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Second nearest-neighbor modified embedded atom method potentials for bcc transition metals
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The second nearest-neighbor modified embedded atom method~MEAM ! @Phys. Rev. B 62, 8564~2000!#,
developed in order to solve problems of the original first nearest-neighbor MEAM on bcc metals, has now been
applied to all bcc transition metals, Fe, Cr, Mo, W, V, Nb, and Ta. The potential parameters could be deter-
mined empirically by fitting to (]B/]P), elastic constants, structural energy differences among bcc, fcc and
hcp structures, vacancy-formation energy, and surface energy. Various physical properties of individual ele-
ments, including elastic constants, structural properties, point-defect properties, surface properties, and thermal
properties were calculated and compared with experiments or high level calculations so that the reliability of
the present empirical atomic-potential formalism can be evaluated. It is shown that the present potentials
reasonably reproduce nonfitted properties of the bcc transition metals, as well as the fitted properties. The effect
of the size of radial cutoff distance on the calculation and the compatibility with the original first nearest-
neighbor MEAM that has been successful for fcc, hcp, and other structures are also discussed.

DOI: 10.1103/PhysRevB.64.184102 PACS number~s!: 61.50.Lt, 62.20.Dc, 64.70.Dv, 64.70.Kb
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I. INTRODUCTION

Semiempirical atomic potentials enable large-scale at
istic simulation~molecular dynamics or Monte Carlo simu
lation! useful in the study of solid-state phase transform
tions. In order to apply the technique to alloys, it
convenient to describe the atomic potentials of various
ments with various crystal structures using a common
malism. The modified embedded atom method~MEAM ! po-
tential proposed by Baskes and coworkers1–4 may be said to
be unique among empirical potentials in that it can reprod
physical properties of many elements with various crys
structures including hcp and diamond cubic as well as
and bcc using the same formalism.

However, when being applied to an atomistic simulati
on some bcc metals, the MEAM reveals some critical sh
comings. First, for many bcc metals, the surface energy
the ~111! surface is computed to be smaller than that of
~100! surface, which is contrary to experimental results5,6

Second, more seriously, a structure more stable than
original bcc is created during a molecular dynamics simu
tion of some bcc metals~Fe, Cr, Mo, etc.!. This newly cre-
ated structure has quite different elastic properties comp
to the metals with the original structure. Simply changing
model parameters cannot solve these problems without c
promising the descriptions for other physical properties.

The MEAM was formulated to consider only neare
neighbor interactions by using a strong screen
function.3,7,8 However, in the bcc structure, the seco
nearest-neighbor distance is larger than the first nea
neighbor distance by only about 15%. The interactions
tween second nearest-neighbor atoms in bcc may not be
ligible even with the screening. It could be thought that t
failure of the MEAM in reproducing the surface energies
low-index surfaces in correct order originates from the f
that only the nearest-neighbor interactions are considere
the model.
0163-1829/2001/64~18!/184102~11!/$20.00 64 1841
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Recently, the present authors solved the above-mentio
problems of the MEAM for bcc metals by modifying th
original MEAM formalism to partially consider the secon
nearest-neighbor interactions as well as the first near
neighbor interactions.9 The second nearest-neighbor intera
tions could be taken into consideration by adjusting
screening. A potential in this formalism successfully rep
duced many physical properties of Fe.

The purpose of the present work is to apply the seco
nearest-neighbor MEAM to a large number of bcc eleme
and to show that the improvements obtained for Fe9 can be
transferred to other bcc metals~Cr, Mo, W, V, Nb, Ta!. In
Sec. II, the formalism of the second nearest-neigh
MEAM ~2NN MEAM! will be described paying attention t
the difference from the original first nearest-neighb
MEAM ~1NN MEAM!.3 In Sec. III, the procedure for deter
mination of parameter values will be given. Compariso
between some calculated and experimental physical pro
ties of the bcc metals will be given in Sec. IV. Applicabilit
and limit of the present 2NN MEAM will also be discusse
in this section, and Sec. V is a summary.

II. FORMALISM

A. First and second nearest-neighbor MEAM for elements

In the original 1NN MEAM,1–4 the total energy of a sys
tem is approximated as

E5(
i

FF~ r̄ i !1
1

2 (
j (Þ i )

f~Ri j !G , ~1!

where F is the embedding function,r̄ i is the background
electron density at sitei, andf(Ri j ) is the pair interaction
between atomsi and j separated by a distanceRi j . Concern-
ing Eq. ~1!, what is actually done in atomistic simulations
the calculation of energy using the expression on the rig
©2001 The American Physical Society02-1
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LEE, BASKES, KIM, AND CHO PHYSICAL REVIEW B64 184102
hand side of Eq.~1!, based on given positions of individua
atoms. For this, the functional forms for the two terms,F and
f should be given.

The embedding function is given as follows:

F~ r̄ !5AEc~ r̄/ r̄0!ln~ r̄/ r̄0!. ~2!

Here, A is an adjustable parameter,Ec is the sublimation
energy, andr̄0 is the background electron density for a re
erence structure. The reference structure is a structure w
individual atoms are on the exact lattice points without d
viation. Normally, the equilibrium structure is taken as t
reference structure for elements. The background elec
density r̄ i is composed of a spherically symmetric part
electron densityr i

(0) and the angular contributionsr i
(1) ,

r i
(2) , and r i

(3) . Each partial electron density term has t
following form,

~r i
(0)!25F(

j Þ i
r j

a(0)~Ri j !G2

, ~3a!

~r i
(1)!25(

a
F(

j Þ i

Ri j
a

Ri j
r j

a(1)~Ri j !G2

, ~3b!

~r i
(2)!25(

a,b
F(

j Þ i

Ri j
a Ri j

b

Ri j
2

r j
a(2)~Ri j !G 2

2
1

3 F(
j Þ i

r j
a(2)~Ri j !G2

,

~3c!

~r i
(3)!25 (

a,b,g
F(

j Þ i

Ri j
a Ri j

b Ri j
g

Ri j
3

r j
a(3)~Ri j !G 2

2
3

5 (
a

F(
j Þ i

Ri j
a

Ri j
r j

a(3)~Ri j !G2

. ~3d!

Here,r j
a(h) represent atomic electron densities fromj atom at

a distanceRi j from atom i. Ri j
a is the a component of the

distance vector between atomsj and i (a5x,y,z). The ex-
pression for (r i

(3))2 @Eq. ~3d!# is a recent modification to
make the partial electron densities orthogonal.10 The way of
combining the partial electron densities to give the to
background electron density is not unique, and several
pressions have been proposed.8 Among them, the following
form is used in the present work.

r̄ i5r i
(0)G~G i ! ~4!

where

G~G!52/~11e2G! ~5!

and

G i5 (
h51

3

t (h)@r i
(h)/r i

(0)#2, ~6!

t (h) are adjustable parameters. The atomic electron densi
given as

ra(h)~R!5exp@2b (h)~R/r e21!#, ~7!
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whereb (h) are adjustable parameters andr e is the nearest-
neighbor distance in the equilibrium reference structure.

Now, the embedding function can be computed. W
should be done next for the energy calculation is to comp
the pair interaction terms. For this, the functional form of t
pair interactionf(R) is necessary. However, in the MEAM
no specific functional expression is given directly tof(R).
Instead, the energy per atom for the equilibrium referen
structure is given a value as a function of atomic volum
~nearest-neighbor distance!. Then, the value off(R) is com-
puted from the known values of the total energy and
embedding function, as a function of nearest-neighbor d
tanceR.

The value of the energy per atom for the equilibrium re
erence structure is obtained from the zero-temperature
versal equation of state by Roseet al.11 as a function of
nearest-neighbor distanceR.

Eu~R!52Ec~11a* 1da* 3!e2a* ~8!

whered is an adjustable parameter, and

a* 5a~R/r e21! ~9!

and

a5~9BV/Ec!
1/2. ~10!

HereEu(R) is the universal function for a uniform expansio
or contraction in the reference structure,B is the bulk modu-
lus, andV is the equilibrium atomic volume.

In the 1NN MEAM, only the first nearest-neighbor inte
actions are considered as already mentioned. The summ
of pair interaction terms in Eq.~1! is performed over only
nearest-neighbor atoms. Here, it should be noted that
bonding directions among neighbor atoms are fixed in a
erence structure and the embedding function becomes a f
tion of only nearest-neighbor distanceR. Therefore, for a
reference structure, the energy per atom can be written a
as follows, as a function of only the nearest-neighbor d
tanceR.

Eu~R!5F@ r̄0~R!#1~Z1 /2!f~R!, ~11!

whereZ1 is the number of nearest-neighbor atoms. The
pressions for the embedding functionF and energy per atom
Eu(R) are now available@from Eqs. ~2! and ~8!, respec-
tively#. The expression for the pair interaction between t
atoms separated by a distance R,f(R), is obtained from Eq.
~11! as follows,

f~R!5~2/Z1!$Eu~R!2F@ r̄0~R!#%. ~12!

The key difference of the 2NN MEAM from the 1NN
MEAM is that second nearest-neighbor interactions are p
tially considered during the procedure of determiningf(R)
values. In the 1NN MEAM, the neglect of the secon
nearest-neighbor interactions is made by the use of a st
many-body screening function. In the same way, the con
eration of the second nearest-neighbor interactions in
2NN MEAM is also made by adjusting the many-bod
screening function so that it becomes less severe.
2-2
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SECOND NEAREST-NEIGHBOR MODIFIED EMBEDDED . . . PHYSICAL REVIEW B64 184102
The amount of screening of ak atom to the interaction
betweeni and j atoms is determined using a simple geom
ric construction.7,8 Imagine an ellipse on an (x,y) plane,
passing through atomsi, k, andj with thex axis of the ellipse
determined by atomsi and j. The equation of the ellipse i
given by

x21~1/C!y25S 1

2
Ri j D 2

. ~13!

For eachk atom, theC value can be computed from th
relative distances among the three atomsi, j, andk. EachC
value defines an ellipse with its owny-axis length. The basic
idea for the amount of screening is as follows. Two valu
Cmax andCmin (Cmax.Cmin) are given, so that two ellipse
with different length ofy axis can be defined. If ak atom is
located outside of the larger ellipse defined byCmax, that is,
if C value for ak atom is larger thanCmax, it is assumed tha
the k atom does not give any effect on thei -j interaction. In
this case, the screening factor is 1. IfC value for ak atom is
smaller thanCmin , then it is assumed that thek atom com-
pletely screen thei -j interaction. In this case, the screenin
factor becomes zero. Between the twoC values (Cmax and
Cmin), the screening factor changes gradually. The resul
many-body screening function between atomsi and j is de-
fined as the product of the screening factors due to all o
neighbor atomsk. The screening function is then multiplie
to the atomic electron densities and pair potential.

In the original 1NN MEAM,3 Cmax52.8 andCmin52.0
were chosen so that the first nearest-neighbors are c
pletely unscreened for reasonably large thermal vibration
the fcc structure and the interactions are still the first nei
bor only even in the bcc structure. In the present 2N
MEAM, the second nearest-neighbor interactions are ta
into consideration by giving a lower value than 2.0~1.0! to
Cmin for bcc~fcc! structure. Consideration of second neare
neighbor interactions does not change the formalism in E
~1!–~10!. However, for computation of pair interactions th
summation should be extended to the second nea
neighbor atoms. Taking the second nearest-neighbor inte
tions into consideration, the energy per atom for a refere
structure is now expressed as follows:

Eu~R!5F@ r̄0~R!#1~Z1/2!f~R!1~Z2S/2!f~aR!.
~14!

Here, Z2 is the number of second nearest-neighbor ato
and a is the ratio between the second and first near
neighbor distances.S is the screening function on the seco
nearest-neighbor interactions. It should be noted that
screening functionS is a constant for a given reference stru
ture, if a value is given toCmax and Cmin . By introducing
another pair potential,c(R), Eq.~14! can be written again a
follows:

Eu~R!5F@ r̄0~R!#1~Z1 /2!c~R! ~15!

where

c~R!5f~R!1~Z2S/Z1!f~aR!. ~16!
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Now, c(R) can be calculated from Eq.~15! as a function of
R. Then, the pair potentialf(R) is calculated using the fol-
lowing relation, also as a function ofR,

f~R!5c~R!1 (
n51

~21!n~Z2S/Z1!nc~anR!. ~17!

Here, the summation is performed until the correct value
energy is obtained for the equilibrium reference structure

It should be noted here that at low values ofCmin
(,0.47 for bcc!, even third nearest-neighbor interactions a
not completely screened. If such interactions are include
the calculation, it will cause an inconsistency and an erro
energy calculations, because only the interactions betw
first and second nearest-neighbors are considered when
fining the pair interaction in Eqs.~14!–~17!. The size of such
an error is small because the interaction between th
nearest-neighbor atoms is small due to the many-b
screening. For example, for Fe (Cmin50.36) and Ta (Cmin
50.25), the errors in the calculated equilibrium potential e
ergies are 0.004% and 0.02%, respectively. In the pre
study, this inconsistency is accepted because the error is
ligibly small. The effect of such third nearest-neighbor inte
actions are minimized by using a radial cutoff function wi
a cutoff distance between second and third nearest-neig
distances.

B. Application to alloy systems

The above is a brief review of the 1NN and 2NN MEAM
formalism for elements. The application of the MEAM is n
confined to descriptions of elements, but can be extende
descriptions of alloy systems. A method to describe bin
alloy systems has been presented for the 1NN MEAM.3 Ow-
ing to the importance of describing alloy systems, it will b
shown here that the same method can be applied for a
description using the 2NN MEAM, even though alloy sy
tems are not covered in the present paper.

To describe an alloy system, the pair interaction betwe
different elements should be determined. For this, a sim
technique that was used to determine pair interaction for
ements, Eq.~11! or Eq. ~14!, is applied to binary alloy sys-
tems. In the 1NN MEAM,3 a perfectly ordered binary inter
metallic compound, where only one type of atom h
different type of atoms as first nearest-neighbors, is con
ered as a reference structure. TheB1 ~NaCl type! or B2
~CsCl type! ordered structures can be good examples.
such a reference structure, the total energy per atoms~for 1

2 i
atom1 1

2 j atom!, Ei j
u (R), is given by

Ei j
u ~R!5

1

2
@Fi~ r̄ i !1F j~ r̄ j !1Zi j f i j ~R!#, ~18!

whereZi j is the number of nearest-neighbors in the refere
structure. Equation~18! can be written forf i j (R) as

f i j ~R!5
1

Zi j
@2Ei j

u ~R!2Fi~ r̄ i !2F j~ r̄ j !#. ~19!
2-3
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TABLE I. Parameters for the second nearest-neighbor MEAM~2NN MEAM! potential of Fe, Cr, Mo, W,
V, Nb and Ta. The units of the sublimation energyEc , the equilibrium nearest-neighbor distancer e and the
bulk modulusB are eV, Å, and 1012dyn/cm2, respectively.

Ec r e B A b (0) b (1) b (2) b (3) t (1) t (2) t (3) Cmax Cmin S d

Fe 4.29 2.480 1.73 0.56 4.15 1.0 1.0 1.0 2.6 1.827.2 2.80 0.36 0.9112 0.05
Cr 4.10 2.495 1.90 0.42 6.81 1.0 1.0 1.0 0.3 5.9210.4 2.80 0.78 0.8193 0.00
Mo 6.81 2.725 2.65 0.46 7.03 1.0 1.0 1.0 0.5 3.127.5 2.80 0.64 0.8590 0.00
W 8.66 2.740 3.14 0.40 6.54 1.0 1.0 1.020.6 0.3 28.7 2.80 0.49 0.8905 0.00
V 5.30 2.625 1.57 0.73 4.74 1.0 2.5 1.0 3.3 3.222.0 2.80 0.49 0.8905 0.00
Nb 7.47 2.860 1.73 0.72 5.08 1.0 2.5 1.0 1.7 2.821.6 2.80 0.36 0.9112 0.00
Ta 8.09 2.860 1.94 0.67 4.49 1.0 1.0 1.0 1.7 2.123.2 2.80 0.25 0.9251 0.00
-
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The embedding functionsFi and F j can always be com
puted. To obtain the value ofEi j

u (R), the universal equation
of state11 is considered once again for the reference ph
~intermetallic compound!. Assumed values or experimental
measured values ofEc , r e ~or V) and B for the reference
phase is given. Then the pair interaction betweeni and j
atoms is determined as a function of interatomic distanc

The above method can be equally applied in the 2
MEAM. In the 1NN MEAM, the reference binary alloy
structure was a structure where the first nearest-neighbo
an atom are all different type. The additional condition tha
given to the reference structure in the 2NN MEAM is th
the second nearest-neighbors should all be of the same
This condition is satisfied in both of theB1 andB2 ordered
structures. Considering the second nearest-neighbor inte
tions, Eq.~18! is now rewritten as

Ei j
u ~R!5

1

2 H Fi~ r̄ i !1F j~ r̄ j !1Zi j f i j ~R!

1
1

2
Z2

i j ~f i i ~aR!1f j j ~aR!!J , ~20!

Z2
i j is the number of second nearest-neighbor atoms in

reference structure.f i i andf j j are pair interactions betwee
i atoms and betweenj atoms, respectively.a is the ratio be-
tween the second and first nearest-neighbor distances.
procedure of computingr̄ i andr̄ j is not different from that in
1NN MEAM except that the contribution from the secon
nearest-neighbors should also be considered. The pair i
actions between the same type of atoms can be comp
from the descriptions of individual elements. The value
Ei j

u (R) is obtained using the same procedure as in the 1
MEAM. Therefore, the pair interaction between the differe
types of atoms can be computed using the following exp
sion, as a function of interatomic distance.

f i j ~R!5
1

Zi j
H 2Ei j

u ~R!2Fi~ r̄ i !2F j~ r̄ j !

2
1

2
Z2

i j @f i i ~aR!1f j j ~aR!#J . ~21!

Though more computing effort is necessary, the 2N
MEAM does not cause any additional difficulty in the d
scriptions of alloy systems, compared to the 1NN MEAM
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III. DETERMINATION OF THE PARAMETERS

The formalism~2NN MEAM! for elements was applied to
evaluate the MEAM parameters for the bcc transition met
Fe, Cr, Mo, W, V, Nb, and Ta. The parameters were de
mined by fitting to physical properties of each element,
will be described. The parameters finally determined for
dividual elements are listed in Table I. Here, the referen
structure is bcc for all elements. In this section, the proced
for the determination of these parameter values is presen

The 2NN MEAM formalism gives 15 model paramete
as shown in Table I. Here, the amount of screening betw
second nearest-neighbor atomsS is not an independent pa
rameter, but is uniquely determined if theCmax, Cmin val-
ues, and the reference structure are given. The values o
sublimation energyEc , nearest-neighbor distancer e , and
the bulk modulusB are given experimentally. Therefore, th
actual number of adjustable parameters is 11.

Of the 11 adjustable parameters~those listed in Table I
exceptEc , r e , B, and S!, Cmax was given the same valu
~2.8! as in the 1NN MEAM.3 For b (1), b (2) andb (3), it was
also intended to keep the same values~all 1.0! as in the 1NN
MEAM ~Ref. 3! because the effect of those parameters
the physical properties considered here was meager.~How-
ever, some different values had to be given tob (2) for some
elements@Nb and V# as will be mentioned later on.! By
fixing the values ofb (1), b (2), andb (3), the adjustable pa-
rameters whose values should be actually determined by
ting to physical properties becomes only seven,A, b (0), t (1),
t (2), t (3), Cmin , andd.

As already mentioned, the solid-state phase transfor
tion is a good research field where the atomistic simulat
using semiempirical potentials can be a powerful techniq
Especially, the initial stage of phase transformation~nucle-
ation stage! cannot be quantitatively described by any oth
analytic approaches. The three important terms in nuclea
kinetics are the driving force, interfacial energy, and the m
fit strain energy. Therefore, in order to be practically app
cable, it is believed that the semiempirical atomic potenti
should be able to reproduce at least the above three kind
properties of elements correctly. In the present study,
adjustable parameters are determined numerically so tha
structural energy differences~energy differences between bc
and fcc, and fcc and hcp structures!, defect energies~surface
energy and vacancy formation energy!, and elastic properties
2-4
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SECOND NEAREST-NEIGHBOR MODIFIED EMBEDDED . . . PHYSICAL REVIEW B64 184102
~elastic constants! are reproduced.
It should be noted here that theda* 3 term was newly

introduced into the present formalism for the energy
atom of the reference structure@Eq. ~8!#, compared to the
1NN MEAM. Actually, this term had been included in th
original universal equation of state11 with a value of 0.05 for
d, which was fixed from the thermal expansion of Cu. Ho
ever, generally, almost the same degree of agreement, an
some elements, even better agreement between calcu
and experimental pressure-volume relation could be obta
without this term. This term has always been ignored in
1NN MEAM formalism1–4 and even in the initial formula-
tion of the 2NN MEAM.9 However, during the present stud
it was found that the ignorance of theda* 3 term can cause
somewhat large disagreement with the experime
pressure-volume relation for some elements. It was fin
decided to taked as a material-dependent parameter.

The value ofd could be determined separately from oth
adjustable parameters, using the (]B/]P) value from either
first-principles ~FP! calculation or from experiments. Be
cause experimental data for (]B/]P) were not always avail-
able, first-principles calculation could yield this informatio
for the determination ofd. The present authors have pe
formed theab initio pseudopotential calculations within th
generalized gradient approximation~GGA!12,13 using the Vi-
ennaab initio simulation package~VASP!.14 The atoms are
represented by ultrasoft Vanderbilt-type pseudopotential
supplied by Kresse and Hafner.15 The FP calculated and ex
perimental (]B/]P) values for each element are compar
with the 2NN MEAM values calculated ford50 and d
50.05, in Table II.

The FP calculation reproduces the trend of experime
(]B/]P) values among the elements correctly, even thou
the absolute agreement with experimental data is not v
good. Of course, a very good agreement could not be
pected because the FP values were for 0 K while the experi-
mental data were usually for room temperature~RT!. How-
ever, the differences were much larger than those betwe
K and RT values calculated in the present study using
2NN MEAM. ~These were smaller than 0.1 for Fe and M!.
The large differences between the FP calculation and exp
ments made it impossible to evaluate thed value as a

TABLE II. ( ]B/]P) at 0 K by the first-principles calculation, a
RT from experiments and 2NN MEAM value~0 K! obtained using
d50 andd50.05 for individual elements. The FP calculation va
ues are those obtained in the present study using the VASP~Ref. 14!
and the experimental data are from Ref. 11.

FP Experimental 2NN MEAM
~0 K! data~RT! d50 d50.05

Fe 4.63 5.29 4.44 4.95
Cr 4.08 4.72 5.28
Mo 4.25 4.7 4.89 5.48
W 4.20 4.5 4.79 5.36
V 3.68 4.21 4.69
Nb 3.64 4.1 4.23 4.71
Ta 3.8 4.28 4.78
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material-dependent parameter. However, it was possibl
judge which of the two 2NN MEAM values, one based o
d50 or the other based ond50.05, would be closer to the
real (]B/]P)T50 value. Therefore, it was finally decided t
select the value ofd for each element between 0 and 0.0
according to FP calculation or experimental (]B/]P) value
if available. By this, the selectedd value of Fe was 0.05
while it was zero for other bcc metals considered. Figur
shows the normalized energy (E/EC) vs normalized volume
(V/Vo) for Fe. The curve is by the present 2NN MEAM an
the symbols are first-principles calculations also by
present authors using the VASP.14

The determination ofd value is done at the beginning o
the parametrization procedure. Then, theA, b (0), t (1), t (2),
t (3), andCmin values are determined looking at the structu
energy differences (DEbcc→ f cc ,DEf cc→hcp), surface energy
E(sur f) , vacancy formation energyEv

f and elastic constant
(C11, C12, C44!, as already mentioned. Generally, the effe
of each parameter on individual properties is complicat
and it is impossible to relate one property to one parame
However, the effects of some parameters are certainly c
fined to only few properties, and the evaluation of para
eters can be done systematically. Table III shows the r
tionship between parameters and properties discove

FIG. 1. Calculated normalized energy (E/Ec) vs normalized
volume (V/Vo) for Fe, by the present 2NN MEAM. Symbols ar
first-principles calculations.

TABLE III. Effect of parameters on individual properties for bc
elements. The plus sign means the effect is significant, the m
sign means the effect is minor, and no sign means no effect.

A b (0) t (1) t (2) t (3) Cmin

C11 andC12 1 1 2 1

C44 1 1 2 1

E(sur f) 1 2 1 2 2 2

Ev
f 1 2 1 1 1 1

DEbcc→ f cc 1 1 1

DEf cc→hcp 1 1 1 1
2-5
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during the fitting procedure for bcc elements. Here, the p
sign means the effect is significant, the minus sign means
effect is minor, and no sign means no effect.

C11 and C12 are not independent from each other for
given bulk modulus. First, an arbitrary value is given
Cmin . Then, the values ofA andb (0) are determined fitting
C11 and C44 exactly. This procedure does not necessa
give a correct value for the bcc/fcc energy differen
DEbcc→ f cc . Changing theCmin value, this procedure is re
peated until satisfactory values are obtained forDEbcc→ f cc
as well as the elastic constants. Now,t (3) can be determined
exclusively looking atDEf cc→hcp . Then, t (1) and t (2) are
determined fitting the surface energies and vacan
formation energy. The last step can cause a change in
elastic constants of the model element because of the
value oft (2). This change can be removed by slightly chan
ing the A and b (0) values and repeating the procedure.
nally, a molecular-dynamics run is performed in order
check whether the parameter set stabilizes the bcc struc
until melting.

Using the relationships in Table III, it was usually po
sible to exactly reproduce the target value of a prope
However, it was generally impossible to reproduce the ta
values of all properties, simultaneously. Among all propert
considered, it was believed that the elastic constants
those most accurately measured. Therefore, the determ
tion of parameters was done so that the elastic constant
exactly reproduced, and so that the other property values
reasonably reproduced considering their accuracy. In
1NN MEAM, the fitting to the elastic constants has be
performed using room-temperature data, giving RT value
bulk modulus toB.3,4 However, in the present work, a valu
at 0 K or at a lowtemperature close to 0 K was used forB in
order to calculate (]B/]P) more accurately and determined
value more correctly. Therefore, the fitting to the elastic c
stants was also performed using 0 K or low-temperature data
Concerning the surface energy, it was impossible to cha
the order among individual surface energies@for ~100!,
~110!, ~111! surfaces# by adjusting the parameters, witho
severely losing good agreements for other properties. It
only intended to make the calculated lowest surface ene
@E(110)# close to the average experimental value for po
crystals.

IV. CALCULATION OF PHYSICAL PROPERTIES

The potentials determined by the above procedure w
used to compute various physical properties of individ
elements in order to evaluate the reliability of the 2N
MEAM. As well as the properties that have been used
fitting, the energy and equilibrium volume of simple cub
and diamond cubic structures, the activation energy of
cancy diffusion, the energy and structure of self-intersti
atoms, the relaxation of the~100!, ~110! and ~111! surfaces,
and thermal properties~thermal expansion coefficients, sp
cific heat, melting point, heat of melting! were calculated and
were compared with experimental data or high-level calcu
tions. In this section, some comparisons between the pre
calculation and experimental data or high-level calculat
18410
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will be presented. The reason why different value ofb (2) has
to be given to Nb and V will also be presented here. Th
effect of radial cutoff distance on the calculated prope
values will be discussed.

Table IV shows the calculated and experimental ela
constants (C11, C12, andC44! for individual elements. The
elastic constants were given the highest weight during fitt
and could be reproduced almost exactly.

The calculated structural energy difference and volume
various crystal structures are listed in Table V. Among t
items, only DEbcc→ f cc and DEf cc→hcp are those used fo
fitting, and others are predicted. The experimental data be
compared to the computedDEbcc→ f cc and DEf cc→hcp are
thermodynamically assessed values using the calp
method.18 Here, the calculation on the hcp structure w
done for a fixed ideal value ofc/a, 1.633. For Fe, Cr, Mo,
and W, the exact target values could be given toDEf cc→hcp ,
while for V, Nb, and Ta, they were sacrificed in order
better fit to both of the vacancy formation energy and surf
energy. The experimental information for the simple cub
and diamond structures is not available. A density-functio
calculation19 predicts that the energy of simple cubic an
diamond structures of 3d metals are on the order of eV’
above the bcc structure, which is in good agreement with
present prediction. The high-level calculation19 gives the ra-
tios of the simple cubic to bcc, and diamond to bcc atom
volume as about 1.1 and 1.4, respectively. For most
ments, these ratios could be reproduced by the present
MEAM. However, for V and Nb, the atomic volumes o
simple cubic and diamond structures are somewhat
small.

The next property looked at was point defects. Besides
vacancy-formation energy, which was used for fitting, t
activation energy of vacancy diffusion@~vacancy formation
energy! 1 ~vacancy migration energy!# could be calculated.
As another type of point defect, the formation energy o
self-interstitial and its structure were also calculated. Ta
VI shows the calculated point-defect properties in compa
son with experimental data for the vacancy-formation ene
and activation energy of diffusion. Here, the calculated a
vation energy of vacancy diffusion is being compared w
experimental data on the activation energy of diffusion
suming the vacancy mechanism of diffusion for transiti
metals. Generally, the vacancy formation energies could

TABLE IV. Calculated and experimental elastic constan
(1012 dyn/cm2). Experimental data are from Ref. 16 except for M
which are from Ref. 17.

C11 C12 C44

MEAM expt. MEAM expt. MEAM expt.

Fe 2.430 2.431 1.380 1.381 1.219 1.21
Cr 3.909 3.910 0.897 0.896 1.034 1.032
Mo 4.649 4.647 1.655 1.615 1.088 1.089
W 5.326 5.326 2.050 2.050 1.631 1.631
V 2.323 2.324 1.194 1.194 0.460 0.460
Nb 2.527 2.527 1.331 1.332 0.319 0.310
Ta 2.664 2.663 1.581 1.582 0.875 0.87
2-6
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TABLE V. Calculated structural energy differences,DE ~eV! and atomic volumes,v/n (Å 3). The energies are relative to bcc except f
hcp, where the energy is relative to fcc. The atomic volume of bcc, experimental data for the bcc→fcc and fcc→hcp energy differences ar
also presented for comparison.

bcc fcc hcp Simple cubic Diamond
v/n DEbcc→ f cc expt. v/n DEf cc→hcp expt. v/n DEbcc→sc v/n DEbcc→dia v/n

Fe 11.74 0.069 0.082a 11.78 20.023b 20.023a 11.77 0.99 13.74 1.82 17.53
Cr 11.96 0.070 0.075a 12.24 20.029b 20.029a 12.22 1.32 13.79 1.50 16.14
Mo 15.58 0.167 0.158a 15.91 20.038b 20.038a 15.89 1.97 17.63 2.37 21.43
W 15.84 0.263 0.200a 16.16 20.047b 20.047a 16.14 2.61 18.15 3.70 22.65
V 13.92 0.084 0.078a 14.02 20.011b 20.036a 14.01 0.78 14.06 1.22 16.65
Nb 18.01 0.176 0.140a 18.11 20.012b 20.036a 18.10 0.90 17.70 1.44 19.96
Ta 18.01 0.148 0.166a 18.14 20.023b 20.041a 18.12 1.32 19.21 2.51 24.10

aThermodynamically assessed values~room temperature data!.18

bCalculated for the ideal value of c/a, 1.633.
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reproduced in good agreement with experiments, while
vacancy-migration energies and thus the activation ener
of diffusion were somewhat smaller than experimental da
Concerning the self-interstitials, it is experimentally know
that the self-interstitials form dumbbell pairs along the@110#
direction in the case of Fe and Mo.20 According to the
present 2NN MEAM, the self-interstials form a dumbbe
pair along the same@110# direction for all bcc elements con
sidered.

The surface properties~surface energy, energy anisotrop
and relaxation! are a good test bed, where the reliability of
empirical potential can be evaluated. The surface ener
and the surface relaxations of the three low-index surfa
~100!, ~110!, and ~111! are presented in Table VII. The ex
perimental surface-energy data included in Table VII,Epoly

expt. ,
are for polycrystalline solids. All of these are extrapolat
values, directly from high-temperature experimental da24

or through some modeling approaches on temperature de
dencies of surface energy.25,26 As has been mentioned, th
fitting to the experimental surface-energy data was sim
done so that the calculated lowest surface energy@that of

TABLE VI. Calculated point-defect properties. Values listed a
the relaxed vacancy-formation energyEv

f ~eV! and the activation
energy of vacancy diffusionQ ~eV! in comparison with correspond
ing experimental data, the formation energy of a self-interstitialEI

~eV!, and its structure. The experimental vacancy-formation en
gies and the experimental activation energies of diffusion are f
Ref. 21 and Ref. 22, respectively, except for the activation energ
diffusion for Cr, which is from Ref. 23.

Ev
f Q Self-interstitial

MEAM expt. MEAM expt. EI Structure

Fe 1.75 1.79 2.28 2.5 4.23 @110# dumbbell
Cr 1.91 1.80 2.61 3.1 3.90 @110# dumbbell
Mo 3.09 3.10 4.22 4.5 5.97 @110# dumbbell
W 3.95 3.95 5.56 5.5 8.98 @110# dumbbell
V 2.09 2.10 2.47 3.2 2.49 @110# dumbbell
Nb 2.75 2.75 3.32 3.6 2.56 @110# dumbbell
Ta 2.95 2.95 3.71 4.3 4.88 @110# dumbbell
18410
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~110! surface# becomes close to the polycrystalline data. T
order among the low-index surface energies, E(11
,E(100),E(111) is now in agreement with experiment
information,5,6 even though no action was made to fit th
order. The relaxations in Table VII are for unreconstruct
surfaces. The available experimental information or the fi
principles calculation results for the relaxations are also p
sented for comparison.

Finally, the properties calculated using the present 2
MEAM potential are the thermal properties such as therm
expansion coefficient, specific heat, melting, point, heat
melting and volume change on melting. The results are co
pared with available experimental data in Table VIII. He
the melting points are those roughly estimated by heat
and therefore, should be regarded as an upper limit of
calculated melting points. The heat of melting is the va
obtained at the calculated melting point of each element

As can be seen in Tables IV–VIII, the present 2N
MEAM potentials reproduce the physical properties of t
bcc transition metals fairly well, solving the problems th
occured in the 1NN MEAM~Ref. 3! as mentioned in the
Introduction. In the case of the properties where fitting w
made, the agreement with experimental data is almost
fect. The calculations on the energy of simple cubic and d
mond structures, on the self-interstitials, on the surface
laxations, and on the thermal properties are also reason
good. The point that is not satisfactory is that the 2N
MEAM calculation according to the present parameters
derestimates the energy of vacancy migration for most of
elements considered. Further, concerning V and Nb,
melting points are too low and atomic volumes of simp
cubic and diamond structures are relatively too small. G
erally, for V and Nb, the performance of the present 2N
MEAM seems to be worse than for the other elements.

Initially, it was intended to determine the potential para
eters of the bcc elements keeping the values ofb (1), b (2),
and b (3) to be 1.0 as in the 1NN MEAM.3 However, with
these values, the calculated vacancy-migration energy
melting points for V and Nb were even worse than t
present values. More decisively, it was found that the~100!
surface of Nb undergoes a reconstruction into theH-induced-

r-
m
of
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TABLE VII. Calculated surface energies (erg/cm2) and relaxations (%) of the low-index surfaces.Ddi j mean the change of interlaye
spacing between thei th andj th layers, relative to corresponding bulk spacing. The experimental values are for polycrystalline solids a
those extrapolated from high-temperature experimental data to 0 K~Refs. 24 and 25! or to RT ~Ref. 26!. Values in the second or third row
~if any! for each element are experimental or high-level calculation data for corresponding surface relaxation.

~110! ~100! ~111!
Epoly

expt. E(110) Dd12 Dd23 E(100) Dd12 Dd23 E(111) Dd12 Dd23 Dd34 Dd45 Dd56

Fe 2360a,2939b 2356 21.5 10.1 2510 21.1 11.1 2668 210.5 216.5 112.2 10.5 26.0
0c 20.2c 11.2c 216.9c 29.8c 14.2c 22.2c

21.5d 10.0d

Cr 2200e,2056b 2198 22.6 10.4 2300 20.8 20.7 2501 210.3 216.7 16.8 13.0 25.3
Mo 2900e,2877b 2885 23.3 10.6 3130 23.3 10.3 3373 214.0 216.4 15.5 13.5 24.3

21.6f 211g 13g

W 2990a,3468b 3427 23.0 10.4 3900 23.2 20.3 4341 213.2 217.0 17.2 12.4 24.0
23.1h 10.0h 25.9i 215.1j 215.1j 19.1j

23.0k 10.2k

V 2600e,2876b 2636 24.2 10.9 2778 27.3 13.8 2931 234.0 212.0 112.6 25.7 23.1
20.3l 26.7l 11.0l

Nb 2300e,2983b 2490 27.3 12.2 2715 212.5 13.0 2923 235.5 212.7 12.6 10.7 22.2
Ta 2780e,3018b 2778 23.5 10.6 3035 25.9 10.8 3247 219.2 217.2 112.4 20.6 24.9

aReference 24. gReference 30~calc.!.
bReference 26. hReference 31.
cReference 27. iReference 32~calc.!.
dReference 28. jReference 33~calc.!.
eReference 25. kReference 34.
fReference 29. lReference 35.
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type structure36 during an energy-minimization procedur
leaving the simply-relaxed (131) structure unstable. Eve
though it was known that the~100! surfaces of some bc
metals undergo a reconstruction,37 it was believed that the
simply-relaxed (131) structure should be at lea
metastable38 against any reconstruction. In the present stu
some efforts were made in order to make the~100! surface of
Nb not to reconstruct directly from the ideal (131) struc-
ture, during energy minimization. It was found that such
reconstruction does not occur when a value greater than
is given tob (2), and the best overall results are obtained w
a value of 2.5. Even though such a reconstruction did
occur on the~100! surface of V, it was found that improve
18410
y,

.0

t

results for the vacancy-migration energy and melting po
could be obtained also by giving the same value 2.5 tob (2)

of V. Therefore, theb (2) parameter of V was also given th
new value. It was confirmed that such a change ofb (2) value
does not give a beneficial effect to the calculated proper
of other elements considered.

It has been mentioned already that according to
present formalism the interactions between third near
neighbor atoms are not completely screened in the refere
structure when the value ofCmin is low (,0.47 for bcc!,
while the pair potential is defined considering only the fi
and second nearest-neighbor interactions in all cases.
inconsistency causes an error in energy calculations e
nt

and

5

TABLE VIII. Calculated thermal properties. Values listed are the thermal-expansion coefficiee
(1026/K), specific heatCp ~J/mol K!, melting point~K!, heat of meltingDHm ~KJ/mol! and volume change
on melting DVm /Vsolid (%). The experimental data for thermal expansion coefficient, specific heat
volume change are from Ref. 22 and others are from Ref. 18.

e(0 –100 °C) Cp(0 –100 °C) Melting point DHm DVm /Vsolid

MEAM expt. MEAM expt. MEAM expt. MEAM expt. MEAM expt.

Fe 12.4 12.1 26.1 25.5 2200 1811 13.2 13.8 3.4 3.
Cr 9.0 6.5 26.8 24.0 2050 2180 18.8 21.0 4.4
Mo 5.3 5.1 25.9 24.1 3100 2896 20.1 37.5 3.0
W 4.2 4.5 25.4 25.4 4600 3695 33.0 52.3 3.2
V 8.7 8.3 26.1 25.4 1800 2183 11.7 21.5 1.3
Nb 6.4 7.2 26.1 24.9 1900 2750 13.5 30.0 1.0
Ta 5.8 6.5 25.7 25.7 3200 3290 22.3 36.6 2.1
2-8
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though the amount is negligible. It has been also mentio
that a radial cutoff function with a cutoff distance betwe
second and third nearest-neighbor distances was used i
present study in order to minimize the effect of such th
nearest-neighbor interactions. Actually, all calculations p
sented in this section are those obtained using such ra
cutoff distances for individual elements. These are 3.6 Å
Fe, Cr and V, 3.8 Å for Mo and W, and 4.0 Å for Nb an
Ta. However, it is impossible to keep a value of the cut
distance for each element, especially when dealing with
alloy system where each element has its own value of ra
cutoff distance. Further, the calculations using empirical
tentials are known to be significantly dependent on the
lected value of radial cutoff distance.39 Therefore, it is of
practical importance to see how much the present 2
MEAM formalism is dependent on the selected radial cut
distances.

In empirical potentials, radial cutoff functions are used
order to confine the number of neighbors of an atom t
reasonable value, considering the stability of calculation
sults and computing time. Without any many-body scre
ing, it is natural to obtain different results depending on
radial cutoff distance, that is, depending on the number
interacting neighbors of an atom. In the case of the pres
2NN MEAM that uses the many-body screening, such a
pendence on the radial cutoff distance is small compare
other empirical potentials, as long as the cutoff distance
larger than the second nearest-neighbor distance. Actu
such a dependence is absent when theCmin is larger than
0.47, and is negligible even when theCmin is smaller than
0.47 as already mentioned. However, this is not the o
source of the dependency on the radial cutoff distance
empirical potentials. The existence of the radial cutoff its
can cause a dependence of 0 K calculations on the cutoff
distance. This normally originates from relaxations, as
plained below.

When the size of the radial cutoff distance is betwe
second and third nearest-neighbor distances, the t
nearest-neighbor interactions are not included in the calc
tion even when they exist due to no or incomplete ma
body screening. However, in a structure with defects, rel
ations can occur in a way to reduce some of the third near
neighbor distances near the defects. Such third nea
neighbor interactions may be included in calculatio
depending on the size of radial cutoff distance. This me
that there can be a dependence on the radial cutoff dist
even when the cutoff distance is smaller than the th
nearest-neighbor distance. On the other hand, with
present values ofCmin for individual elements, the secon
nearest-neighbor interactions and sometimes even t
nearest-neighbor interactions are not completely screene
fcc, hcp, and other structures considered. Therefore, the
ergies of these structures also depend on the selected r
cutoff distance. The present radial cutoff distance for e
element is smaller than the second nearest-neighbor dist
of the fcc structure of corresponding element. The dep
dence on the radial cutoff distance is largest for the elem
with smallestCmin value, but completely disappears if a r
dial cutoff distance larger than third nearest-neighbor d
18410
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tances of all structures considered is selected.
In the present study, the smaller values of the radial cu

distances as described above were used for individual
ments. This was to keep consistency with the pair poten
defined considering only first and second nearest-neigh
interactions, and also to save computing time by decrea
the number of neighbor atoms for each atom. However, i
important to know how the results would differ for ind
vidual properties when a different radial cutoff distance, s
the one larger than the third nearest-neighbor distance
used. Radial cutoff distances larger than the third near
neighbor distances (4.5 Å for Fe, Cr, Mo, W, and V, a
5.0 Å for Nb and Ta! affect the calculated elastic constan
of Fe, Nb, and Ta, the elements whoseCmin values are
smaller than 0.47. The change of theC11 of Ta was largest,
and was from 2.664 to 2.649, which is not significant. T
large radial cutoff distance also changes the calculated e
gies of all metastable structures, due to the inclusion of s
ond and/or third nearest-neighbor interactions. The chan
for Cr, Mo, W, and V are negligible, while those for Fe, N
and Ta are significant. For example, the energy differe
between fcc and bcc,DEbcc→ f cc changes from 0.069 to
0.048 eV, from 0.176 to 0.144 eV and from 0.148 to 0.1
eV, for Fe, Nb, and Ta, respectively. Even though t
changes are not small, it is thought that the changes are
smaller than the error range of first-principles calculatio
For Fe, the change is comparable to the error range of
pirical thermodynamic assessments.40 The effect of the large
radial cutoff distances on the point-defect energies, the
mation energy of a vacancy and of a self-interstitial, w
relatively small. The vacancy-formation energy of Fe, N
and Ta was decreased by 0.05, 0.07, and 0.16 eV, res
tively, by the use of large radial cutoff distances. T
changes in the formation energy of a self-interstitial we
smaller than those in the vacancy-formation energy. Ho
ever, the changes in the activation energy of vacancy di
sion was significant. For Fe, Nb, and Ta, they were decrea
by 10–15 %. This makes the agreement with experime
data even worse, because the calculated activation ene
of vacancy diffusion are already smaller than the expe
ments for most of the elements considered, as shown in T
VI. The effect of radial cutoff distances on the surface rela
ations was negligibly small. This is because the number
third nearest-neighbor interactions on surfaces is sma
than that in bulk. It was confirmed that the low-temperatu
thermal properties,e and Cp at 0 –100 °C are not affecte
significantly by the radial cutoff distances. On the oth
hand, there seems to be some certain effect of the ra
cutoff distances on the calculated melting points. For
ample, the calculated melting point of Fe changes from ab
2200 K to 2060 K under the same heating rate when the la
radial cutoff distance is used. However, these changes w
not investigated in more detail because the calculated m
ing points listed in Table VIII were already quite approx
mate.

Now, it should be said that changing the radial cut
distance gives certain effects on the calculated property
ues. However, in most cases, the changes due to using
ferent cutoff distances are well within uncertainty ranges
2-9
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LEE, BASKES, KIM, AND CHO PHYSICAL REVIEW B64 184102
the experimentally measured or FP-calculated property
ues. Any radial cutoff distance greater than the sec
nearest-neighbor distance can be used without reducing
reliability of the present 2NN MEAM potential. The onl
exception is that the activation energies of diffusion that
lower than experimental values for most of the elements c
sidered will become even lower if larger radial cutoff di
tances than those used in the present study are used
example, if the larger radial cutoff distance is used, the c
culated activation energy of Fe is decreased from 2.28
2.03 eV, which is lower than experimental value of 2.5~by
about 20%). The low activation energy of diffusion wou
give effect on the kinetics of phase transformations thoug
would not on the local equilibria. This should be kept
mind during practical applications of the present 2N
MEAM.

Finally, it should be noted that several different metho
to include the second and more distant nearest-neighbo
teractions were tested during this work; including seco
nearest-neighbor interactions without many-body screen
and including even third nearest-neighbor interactions w
out many-body screening were tested. However, using th
methods, satisfactory results could not be obtained. For
ample, in the former case, the~110! surface energy, which
should be the lowest became the highest among the t
low-index surfaces, and in the latter case the energies of
structures became too high~several tenths of eV! compared
to those of fcc structures. These problems could not
solved by simply changing the parameters. It was found t
the correct order in the surface energies and overall ag
ments with experiments for all properties considered can
obtained only when the second nearest-neighbor interact
are partially included by adjusting the many-body screeni
as has been done in the present study. The present
MEAM formalism becomes exactly the same as the origi
1NN MEAM if the second nearest-neighbor interactions a
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completely screened by adjusting theCmin value. Letting
each element have its ownCmin value, the two MEAM for-
malisms can easily be combined to describe alloy poten
among elements with various equilibrium structures, with
changing the readily available parameters for elements w
other structures.3,4

V. SUMMARY

The second nearest-neighbor MEAM formalism has n
been applied to all of the bcc transition metals. The poten
parameters were determined systematically by fitting
(]B/]P), elastic constants, structural energy differenc
among bcc, fcc and hcp structures, vacancy-formation
ergy, and surface energy. It was shown that the atomic
tentials for the bcc transition metals according to the pres
2NN MEAM reproduce structural properties of simple cub
and diamond structures, activation energy of diffusion, f
mation energy and structure of self-interstitials, surface
laxations, thermal-expansion coefficient, specific heat, m
ing point, and heat of melting satisfactorily, as well as t
properties where fitting was made. It was also shown t
though there exist certain effects of the size of radial cu
distance on the calculation, they are not so severe as to
crease the applicability of the potential. The formalism
completely compatible with the original first neares
neighbor MEAM that has been successfully applied to f
hcp, and other structured elements, does not give any a
tional difficulty in alloy descriptions, and, therefore, can
used to describe wide range of elements and alloy syste
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