model (Ref) Method

n° Exponents

FFX Y pos. space RG
192 transfer matrix
19 transfer matrix

that there is no general consensus on the effectiveness of the
perturbative treatment of the LGW model with these topo-
logical degrees of freedom. We can only mention the fact
that the estimate fog* (the critical four point renormalized
coupling obtained in Ref. 49 for th&Y unfrustrated model
from the five-loop perturbative expansion directly in two di-
mensions, and the resummation of the same observable in

2 first nonconsistent with Ising the framework of thes expansion at the ordes® (Refs. 50

second consistent with KT
1 =0.282),»=0.81(3)

c=1.55(3)

1 7=0.261),

»=1.0(1) c=1.50(5)

and 51 are in perfect agreement with all the other results of
nonperturbative method$.

The LGW Hamiltonian(3) has been extensively studied
in the framework ofe=4—d expansiort;>>3%in the 1N
expansior;>** and at fixed dimension= 3% The exis-
tence and the stability properties of the fixed points depend
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on the numbeN and on the spatial dimensionalitgee, for The fixed points of the model are defined by the common
an exhaustive discussion, Refs. 1 andl@ the e expansion, zeros of theg functions,

for sufficiently large values of, there are four fixed points:

the Gaussian one, tl@(2N) (v =0) one, and two new fixed u

points situated in the regiom,v>0, called chiral and anti- Bu(uw)=m—ty byr Bu(Up)=m——i ., (8)
chiral. In fixed dimensiord=3, for the physically relevant to-Yo

cases ofN=2,3" the six-loop perturbative analysis Shows \hile the stability properties of these points are determined
the existence of the four fixed points cited above, of whichyy the eigenvalues; of the matrixQ:

the chiral is the stable one.

In this paper we present a field—theore_tic stu_dy based on By(u,v)  3By(u,v)
an expansion performed directly in two dimensions, as pro- U o0
posed for theD(N) models by Parisi’ 0= _ 9)
The paper is organized as follows. In Sec. Il we derive the Ipy(u,v) 9B, (u,v)
perturbative series for the renormalization-group functions at au )
four loops and discuss the singularities of the Borel trans-
form. The results of the analysis are presented in Sec. II1. I fixed point with two positive eigenvalues is stalgtetally
Sec. IV we draw our conclusions and we discuss some futurattractive, and it determines the behavior of the system at
and unsolved issues. criticality. The eigenvalues; are connected to the leading

scaling corrections, which go ag “i~|t|* where A;
II. THE FIXED DIMENSION PERTURBATIVE EXPANSION =va;, With few exceptions as the wo dimensional Ising
IN TWO DIMENSIONS model (see for a discussion Ref. b9

The RG functionsy,, and ; are defined in the usual way:
A. Renormalization of the theory

The fixed-dimension field-theoretical approachepre- 74(U,0)= dinZ, =B dln Z¢+ JInZy (10)
sents an effective procedure in the study of the critical prop- AN dlnm o Y au ' gv
erties in the symmetric phase of systems belonging to the oo
O(N) universality clasgsee, e.g., Ref. 58So the idea is to JInz, aInz, JInz,
extend this procedure to frustrated models where there are 7i(U,v)= =B, + B, . (1)
two ¢* couplings with different symmet’?°® One performs ginmf, .. ou v

an expansion in powers of appropriately defined zero-

momentum quartic couplings and renormalizes the theory by These functions are related to the critical exponents that
a set of zero-momentum conditions for tfene-particle ir- can be obtained using the scaling laws in the following way:
reducible two-point and four-point correlation functions:

~ 7= n4(U*,v*), (12
T &0i(P) = 821512 ' [M?+p?+O(p*)], (4)
v=[2— n4(u*,v*)+ g (u* v*)] 74, (13)
@ (0)=Z52m = Sa b ecai+ > Cai b 5)
ai,bj,ck,dl ) 3 ai,bj,ck,dl 6 ai,bj,ck.dl |» y= V(Z— 77), (14)
where 8, j= dap6j; and where U*,v*) is the position of the stable fixed point.

Sai bj,ck,dl = ai bjOck,dl T Pai,ckj,di T Sai,di %bj,ck» B. The four loop series

Cai bj.ckdi= Fabdcd( Sik &)1 + i Sjk) + Sacdpd( i O+ 61 Ojk) In this section we report our results on the perturbative
expansion of the RG function®), (10), and(11) up to four
+ 8adduc( Gij Sk T Sk Bji1) — 24 bjckdl (6) loops. The results are reported in terms of the rescaled cou-
The above relations allow to relate the second—momen[i)llngs
massm, and the zero-momentum quartic couplingandv ) . 87 _
to the corresponding bare parametersiy, andv, of the UE?RZNU, UE?RZNU, (15

Hamiltonian(3).

In addition one introduces a renormalization condition foryyhere R, = 9/(8+ N). We use these rescaled couplings, dif-
I3, the one-particle irreducible two-point function with an ferent from the usual ond because they have finite fixed
insertion of the operato} ¢*: point values in the limitN—os.

The series are

PGE(0)= 62020 " (7)
From the perturbative knowledge of the functidig), I'*), B Ut i+ 1-N o — 1-N 22+ S bWyl
andT'*? one can determine the RG functions as series of " " (4+N) (8+2N)" =3 ’
the two couplingsu andv. (16)
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TABLE III. Coefficientsb{}” of the four-loop expansion o,

ij Ry\ b
3,0 —0.5231830% 0.35762725|— 0.0567078K?
2,1 +0.27622342 0.20716756!+ 0.0690558512
1,2 +0.24421156-0.1831586R —0.0610528K?
0,3 —0.06173989 0.0463049R+ 0.0154349K?
4,0 +0.6393861# 0.523576108!+ 0.1153202612+ 0.0060969K 3
31 +0.52972245- 0.34404956! — 0.1723623R12— 0.0133105K°3
2,2 —0.60971053 0.404455381+ 0.1920482K%+0.01320688!°
1,3 +0.25988019-0.1809102K — 0.07546994K/%— 0.0034999KI®
0,4 —0.0252385% 0.02158825!+ 0.0043151612— 0.00066484(3
5,0 —1.02844874- 0.96463436|— 0.2742627K?%— 0.02444185!°— 0.0000240729*
4,1 —1.1673346% 0.63874480!+ 0.4696069M%+ 0.0590344N°3— 0.000051542418*
3,2 +1.57188708-0.87883974—0.619135181°— 0.074188843+ 0.000276684R*
2,3 —0.91454905- 0.5328209# + 0.3451768512+ 0.03698168!° — 0.00043036R 4
1,4 +0.21807034 0.139875906! — 0.07359806!2— 0.00492708!°+ 0.000330709”*
0,5 —0.02243288-0.01659580! + 0.00620543812— 0.0002619638°— 0.0001063928*
_ — —6+N—, 6 2 (0 ForN=M =2 one can transform the Hamiltoni&B) into
=—y+ + uv + b’ ’u'v!, i i i
By=-v G+ T aeNie T A, P two independenkY models via the transformation
1
@7 biim b1~ b2, 1t by
11— = 12—~ =
1.834171+N)—, 1.834171-N) V2 V2
= u u
767 (8+2N)2 (8+2N)Z ¢ o o
1.375631—N) o b1~ d1o . bt b1a (21)
. — — _ 21— = 22— =
- 2+ > ePul, (19 V2 V2

@+2N)77 T ifs _ N o
and with the conditiorvy=—2uy. One can easily verify

2(1+N)— (1-N)— 13.502%1+N)_. that, callingxg=ug—uvo/2 the new bare coupling, the RG

—— _ 112 7 s .
7t @+N) u (4+N)U+ (8+2N)2 u function By reduce to the one of th&Y model:
_ 5. _ _ 5_ _
13.50251—N)w_ 10.12691—-N)—, Bx‘=gﬁm(§x,—§><)—— (3%, — £x). (22)
(8+2N)? (8+2N)
. In the limit N—<« the RG functions reduce to
+ > elui], (19)
i+j=3 _ 1
BU=—u+u2—uv+§v2, (23
where
— v
Bi-oRolfu, BereRalf. (20 pe= _j o 3 ’ 2
u 167 2N MFu» V167 2N Fv
The coefficientd(”, b, el ande}’ are reported in the 74=0, (29)
Tables Ill, IV, and V. Note that due to the rescalif®y), the _
matrix element o) are two times the derivative ¢ with m=—2utv. (26)
respect tau andv. _ The zeros of the twg3 functions are reported in Fig. 1.
We have. verified the exactness of our series by the folThere are four fixed points: the Gaussian @fg&) that is
lowing relations. _ unstable withw,=w,=—2, theO(2N) symmetric one that
For N=1 the functionsf,, 7,, and », reproduce the s unstable in the> direction withw;=—w,=2, the chiral
corresponding functions of the stand&®§2) model. one that is the only stable with corrections to the scaling

For v=0, the functionsﬁJEO), 7/¢(U,O), and m(U,O) given by w1=w,=2 and the antichiral fixed point that is
reproduce the corresponding functions of theunstable with the same eigenvalues of fhematrix of the
O(2N)-symmetric modef® O(2N) one. We note that the region of attraction of the chi-
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TABLE IV. Coefficientsb{") of the four-loop expansion o, .

i,j szl\i‘*ibi(jv)

2,1 —1.01710219-0.3823232R— 0.0320119RI2

1,2 +0.76100686-0.17012368— 0.00503202R2

0,3 —0.17561980- 0.00823505! + 0.0130350012

3,1 +1.4980998- 0.66351375!+ 0.063314 182 —0.0022332648°

2,2 —1.49031358 0.5214055N — 0.0123963982+ 0.006202596/°

1,3 +0.59692704 0.15592618 — 0.00694400K1% — 0.00215440BI°

0,4 —0.07062074 0.00996808!+ 0.00014437M2— 0.000444350)°3

4,1 —2.80757448 1.4313229K — 0.1961684812— 0.004346588/°— 0.0002234498*
3,2 +3.39501758 1.49420848+ 0.1324915512— 0.00452305K 3+ 0.0006 73734294
2,3 —1.948104% 0.78279460l — 0.05338075/2+0.00230384M°— 0.00070912608*
1,4 +0.50147548- 0.1876220K + 0.0155481812+ 0.0011910281% 4 0.0002987008*
0,5 —0.04975526-0.01162418— 0.0001865082— 0.000278728I1°— 0.000045297386*

ral fixed point is not all the {,v) plane but only the region lution (instanton of the classical field equations with nega-
With U>0 andz=o/u<2: if the system is located out of this tVe coupling®***Instead the coefficierti depends on which

region it undergoes first order phase transition. The criticaf‘;r(?\len’S f#nctLonfis co_nsm:idered. be Borel bl |
indices of the Gaussian and antichiral fixed points are meaq hote that the ”nCt'IO . _(g) c?nh eB orel sumrpa € Omr/]
field (i.e., =0 and»,=0), while theO(2N) and the chiral ' there are no singularities of the Borel transform on the

fixed point have nontrivial exponents given 0 and positiye real axis..
P pas it is already known frpom Iargﬂgexpanbszgr} This This resummation procedure has worked successfully for
izt anc;ther check of exactness of the series ' the O(N) symmetric theory, for which accurate estimates for

the critical exponents and other physical quantities have been
obtained.
For this reason, the idea is to extend the resummation
The field theoretic perturbative expansion generate@rocedure cited above to the frustrated model, as it has been
asymptotic series that must be resummed to extract thdone for the three-dimensional caSesonsidering a double
physical information about the critical behavior of the realexpansion iru andv at fixedz=v/u, and studying the large
systems. _ order behavio(following the same procedure used in Refs.
Exploiting the property that these series are Borel SUM%4 and 56 of the new expansion in powers ofto calculate

4 . . . .
mable for¢™ theories In two and th'ree dlmgnsm‘?‘?s;ne can  the singularity of the Borel transform closest to the origin
resum these perturbative expressions using a Borel transfor- The results are

mation combined with a method for the analytical extensionb
of the Borel transform. If the domain of analyticity of the

C. Resummations of the series

Borel transform is known, one can perform a mapping which — =—aR,, for 0<z<4,

maps the domain of analyticitigut at the instanton singular- Up

ity) g, onto a circle, in order to have the maximal analyticity.

In the case of theO(N) symmetric model, letF(g) 1

=3 f,g" be any Borel summable function, whose expansion ==—aRy|1- EZ) for z<0, z>4, (29
in series has to be resummed; exploiting the knowledge of Uo

the large order behavior of the coefficier{s(Ref. 58 wherea=0.23865927 . .. .

_ . We find that forz>2 there is a singularity on the real
~k! (—a)kkP 1 =— p . : .

fi=kl (=a)"k[1+0(k™ )] with a gy (27) positive axis which however is not the closest one to the

(a large order behavior related to the singulagty of the  origin for z<4. Thus, forz>2 the series are not Borel sum-

Borel transform closest to the origimne can perform the mable.

following mapping* An important issue in the fixed dimension approach to
critical phenomena concerns the analytic properties ofthe
v1—-g/gp,—1 functions. As shown in Ref. 59 for th©®(N) model, the
y(9)= m (28 presence of confluent singularities in the zero of the pertur-

bative 8 function causes a slow convergence of the resum-
to extend the Borel transform &f(g) to all positive values mation of the perturbative series to the correct fixed point
of g. The singularityg,, depends only on the considered value. TheO(N) two-dimensional field-theory estimates of
model and can be obtained from a steepest-descent calculahysical quantiti€d*° are less accurate than the ones of the
tion in which the relevant saddle point is a finite-energy so-three-dimensional case, due to the stronger nonanalyticities
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TABLE V. Coefficientse(”) ande{’ of the four-loop expansion of; and 7.

i,j RE’i‘*iei(j¢)

3,0 —0.00119855-0.00149818— 0.00029963[K°

2,1 —0.00179782- 0.0013483K + 0.0004494582

1,2 +0.00179782 0.0015730N— 0.00022472R2

0,3 —0.000599275-0.000636728 — 0.000037454N2

4,0 40.00633062-0.00891668!+0.0024730M2—0.0001130183
3,1 +0.01266124-0.00748918/—0.005398142+ 0.000226025!°
2,2 —0.0154965% 0.0096768R+ 0.005989201°— 0.0001695181°
1,3 +0.00722529-0.00531518— 0.0019666 N2+ 0.000056506[8 2
0,4 —0.00105507% 0.00116598 — 0.0000897298%— 0.0000211898°
] Ron ‘el

3,0 —0.13266188-0.17878908/— 0.0461272N2

2,1 —0.1989928% 0.12980200! + 0.0691908 N2

1,2 +0.1773899% 0.13415335— 0.04323656°

0,3 —0.05120896- 0.04833365!+ 0.002875251°

4.0 +0.17299878-0.25743030! + 0.0851428K1%2+ 0.0007113281°
3,1 +0.34599757 0.17713458!— 0.1674403812— 0.00142265(°
2,2 —0.39410819-0.21062748!+0.1824137R12+ 0.00106698(°
1,3 +0.16999405-0.10189908! — 0.0686923 N2+ 0.00059734813
0,4 —0.02028992-0.01767450!+ 0.00343506!2— 0.00081963813

at the fixed point®®>%° |n Ref. 59 it is shown that the where
nonanalytic terms cause a large deviation in the estimate of
the right correction to the scaling, i.e., the exponentin-

stead the result for the fixed point value is a rather good (x:2)= V1=x/uy(z)—1 (32
approximation of the correct orf¢ghe systematic error is al- yos Vi—xlup(z)+1

ways less than 10%We think that this scenario holds also

for frustrated models. The coefficientB, are determined by the condition that the

IIl. EOUR-LOOP EXPANSION ANALYSIS exgaﬂsion ofE(R)p(a,b;u,v) in powers ofu andv gives
) R(u,v) to orderp.
A. The analysis method In order to find the fixed points of the theory we compute

The analysis of the four-loop series is performed follow-the serie31), with R= 3;, for many values ot andb (and
ing the procedure used in Ref. 56: we exploit the knowledgédor several values ofl), obtaining many different estimates
of the va_lu.e of the singulari'ty of the Bprel transform closestq¢ theﬁfunctions in all the planeEv_). We note that for
to the origin(a value given in the previous sectiomnd we >3 the estimates strongly oscillates with varyingFor
generate a set of approximants to our asymptotic series, varysis reason we choose to keefin the range & a<2. Then
ing the two parameters andb. we look for the values ob, at fixed &, which make the

I series, at small values ofandv (i.e.,u,v=1), more stable

_ _ while varying the ordemp. We realize that all values db
R(U’U):gfo hZfO R0, (30 petween 0 and 20 give reasonable estimates ofttienc-
_ tions. For the estimates of the functions for larger valuas of
is our asymptotic expression for one of the functigher 7, andv we take the approximants in this rangeandb.

then our approximants can be written as At the end of this exploratory analysis, the strategy to
p obtain reasonable values and error bars for the fixed points,
E(R)p(a,b;u,v)= 2, By(a,b;v/u) is to divide the domain &u<4, 0<v <6 in 40 rectangles,
k=0 then to take 18 different approximants withb

" y(ut:oiu) =5,7,9,11,13,15 and=0,1,2 for thep functions, and to
X fo dttPe ' —————— mark all the sites in which at least two approximants ggr

[1=y(utv/u)] and B, vanish. This procedure is applied to the three-loop
(31 and four-loop series.
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v We apply the procedure illustrated above forequal to
3 32, 16, 8, 6, and 4the choice of these particular valueshbf
will be clear in the following. The results for the zeros of

the B functions, obtained from the analysis of three and four-
, loop series are reported in Figs. 2, 3, 4, 5, and 6. The nu-
/ m merical estimates of the common zeros of {88 are in

/ Table VII.

/ For N= 32 the presence of the four fixed points predicted
/ / by the 1N analysis is clear. From Fig. 2 emerges a new

1.5 / / characteristic ofg,: the appearance of a second branch of
/ zeros in the region of upper valueswfThis second branch
exists only for the four-loop series, as in the three-
dimensional cas® but it is present for almost all the con-
/ sidered approximants. Fdi= 32 this upper branch has no
/ particular importance, but it will become fundamental for
1/ lower values oflN.
I/ The evaluation of th€) matrix shows that the chiral fixed
point is stable with corrections to scaling given ly;
0.5 1.5 2 =2.2(2) andw,=1.7(2). Theantichiral fixed point is un-
stable with crossover exponents;=1.7(2) and w,=
—1.3(2). We use a large set approximantgall those used

for theE’s) to take into account the strong effect of nonana-
Iyticities. In this way we have a big error with respect to the

. . one obtained by using only stability criteria, but our esti-
We adopt this method also for the valueszdor which .o oo very close to the correct valugs- w,=2.

the series are not Borel summable. It should provide a rea- "=\ — 16 the four fixed points of the i/ expansion

sonable estimate <4, because we take into account the —
appear but the curve of zeros 8§ cross the upper branch of

leading large order behavior.

the zeros ofBy in the point[0.4(2),5.0(3). We call this
new fixed point antichiral Il fixed point. We cannot exclude
the possibility that this fixed point is a humerical artifact of

To begin with, we present the results related to the instathe resummation procedure since it belongs to the region

bility of the O(2N) fixed point. An accurate estimate of its with z>4, i.e., the region in which the singularity of the
location already exists from the PaBerel analysis of the Borel transform closest to the origin is on the positive real
five-loop series of Ref. 49. In Table VI we report our esti- axis. This problem is not so relevant because this fixed point
mates for is found to be unstable and it does not influence the critical

behavior of the system. Figure 4 shows that the shape of the

zeros of theB functions forN=8 is similar to the one of
N=16. The stability properties being the same for these two
cases we conclude that the critical behavior should be the

WhereU&ZN) is the fixed point value obtained in Ref. 49, Same for all values o between 8 and 16.

The missingU® values are computed by the standard ForN=6 the two antichiral fixed points seem to coalesce,
NgUo(an) P y but probably this is a consequence of the large error bar of
resummation procedure of Ref. 61. These results clearl

show that this fixed point is always unstable. %ﬁese zgros. To §olve this problem it is neces;ary to know the
B functions at higher order. However, one eigenvalue of the
_ stability matrix, in all this wide zone, is always negative, so
C. Large N analysis (N=4) this problem does not influence our understanding of the
We begin our analysis of the four loop series from laxge critical properties of the model. The chiral fixed point is
values, because all these systems are free of topological dalways the only stable one, nevertheless the estimates of the
fects and they are well described by appropridtes mod- ~ corrections to scaling are now quite different from the exact
els. In fact, being the order parameter spate ones, in fact we obtaiw,=2.4(6) andw,=0.8(4) instead
=0O(N)/O(N—2), the first homotopy group isr;(V)=0  0Of w1=w,=2. This is probably due to the nonanalytic terms
for all N=4 [this is a consequence of a simple theorem ofthat, as shown in Ref. 59, have larger effects whene-
differential geometry, for which ther;(G/H)=0 if His a  Creases.
continuous subgroup of a Lie groWp]. We expect that, for In the case oN=4 (see Fig. 6, the exact number of the
these values df, the chiral fixed point exists and it is stable fixed points is not known and it is not clear if they are lo-
with critical indices and corrections to the scaling equal tocated on the upper or on the lower branch of zerogpf
the ones found foN=x. (See Sec. I B. From our homotopy analysis, we expect that this model is

FIG. 1. Zeros of theﬁfunctions forN=c in the (Uv_)

B. Instability of the symmetric fixed point

w,=2— |- =01
v P |u—u’(‘)(2N),u—0
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TABLE VI. Crossover exponend, at theO(2N) fixed point.

N Ud(2n) @

2 1.702) —0.364)

3 1.621) -0.7(2)

4 1.521) -0.92)

6 1.40713) -1.22) FIG. 2. Zeros of the3 functions forN=32 in the (U,v) plane.
8 1.3133) -1.31) Pluses @) and crossesX) correspond to zeros g8;(u,v) and
16 1.17@2) —1.704) Ba(u,v), respectively.

<

connected withN= and as a consequence the stable zero 31
should be on the lower branch @;. Reasonable estimates
of fixed points are not feasible from Fig. 6. Anyway, if we

mark the sites in which at least 3, 4, etc. approximants for the
B’s vanish, we find two distinct regions located near 2

andu~1. The existence of at least two fixed points is clear,
but their estimate is not possible.

Having establlshe_:d the existence of a stable flxed_ pomtpIuses ¢) and crossesX) correspond to zeros GB.(U.0) and
we compute the critical exponents from the perturbative se—"—— ) v
ries reported in the previous section. We consider a larg&u(U:v). respectively.
number of approximants varying and b in the range 0
<a<5 and 6=sb=30 and we choose for the final estimates
the ones more stable varying the number of loops. Variing
we find that the exponeny takes small valuege.g., 7
=0.040(2) forN=32 and%=0.11(4) forN=_8] which are
close to the ones found for th@(N) models forN=3, but
different from the exact one=0, expected for asymptotic
free theory. We think that these erroneous predictionsaredue ~ 1 2 3 4

L PN WSO

S B S

FIG. 3. Zeros of the(?functions forN=16 in the (lTv_) plane.

31

l—‘l\)bJ.bU‘lO\<

to nonanalytic terms ofy(u,v) at (u*,v*), as for theO(N — —
models Y f(u.v) at (™, v%), (N) FIG. 4. Zeros of theg functions forN=8 in the (u,v) plane.

_ Pluses () and crossesX) correspond to zeros g8,(u,v) and
D. Frustrated Heisenberg model - —— .
Bu(u,v), respectively.

The zeros of theg functions forN=3 are reported in Fig.
7. It is apparent that the chiral fixed point is located on the

upper branch of zeros g8, so this value olN is not con-
nected withN=c. For this reason the exponentcould be
different from zero. We have already stressed the strong evi-
dence for a topological phase transition for this frustrated
system and so the physical reason for this nontrivial expo-
nent is clear.

The standard structure involving only four common zeros . L
of the B functions is restored since we find only one anti- FIG. 5. Zeros of the3 functions forN=6 in the (u,v) plane.

chiral fixed point. The chiral fixed point is located at Pluses () and crossesX) correspond to zeros g8,(u,v) and
Bu(u,v), respectively.

u*=2.33), v*=3.905). (33

TABLE VII. Fixed points forN>4.

N Chiral fixed point Antichiral fixed point
(u*,v*) (u*,0*)
32 [2.155), 2.188)] [1.055), 2.2515)]
16 [2.2(1), 2.4015)] [1.0515), 2.488)] _ _
8 [2.31), 2.7015)] [1.1525), 3.0822)] FIG. 6. Zeros of the3 functions forN=4 in thejj,v_)_plane.
6 [2.22), 3.3922)] [1.2(3), >3.6] Pluses () and crossesX) correspond to zeros q#,(u,v) and

Bu(u,v), respectively.
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FIG. 7. Zeros of the functions forN=3 in the (u,v) plane. FIG. 8. Zeros of theg functions forN=2 in the (u,v) plane.
Pluses ) and crossesX) correspond to zeros ¢8,(u,v) and  Pluses () and crosses) correspond to zeros ¢8,(u,v) and
Bu(u,v), respectively. Bu(u,v), respectively.

The eigenvalueso; vary significantly with the two param- andb as explained above. For the shortness of our perturba-
etersa andb and turn out to be complex in several cases.tive series the results obtained are quite unstable to present a
Reasonable estimates of are not feasible, nonetheless the reasonable estimate, anyway we find that one of the two
sign of their real part is positive for the majority of the ap- eigenvalues calculated at the antichiral fixed point is always
proximants. negative, while for the chiral one the majority of the results
The critical behavior of this topological phase transition isare in agreement with its stability.
expected to be of the KT type, i.e., the correlation length and The evaluation of the critical exponent at the chiral
the susceptibility diverge, fort>0 according to the fixed point gives
asymptotic law: 7=0.295). 37)
g~ebt’ x~E, (34 This value is consistent with many Monte Carlo reported in
Table I. We note that this estimate is substantially higher than
.146 obtained by the PadBorel analysis of five-loop series
for the one-component* theory*® We cannot give a reason-
For the O(2) unfrustrated model Kosterlitz and able value for the exponenvtbecause of the big oscillations
observed when varying the two parametersand b. We

Thouless’ have shown thay=1/4 ando=1/2. Exact values hink that longer series could solve this problem and partiall
do not exist for the Heisenberg frustrated model. The resul& . Y . IS P P y
clarify the nature of this phase transition.

of a very recent and accurate Monte Carlo simuldflda

o~0.600% even if the standard KT form of thermodynamic IV. CONCLUSIONS

guantities has been used in the past to fit Monte Carlo data

finding a reasonable agreemént®-3®
Our estimate fory is

where is the standard exponent. This means that we cann
define the conventional exponentsand y since¢ diverges
faster than any power df

In the present paper we have studied the critical behavior
of frustrated spin models with noncollinear order by apply-
ing the field-theoretic renormalization-group technique di-
_ rectly in two dimensions.
7=0.246). 39 We have begun our analysis from large valuedlpgince

Note that this value is consistent with the standard KT scethese systems are free of topological defects, and they are
nario. well described by appropriatéLo models. We have consid-

This value of», which is very different from zero, seems eredN=x, 32, 16, 8, 6, and 4, always finding the presence
to confirm that the LGW model is able to describe a topo-of the chiral and antichiral fixed points. In order to verify the
logical phase transitioff. We have already said in the Intro- stability properties of these fixed points we have evaluated
duction that there is no general consensus on this issue. Whe eigenvalues of the matrf}, which demonstrate the full
think that this nontrivial result is a possible evidence in favorstability of the chiral fixed point. We have also shown the

of this thesis. nonstability of theO(2N) fixed point forN=2, computing
E. Frustrated XY model the crossover exponent, .
As discussed in the Introduction, the frustraked model Then we have focused our attention on the frustrat&d

breaks two symmetries. If there are two transitions we argnodel (N=2) and on the Heisenberg mod& € 3), which
only able to describe the one that occurs at higher temperare expected to undergo continuous phase transitions that
ture, since we explore the critical properties of the model incannot be described by the useMEo models.

the high temperature phase. o For theXY model we have found the presence of a stable
Figure 8 shows the zeros of th# functions. The chiral fixed point located irf2.3(2),5.0(5], in which the critical
fixed point is located at exponenty takes the value 0.29).
— - Even in the case of the frustrated Heisenberg model, we
u*=2.32), v*=5.05). (36) have found the existence of a stable fixed point in

In the region that is not shown &6) we find another fixed [2.3(3),3.9(5). We have evaluated the critical exponent
point that can be identified with the antichiral. =0.24(6). This nontrivial result confirms the validity of the
To describe the critical behavior of these systems we haveGW approach in describing defect mediated transitions.
studied the stability of these two fixed points, evaluating the The issue of the universality class of these systems may
eigenvalues of th€) matrix defined in Eq(9) and varyinga be clarified by the computation of the universal quantities
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