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Continuous distribution of thermodynamic microprocesses in complex metastable systems

K. Krištiakováand P. Sˇvec
Institute of Physics, Slovak Academy of Sciences, Du´bravskácesta 9, 84228 Bratislava, Slovakia
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An approach to the determination of the number and probability of the occurrence of processes active in
transitions from metastable to a more stable thermodynamic state without postulatinga priori the form of their
distribution is described. This aim is achieved by continous analysis of the phase transition process monitored
via measuring the suitable physical propertyP. The problem of extracting thermodynamic information from the
propertyP, where observed data are linear integral transforms of the quantity to be estimated, is solved as a
Fredholm integral equation with a convoluted kernel of the type that occurs in transformation kinetics. The
result of the analysis of transformation in a metastable system—continuous probability density function of
transformation rates—is shown to provide otherwise inaccessible unique information about thermodynamic
processes, namely, the dependence of activation energies on temperatures. This information is especially
important with respect to the complexity of the structure which is known to influence in an important manner
the kinetics of transformation processes. The approach has been tested on experimental data of model material
~glassy Fe-Co-B! representing a complex metastable structure. The notion of microprocess distributions spa-
tially correlated with the cluster structure of the amorphous state is generalized and discussed from the
viewpoint of dynamic and spatial heterogeneities in complex systems.

DOI: 10.1103/PhysRevB.64.184202 PACS number~s!: 61.20.Lc, 61.43.Dq, 64.60.My, 64.60.Qb
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I. INTRODUCTION

A typical feature of modern materials with complex stru
ture such as metallic glasses or glassy polymers is their m
stable state. Knowledge about the processes controlling
mal and time stability and the rate of transition fro
metastable to a more stable~crystalline! state provides vital
information for detailed determination of thermodynamic
processes and for identification of microstructural proces
taking place during phase transition and structural change
general.

Until now the evaluation of the mechanism of these p
cesses has usually consisted of the determination of a s
value of the activation energy or, in rare cases, of the sp
trum of activation energies with ana priori prescribed dis-
tribution, using a proper kinetic or rate theory. The resu
obtained so far indicate that in general the processes con
ling transformation in metastable systems are neither sim
nor unique; rather, they suggest a distribution reflecting
fundamental physical and thermodynamical properties
these complex structures and the special preparation pr
dures which can by no means be sufficiently described
classical calculations. The relationship between the ther
dynamic state of a complex system~e.g., metallic glass, etc.!
and the role of microstructural processes controlling trans
mation rates is not clear, especially with respect to the m
stability of the initial amorphous state. It is therefore ve
desirable to provide a model-free distribution of process ra
and eventually of activation energies from experimental d
which can then be more reliably coupled to theoretical c
culations and objectively interpreted.

Theoretical calculation of transformation rate coefficie
is a discipline of nonlinear science important for differe
fields of physics, chemistry, engineering, and biology. Th
are many areas which have contributed to the rate theory
a complete enumeration and review see Ref. 1. Among th
0163-1829/2001/64~18!/184202~13!/$20.00 64 1842
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are, e.g., electrical transport, tunneling, including quant
tunneling effects, and especially diffusion processes in so
and in amorphous and disordered materials.2 A detailed com-
parison of experimental data with theoretical models of
action rates, especially with thermally activated rates,
rather difficult because in rate measurements the detailed
behavior is naturally more difficult to extract from measur
transformation data. The analysis of experimental results
transformation rates becomes therefore the most impor
area for further theoretical considerations related to the
ture of the metastable state and the corresponding conc
of the reaction rate theory.

In recent years there have been a number of investigat
dealing with the transition from the metastable state in am
phous alloys using various models for the interpretation
the measured data. Among these are, e.g., adapted m
developed originally for transformations in polycrystallin
solids or rather complicated single-atom diffusion mode
which suppose concentration gradients being established
in the amorphous phase with proceeding transformatio3

The assumption about the concentration gradient, howe
was not verified in the majority of cases.4 In other instances,
the selected fundamental parameters for rates of nuclea
and growth are input, usually as unwarranted constants,
fitting models; for details see Ref. 5. Many other experime
tal results indicate complications in using classical transf
mation theory,6 especially with respect to the anomalo
temperature dependence of the Arrhenius factor in diffus
measurements.

In amorphous metastable metallic systems transforma
processes~relaxation, nucleation, crystallization! are ther-
mally activated and are usually approached through the
tion of the activated state. The complexity of these syste
induces the existence of multiple initial metastable sta
leading in turn to complicated transformation rate behav
with multiple values of the escape energy on the path t
©2001 The American Physical Society02-1
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more stable state. Selected cases of this phenomenon
treated by Primak7 and Gibbset al.8 who assumed that th
activation energies of the processes, which are availabl
contribute to the experimentally observed change in a pr
erty P in the course of the transformation process, are d
tributed over a continuous spectrum with predefined sha
In general case, monitoring of the change in propertyP dur-
ing the transformation process can be used to study the
netics and energetics of this process. It turns out that
volume, electrical resistivity, specific heat, etc., can be ta
as the propertyP.

In the case of amorphous metallic systems the transfor
tion to a less metastable~crystalline! state leads to the for
mation of one single, usually metastable crystalline ph
and its subsequent transformation to a more stable state
place in the crystalline state.9 Such a transformation may b
plausibly described by one single type of reaction witho
invoking the necessity for a concentration gradient and w
the same particle morphology~with constant morphology pa
rameter!. This implies the same transformation micromech
nism throughout the whole transformation stage and does
exclude different initial potentials which are reflected in d
ferent activation energies distributed over the entire ass
bly and lead to a distribution of reaction rates. Furthermo
it has been shown that a random potential ensemble
Arrhenius-type processes, as may be expected in amorp
matter, with suitable energy distribution leads to no
Arrhenius behavior of the process rates.10 This makes analy-
sis of the transformations in amorphous metastable syst
even more complicated.

As a consequence it is supposed that the mechanism
trolling the transformation rates is composed of a spectr
of weighted processes. These processes are probably s
over a wide interval of such thermodynamic parameters
activation energyEa and frequency factorn and involve
structural units with varying sizes which enter into the tra
formation processes or free volumes between interac
structural units. In complex structures such as amorph
alloys the heterogeneity of the local atomic enviroment11 is
expected to generate distributions of different thermo
namic processes.

From a continuous analysis of the time dependence of
experimentally monitored propertyP(t) we shall determine
in a general, model-independent manner the number and
of individual mechanisms and also the probability of occ
rence of these mechanisms in transformation process f
amorphous to crystalline structure. We shall determine
temperature dependence of the activation energies and e
ate the importance of this effect for thermally activated tra
formations such as appearing in metallic glassses. We s
test the developed approach on experimental isothermal
from the transformation of real amorphous Fe-Co-B glas

II. DISTRIBUTIONS OF PROCESSES

In the conventional approach to the analysis of trans
mations from metastable state to a more stable one, the
dependence of selected experimental propertyP(t) reflecting
the proceeding transformation of structure is converted to
18420
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fraction of transformed volume~degree of crystallinity! as a
function of time,x(t). The functionx(t) may be described
by the usual Johnson-Mehl-Avrami equation12

x~ t !512exp@2~l t !n#. ~1!

Here

l5l0 exp~2Ea /RT!, ~2!

with Ea being the activation energy of the ratel of the
process controlling the transformation,l0 is the preexponen-
tial factor closely related to the frequency factorn, andn is
the Avrami parameter reflecting the mechanism of nuclea
and growth.13

In the case of a single process of the Arrhenius type ch
acterized by a single value ofl at fixed T, the activation
energyEa and the Avrami parametern should be constan
throughout the whole reaction and temperature independ

The usual formulas for calculatingEa and n at a fixed
value ofx for different T are based on the determination
the slope of the logarithms of time-to-transition or rate-o
change values versus the inverse temperature and of
double-logarithmic dependence of 1/(12x) versus logarithm
of time, respectively.14

If the entire process of transformation is controlled
several processes which might have different rates, the fu
tion x(t) can be represented as a weighted sum of th
processes,

x~ t !512(
i 51

N

a~l i !exp@2~l i t !
n#, ~3!

whereN is the number of such processes,l i is the rate of the
i th process respecting Eq.~2!, anda(l i) is the normalized
weight of thei th process, the normalization condition bein

(
i 51

N

a~l i !51. ~4!

In complex materials such as metallic glasses the exis
local heterogeneity of the atomic ordering is expected to g
erate distribution of processes, yet without influencing
mechanism of the transformation, leaving the Avrami para
eter n constant. A finite sum of few discrete processes m
generally be quite inadequate to represent the complex
tem. Assuming a continuous distribution of processes c
trolling the transformation, Eq.~3! takes the form of integra

x~ t !512E
0

`

a~l!exp@2~l t !n#dl ~5!

and the normalization condition is

E
0

`

a~l!dl51, ~6!

where for a continuous distribution of processes,lP(0,̀ ),
the quantitya(l) represents the probability density of th
transformation process having the ratel. The fraction of
2-2
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CONTINUOUS DISTRIBUTION OF THERMODYNAMIC . . . PHYSICAL REVIEW B 64 184202
transformation processes~occurrence! with rates betweenl
andl1dl is given bya(l)dl.

A. Fredholm integral equation

From a mathematical point of view the above-describ
problem of transformations controlled by a distribution
processes belongs to the class of ill-posed problems15 which
may be expressed as Fredholm integral equations of the
kind. Equation~5! represented in this form is

x~ t !512E
0

`

s~l!K~l,t !dl, ~7!

where the form of the kernelK(l,t) is known, K(l,t)
5exp@2(l t)n#. For an ideal case whenx(t), the time depen-
dence of the fraction of transformed volume at a fixed te
perature, can be directly determined, the solutions(l) equals
the probability density function of the rates of process
s(l)5a(l).

The analysis of experimental isothermal transformat
data is further complicated by the fact that generally the ti
dependencex(t) is obtained via measuring the selected pro
erty P using a convenient instrumentation which has its o
resolution functionRinstr(t). The two functionsx(t) and
Rinstr(t) are convoluted with each other in the course
measurement. Thus instead ofx(t) rather a functiony(t)
5Rinstr(t)* @12x(t)#, which corresponds to the proper
P(t) with values ranging fromP(t50) to P(t→`) or from
1 to 0 after suitable rescaling, is experimentally obtained
realistic measurements,

y~ t !5Rinstr~ t !* E
0

`

a~l!exp@2~l t !n#dl

5Rinstr~ t !* E
0

`

s~l!K~l,t !dl, ~8!

where* is the operator of convolution.
The determination ofRinstr(t) can be avoided by measu

ing a transformation curvexr(t) of a reference materia
transforming in the reaction of the first order,n51, with a
single known value of the transformation ratel r and the
known weight of the processa r ,

xr~ t !512a r exp~2l r t !, ~9!

which would be obtained under ideal measuring conditio
the value ofa r51 for a suitable choice of the referenc
material. For a real case we measure the functionyr(t) cor-
responding to the selected property of the reference mate
giving

yr~ t !5Rinstr~ t !* @12xr~ t !#. ~10!

The functionsy(t) andyr(t) have the same resolution func
tion Rinstr(t), being measured by the same apparatus un
the same conditions, which is used in solving Eq.~8!. Con-
volution of Eq. ~8! with 12xr(t) from Eq. ~9! eliminates
Rinstr ,

@12xr~ t !#* y~ t !5yr~ t !* @12x~ t !#. ~11!
18420
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Putting Z(t)512x(t) and Zr(t)512xr(t) and solving for
y(t) by using the Laplace transform of the convolution pro
uct we obtain

y~p!5yr~p!Z~p!
1

Zr~p!
, ~12!

where

Zr~p!5
1

p
2xr~p!5a r

1

p1l r
. ~13!

Then

y~p!5A yr~p!Z~p!~p1l r !, ~14!

whereA51/a r . Using the rules about the inverse Lapla
transformations of functions and their derivatives of origin
we can write

y~p!5A@yr~p!p Z~p!1l ryr~p!Z~p!1yr~p!Z~0!

2yr~p!Z~0!# ~15!

and after regrouping

y~p!5A$yr~p!@p Z~p!2Z~0!#1l ryr~p!Z~p!

1yr~p!Z~0!%. ~16!

The inverse Laplace transformation yields

y~ t !5A@yr~ t !* Z8~ t !1yr~ t !* Z~ t !l r1yr~ t !* Z~0!d~ t !#.
~17!

Substituting for Z(0)5*0
`a dl and Z8(t)5

2*0
`a n lntn21 exp@2(l t)n#dl we obtain

y~ t !5AE
0

`

a~l!„yr~ t !1yr~ t !* $l r exp@2~l t !n#

2n lntn21 exp@2~l t !n#%…dl. ~18!

Assigning the kernel

K~l,t !5A„yr~ t !1yr~ t !* $l r exp@2~l t !n#

2n lntn21 exp@2~l t !n#%… ~19!

and performing suitable numerical integration to receive
convolution of yr(t) with the expression (l r
2n lntn21)exp@2(l t)n#, the sought solutions(l)5a(l) of
the Fredholm integral equation~18!, identical to the solution
of Eqs.~7! and ~8!, is obtained.

The conversion of the solution to other representatio
requires a transformation of the integration variable resp
ing the normalization condition, Eq.~6!, because different
probability density functions are not invariant against va
able transformation. Asl varies usually over several de
cades, it is often suitable to represent the rate probab
density function with respect to lnl. The occurrence of
transformation processes with rates between lnl and lnl
1d ln l is la(l) d ln l. Therefore, the rate probability den
sity function normalized against lnl is PDF(lnl)5la(l).
2-3
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B. Application to real transformation processes

In order to solve the system of the above Fredholm lin
integral equations by a numerical method we employe
constrained regularized least-squares method with opt
for peak constraints and linear equality and inequality c
straints. A similar problem has been solved by Provench16

and modified by Gregory and Zhu.17 Their program, known
under the nameCONTIN, is suitable for various physical prob
lems which are described by equations corresponding to
ill-posed problems of the first order,n51.

For our purposes we have developed a highly stableFOR-

TRAN algorithm capable of processing noisy input data. T
program uses a convoluted kernel containing higher-or
exponentials,n>1, of the type which occurs in the analys
of structure transformation data. The program performs
deconvolution and inverse Laplace transformation in a sin
step. The choice of the solution from the deconvolution
based on the principle of parsimony, i.e., the smoothest
lution consistent with the experimental data and prior kno
edge. The program employs a regularizer in the form

S5AS
2E

lmin

lmax
@s9~l!#2dl, ~20!

where AS controls the size of the regularizer and thus t
parsimony of the solution. The solution is computed in s
eral hundred~typically 200! grid points over a suitably
spaced interval^lmin ,lmax& and provides a continuou
transformation rate probability density function PDF(l). The
algorithm reflects also specific conditions given by t
choice of electrical resistivity as the propertyP.

The determination of a known reference functionyr(t)
introduced in order to avoid direct estimation of the inst
ment function has been performed by measuring a sim
experimental decay curve~of the first order! with known
parameters. The instrument resolution functionRinstr(t) was
simulated by the Gaussian function

Rinstr~ t !5
1

sAp
exp@2~ t/s!2#, ~21!

with a full width at half maximum (FWHM)52sAln 2
where s was chosen to provide a narrow Gaussian co
sponding to the integration times of the measuring equ
ment, typically less than 1 s. The known functionsxr(t), e.g.,
discharging of a capacitance standard, have been used t
the validity of the estimation ofRinstr and to provide the
yr(t) data as well as the parametersl r anda r suitable to be
used in the deconvolution algorithm.

We have analyzed the experimental data of the amorph
alloy Fe64Co21B15, which is a model complex system in
metastable state undergoing a transformation to a m
stable, crystalline structure. The evolution of electrical res
tivity R(t,T) in the course of structural transformations us
ally reflects well changes taking place in the structure.
isothermal conditions the electrical resistivityR(t) decreases
in the course of the transition in two distinct steps whi
correspond to the two crystallization reactions, as shown
Fig. 1. Complete information on the crystallization produ
18420
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is given in detail in Ref. 18.
The transformation process of metastable structure s

at the very moment the sample is exposed to the sele
temperature; thus, it is necessary to employ equipment
pable of measuring and recording the transformation dat
close tot50 as possible and at stable enough tempera
since the beginning of measurement. In our case the m
surements start 3 s after the insertion of the sample in th
measuring apparatus and data readings are taken in equ
tant logarithmic time intervals to ensure a sufficient numb
of data points~several thousands! for each isotherm ana
lyzed, yet with high enough accuracy (61 ppm). The mea-
surements span over several time decades, typically fro
to 106 s, allowing one to access a wide interval of transf
mation rates and crystallinity content from zero to compl
crystallization over a range of temperatures of;100 K. The
transition from resistivity-time toy(t) dependences has bee
performed using the serial model of electrical resistivity.19 Its
validity has been checked by the determination of the fr
tion of transformed volume using structure analysis meth
~transmission electron microscopy and x-ray diffracti
analysis! ~Ref. 18! to the degree of accuracy of these me
ods, which, however, is of the order of a few percent. Exc
for an eventual systematic error due to application of
serial model of electrical resistivity, the accuracy of the me
surement of resistivity, time, and temperature and the te
perature stability gives the accuracy of the determination
activation energies better than;1%.

The measured electrical resistivity-time dependences h
been analyzed by the developed algorithm to obtain
transformation rate probability density functions for all s
lected annealing temperatures. The results, i.e., the solu
of ill-posed problems from Eq.~8!, are presented in Fig. 2
The distributions were calculated for different exponentsn in
Eq. ~8!; the best results were obtained for the value of
Avrami parametern54, corresponding to intense nucleatio
and three-dimensional grain growth in both steps of
transformation process.

C. Distribution of activation energies

The classical analysis makes use of the positions of s
eral maxima in PDF(lnl)5l a(l) which may be assumed t

FIG. 1. The experimental time dependences of the isother
electrical resistivityR(t,T), selected as the propertyP, at constant
annealing temperature 650, 660, 670, 680, 690, 700, 710, 720 K
amorphous alloy Fe64Co21B15.
2-4
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correspond to typical transformation rates for different p
cesses controlling the transformation. Selecting the ratel
for these processes at different temperatures and plo
them in an Arrhenius plot one obtains the values of the a
vation energiesEa and the corresponding preexponential fa
tors l0 from Eq. ~2!. The plot with values of the paramete
Ea andl0 for both reaction steps is given in Fig. 3. It can
seen that the plots of lnl(1/T) exhibit practically no devia-
tion from linearity even for a rather broad span of anneal
temperatures.

The distribution of processes as a function of their acti
tion energies, PDF(E), can be obtained by transforming th
process ratesl(T) into activation energiesE by means of
Eq. ~2! and by recalculating PDF(lnl) into PDF(E) using
the normalization condition from Eq.~6! in the form

E
0

`

PDF~E!dE5E
2`

`

PDF~ ln l!d ln l51. ~22!

Expressing

FIG. 2. The normalized probability density functions of rates
the transformation process, PDF(lnl)5l a(l), vs the transforma-
tion ratel at eight annealing temperatures for the amorphous a
Fe64Co21B15. The distributions are normalized against lnl. Solid
curves are drawn through grid points merely for clarity.

FIG. 3. Determination of the values of activation energies a
preexponential factors for the two crystallization steps calcula
using Eq.~2! from the peak positions of the transformation ra
probability density functions shown in Fig. 2.
18420
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d ln l5S ] ln l0

]E
2

1

RTDdE

from differentiation of Eq.~2! we obtain

dE5
1

] ln l0

]E
2

1

RT

d ln l.

For E50 andE5` the corresponding rates arel0 and 0,
respectively. Putting

L5
] ln l0

]E

we obtain

È ln l0PDF„E~ ln l!…

L2
1

RT

d ln l51.

The actual rates to be used as integration limits instead ol0
and 0 arelmax andlmin , respectively; therefore,

E
ln lmin

ln lmaxPDF„E~ ln l!…

1

RT
2L

d ln l51, ~23!

from which follows

PDF~E!5S 1

RT
2L Dl PDF~l!5S 1

RT
2L DPDF~ ln l!.

~24!

For themodynamically simple cases where the preex
nential factorl0 is a constant independent on temperatu
and activation energy, the termL5] ln l0 /]E50 and the
transformation of the PDF(lnl) into PDF(E) takes the
simple form

PDF~E!5
1

RT
l PDF~l!5

1

RT
PDF~ ln l!.

In processes where a real dependence of the activa
energy on temperature,E5E(T), can be expected or where
formal interdependence between the activation energyE and
preexponential factorl0 can be expected,l05l0(E), indi-
cating a deviation of Eq.~2! from the ideal Arrhenius case
the quantityL shall be nonzero. In such cases the division
the PDF(lnl) dependences for different temperatures byRT
will not yield a single curve andL5L(E) has to be evalu-
ated. The significance of this dependence and its importa
for the interpretation of results shall be analyzed later.

Using the above relation, Eq.~24!, for every annealing
temperatureT, the entire rate distribution curves ought
transform into a single temperature-indepenent activation
ergy distribution. The main problem in the computation h
been the criterion for the construction of a matrix of tim
which correspond to a specific amount of transform
matter—degree of crystallinity—with a suitable correspo

f

y

d
d
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dence to transformation ratesl at each temperature whic
would justify the use of Eq.~2!. At each of these times only
a certain part of the distribution of processes is active in ti
interval fromt to t1dt. Until this time t a certain part of the
whole distribution of processes has already taken place,
ducing the corresponding crystallinity, i.e., has been ‘‘a
nealed out,’’ while the remaining part of the distribution
still awaiting ‘‘activation.’’ The distribution of processes an
nealed out until timet, Panneal(t,T), is given by the subin-
tegral function in Eq.~5! expressed in lnl scale convenien
for the calculation of the activation energy distribution as

Panneal~ t,T!5la~l!$12exp@2~l t !n#%. ~25!

The ‘‘running,’’ or active, processes at timet are given
roughly by the difference of processes annealed out betw
the timet and t1Dt, so

Pactive5 lim
Dt→0

Panneal~ t1Dt !2Panneal~ t !

Dt
,

or, more exactly, as

Pactive~ t,T!5
]P

]t
dt5la~l!n~l t !n exp@2~l t !n#d ln t,

~26!

where the quantityPactive(t,T) represents the portion of pro
cesses active between lnt and lnt1d ln t. The situation is
depicted in Fig. 4 where the dashed and dotted lines re
sent the subdistributions annealed out until the selected ti
and the lines and shaded areas represent the subdistribu

FIG. 4. Subdistributions of the processes from the overall tra
formation rate probability density function at selected annea
temperature 650 K active at specific timest5360, 540, 780, 1200
2200, 5600, 30 000 s corresponding to the ‘‘fractions of the tra
formed volume’’x510%, 20%, 30%, 40%, 50%, 60%, 70%, r
spectively~thin lines, shaded areas drawn for 10%, 30%, 50%,
70%!, with regard to the resistivity change from 0 to 76% for t
first crystallization stage. The enveloping curve~thick line with
small dots! represents the entire probability density function
transformation rates of crystallization process from amorphou
fully crystalline state. Dashed and dotted lines represent those
cesses which were annealed out until the selected times.
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of active processes. It is to be noted that the window
which the processes are active for the selected timet is quite
narrow.

For each subdistribution at selected timet the i th moment
has been calculated by

Mi5E
ln lmin

ln lmax
l i 11Pactive~ t,T!d ln l.

The average valuêl& of the subdistribution is given by
M0 /M 21. In this manner both PDF(lnl) and ^l& for pro-
cesses active in timet are unambiguously assigned to th
selected time corresponding to the chosen fraction of tra
formed volume at each annealing temperature. Applying
~2! the process rates can be transformed to the scale of
vation energies, providing the values ofl0 and Ea for dif-
ferent fractions of transformed volume. Then, using Eq.~24!
for all annealing temperatures, PDF(lnl) at these values o
l can be converted to PDF(E) using the values ofL com-
puted by a suitable minimalization procedure. The results
this procedure are shown in Fig. 5. It is to be understood
the activation energies obtained here are of the Arrhen
type from Eq.~2!, i.e., correspond to the valueEaÞEa(T)
which comes from the slope of the plot of ln^l(T)& vs 1/T.

s-
g

-

d
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o-

FIG. 5. ~a! Probability density function of activation energie
PDF(Ea) vs Ea , determined by the complex analysis for both cry
tallization stages at eight annealing temperatures. Values of ac
tion energies and preexponential factors were calculated from
peak positions and peak values of the subdistributions of ac
processes. The dotted line indicates the position of the very nar
distribution obtained for the second crystallization stage.~b! The
dependence of the quantityL5] ln l0 /]E on activation energyEa

for both crystallization stages. The value ofL for the second stage
~solid triangle! is indicated by the arrow.
2-6
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D. Significance of the quantityL

As shown in Fig. 5~b!, the values ofL are nonzero and no
constant over a broad interval ofEa . Let us, therefore, re-
write more realistically Eq.~2!, including the above consid
erations, in logarithmic form as

ln l5 ln l002
E~T!

RT
, ~27!

where the true preexponential factorl00 used instead ofl0
from Eq. ~2! should be a constant andE(T) represents the
temperature dependence of activation energy. Let us app
mate the dependenceE(T) in the vicinity of a certain tem-
peratureT0 lying within the interval of selected annealin
temperatures by the first two terms of the Taylor series in
form

E~T!5E~T0!1E8~T2T0!, ~28!

whereE(T0)5E0 is the value of activation energyE in T0
and E85dE/dTuT0

. Substituting forE(T) we can express
Eq. ~27! as

ln l5 ln l002
E8

R
2

1

RT
~E02E8T0!. ~29!

By comparison with Eq.~2! we see that

ln l05 ln l002
E8

R
~30!

and

Ea5E02E8T0 . ~31!

Then, repeating the procedure from Eq.~22!,

d ln l

dEa
52

1

R

dE8

dEa
2

1

RT
, ~32!

from which it follows that

L~Ea!52
1

R

dE8~Ea!

dEa
. ~33!

The dependenceL(Ea) on Ea is already determined, so Eq
~33! may be considered as a differential equation which
be solved by numerical integration to giveE8(Ea), using the
fact that the activation energyEa is temperature independen
for L50; therefore,E8(Ea,L50)50. This is a restatement o
the fact thatE8 represents the temperature dependence oE
aroundT0. Thus

E8~Ea!5RE
Ea

Ea,L50
L~Ea!dEa . ~34!

In order to obtain the distribution PDF(E0) from
PDF(Ea) @shown in Fig. 5~a!# we again used the normaliza
tion condition and variable transform fromEa to E0. From
Eqs.~31! and ~33! we obtaindE0 /dEa512RT0L(Ea) and
18420
xi-
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PDF~E0!5
1

12RT0L~Ea!
PDF~Ea!. ~35!

The PDF(E0) dependence represents the distribution
processes in true activation energy at a fixed temperatureT0.
In order to be able to compute such a distribution for oth
temperatures aroundT0, we have to repeat the process d
scribed above, transforming fromE0 to true E(T). Using a
one-to-one correspondence betweenEa andE0 we can write
L5L(E0) to obtain

PDF~E!5
12RT0L~E0!

12RTL~E0!
PDF~E0!. ~36!

In this way the distributions PDF„E(T)… can be obtained for
annealing temperatures from low values up to a limiti
value of Tmax<1/RLmax. As follows from Eq. ~24!, the
maximum value ofL, Lmax, should not exceed the valu
1/RTanneal max, whereTanneal max is the highest annealing
temperature used, which was 720 K in our case; Fig. 5~b!
shows that the maximum value ofL is in fact ;1.64
31024 kJ21 mol, below this value. Therefore,Tmax
<730 K.

III. RESULTS

This section shows the results of the application of a c
tinuous distribution analysis to the transformation from t
amorphous metastable state to the crystalline state
Fe64Co21B15 metallic glass. The distribution of activation en
ergies, PDF(Ea), Fig. 5~a!, starts smoothly from about 20
kJ/mol and attains a maximum at 232 kJ/mol, a value wh
is in excellent agreement with the results forEa1 from clas-
sical Arrhenius analysis in Fig. 3. TheEa distribution of the
first crystallization reaction spreads further in a generally
creasing manner up to about 300 kJ/mol where it vanish
The distribution for the second crystallization reaction
very narrow, practically corresponding to one single activ
tion energy of about 295 kJ/mol, and yieldsL50.

The observed ratio of the changes of electrical resistiv
with crystallization is 76% vs 24% for the first and seco
reactions, respectively. Detailed structure analysis, howe
indicates that after the first crystallization about half of t
entire sample volume remains amorphous. This ratio in
ences fortunately only the mutual ratio between the PDF(Ea)
for the two crystallization stages, influencing in no way t
shapes of the distributions.

A very important factor for obtaining the distribution o
activation energies has been the determination ofL for each
value of activation energy taking part in the transformati
process. The dependenceL5L(Ea) is shown in Fig. 5~b!. It
can be seen that the values ofL decrease from a broad pla
teau towards zero close to the end of the first stage of c
tallization. With respect to the origin of this quantity it ca
be supposed that the portion of activation energies depen
on temperature is exhausted with the proceeeding cryst
zation. Analysis of the second crystallization stage yieldL
equal strictly to zero; thus, the activation energy for th
stage is temperature independent.
2-7
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The dependenceE8(Ea) is shown in Fig. 6~a!. Knowing
E8(Ea) we can immediately compute lnl00 and E0. Figure
6~b! shows the dependence ofl00 on Ea as well as the de-
pendence ofl0 from Eq.~2! on Ea for comparison. Whilel0
varies over more than five orders of magnitude, the value
l00 is practically constant, confirming the assumption fro
Eq. ~27!. The plots ofE8(E0) and PDF(E0) are shown in
Fig. 7. The influence of the temperature dependence ofE(T)
on activation energy distribution, PDF„E(T)…, for all eight
annealing temperatures is shown in Fig. 8.

IV. DISCUSSION

A. Cluster structure of metallic glasses

The results obtained on the selected investigated sys
Fe-Co-B metallic glass, demonstrate the functioning of
approach developed in previous sections. It is clearly sho
that by using this approach unique and until now inaccess
information on the transformation from amorphous state
obtained. The specific metastable system selected for te
has been chosen, besides others, also for the availabilit
transformation data on this system obtained by class
analyses18 and thus for easy comparison of the progress
ing the continuous rate distribution analysis and the therm
dynamic considerations above.

The initial state of metallic glass is metastable; the str
ture reflects the arrangement of constituent atoms as fro
in from the melt by the process of rapid quenching. Suc

FIG. 6. ~a! The dependence ofE8 on activation energyEa . ~b!
The dependence ofl0 and l00 on activation energyEa . Arrows
indicate the corresponding values~solid triangles! for the second
crystallization stage.
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structure has to exhibit several specific features. To be
the arrangement can be expected to copy the structure
the heterogeneities of the melt precursor. Further hetero
neities can arise from the dynamics of the uneven distri

FIG. 7. ~a! The dependence ofE8(E0) on activation energyE0.
The solid triangle shows the corresponding value ofE8 for the
second crystallization stage.~b! The probability density function of
activation energiesE0 , PDF(E0). The valueE8 is zero for activa-
tion energies above the dotted line. Different ‘‘fractions of the tra
formed volume’’ close to the end of the first crystallization stag
which is 76% with regard to the resistivity change from 0 to 100
are indicated by arrows. The inset in~b! shows the quantitative
difference of 50 kJ/mol between PDF(Ea) and PDF(E0) in the
same scale.

FIG. 8. The set of PDF„E(T)… for all eight annealing tempera
tures and forT0, showing the influence of the temperature depe
dence ofE(T) on the activation energy distibutions. Arrows as
Fig. 7.
2-8
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tion of temperatures in the course of quenching or from p
erential local ordering between different types of atoms. T
initial thermodynamic state of even the simplest amorph
system should thus be distributed over a range of poss
local orderings and energetic states around a certain m
value specific for the material, which ought to be reprod
ible, reflecting the reproducibility of the rapid quenchin
process.

The thermodynamic heterogeneity on the scale of the
cal atomic environment in which transformation takes pla
is expected to generate the distribution of reaction rates. T
genesis is caused at least by the distribution of activa
energy levels corresponding to the distribution of initial e
ergy levels with different density of occupation of the
states given by the above reasons. The situation is schem
cally illustrated in Fig. 9 together with a possible distributio
of initial states in activation energies.

Further reasons for such initial distributions of energe
states come from the inherent nature of the amorphous a
given by the heterogeneity of the quenched-in structure
the melt. Besides structural and compositional heteroge
ities on an atomic scale, experimental evidence in gen
suggests the possible formation of more complex, relativ
stable, structural units—clusters—in the melt with chemi
and partly also topological ordering which are preserved
rapid quenching. This adds another dimension to the c
plexity of the amorphous state due to the existence of s
locally ordered, yet amorphous, structural units with diffe
ent thermodynamic stability. It is highly probable that if su
units are relatively stable, the transformation process s
include their transition to the crystalline state without a to
rearrangement of atoms constituting the cluster by a pro
combining suitable collective motion across the interfa
with amorphous matrix and slight rearrangement of atom
equilibrium conditions.

FIG. 9. Qualitative scheme showing the origin of the distrib
tions of initial energetic states which lead to the distribution
thermodynamic processes controlling the transition from am
phous to a more stable crystalline state.
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Such initial amorphous structure~and, consequently, ini-
tial energy distribution! can lead to enhanced temperatu
dependence of the transformation rates of processes c
pared to that given by Arrhenius-type relation valid f
simple transitions involving the interaction or motion
single atoms. A more complex atomic envirnoment may
duce an effective or apparent dependence of the activa
energy on temperature or may lead to a temperature de
dence of the transformation rates other than that given by
~2!. Such dependences have been suggested for proces
more complex polyatomic or molecular systems.20–22 An-
other reason for the enhanced temperature dependenc
transformation rates may lie in the fact that atomic jum
may influence the surrounding matrix and the thermo
namic states of other atoms therein or by enabling proce
with thermodynamic parameters slightly differing from tho
of the ‘‘parent’’ process.8 Activation of one process in an
array of processes distributed in activation energies m
change the resulting structure and the density of the rem
ing processes. All these factors lead to either a real or ap
ent dependence of the activation energy on temperature
a commonly observed apparent dependence of the pree
nential factorl0 on the activation energy.

It is quite striking to note that the true distribution o
processes runs over a much narrower interval of activa
energies than would be an estimate, if possible, from
classical approach usingEa . The end of the first reaction
stage demonstrates very well the decrease of the temper
dependence of the active processes towards that describe
Eq. ~2!; see Fig. 8. This is an indication that processes m
complex in temperature dependence are more active in
earlier crystallization stages, i.e., in the presence of a la
amount of amorphous matter~in abundance of the origina
amorphous structure!. The interval of activation energie
E(T) is shifted to higher values by;50 kJ/mol as com-
pared to the peak position in theEa distribution, Fig. 7. Such
an effect has been frequently observed experimentally6 and
represents a typical discrepancy between measurement
e.g., the self-diffusion coefficient in amorphous~complex!
and polycrystalline structures.

In order to be able to check the quality of the informati
with the possibility to extrapolate towards lower tempe
tures, it is necessary to make yet one more variable transf
from E to lnl. It can be shown that this transformation
quite straightforward and follows from Eq.~27!. The com-
parison with the original PDF(lnl) obtained from solution of
the Fredholm integral equation by the deconvolution pro
dure ~Fig. 2!, as seen from Fig. 10, is excellent. Figure
demonstrates the capability of the prediction of the lo
temperature behavior of the measured propertyP, electrical
resistivity in our case, which is an important indication of t
stability of the material. The dependence ofR(t) computed
for low temperature~500 K! by the classical time-to-
transition approach differs from the one computed
PDF(E) in time and shape, showing only a limited capabili
of the classical approach to deal with nonisokinetic behav
For such cases the inaccuracy in the estimation of the t
modynamic stability of the system may be of the order
years, significant for potential technological application
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The dotted curve representsR(t) for the same temperature
however using the classical aproach with a single value
Ea . The presentation of the distribution of the activati
energy spectrum as a function of time is a complete rep
sentation of the formal kinetic behavior of a suitable prope
for most kinds of annealing programs. In this way it is al
possible to deal with different types of processes with
same activation energyE, differing in l0, thus active in dif-
ferent times.

It has been shown, e.g.. in Ref. 13 that the entire act
tion energy, eitherE0 or E(T) in our notation, is a weighted
sum of the activaton energies for nucleation and for grow
It is known that the activation energy for nucleation has
implicit dependence on temperature.14 It would be worth-
while to consider again the phenomenological reasoning

FIG. 10. Comparison of original distributions PDF(lnl)
5l a(l) from Fig. 2 ~lines! for 650, 690, and 720 K with the de
pendences calculated from the curves in Fig. 8 transformed intol
representation~dots! showing excellent agreement with the origin
distributions. Extrapolation to low temperatures is shown
PDF(lnl) calculated for 500 K; the shape of the distribution
markedly affected by the different temperature dependences o
tivation energies.

FIG. 11. Comparison of normalized experimental data of el
trical resistivity for 650 and 720 K~solid lines! with the values
computed using PDF(E) ~dots!. For illustration of the predictive
capability of the complete PDF(E) representation, values compute
for 500 K are shown for different models. Lines through points
drawn for clarity. Dotted line: simulation ofR(t) for 500 K using
single values of activation energies taken from Fig. 3.
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Ref. 13 in view of the results onE0 and its temperature
derivative from Fig. 7. The quantityE8 approaches zero fo
late stages of the first crystallization step. Let us suppose
the temperature dependence ofE(T) is generated by compli-
cated process of formation of nuclei from the amorpho
phase, as specified above~local heterogeneity, short-rang
ordering, or cluster structure leading, e.g., to a distribution
initial states, correlated motion of atoms, etc.!. This may give
rise to an activation energy of nucleation even more stron
dependent onT than in Ref. 12. The disappearance of t
temperature dependence of the activation energy only
wards the end of the first crystallization stage as well
detailed quantitative structure analysis18 indicates a correct
choice of the Avrami parameter~order of the reaction! n
54 corresponding to continuing nucleation almost until t
end of this stage accompanied by three-dimensional grow

As noted briefly in the initial sections, Eqs.~1! and~2! are
valid for ideal transformations characterized by a single p
cess only. The addition of even one more process in
course of the transformation yields in most cases quite in
curate results which are, at the best, only an average of
thermodynamic parameters~activation energy, preexponen
tial factor! of the running processes. Exceptions may oc
eventually when the processes are well separated in
and/or temperature. The values of the Avrami parameter
tained are not even rough estimates of the true mechan
of transformation. Any distribution of processes with diffe
ent activation energies, however simple, would lead to
dependences of the propertyP(t) used to monitor the trans
formation, which would deviate from isokinetic behavio
The above-described approach easily allows the analysi
such curves using advantageously the notion of moments
subdistributions of processes.

The formulation of Eq.~3! or ~5! is based on the assump
tion that thei th process, defined by its ownl i , is predeter-
mined to take place on several suitable larger-sized regi
ending in formation of final crystallinity produced by th
type of process,xi(t→`) wherex(t→`)5( ixi(t→`)51
and x(t)5( ixi(t). Thus the transformation of amorphou
structure to a more stable state takes place as a weighted
of all possible subtransformations. The complexity and h
erogeneity of the metastable structure on different size sc
~short- and medium-range ordering of amorphous structu!
make such an approach plausible. For the case of the m
material used, glassy Fe-Co-B, this is supported also by
character of the second crystallization stage18 where the re-
mains of the amorphous phase representing about one-ha
the entire volume transform monoenergetically by the sa
mechanism.

B. Spatial heterogenity in supercooled liquids and glasses

The considerations presented in the preceding subsec
are based on more solidlike than liquidlike features of m
tallic glasses where the glass transition temperatureTg is
seldom lower than the crystallization temperature; co
versely, as the mobility of constituent structural units i
creases upon approaching the glass transition, rearra
ments leading to a structure transformation take place.
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The mechanism of formation of complex disorder
metastable systems is similar for conventional meta
glasses, bulk metallic glasses, supercooled~glass-forming!
molecular liquids, polymeric systems, and miscellane
amorphous systems as biomolecules, proteins, colloids,
The liquid or melt is cooled below its melting point, and th
dynamics slows dramatically due to cooling and even m
dramatically in the proximity of the glass transition. Sup
cooled liquid falls out of equilibrium and exhibits behavi
different from that expected for a homogeneous liquid
attaining a metastable state characterized by heterogen
behavior, i.e., by varying dynamics in different regions lyi
close to each other. Whether this dynamics can be correl
with spatial heterogeneity is still an open question and
subject of investigation.23

While the origin of the spatial heterogenity of the dyna
ics in supercooled molecular liquids or polymer syste
above the glass transition may be unclear, in the glassy s
heterogenities are more plausible. The glassy system ma
expected to behave more solidlike. The same can hold
supercooled liquids below a certain critical temperature,
aboveTg .24 This picture is suggestive of a convenient p
tential energy landscape which in solidlike systems imme
ately provides a distribution of initial TD states~see Fig. 9!.
The same effect may be expected also from the fluctuat
of local density or entropy related to local atomic or orie
tational ordering.25 Another appealing approach which corr
lates, at least on mesoscopic scales, the distribution of
namics with a spatial distribution of frustration-limite
domains with preferred local packing was proposed in R
26.

The answer should be related to the chemical identity
the glass formers and especially to their microstructure
atomic scales viewed from the point of existing interatom
or structurally correlated cluster bonding.27 This effect may
be different for supercooled molecular liquids and meta
glasses due to the nature of the constituent atoms: whil
the former the size of ‘‘molecules’’~high molecular weight!
makes immediately plausible the notion of larger clusters
cooperatively rearranging regions,28 the cluster structure o
the latter is experimentally more difficult to evidence, esp
cially due to the much smaller size of the expected loca
ordered region. This point may also be of interest when tre
ing the degree of fragility of glass formers and the origin
the glass-forming ability.29,30

It has to be noted that the vast majority of experime
treat heterogenity in dynamics; structural heterogenity is
general not unambiguously experimentally correlated w
heterogenity in dynamics. This is mostly the case of sup
cooled molecular liquids,31 although such evidence for bul
metallic glasses using the same method@small-angle neutron
scattering~SANS!# exists.32 Recently, evidence of cluste
structure, i.e., structure heterogenity, and its stability at l
and high temperatures in FeCoB was presented in Ref.
The difference in observability may reside again in the ty
cal combination of atom species~metal and metalloid atom
in metallic glasses and covalently bonded molecular liquid!.

Of the principal questions concerning the size, lifetim
dynamics, and origin of the spatial heterogenities23,34 the last
18420
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one seems to be the most crutial. The genesis of the he
genities may have at least two causes. The first one, com
to all mentioned amorphous systems and their superco
liquid precursors, lies in the thermodynamics of formation
these systems, either by deep quench or by rapid solidifi
tion, leading to nonequilibrium, yet long-living states, e
hanced further by the state from which the quenching w
realized: a dynamically stable structure of complex liquid
possibly heterogeneous on atomic scales,35 is prevented from
equilibration, leading to quenched-in heterogeneities w
spatial relaxation times increased by tens of orders of m
nitude as the temperature decreases from above the me
point down to the glass transition. The second, thermo
namically easily acceptable cause is the existence of dyna
cally stable distributions of ‘‘embryos’’ in the undercoole
heteroatomic liquids or melts on the path towards a m
stable state~e.g., prior to eventual crystallization!, yet with-
out sufficient mobility to realize the transition!. Especially in
liquids with strong heteroatomic bonding where the regu
solution and Becker’s model of nucleation12 cannot be ap-
plied, concentration fluctuations can act as additional,
thermodynamically important, sources of local hete
geneities.36 Thus spatial and dynamic heterogeneities c
tentatively be made analogous to the generally accepted
ture of nucleation from a solid or liquid phase with dynam
~embryonic! component roughly corresponding to homog
neous nucleation and eventually also a static compon
analogous to a situation leading to heterogeneous or ti
dependent nucleation. It seems that the degree of heter
neity, spatial or dynamic, can range theoretically from fu
heterogeneous to fully homogeneous extremes, as poi
out in Ref. 37. A suitable overall relaxation or correlatio
function which may be determined by a suitable experim
~equivalent to the physical propertyP used in our consider-
ations in previous sections! should reflect this phenomeno
through a dependence which is extrinsically nonexponen
and is intrinsically composed of exponentials distribut
through a corresponding probability density function.
shape and temporal evolution should reflect the static
dynamic components considered in the previous paragr
Examples of such behavior are the typical Kohlraus
Williams-Watts stretched exponentials equation or Eq.~5!.
The formal similarity between the two equations is evide
and the choice between the two depends on the phys
phenomenon investigated; the approach presented in p
ous sections applies almost immediately to either of the
Very frequently the apparent~extrinsic! Kohlrausch exponen
deviates from unity, especially in the cases of polymeric s
tems with higher molecular weight. A careful treatme
however, provides values of the intrinsic Kohlrausch exp
nent nearly equal to 1.38 The differences between the tw
exponents are usually closely correlated with the comple
of the investigated systems; in the case of the crystalliza
of the model metallic glass treated above, this correspo
roughly to the deviation observed between the appa
Avrami parameter as determined from Eq.~1! and its con-
stant valuen54.

The temperature dependence of average relaxation ti
~or of average transformation rates! is notoriously known to
2-11
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exhibit deviations from the Arrhenius behavior.39 Numerous
theories based. e.g., on the free volume model, entr
model, etc., were developed and frequently reviewed.29 Most
of them, however, treat average quantities derived from t
perature measurements of propertyP rather than the intrinsic
relaxation functions~or microprocess rates!. The use of the
approach outlined in previous sections provides informat
on the temperature dependence of the true, or intrinsic, a
vation energies. The approach may prove to be a useful
for the evaluation and interpretation of the temperature d
of such quantities as viscosity and different relaxation effe
of supercooled liquids or undercooled melts and even a c
tribution to the phenomenon of the breakdown of mod
coupling theory in complex systems with heterogene
features.24,40 One of the possible advantages would be
analysis of the behavior of the narrower spectra of hetero
neities~spatial or dynamic!, allowing for more accurate the
oretical considerations, especially when considering spati
distributed heterogeneities. The quantityE8 as defined above
is typically negative for microprocesses in supercoo
liquids.29 A more complicated dependence ofE8(T) may be
expected as the glass transition is approached34 and in the
cases of crystallization from a supercooled liquid or am
phous state. In addition to the increase of activation ene
of nucleation with temperature as predicted by class
theories,12 heterogeneity or fluctuation-enhance
nucleation36 may play an important role inE(T) dependence
per crystallization event. Thus an indication of the type
microprocesses active in relaxation or transformation p
cesses in general~or deviations from theoretical predictions!
can be obtained, depending on the sign ofE8, being mostly
positive for nucleation-controlled processes and mo
negative for viscous-flow-controlled processes; single-a
processes or processes in regular solutions ought to ex
E8;0.

V. CONCLUSION

We have developed a progressive and accurate appr
to the analysis of the isothermal time dependences of
propertyP(t), selected to reflect the transformation proce
in complex structures. We have considered the set of tra
formation isotherms as an ill-posed problem and we h
obtained a continuous distribution of transformation ra
from solution of a system of Fredholm integral equatio
The effect of measuring instrumentation needed to obtain
time dependence of the transformed volume fraction,x(t),
and experimental noise were eliminated by the use of
deconvolution procedure and inverse Laplace transfor
tion. From rate distributions PDF(l), using moment analysis
and by introducing the notion of subdistributions of transf
mation processes active at selected times we obtained
distributions PDF(E) of the true activation energyE. The
information about the effects of the temperature depende
of activation energies,E(T), not accessible until now, wa
also obtained from isothermal measurements.

On the basis of these results@PDF(l), PDF„E(T)…# we
are able to identify and predict the time-temperature regi
of interest for transformation and explain many discrepanc
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in the interpretation of results, yet keeping a constant m
phology parameter~the Avrami parametern) throughout the
entire transformation stage. The results allow us to cons
each transformation stage as controlled by a single type
microprocess with identical mechanism~i.e., identical preex-
ponential factors! yet coming from different initial energetic
states, as witnessed by the obtained distribution of activa
energies. As the processes take place in a viscous amorp
medium, their temperature dependence is more complex
the Arrhenius relation. The results provide the sign and m
nitude of the deviation of process rates from Arrhenius
havior and allow us justify the choice of controlling mech
nism ~nucleation, growth, diffusion, viscous flow, etc!
without any need for prior postulation of the presence
these mechanisms and based only on fundamental therm
namic presumptions and the nature of the amorphous st

This approach requires no free thermodynamic parame
in the evaluation of process kinetics, yet leads to cons
values of the preexponential factor and provides new val
of activation energies consistent with independent meas
ments such as mass transport in diffusion experiments. It
provides a tool for explaining the previously observed d
crepancies in the activation energies and effects on pree
nential factors. Among these are, e.g., differences of sev
orders of magnitude between the theoretical values from
theories and those determined experimentally by class
methods and the interdependence of the preexponential
tor on apparent activation energy in a plausible manner.

Our approach represents also a contribution to the p
losophy about the cluster structure of the amorphous s
which is in accordance with recent microstructural obser
tions, especially the notion of the transformation of am
phous clusters into a metastable crystalline phase. This tr
formation mechanism may be thought to take place
preservation of the local ordering of the cluster structure
the first crystalline phase formed in the transformation p
cess via small motion of entire clusters and slight atom
rearrangement taking place upon crossing the interfa
Careful use of the approach provides the possibility of o
taining information on early stages of the transformati
~nucleation processes!, their temperature dependence, a
their influence on the transformation mechanism. From t
viewpoint the concept of primary crystallization controlle
by long-range diffusion, resulting from the use of a classi
single-atom approach to transformation rates, in cluste
amorphous media becomes quite inapplicable. Short-ra
ordering and cluster structure override the contribution fr
the motion of single atoms over~long! distance due to a
small portion of ‘‘free’’ unclustered atoms in the matter.
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