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Phase transitions in the quantum Ising and rotor models with a long-range interaction
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We investigate the zero-temperature and finite-temperature phase transitions of quantum Ising and quantum
rotor models. We here assume a long-rarfzdling off as 149", wherer is the distance between two
spins/rotors in units of lattice spacinferromagnetic interaction among the spins or rotors. We find that the
long-range behavior of the interaction drastically modifies the universal critical behavior of the system. The
corresponding upper critical dimension and the hyperscaling relation and exponents associated with the quan-
tum transition are modified and, as expected, they attain values of short-range systenswBerThe
dynamical exponent varies continuously as the parametand is unity foro=2. The one-dimensional
long-range quantum Ising system shows a phase transitidn-&t for all values ofo. The most interesting
observation is that the phase diagram ford=1 shows a line of Kosterlitz-Thouless transition at finite
temperature even though tAe=0 transition is a simple order-disorder transition. These finite temperature
transitions are studied near the phase boundary using renormalisation group equations and a region with
diverging susceptibility is located. We have also studied one-dimensional quantum rotor model which exhibits
a rich and interesting transition behavior depending upon the paramel&fe explore the phase diagram
extending the short-range quantum nonlineamodel renormalisation group equations to the present case.
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I. INTRODUCTION the paramagnetic phase, driven by quantum fluctuations in
the presence of the long-range spatial interaction. One should
Following the experimental studies on the insulating, di-note here that the classical Ising chaln=0) with inverse
polar Ising spin glass LiH;_F, in a transverse field?  square interactiond= o =1) is relevant to the theory of the
there has been an upsurge in theoretical investigations of théondo effect in metal§.

quantum Ising systents! and then-component quantum ro- In Sec. I, we discuss the mean field theory results for the
tor models® These models are described by the respectiveiuantum transitions of Eqél) and(2). The essential results
Hamiltonians as are the following: for values otr=2, the transition is a
short-range quantum transition which has been extensively
HIZ_Z JijUiZ(T,-Z—FE o 1) studied for decadeSHowever, foro<2, when long-range
ij i

effects are relevant, the exponents of the zero-temperature
transition depend on the parametein a nontrivial fashion.
More importantly, the dynamical exponenassociated with
the quantum critical point is tuned continuouslyass var-
Hp= _E Jijxiz,szJr i 2 /312 with xi2=1. ) ied and picks up the qsual valge of unity only f@Bz. I.n
] 2g the sense of universality, QPT in these models is equivalent
, . . . . to thermal phase transitions in an equivalent
In E'q. (1) o’s are noncommutmg bt wh!le in Eq. (d+1)-dimensional classical model with long-range interac-
2.X‘ S aren-component, unit length, vectors occupying thie tion in d-spatial dimensions and short-range ferromagnetic
sites of ad-dimensional hypercubic lattice. The operatoryieraction in the ¢+ 1)-th (Trotte) dimension. The short-
Li=(12)z,,(L{™)" is the invariant formed from the asym- 546 nature of the interaction in the Trotter dimension modi-
metric rotor space angular momentum tendoin Eq. (1) fies the quantum hyperscaling relation in a nontrivial fashion.
and (1p) in Eqg. (2) denotes the strength of quantum fluc- As mentioned already, one recovers the short-range results
tuations. In this paper, we assume a ferromagnetic interactiofor o=2. We also evaluate the exponents using renormalisa-

or

among the spins/rotors of the form tion group(RG) equations up to the one-loop order and com-
ment on the modifications of these results expected at the
1 two-loop level.
Ji=go In Sec. lll, we study the one-dimensional long-range

ri . L .
g quantum Ising model that exhibits a zero-temperature transi-

with o always positive £0) for the thermodynamic stabil- tion for all values ofo, but a transition afinite temperature
ity andr;; denotes the separation between two spins/rotors imccurs only ifo<1. The caser=1 is of special interest.
units of the lattice spacing. Our aim is to probe the nature offhe phase diagram of the quantum long-range Ising system
quantum phase transitiof@PT) from the ferromagnetic to (with o=1) in the (T-I') plane shows a line of Kosterlitz-
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Thouless(KT) transitioné because any finite temperature shall rather concentrate on the case where the interaction is

transition in the above case is argued to be of KT type evemontrivially long ranged ¢<2), and explore the zero-

though the zero-temperature transition is a continuous ordetemperature transition behavior. Using the Gaussian propa-

disorder transition. We locate a region below the phasgator given above, one readily finds the mean field long-

boundary where the spatial correlation length and the suscepange quantum critical exponents given as

tibility diverges and the width of this region decreases mono- L

tonically with increasing’. This is our most important ob-

servatign. g P y=1 v=y, n=2-0 (6)
Similarly, the one-dimensiondllD) quantum rotor fom ] ]

>2, discussed in Sec. IV, exhibits a zero-temperature transil 'S mean-field exponents clearly depend on the value of

tion for all values ofo except atr=2 when the transition is and in the limitoc—2, they assume the short-range mean

forbidden(as expected from the Mermin-Wagner theofpm field values. o _ _

However, the quantum rotors show a very rich and interest- AN interesting observation is that the mean field dynami-

ing phase diagram which we explore extending the renormal€@l exponent associated with the QPT, is found to ke

ization group(RG) equations for the short-range quantum = ¢/2 (using the dispersion relatian~q“) and thus the dy-

nonlinear sigma (QN&) modef to the long-range case. namical exponent varies continuously withand is always
less than unity for<2. Obviouslyz=1 for o=2. That the

dynamical exponent forr<<2 is less than unity is a manifes-

tation of the fact that the correlation in the time direction
Let us now look at th@-component quantum rotor action grows much slower than that in the spatial direction due to

in the zero temperature limit in the Fouriey, (@) represen- the long-range nature of interaction.

tation (@ denoting the continuous Matsubara frequengies At or below the upper critical dimension one can always

invoke the hyperscaling relation, which is-2v=v(d+2z),

Il. MEAN FIELD THEORY AND ONE-LOOP RG

1( diq [do - ) . as long as quantum dynamics is conventiofa!., &~ &%).
A= Ef w Z[gw +r+ag’+bgIxy(iw)x_q One thus finds

2—a=v(d+a/2). 7

. dw; dw, [ dig; d’q, ez vidtol) @

(—iw)+u 27 om (2m)1 T (2m)8 Demanding thatr=0 at the upper critical dimensiat, and

using v=1/o, we obtain
XAt +0g) Syt - -+ 0g)[Xg,(101) - Xg (i w5)] 5
g

X[ Xg(103) X, (1w4)], (3) du=7" ®

wherea,b>0, r (=TT edfor n=1) andu are the Equation(8) yields an upper critical dimension for a given
mass and coupling term, respectivéllf. =2, the leading and an upper critical range of interaction in a given dimen-
g? term in the action matters and acti¢8) then describes siond andd,=3 for o=2.

the short-range quantum mod@l€learly,n=1 corresponds ~ T0 evaluate the nontrivial exponents, one has to perform
to the long-range quantum Ising case. Let us now look at théhe perturbative RG calculations around the upper critical
free (Gaussian propagator(with a set equal to unity dlmenS|ondu in the same spirit as In the classical Case.
Here, we assume dimensionality as a continuous variable and
1 the the one-loop RG equations are written(agth the ap-
Go(p,w,r)=——=—— for o<2. (4)  propriate redefinition of the variabig)
q’t+gw tr
We can now use this propagator to probe the divergence of ﬂ:UH(nJFZ) 9)
the mass renormalization tergat the critical pointy =0); it dl (1+§+r) '
gives the lower critical dimension for a QPT for fixedas
o Wi (n+8)— 10
——=€eu—(n = 5
d|:§. (5) dl (l+g+r)2

The above equation equivalently yields the lower critical From Egs.(9) and(10), we find that fore<O (i.e., ford
range of interactiono; in a given dimensiond. A one- >d,), the Gaussian fixed pointt=0,u* =0) is stable and
dimensional quantum lIsing chain can be mapped to a twothe mean field exponents given above hold. The recursion
dimensional classical Ising system with long-range interacrelations for thee=0 case, leads to logarithmic correction on
tion in the spatial direction, and thus it exhibits a transitiontop of the mean field quantum critical behavior as in the
for all values ofo, even when the spatial interaction is short classical case.For o>2, the exponents always assume
ranged. short-range values.

Since the transitions in short-range quantum Ising and ro- For >0 (i.e., below the upper critical dimension for a
tor systems have been studied extensively over decades, given o), the Gaussian fixed point is unstable with respect to
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fluctuation (u) and we find a nontrivial fixed poinfu* in d=1 the quantum transitions with values @f2/3 are
~¢e/(n+8)]. One can easily linearize the recursion relationsdescribed by long-range mean-field theory whereas higher
near this nontrivial fixed point and thus obtains the correlavalues ofo correspond to nontrivial exponents.

tion length exponent given as On the other hand, the one-dimensional long-range clas-
sical Ising chain shows a nonzefq only if o<1 81%1For
. EJF n+2 . (11) o=1 the classical Ising chain undergoes a KT transifiot?

o n+8° which is associated with a discontinuous jump in the magne-

. . . . tization. This transition is driven by spin flips or kinks inter-
For systems with long-range interaction, the Fisher exponergcting via logarithmic potential. A very recent extensive
7 associated with the spatial correlation function is deter'study”'

. : h Hici f the leadi is in accurate quantitative agreement with the above
mined by setting the coefficient of the leading term to g cajculation¥ and moreover provides strong numerical

unity. One finds up to this order of perturbation=2—o.  gyidence in favor of this one-dimensional KT transition.
Invoking the scal!ng relation for the susceptibility exponent Coming back to the quantum chain, the finite-temperature
y=(2—n)v, we find transition of the quantum Ising chain is always determined
(N+2) e by the thermal fixed point since the quantum fluctuations are
y=1+ — (12 irrelevant near the finite-temperature transition of any pure
(n+8) o guantum system. In other words, close to the finite transition
Evaluation of the exponents in thao-loop order is quite transition U’}? Spatial correlation length grovesd qi\{erges
complicated, and we shall just mention here some importarfit the transition pointso that one can neglect the finite Trot-
comments regarding the subtleties involved. Up to the onel€r dimension arising due to the quantum term. One can thus

loop order, we can retrieve the short-range exponents by suf€9lect quantum effects and apply purely classical theory of
stituting =2 in Eqgs.(12), (12). This is no longer true in the phase transition at and near the finite-temperature transition

two-loop order as in the corresponding classical CaBeis " duantum systen%z.'l'here is a crossover regidtypically

is explicitly seen considering the Fisher exponentor any ~ 9IVen byT~(I'=T'¢)*", wherez, v are the zero-temperature
value of ¢<2, 7 sticks to its mean-field value 20 (be- ~ €XPonents, not exactly known in the present ¢aszar the
cause the renormalization does not generate géwerms phase boundary n the-T plgne. In this region, We can treat.
whereas foro—2, 7 picks up its conventional short-range the systems within a classical framework. The width of this
quantum value (7er=[(n+2)/2(n+8)%]€?, e=(3—d), region increases for smdll and h|ghT._ .
which is also the higher-dimensional classiealfor short- . We can thus conclude that_ any fw_ute-temperature_ _tranS|—
range interaction In the o—2 limit, the short-range term tion in the present caser¢=1) is definitely a KT transition
becomes important and this contribution comes from thédt @ reduced _C_”t'cal temp_eratuFE'c(l_“) even thoug_h the
renormalization of the short-range coefficiémin Eq. (3). quantum transition af =0 is a continuous order-disorder

Clearly there is a nonuniformity involved here. Hence Onetransition for all values o&. These KT transitions should be

cannot retrieve the short-rangg (and thus the other expo- described in terms of the classical RG equatidttggeneral-

nents by settingo=2 in its long-range value in the two- ized to a reduced temperatufél’). If one now probes the
loop order. critical region at any finite temperature for=1 at a fixed",

The dynamical exponert retains its mean-field value the corresponding KT transition is then described in terms of
= /2 up to the one-loop order. For a change of length scald€ following RG equation:

by a factor expfl) the coefficient g scales asg’ deb

=gexg?’ ?9 Demanding thatgy scales to a fixed point m:_“yz’ (13
value one getz= ¢/2 in the one-loop order. In the two-loop

order thegq— 0 part of the self-energy term renormalizes the dy

coefficient ofw? termg and thus modifieg. For any value FTRRAL (14)

of 0<2, we expect that the dynamical exponent will be of

the form z=o/[2—7(€)], In the 0—2, 57— nsg and this ,

leads toz= o/(2— ngr) Wherenggis as given above. On the a=h(1—y ), (15
other hand, ag— 2 the short-range term will be important

in defining z and hencez will be unity (w and q scaling Where ¢=[1/T(I')-1] is the temperature fieldy=exp
identically). Thus we expect that the similar nonuniformity [—#/KT(I')] is the chemical potential field witp being the

as seen iny at o=2 will also appear ire chemical potential associated with the local energy to form a
kink in absence of the static external magnetic field
IIl. ONE-DIMENSIONAL QUANTUM ISING MODEL As mentioned already, the above RG equatiB—(15)

correctly describe the finite temperature transition in the
Let us now focus on the most interesting part of ourpresent case and they should be valid in the crossover region
study: We have argued already that the one-dimensionaliscussed above. Moreover, the above set of equations are
transverse Ising model with long-range interaction exhibits aassociated with a region below the phase bounddiy-
zero-temperature order-disorder transition for all values.of cussed beloyvwith diverging spatial correlation length and
Equation(8) for the upper critical range readily indicates that static susceptibility and quantum effects are truly negligible
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Ising case (n=1) (d=1) RG equations we use, which are valid strictly in the vicinity
of the phase boundary and especially for sthadind highT
region. We mention that the occurrence of such a region in
the classical case I'=0) is proved using rigorous
T T T analyticat® and numerical studie¥.
Ordes-diconder Clearly, the width of this region with diverging suscepti-
J/ Transition bility decreases monotonically d$ increases, and such a
r Q r Q r Q region is absent for th&=0 transition. Note that unlike the
(@) (b) ) n=d=2 short-range rotor cas@liscussed lat¢r we have
FIG. 1. The schematic phase diagram and RG flo-ii plane  {'U€ long-range order, i.e., nonzero spontaneous magnetiza-
of one-dimensional long-range Ising model with different values oftion in the ordered phase. The pure classical KT transition
o. For 0<1 (a) the system has both quantum and thermal transi{I'=0) is associated with a discontinuous jump in
tions. (b) The caser=1 where transition at any finite temperature magnetizatior: one can argue in a similar spirit that this
is a KT transition. In the shaded region, the spatial correlationdiscontinuity decreases monotonically wikhand the pure
length and the susceptibility diverge. For-1 there is a quantum  quantum transition is a continuous one.
critical point but no finitn_e tempergt_ure trqnsiti(:cr).Qar_ldC denote A few important comments are necessary, following a
the quantum and classical transition points respectively. very recent extensive Sttuon inverse-square classical
Ising system. That study as mentioned already, strongly sup-
ports the results of the the RG calculation and KT transition
scenario that we employ here. The results of that work seem

o<1 o=1 c>1

C C KT Transition

in this region. We use the above generalized RG E3—
(15 to make an approximate estimate of the width of this

interesting region. This is a good approximation as MeN:  indicate that the shaded region in Figb)Lshould be

tioned aIready, n the small and h'ghT region where the wider than what is predicted from RG calculations but the
crossover region discussed above is wider. The schematic .. . ) . . ;
alitative shape of this special regionTrl’ plane remains

: : P u
phase diagram of the quantum Ising chain in Ih@ plane, d . ) .
for different values ofo are shown in Figs. (B and 1b) unaltered. One can easily estimate using the RG Hds-

o (15) the value of temperatur€,(I'), at or below which the
corresponds to the especially important casel where the L T
phase diagram shows a line of KT transitions exponent describing the power-law correlation is no loriger
The RG Egs.(9)—(11), which are valid stri.ctly at and andl_“ dep_endent. It would be slightly higher than what is
close to the phase boundary in theT plane(where quan- E;?S;C'Te'g cl)n Fce;.s;lz(iog):bgcgassz al\/slorior\:]eor, g?ertrr]]?asr (t_j% b i
tum effects are negligibjecan be integrated at or below the utin ou u w ve iu wn o
reduced critical temperaturg(T').1* At T(T') the spatial the phase boundary the quantum effects are no longer negli-

: . . ible and the RG equations may not be valid.
correlation functionG(r) falls off as G(r)~1/Inr. This 9 : ; ; L .
logarithmic fall at the critical point has been supporteder We should mention at this point that similar studies can be

) : . made for short-range quantum rotor fd=n=2 where as
a considerable range o) in a recent extensive studyon S N
. 4 well any finite temperature transition is of KT type and one
the corresponding classical system.

Below but close to the reduced critical temperature weObtf"‘.Ins a s_lmllar phase diagram as " F|Q3)1Th|s can be
have an algebraic decav given as verified using QNIo- model RG equatioris(for dimension-
9 Y9 less temperatujefor n=d=2. But one should note the dif-

ference that in the short-ranyey case the spatial correlation

(r)~ 4yAt (16) shows an algebraic fall &t (I"). Moreover the entire quasi
r(4|At))¥?’ long-range ordered phase is associated with a diverging spa-

tial correlation length and susceptibility. It has a true long-
whereAt=[T(I")—T.(I")}/T(I"). This algebraic form goes range order only along th€=0 line. One should also note
over to the logarithmic fall a$(I") — T.(I") from below. We  here that a similar phase diagram as Fi@p) 1s also found in
evaluate the susceptibility using the fluctuation-dissipatiorthe case of a Josephson-Junction array in two spatial dimen-
theorem with this algebraic form of the correlation function sions (see Fig. 5 of Ref. 18 In that case, any finite-
and, consequently, it is found that for 1/16<At<0 the temperature transition corresponds to a two-dimensional
susceptibility clearly diverges but it is finite and proportional classical KT transition inXY systems but the zero-
to 1/(4J]At|—1) for At<—1/16. As At approaches temperature transition is a ¢21)-dimensional classicalyY
(—1/16) from below, the behavior becomest( %) 1. In  transition. However, the shaded region with diverging re-
Fig. 1(b) the shaded region with lower boundary given by thesponse function is a special feature of the model we study,
equation[(T(I')—T(I'))/T¢(I') =+, corresponds to the and is not observed in that case.
critical region discussed above where spatial correlation Following Kosterlit2? to describe the finite-temperature
length and susceptibility clearly diverges. This intermediateransition foro<1, one could use a similar set of equations
region close to the phase boundary in thieT) plane with  as Egs.(13)—(15) with the reduced temperatuiig1’). The
algebraically falling spatial correlation functiqwith expo-  solutions of these equations are nonanalytioasl (which
nent determined by andI') and diverging magnetic suscep- is a signature of the KT transition fosr=1, discussed
tibility is the most important aspect of this model at finite above. For <1, we have a critical fixed point at* (I")
temperature. We reiterate that our estimation depends on trend unstable fixed point &(I") =c. T*(I") corresponds to
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the finite temperature transitions shown in Figa)land its
value gets smaller with increasidg
IV. ONE-DIMENSIONAL QUANTUM ROTOR MODEL

We shall now consider the transition
dimensional quantum rotor model witi=2 and long-range

interaction. One should note here that the short-range inter

acting quantum rotor fon>2 does not show a QPT in one

dimensiol whereas the long-range system shows a non-

trivial transition even ford=1. The exponents at the mean-

field level and also close to the upper-critical dimension are)ja

already discussed in the Sec. Il.

in the one-T

PHYSICAL REVIEW B54 184106

Rotor (n=2) (d=1)

o<1 l<o<2 n=¢6=2
C
T \ T
g Q 8 Q g QKD
(a) {b) ()

FIG. 2. The schematic phase diagram and RG flowthe g-T
ne of quantum rotor systems1&2) with different values otr.
For o<1 (a), the system undergoes both quantum and thermal tran-

The zero-temperature transition for the one-dimensionalisons, For &= o<2 (b) there is no finite-temperature transition.
case can be investigated extending the one-loop renormalizgne special case=n=2 corresponds to the quantum KT transi-

tion group equations of the QNt-modef (which is an ap-

tion of the quantunXY rotor (c).

propriate field theoretical description of the quantum rotors

in low dimensiong to the present case. We obtain fibe 1
(see the Appendix

dg L 0') 1 012 .
a - 59+ 7-(N=2)g", 17
whereg (defined in the Appendixhere corresponds to the
dimensionless quantum coupling. Clearly, for-2 and o

in nature. For related studies on short-range classical and
quantum systems with<<2, we refer to Refs. 19 and 20,
respectively.

V. CONCLUSION

In conclusion we have studied very simple quantum sys-
tems with nontrivial long-range interactions and find very

<2, the critical coupling §.) is given by the unstable fixed interesting phase diagrams for different values of the param-
point of Eq.(17) atg.={2m(2—0)}/(n—2). Forn=2 and  eter ¢. The main results and the methods and the approxi-
o=2, g, happens to be undefined which clearly correspondsnations involved are already discussed in the corresponding
to the quantum KT transition of one-dimensional two- sections. These studies are important following the recent
component short-range quantum rdtehere local defects ypsurge in the theoretical and experimehitiinvestigations

drive the transition. The transition is forbidden for=2.  of quantum systems and prolonged interest in the inverse-
This is easily understood thinking in terms of the equivalentsquare one-dimensional classical systems.

classical Hamiltonian. Foro=2 the equivalent two-
dimensional system is truly short ranged with continuous
symmetry and thus transition is forbidden as expected from
the Mermin-Wagner theorem. We find from E@d7) that the
correlation length exponent=1/(1— ¢/2) and the Fisher ex-
ponentn=2— ¢ (which is in general valid for long-range
interacting system. The method we use, is valid for>2
and o smaller than but close to 2.

The corresponding one-loop RG equation for the tempera- In this section, we shall study one-dimensional long-range
ture in the one-dimensional classiagavector systems with quantum rotor models using a QitLmodel approach. Our
n=1 reads(KosterlitZ? study will follow Ref. 9 which uses the momentum-shell
method for thed-dimensional short-range quantum rotor sys-
tems. The essential mathematical steps that lead us to the
recursion relatiori17) will be briefly indicated here. We con-
sider the effective zero-temperature continuum action of a
n-component one-dimensional quantum rotor with long-
range interaction in the presence of a magnetic fitld.e.,

[x(r,7)=x(r",7)]?

J
S /ﬁ=——fd fdrjdr’
eff % T (r_rr)1+a
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APPENDIX

2

! (1-0)T+(n—-1) !
—=—(1- n-1)—s.
dl 7 52

(18)
The above equation yields a nonzefg for o<1 andn
>1; theo=1 andn=1 case corresponds to the KT transi-
tion discussed earlier. The phase diagram in thd) plane
and corresponding RG flow equations are shown in Fig. 2. It
would be definitely intriguing to ask at this point about the
nature of the phase diagram and the form of the RG(EB.

for a one-dimensional system with<dn<2 where Eq(18)

definitely holds. We have mentioned that our QNImodel
approach is valid fon>2 and thus no conclusive inference
should be drawn fon<<1<2 with a generabr<2. However,
the short-ranged=2) one-dimensional systems with<h

—%f drf dr(%)z—;f drf dro(r,7),
(A1)

where we have decomposed vecits in the form{m, o}

<2 should exhibit a quantum transition which is topologicalwhere 7's are (h—1) component vectors. Note that here
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represents the imaginary time direction andratO this di-  the continuous Matsubara frequencies. As in the short-range
rection is infinite. The spatial integrations are cutoff at short-case one can integrate out high wave-vector mdgéth
distance byA. We can now eliminater’s from the action e %<qg=1) to generate an effective action involving low
using the constraini?(r,7) + o?(r,7) =1, which is valid for ~ wave-vector mode$With appropriate rescaling of momenta
eachr and 7. So the partition function becomes and the spin-field we arrive at the recursion relations given as

1 1) 20— (1+0+2)dl 1
Jm(r T)H — (—) ={% = +1i00p) (Ad)
V1—72(r,7) g g
2 B gh
Xexp{——J dXOJ de dx x([w(x ) W(l)i 7)) h'={% (1”)5'(h+ 7(”—1)||00p>1 (A5)
(x—x")*"7
. where( is the spin-rescaling factor. The loop integral in the
. V1= 7%(x, ) N[ 1-7(x",7)] N present case is given as
(X_X/)l+0'
| de dq 1
2 frd —_—
xexg — = [ dxo [ axl 22| + Lol ) +- ) 2m2m g7t w?thg
0 (7Xo 1- 72
_1f1 dq 1 1 1 s, (A6)
Xex;{hj dxof dx\/l—wz), (A2) e 927 \Jq°+hg 47 1+hg
where One should note here that in the quantum long-range case,
we have an additiondl—(g/h)l,e,,] contribution in the re-
2% cursion relation ot in compared to the Ref. 12. This term
g= TA”Z*", (A3a)  arises due to the local quantum tefrm(J/ dx,) ]2 of action
(A2) and hence does not show up in the corresponding clas-
= sical one-dimensional caseThe field rescaling ternt is
g,= ~gAT 2, (A3p)  determined demandinig’ = Zh and we find using EqA5)
g
g
he A~ (142 (A30) g:e(1+2>5'(1—5(n—1)|,oop). (A7)

Now x and Xp are defined to be dimensionless variables. Us|ng Eq (A4) andz= 0-/2 we obtain the recursion relation
With this choice, the wave-vector cutoff in EGA2) is unity.  of coupling 14 given as

Note in contrary to the short-range cddbe long-range case
is anisotropic in space and time. Imaginary timéere de- 1\’ (1-of2)a

notes an additional dimension with an effective short-range 9 =e g —(n 2)lioop | - (A8)
interaction. Following the discussions in Sec. I, we now set

z= /2 (which is correct at least to the first-loop orfleso  Expanding the exponential in tlee ® = 1— 81, and using the
that the additional, appearing in the present case, has theform of I 4., from Eq. (A6) we find the differential form of
same scaling behavior gs Henceforth, we shall look at the the recursion for the coupling in the 61— 0 limit (with h

renormalization of. —0) given as
Using the standard technique involved in the QNL
model, we expand the factoré — 72 and (1- w2) ~* in Eq. dg _ (S _ 1) (n-2) ,
e . - = g+ g°. (A9)
(A2) and decompose’s in Fourier modesr(q,w), w being dl 2 A
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