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Phase transitions in the quantum Ising and rotor models with a long-range interaction
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We investigate the zero-temperature and finite-temperature phase transitions of quantum Ising and quantum
rotor models. We here assume a long-range~falling off as 1/r d1s, where r is the distance between two
spins/rotors in units of lattice spacing! ferromagnetic interaction among the spins or rotors. We find that the
long-range behavior of the interaction drastically modifies the universal critical behavior of the system. The
corresponding upper critical dimension and the hyperscaling relation and exponents associated with the quan-
tum transition are modified and, as expected, they attain values of short-range system whens52. The
dynamical exponent varies continuously as the parameters and is unity fors52. The one-dimensional
long-range quantum Ising system shows a phase transition atT50 for all values ofs. The most interesting
observation is that the phase diagram fors5d51 shows a line of Kosterlitz-Thouless transition at finite
temperature even though theT50 transition is a simple order-disorder transition. These finite temperature
transitions are studied near the phase boundary using renormalisation group equations and a region with
diverging susceptibility is located. We have also studied one-dimensional quantum rotor model which exhibits
a rich and interesting transition behavior depending upon the parameters. We explore the phase diagram
extending the short-range quantum nonlinears model renormalisation group equations to the present case.

DOI: 10.1103/PhysRevB.64.184106 PACS number~s!: 05.70.Jk, 64.60.Ak, 64.60.Cn, 64.60.Fr
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I. INTRODUCTION

Following the experimental studies on the insulating,
polar Ising spin glass LiHoxY12xF4 in a transverse field,1,2

there has been an upsurge in theoretical investigations o
quantum Ising systems,3,4 and then-component quantum ro
tor models.3 These models are described by the respec
Hamiltonians as

HI52(
i j

Ji j s i
zs j

z2G(
i

s i
x ~1!

or

HR52(
i j

Ji j xi
z
•xj

z1
1

2g̃
(

i
L i

2 with xi
251. ~2!

In Eq. ~1! s ’s are noncommuting Pauli matrices while in E
2 xi ’s aren-component, unit length, vectors occupying theN
sites of a d-dimensional hypercubic lattice. The operat
L i

25(1/2)(mn(Li
mn)2 is the invariant formed from the asym

metric rotor space angular momentum tensor.G in Eq. ~1!

and (1/g̃) in Eq. ~2! denotes the strength of quantum flu
tuations. In this paper, we assume a ferromagnetic interac
among the spins/rotors of the form5

Ji j 5
1

r i j
d1s

,

with s always positive (.0) for the thermodynamic stabil
ity and r i j denotes the separation between two spins/rotor
units of the lattice spacing. Our aim is to probe the nature
quantum phase transition~QPT! from the ferromagnetic to
0163-1829/2001/64~18!/184106~7!/$20.00 64 1841
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the paramagnetic phase, driven by quantum fluctuation
the presence of the long-range spatial interaction. One sh
note here that the classical Ising chain (G50) with inverse
square interaction (d5s51) is relevant to the theory of the
Kondo effect in metals.6

In Sec. II, we discuss the mean field theory results for
quantum transitions of Eqs.~1! and~2!. The essential results
are the following: for values ofs>2, the transition is a
short-range quantum transition which has been extensi
studied for decades.3 However, fors,2, when long-range
effects are relevant, the exponents of the zero-tempera
transition depend on the parameters in a nontrivial fashion.
More importantly, the dynamical exponentz associated with
the quantum critical point is tuned continuously ass is var-
ied and picks up the usual value of unity only fors>2. In
the sense of universality, QPT in these models is equiva
to thermal phase transitions in an equivale
(d11)-dimensional classical model with long-range intera
tion in d-spatial dimensions and short-range ferromagne
interaction in the (d11)-th ~Trotter! dimension. The short-
range nature of the interaction in the Trotter dimension mo
fies the quantum hyperscaling relation in a nontrivial fashi
As mentioned already, one recovers the short-range res
for s52. We also evaluate the exponents using renormal
tion group~RG! equations up to the one-loop order and co
ment on the modifications of these results expected at
two-loop level.

In Sec. III, we study the one-dimensional long-ran
quantum Ising model that exhibits a zero-temperature tra
tion for all values ofs, but a transition atfinite temperature
occurs only if s,1. The cases51 is of special interest.
The phase diagram of the quantum long-range Ising sys
~with s51) in the (T-G) plane shows a line of Kosterlitz
©2001 The American Physical Society06-1
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Thouless~KT! transitions7 because any finite temperatu
transition in the above case is argued to be of KT type e
though the zero-temperature transition is a continuous or
disorder transition. We locate a region below the ph
boundary where the spatial correlation length and the sus
tibility diverges and the width of this region decreases mo
tonically with increasingG. This is our most important ob
servation.

Similarly, the one-dimensional~1D! quantum rotor forn
.2, discussed in Sec. IV, exhibits a zero-temperature tra
tion for all values ofs except ats52 when the transition is
forbidden~as expected from the Mermin-Wagner theorem8!.
However, the quantum rotors show a very rich and intere
ing phase diagram which we explore extending the renorm
ization group~RG! equations for the short-range quantu
nonlinear sigma (QNLs) model9 to the long-range case.

II. MEAN FIELD THEORY AND ONE-LOOP RG

Let us now look at then-component quantum rotor actio
in the zero temperature limit in the Fourier (q,v) represen-
tation (v denoting the continuous Matsubara frequencies!,

A5
1

2E ddq

~2p!dE dv

2p
@ g̃v21r 1aqs1bq2#xq~ iv!x2q

~2 iv!1uE dv1

2p
•••

dv4

2p E ddq1

~2p!d
•••

ddq4

~2p!d
dd

3~q11•••1q4!d~v11•••1v4!@xq1
~ iv1!•xq2

~ iv2!#

3@xq3
~ iv3!•xq4

~ iv4!#, ~3!

where a,b.0, r (5G2Gc
mean field for n51) and u are the

mass and coupling term, respectively.3 If s>2, the leading
q2 term in the action matters and action~3! then describes
the short-range quantum models.3 Clearly,n51 corresponds
to the long-range quantum Ising case. Let us now look at
free ~Gaussian! propagator~with a set equal to unity!

G0~p,v,r !5
1

qs1g̃v21r
for s,2. ~4!

We can now use this propagator to probe the divergenc
the mass renormalization term~at the critical point,r 50); it
gives the lower critical dimension for a QPT for fixeds as

dl5
s

2
. ~5!

The above equation equivalently yields the lower critic
range of interactions l in a given dimensiond. A one-
dimensional quantum Ising chain can be mapped to a t
dimensional classical Ising system with long-range inter
tion in the spatial direction, and thus it exhibits a transiti
for all values ofs, even when the spatial interaction is sho
ranged.

Since the transitions in short-range quantum Ising and
tor systems have been studied extensively over decades3 we
18410
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shall rather concentrate on the case where the interactio
nontrivially long ranged (s,2), and explore the zero
temperature transition behavior. Using the Gaussian pro
gator given above, one readily finds the mean field lon
range quantum critical exponents given as

g51, n5
1

s
, h522s. ~6!

This mean-field exponents clearly depend on the value os
and in the limit s→2, they assume the short-range me
field values.

An interesting observation is that the mean field dynam
cal exponentz associated with the QPT, is found to bez
5s/2 ~using the dispersion relationv;qz) and thus the dy-
namical exponent varies continuously withs and is always
less than unity fors,2. Obviouslyz51 for s52. That the
dynamical exponent fors,2 is less than unity is a manifes
tation of the fact that the correlation in the time directio
grows much slower than that in the spatial direction due
the long-range nature of interaction.

At or below the upper critical dimension one can alwa
invoke the hyperscaling relation, which is 22a5n(d1z),
as long as quantum dynamics is conventional~i.e., jt;jz).
One thus finds

22a5n~d1s/2!. ~7!

Demanding thata50 at the upper critical dimensiondu and
usingn51/s, we obtain

du5
3s

2
. ~8!

Equation~8! yields an upper critical dimension for a givens
and an upper critical range of interaction in a given dime
sion d anddu53 for s52.

To evaluate the nontrivial exponents, one has to perfo
the perturbative RG calculations around the upper criti
dimensiondu in the same spirit as in the classical cas5

Here, we assume dimensionality as a continuous variable
the the one-loop RG equations are written as~with the ap-
propriate redefinition of the variableu)

dr

dl
5sr 1~n12!

u

~11g̃1r !
, ~9!

du

dl
5eu2~n18!

u2

~11g̃1r !2
. ~10!

From Eqs.~9! and ~10!, we find that fore,0 ~i.e., for d
.du), the Gaussian fixed point (r * 50,u* 50) is stable and
the mean field exponents given above hold. The recurs
relations for thee50 case, leads to logarithmic correction o
top of the mean field quantum critical behavior as in t
classical case.5 For s.2, the exponents always assum
short-range values.

For e.0 ~i.e., below the upper critical dimension for
givens!, the Gaussian fixed point is unstable with respec
6-2
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PHASE TRANSITIONS IN THE QUANTUM ISING AND . . . PHYSICAL REVIEW B64 184106
fluctuation ~u! and we find a nontrivial fixed point@u*
;e/(n18)#. One can easily linearize the recursion relatio
near this nontrivial fixed point and thus obtains the corre
tion length exponentn given as

n5
1

s
1

n12

n18
e. ~11!

For systems with long-range interaction, the Fisher expon
h associated with the spatial correlation function is det
mined by setting the coefficient of the leadingqs term to
unity. One finds up to this order of perturbationh522s.
Invoking the scaling relation for the susceptibility expone
g5(22h)n, we find

g511
~n12!

~n18!

e

s
. ~12!

Evaluation of the exponents in thetwo-loop order is quite
complicated, and we shall just mention here some impor
comments regarding the subtleties involved. Up to the o
loop order, we can retrieve the short-range exponents by
stitutings52 in Eqs.~11!, ~12!. This is no longer true in the
two-loop order as in the corresponding classical case.5 This
is explicitly seen considering the Fisher exponenth. For any
value of s,2, h sticks to its mean-field value 22s ~be-
cause the renormalization does not generate newqs terms!
whereas fors→2, h picks up its conventional short-rang
quantum value „hSR5@(n12)/2(n18)2#e2, e5(32d),
which is also the higher-dimensional classicalh for short-
range interaction…. In the s→2 limit, the short-range term
becomes important and this contribution comes from
renormalization of the short-range coefficientb in Eq. ~3!.
Clearly there is a nonuniformity involved here. Hence, o
cannot retrieve the short-rangeh ~and thus the other expo
nents! by settings52 in its long-range value in the two
loop order.

The dynamical exponentz retains its mean-field valuez
5s/2 up to the one-loop order. For a change of length sc
by a factor exp(dl) the coefficient g̃ scales as g̃8

5g̃ exp(s22z)dl. Demanding thatg̃ scales to a fixed poin
value one getsz5s/2 in the one-loop order. In the two-loo
order theq→0 part of the self-energy term renormalizes t
coefficient ofv2 term g̃ and thus modifiesz. For any value
of s,2, we expect that the dynamical exponent will be
the form z5s/@22h̃(e)#, In the s→2, h̃→hSR and this
leads toz5s/(22hSR) wherehSR is as given above. On th
other hand, ass→2 the short-range term will be importan
in defining z and hencez will be unity (v and q scaling
identically!. Thus we expect that the similar nonuniformi
as seen inh at s52 will also appear inz.

III. ONE-DIMENSIONAL QUANTUM ISING MODEL

Let us now focus on the most interesting part of o
study: We have argued already that the one-dimensio
transverse Ising model with long-range interaction exhibit
zero-temperature order-disorder transition for all values os.
Equation~8! for the upper critical range readily indicates th
18410
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in d51 the quantum transitions with values ofs<2/3 are
described by long-range mean-field theory whereas hig
values ofs correspond to nontrivial exponents.

On the other hand, the one-dimensional long-range c
sical Ising chain shows a nonzeroTc only if s,1.6,10,11For
s51 the classical Ising chain undergoes a KT transition12–16

which is associated with a discontinuous jump in the mag
tization. This transition is driven by spin flips or kinks inte
acting via logarithmic potential. A very recent extensi
study17 is in accurate quantitative agreement with the abo
RG calculations14 and moreover provides strong numeric
evidence in favor of this one-dimensional KT transition.

Coming back to the quantum chain, the finite-temperat
transition of the quantum Ising chain is always determin
by the thermal fixed point since the quantum fluctuations
irrelevant near the finite-temperature transition of any p
quantum system. In other words, close to the finite transit
transition the spatial correlation length grows~and diverges
at the transition point! so that one can neglect the finite Tro
ter dimension arising due to the quantum term. One can t
neglect quantum effects and apply purely classical theory
phase transition at and near the finite-temperature trans
in quantum systems.3 There is a crossover region@typically
given byT;(G2Gc)

zn, wherez,n are the zero-temperatur
exponents, not exactly known in the present case# near the
phase boundary in theT-G plane. In this region, we can trea
the systems within a classical framework. The width of th
region increases for smallG and highT.

We can thus conclude that any finite-temperature tra
tion in the present case (s51) is definitely a KT transition
at a reduced critical temperatureTc(G) even though the
quantum transition atT50 is a continuous order-disorde
transition for all values ofs. These KT transitions should b
described in terms of the classical RG equations,6,12 general-
ized to a reduced temperatureT(G). If one now probes the
critical region at any finite temperature fors51 at a fixedG,
the corresponding KT transition is then described in terms
the following RG equation:

df

dl
524y2, ~13!

dy

dl
52yf, ~14!

dh

dl
5h~12y2!, ~15!

where f5@1/T(G)21# is the temperature field,y5exp
@2m/KT(G)# is the chemical potential field withm being the
chemical potential associated with the local energy to form
kink in absence of the static external magnetic fieldh.

As mentioned already, the above RG equations~13!–~15!
correctly describe the finite temperature transition in
present case and they should be valid in the crossover re
discussed above. Moreover, the above set of equations
associated with a region below the phase boundary~dis-
cussed below! with diverging spatial correlation length an
static susceptibility and quantum effects are truly negligi
6-3
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AMIT DUTTA AND J. K. BHATTACHARJEE PHYSICAL REVIEW B 64 184106
in this region. We use the above generalized RG Eqs.~13!–
~15! to make an approximate estimate of the width of t
interesting region. This is a good approximation as m
tioned already, in the smallG and highT region where the
crossover region discussed above is wider. The schem
phase diagram of the quantum Ising chain in theG-T plane,
for different values ofs are shown in Figs. 1~a! and 1~b!
corresponds to the especially important cases51 where the
phase diagram shows a line of KT transitions.

The RG Eqs.~9!–~11!, which are valid strictly at and
close to the phase boundary in theG-T plane~where quan-
tum effects are negligible!, can be integrated at or below th
reduced critical temperatureTc(G).14 At Tc(G) the spatial
correlation functionG(r ) falls off as G(r );1/ln r. This
logarithmic fall at the critical point has been supported~over
a considerable range ofr ) in a recent extensive study17 on
the corresponding classical system.

Below but close to the reduced critical temperature
have an algebraic decay given as

G~r !;
4ADt

r ~4uDtu!1/2
, ~16!

whereDt5@T(G)2Tc(G)#/Tc(G). This algebraic form goes
over to the logarithmic fall asT(G)→Tc(G) from below. We
evaluate the susceptibility using the fluctuation-dissipat
theorem with this algebraic form of the correlation functi
and, consequently, it is found that for21/16,Dt,0 the
susceptibility clearly diverges but it is finite and proportion
to 1/(4AuDtu21) for Dt,21/16. As Dt approaches
(21/16) from below, the behavior becomes (Dt1 1

16 )21. In
Fig. 1~b! the shaded region with lower boundary given by t
equation @(Tc(G)2T(G))#/Tc(G)5 1

16 , corresponds to the
critical region discussed above where spatial correla
length and susceptibility clearly diverges. This intermedi
region close to the phase boundary in the (G-T) plane with
algebraically falling spatial correlation function~with expo-
nent determined byT andG) and diverging magnetic suscep
tibility is the most important aspect of this model at fini
temperature. We reiterate that our estimation depends on

FIG. 1. The schematic phase diagram and RG flow inT-G plane
of one-dimensional long-range Ising model with different values
s. For s,1 ~a! the system has both quantum and thermal tran
tions. ~b! The cases51 where transition at any finite temperatu
is a KT transition. In the shaded region, the spatial correlat
length and the susceptibility diverge. Fors.1 there is a quantum
critical point but no finite temperature transition~c!. Q andC denote
the quantum and classical transition points respectively.
18410
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RG equations we use, which are valid strictly in the vicin
of the phase boundary and especially for smallG and highT
region. We mention that the occurrence of such a region
the classical case (G50) is proved using rigorous
analytical16 and numerical studies.17

Clearly, the width of this region with diverging suscep
bility decreases monotonically asG increases, and such
region is absent for theT50 transition. Note that unlike the
n5d52 short-range rotor case~discussed later!, we have
true long-range order, i.e., nonzero spontaneous magne
tion in the ordered phase. The pure classical KT transit
(G50) is associated with a discontinuous jump
magnetization;6 one can argue in a similar spirit that th
discontinuity decreases monotonically withG and the pure
quantum transition is a continuous one.

A few important comments are necessary, following
very recent extensive study17 on inverse-square classica
Ising system. That study as mentioned already, strongly s
ports the results of the the RG calculation and KT transit
scenario that we employ here. The results of that work se
to indicate that the shaded region in Fig. 1~b! should be
wider than what is predicted from RG calculations but t
qualitative shape of this special region inT-G plane remains
unaltered. One can easily estimate using the RG Eqs.~13!–
~15! the value of temperatureT1(G), at or below which the
exponent describing the power-law correlation is no longeT
and G dependent. It would be slightly higher than what
predicted in Ref. 17 forG50 case. Moreover, one has to b
careful in our case (GÞ0) because as we move further dow
the phase boundary the quantum effects are no longer n
gible and the RG equations may not be valid.

We should mention at this point that similar studies can
made for short-range quantum rotor ford5n52 where as
well any finite temperature transition is of KT type and o
obtains a similar phase diagram as in Fig. 1~b!. This can be
verified using QNLs model RG equations9 ~for dimension-
less temperature! for n5d52. But one should note the dif
ference that in the short-rangeXY case the spatial correlatio
shows an algebraic fall atTc(G). Moreover the entire quas
long-range ordered phase is associated with a diverging
tial correlation length and susceptibility. It has a true lon
range order only along theT50 line. One should also note
here that a similar phase diagram as Fig. 1~b! is also found in
the case of a Josephson-Junction array in two spatial dim
sions ~see Fig. 5 of Ref. 18!. In that case, any finite-
temperature transition corresponds to a two-dimensio
classical KT transition in XY systems but the zero
temperature transition is a (211)-dimensional classicalXY
transition. However, the shaded region with diverging
sponse function is a special feature of the model we stu
and is not observed in that case.

Following Kosterlitz12 to describe the finite-temperatur
transition fors,1, one could use a similar set of equatio
as Eqs.~13!–~15! with the reduced temperatureT(G). The
solutions of these equations are nonanalytic ass→1 ~which
is a signature of the KT transition fors51, discussed
above!. For s,1, we have a critical fixed point atT* (G)
and unstable fixed point atT(G)5`. T* (G) corresponds to

f
i-

n
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PHASE TRANSITIONS IN THE QUANTUM ISING AND . . . PHYSICAL REVIEW B64 184106
the finite temperature transitions shown in Fig. 1~a! and its
value gets smaller with increasingG.

IV. ONE-DIMENSIONAL QUANTUM ROTOR MODEL

We shall now consider the transition in the on
dimensional quantum rotor model withn>2 and long-range
interaction. One should note here that the short-range in
acting quantum rotor forn.2 does not show a QPT in on
dimension3 whereas the long-range system shows a n
trivial transition even ford51. The exponents at the mea
field level and also close to the upper-critical dimension
already discussed in the Sec. II.

The zero-temperature transition for the one-dimensio
case can be investigated extending the one-loop renorma
tion group equations of the QNLs model9 ~which is an ap-
propriate field theoretical description of the quantum rot
in low dimensions! to the present case. We obtain ford51
~see the Appendix!

dg

dl
52S 12

s

2 Dg1
1

4p
~n22!g2, ~17!

whereg ~defined in the Appendix! here corresponds to th
dimensionless quantum coupling. Clearly, forn.2 and s
,2, the critical coupling (gc) is given by the unstable fixed
point of Eq.~17! at gc5$2p(22s)%/(n22). Forn52 and
s52, gc happens to be undefined which clearly correspo
to the quantum KT transition of one-dimensional tw
component short-range quantum rotor3 where local defects
drive the transition. The transition is forbidden fors>2.
This is easily understood thinking in terms of the equival
classical Hamiltonian. Fors52 the equivalent two-
dimensional system is truly short ranged with continuo
symmetry and thus transition is forbidden as expected fr
the Mermin-Wagner theorem. We find from Eq.~17! that the
correlation length exponentn51/(12s/2) and the Fisher ex
ponenth522s ~which is in general valid for long-rang
interacting system5!. The method we use, is valid forn.2
ands smaller than but close to 2.

The corresponding one-loop RG equation for the tempe
ture in the one-dimensional classicaln-vector systems with
n>1 reads~Kosterlitz12!

dT

dl
52~12s!T1~n21!

T2

2p2
. ~18!

The above equation yields a nonzeroTc for s,1 and n
.1; thes51 andn51 case corresponds to the KT trans
tion discussed earlier. The phase diagram in the (g,T) plane
and corresponding RG flow equations are shown in Fig. 2
would be definitely intriguing to ask at this point about t
nature of the phase diagram and the form of the RG Eq.~17!
for a one-dimensional system with 1,n,2 where Eq.~18!
definitely holds. We have mentioned that our QNLs model
approach is valid forn.2 and thus no conclusive inferenc
should be drawn forn,1,2 with a generals,2. However,
the short-range (s52) one-dimensional systems with 1,n
,2 should exhibit a quantum transition which is topologic
18410
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in nature. For related studies on short-range classical
quantum systems withn,2, we refer to Refs. 19 and 20
respectively.

V. CONCLUSION

In conclusion we have studied very simple quantum s
tems with nontrivial long-range interactions and find ve
interesting phase diagrams for different values of the par
eter s. The main results and the methods and the appro
mations involved are already discussed in the correspon
sections. These studies are important following the rec
upsurge in the theoretical and experimental1–3 investigations
of quantum systems and prolonged interest in the inve
square one-dimensional classical systems.
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APPENDIX

In this section, we shall study one-dimensional long-ran
quantum rotor models using a QNLs model approach. Our
study will follow Ref. 9 which uses the momentum-she
method for thed-dimensional short-range quantum rotor sy
tems. The essential mathematical steps that lead us to
recursion relation~17! will be briefly indicated here. We con
sider the effective zero-temperature continuum action o
n-component one-dimensional quantum rotor with lon
range interaction in the presence of a magnetic fieldH, i.e.,

Seff /\52
J

\E dtE drE dr8
@x~r ,t!2x~r 8,t!#2

~r 2r 8!11s

2
g̃

\E dtE drS ]x

]t D 2

2
H

\ E dtE drs~r ,t!,

~A1!

where we have decomposed vectorx’s in the form $p,s%
wherep ’s are (n21) component vectors. Note that heret

FIG. 2. The schematic phase diagram and RG flow~in the g-T
plane! of quantum rotor systems (n>2) with different values ofs.
For s,1 ~a!, the system undergoes both quantum and thermal t
sitions. For 1<s,2 ~b! there is no finite-temperature transition
The special cases5n52 corresponds to the quantum KT trans
tion of the quantumXY rotor ~c!.
6-5
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represents the imaginary time direction and atT50 this di-
rection is infinite. The spatial integrations are cutoff at sho
distance byL. We can now eliminates ’s from the action
using the constraintp2(r ,t)1s2(r ,t)51, which is valid for
eachr andt. So the partition function becomes

Z5E Dp~r ,t!)
r ,t

1

A12p2~r ,t!

3expH 2
1

gE dx0E dxE dx83S @p~x,t!2p~x8,t!2#

~x2x8!11s

1
A@12p2~x,t!#A@12p2~x8,t!#

~x2x8!11s
1••• D J

3expF2
1

gt
E dx0E dxS ]p

]x0
D 2

1
@p~]p/]x0!#2

12p2
1•••G

3expS hE dx0E dxA12p2D , ~A2!

where

g5
2\

J
L11z2s, ~A3a!

gt5
L12z

g̃
;gLs22z, ~A3b!

h;L2(11z). ~A3c!

Now x and x0 are defined to be dimensionless variable
With this choice, the wave-vector cutoff in Eq.~A2! is unity.
Note in contrary to the short-range case,9 the long-range case
is anisotropic in space and time. Imaginary timet here de-
notes an additional dimension with an effective short-ran
interaction. Following the discussions in Sec. II, we now
z5s/2 ~which is correct at least to the first-loop order!, so
that the additionalgt appearing in the present case, has
same scaling behavior asg. Henceforth, we shall look at the
renormalization ofg.

Using the standard technique involved in the QNLs
model, we expand the factorsA12p2 and (12p2)21 in Eq.
~A2! and decomposep ’s in Fourier modesp(q,v), v being
h

v

18410
-

.

e
t

e

the continuous Matsubara frequencies. As in the short-ra
case one can integrate out high wave-vector modes~with
e2d l,q<1) to generate an effective action involving lo
wave-vector modes.8 With appropriate rescaling of momen
and the spin-field we arrive at the recursion relations give

S 1

gD 8
5z2e2(11s1z)d l S 1

g
1I loopD , ~A4!

h85z2e2(11z)d l S h1
gh

2
~n21!I loopD , ~A5!

wherez is the spin-rescaling factor. The loop integral in t
present case is given as

I loop5E dv

2p

dq

2p

1

qs1v21hg

5
1

2Ee2d l

1 dq

2p

1

Aqs1hg
5

1

4p

1

A11hg
d l . ~A6!

One should note here that in the quantum long-range c
we have an additional@2(g/h)I loop# contribution in the re-
cursion relation ofh in compared to the Ref. 12. This ter
arises due to the local quantum term@p(]p/]x0)#2 of action
~A2! and hence does not show up in the corresponding c
sical one-dimensional case.12 The field rescaling termz is
determined demandingh85zh and we find using Eq.~A5!

z5e(11z)d l S 12
g

2
~n21!I loopD . ~A7!

Using Eq.~A4! andz5s/2, we obtain the recursion relatio
of coupling 1/g given as

S 1

gD 8
5e(12s/2)d l S 1

g
2~n22!I loopD . ~A8!

Expanding the exponential in thee2d l512d l , and using the
form of I loop from Eq. ~A6! we find the differential form of
the recursion for the couplingg in the d l→0 limit ~with h
→0) given as

dg

dl
5S s

2
21Dg1

~n22!

4p
g2. ~A9!
,
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