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Lower critical dimension of Ising spin glasses
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Exact ground states of two-dimensional Ising spin glasses with Gaussian and bimodal (6J) distributions of
the disorder are calculated using a ‘‘matching’’algorithm, which allows large system sizes of up toN54802

spins to be investigated. We study domain walls induced by two rather different types of boundary condition
changes, and, in each case, analyze the system-size dependence of an appropriately defined ‘‘defect energy,’’
which we denote byDE. For Gaussian disorder, we find a power-law behaviorDE;Lu, with u5

20.266(2) andu520.282(2) for the two types of boundary condition changes. These results are in reason-
able agreement with each other, allowing for small systematic effects. They also agree well with earlier work
on smaller sizes. The negative value indicates that two dimensions is below the lower critical dimensiondc .
For the6J model, we obtain adifferent result, namely that the domain-wall energy saturates at a nonzero
value forL→`, sou50, indicating that the lower critical dimension for the6J model isexactly dc52.
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Although most of the effort to understand spin glass1

has been concerned with the behavior in three dimensi
the situation in two dimensions is also not fully understoo
For a Gaussian distribution of disorder, it is wide
accepted2–4 that Tc50 and two dimensions isbelow the
lower critical dimensiondc . However, for bimodal (6J)
disorder, inconsistent results have been found. Using e
ground-state calculations of small systems (N<302) and in-
troducing domain walls in the system by changing t
boundary conditions, Kawashima and Rieger5 also concluded
that Tc50 and probablydc.2, though they could not rule
out marginal behavior, i.e.,dc52. On the other hand, from
Monte-Carlo ~MC! simulations6 on sizesN<182, it was
claimed thatTc.0. A calculation of domain-wall energie
using a cluster MC method7 for sizesN<242 indicated mar-
ginal behavior~i.e., dc52), and this was interpreted as ev
dence for the finite-T transition claimed in Ref. 6. Recently
Houdayer8 used a more efficient cluster MC algorithm
which allows larger systems (N<1002) to be studied down
to low temperatureT50.1. Houdayer finds thatTc50 but
with an exponential divergence of the correlation length
T→0, which is consistent withdc52, in agreement with
earlier work by Saul and Kardar.9

To try to clarify the situation, we calculate here groun
state domain-wall energiesDE using anexactpolynomial-
time matching algorithm12 for much larger system sizes (N
<4802) than in previous work. For the Gaussian model o
results are consistent with earlier calculations and we
that Tc50 anddc.2. For the6J model, we find marginal
behavior expected at the lower critical dimension, and
conclude thatdc52.

The model consists ofN5L2 Ising spinsSi561 on a
square lattice with the Hamiltonian

H52(
^ i , j &

Ji j SiSj , ~1!

where the sum runs over all pairs of nearest neighbors^ i , j &
and theJi j are quenched random variables. Here, we c
sider two kinds of disorder distributions:~i! Gaussian with
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zero mean and variance one, and~ii ! a bimodal distribution
Ji j 561 with equal probability.

In greater than two dimensions, or in the presence o
magnetic field, the exact calculation of spin-glass grou
states belongs to the class of NP-hard problems.10,11 This
means that only algorithms with exponentially increasi
running time are known. However, for the special ca
of a planar system without magnetic field, e.g., a squ
lattice with periodic boundary conditions in at most o
direction, there are efficient polynomial-time ‘‘matching
algorithms.12 The basic idea is to represent each realizat
of the disorder by its frustrated plaquettes.13 Pairs of frus-
trated plaquettes are connected by paths in the lattice and
weight of a path is defined by the sum of the absolute val
of the coupling constants which are crossed by the path
ground state corresponds the set of paths with minimum t
weight, such that each frustrated plaquette is connecte
exactly one other frustrated plaquette. This is called
minimum-weight perfect matching. The bonds which a
crossed by paths connecting the frustrated plaquettes are
satisfied in the ground state, and all other bonds are satis

For the calculation of the minimum-weight perfect matc
ing, efficient polynomial-time algorithms are available.14,15

Recently, an implementation has been presented16 where
ground-state energies of large systems of sizeN<1800 were
calculated. Here, an algorithm from the LEDA library17 has
been applied, which limits the system sizes toN<4802, due
to the restricted size of the main memory of the comput
which we used.

To study whether an ordered phase is stable at finite t
peratures, the following procedure is usually applied.2–5,18–20

First a ground state of the system is calculated, having
ergyE0. Then the system is perturbed to introduce a dom
wall and the new ground-state energy,E0

pertb, is evaluated.
Typically, the system initially has periodic boundary cond
tions in both directions, and the perturbation involves repl
ing periodic by antiperiodic boundary conditions in one d
rection. However we cannot apply the matching algorith
for boundary conditions which ‘‘wrap around’’ in both direc
tions, so instead we have investigated two slightly differe
procedures:
©2001 The American Physical Society04-1
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~i! We choose boundary conditions which are free in o
direction and periodic in the other (x for example!. The pe-
riodic boundary conditions are then replaced by antiperio
which is equivalent to changing the sign of the bonds wh
‘‘wrap around’’ the system. This is very similar to the usu
approach, except that the induced domain wall no longer
to have the samex coordinate at the top and bottom of th
sample. An example of a domain wall formed in this way
shown in Fig. 1. We denote these as ‘‘P-AP’’ boundary co
dition changes. Note that the energy change can have e
sign, and the distribution of values~obtained by repeating th
calculation for many samples! is symmetric.

~ii ! We apply free boundary conditions in both directio
and compute the ground state. We then add extra bo
which wrap around the system in, for example, thex direc-
tion, and have a sign and strength such that they force
spins they connect to have the opposite relative orientatio
that which they had in the original ground state. The n
ground state is then computed and we remove from
ground state energy the contribution from the added str
bonds. The change in energy must then be positive. T
procedure is similar to the ‘‘conjugate boundary condition
chosen in Ref. 7. Since free boundary conditions are
applied along the top and bottom edges, the domain w
look very similar to the one shown in Fig. 1. We denote t
boundary condition change by ‘‘F-DW,’’ since the initia
boundary condition is free, and it is then changed to induc
domain wall.

For a given sample, the domain-wall energy is given b

dE5E0
pertb2E0 . ~2!

To study finite-size behavior we consider the ‘‘defect e
ergy’’ DE defined by

FIG. 1. A domain wall created in anL5320 system with Gauss
ian interactions. Free boundary conditions are applied across th
and bottom edges~dashed lines! and periodic boundary condition
applied across the vertical edges~solid lines!. The domain wall is
induced by changing the periodic boundary conditions to antip
odic, which is equivalent to changing the sign of the bonds wh
wrap around the system from left to right.
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DE5@ udEu#av, ~3!

where@•••#av denotes an average over samples.~Of course
the absolute value is not necessary for the F-DW bound
conditions sincedE>0.! It is expected thatDE will vary as

DE;Lu, ~4!

whereu is a stiffness exponent. Foru,0 an ordered phase i
only stable atT50 and the correlation lengthj diverges3 for
T→0 asj;T1/u. For u.0 an ordered phase also occurs f
T.0. At the lower critical dimension, one hasu50 and
expects an exponential divergence of the correlation leng

Domain-wall energies obtained in the way describ
above were obtained for systems with Gaussian and6J dis-
order, for both F-DW and P-AP boundary condition chang
Sizes up toN54802 were considered, and, for each size, t
result was averaged over up to 45 000 samples. Tab
shows the number of samples for each system size and
of system.

In Fig. 2 the defect energies are shown as a function
system size. We first discuss the results for the Gaus
distribution. The domain-wall energy clearly decreases w
a power lawDE;Lu with

op

i-
h

TABLE I. The number of samples for each type of disorder a
system size.

Type L<160 L5240 L5320 L5480

6J P-AP 40 000 45 000 24 000 5 000
6J F-DW 10 000 5 500 4 500
Gaussian P-AP 10 000 2 800 3 700
Gaussian F-DW 10 000 700

FIG. 2. The defect energyDE as a function of system size fo
the different types of disorder and boundary condition changes.
lines are fits~for L>8) to the formDE5DE`1bLu. The following
fit parameters were obtained:DE`50.96, b50.99, u520.65
(6J P-AP!; DE`51.66, b52.93, u520.99 (6J F-DW!; b
51.58, u520.282 (DE`[0, Gaussian P-AP!; b52.78,
u520.266 (DE`[0, Gaussian F-DW!.
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u520.28260.002 ~P-AP!,

u520.26660.002 ~F-DW!. ~5!

For the goodness of the fits21 we obtain Q50.48 andQ
50.62 for the P-AP and F-DW boundary conditions, resp
tively. In addition, we tried fits of the formDE5DE`

1bLu, obtaining DE`50.0460.02 (Q50.48) for P-AP
boundary conditions andDE`520.0360.07 (Q50.54) for
F-DW boundary conditions. Hence, we cannot rule out t
the domain-wall energy converges to a small nonzero va
for L→` but this seems unlikely.

The result of the exponent for the P-AP boundary con
tions is compatible with the value ofu520.281(2) found4

for full periodic boundary conditions and system sizesL
<30. The value of the F-DW case disagrees with the va
for the P-AP case by more than the error bars, but the dif
ence is quite small. We expect that this is due to system
corrections to scaling and that asymptotically the same re
would be obtained, i.e., the same exponent would be
tained for any reasonable definition of the defect energy.
result for the F-DW boundary condition differs significant
from the valueu520.20 obtained.7 The reason for the dis
crepancy may be that Ref. 7 studied smaller sizes,L<24,
and used a Monte Carlo method to determine the gro
states instead of an exact algorithm. Nevertheless, to
knowledge, all results obtained for the Gaussian model
compatible withTc50.

Next we turn to the results for the6J model. The differ-
ence between these results and those for the Gaussian m
both of which are shown in Fig. 2, is quite striking. Where
the data for the Gaussian model clearly tends to zero wi
power law forL→`, the data for the6J distribution ap-
pears to tend to a nonzero value. Fits of the same form as
the Gaussian model giveDE`50.9660.01 (Q50.23) for
the P-AP boundary conditions andDE`51.6660.01 (Q
50.50) for the F-DW boundary conditions. Fits in whic
DE` was fixed to zero were also tried but gave ridiculou
low probabilities:Q52310227 and Q52310217, respec-
tively. For the case with free boundary conditions in thex

FIG. 3. DistributionP(DE) of domain-wall energies for the6J
distribution with F-DW boundary conditions. The points forL
5320 andL510 are slightly displaced on thex axis for visibility.
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direction, a saturation has been observed before7 for small
system sizesL<24, using a Monte Carlo method to fin
ground states, rather than an exact algorithm.

To show the effect of saturation into more detail, Fig.
displays the distribution of the domain-wall energies, with
logarithmic vertical scale, for the6J distribution with
F-DW boundary conditions. For this distribution, on
even integer values ofDE are found. Except for the larges
values ofDE, where the weights are very small, the weigh
of the discrete bins are almost the same forL580 and
320 indicating that the whole distribution converges f
large L. The probabilityP(0) that the domain-wall energy
is exactly zero is displayed in Fig. 4.P(0) seems to con-
verge towards a finite value less than unity for both bound
conditions.

From this data we deduce thatu50 for the6J distribu-
tion, so the lower critical dimension isdc52 exactly. The
most likely scenario at finite temperature is that the corre
tion length diverges exponentially asT→0, perhaps like
exp(C/T) or exp(C/T2). Detailed Monte Carlo simulations8

and the work of Saul and Kardar9 indicate that the former is
the case. The other possibility is a finite-T Kosterlitz-
Thouless type of transition without true long range ord
belowTc , as claimed by Ref. 6. However, the finite value f
n obtained in Ref. 6 seems incompatible with this pictu
The reason for this discrepancy is probably that the sys
sizes were quite small,N<182.

To conclude, we have studied the defect energy of
two-dimensional Ising spin glass using much larger syst
sizes than before, up toN54802. For Gaussian disorder w
find that a spin-glass phase is not stable atT.0, and that
dc.2, in agreement with earlier findings for much small
systems. For the6J model, the absolute value of th
domain-wall energy saturates at a nonzero value forL→`,
indicating that the lower critical dimension is exactlydc52,
in agreement with Refs. 8 and 9. It is quite striking a
perhaps surprising that the6J model, which has a large
ground state degeneracy, actually hasmoreorder at very low

FIG. 4. The probabilityP(0) that the domain-wall energy is
exactly zero for the6J model as a function of system size. Th
lines are guides to the eye.
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T than the Gaussian distribution, which has a unique gro
state.

The simulations were performed at the Paderborn Ce
for Parallel Computing~Germany! and on a Beowulf Cluster
c
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Magdeburg~Germany!. A.K.H. acknowledges financial sup
port from the DFG~Deutsche Forschungsgemeinschaft! un-
der Grant No. Ha 3169/1-1. A.P.Y. acknowledges supp
from the NSF through Grant No. DMR 0086287.
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