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Lower critical dimension of Ising spin glasses
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Exact ground states of two-dimensional Ising spin glasses with Gaussian and bimadaliétributions of
the disorder are calculated using a “matching”algorithm, which allows large system sizes ofNip 4807
spins to be investigated. We study domain walls induced by two rather different types of boundary condition
changes, and, in each case, analyze the system-size dependence of an appropriately defined “defect energy,”
which we denote byAE. For Gaussian disorder, we find a power-law behaudE~L? with 6=
—0.266(2) andd= —0.282(2) for the two types of boundary condition changes. These results are in reason-
able agreement with each other, allowing for small systematic effects. They also agree well with earlier work
on smaller sizes. The negative value indicates that two dimensions is below the lower critical dintgnsion
For the £J model, we obtain alifferentresult, namely that the domain-wall energy saturates at a nonzero
value forL—o, so =0, indicating that the lower critical dimension for the] model isexactly ¢=2.
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Although most of the effort to understand spin glasseszero mean and variance one, ajid a bimodal distribution
has been concerned with the behavior in three dimensions;;=+1 with equal probability.
the situation in two dimensions is also not fully understood. In greater than two dimensions, or in the presence of a
For a Gaussian distribution of disorder, it is widely magnetic field, the exact calculation of spin-glass ground
accepte ™ that T,=0 and two dimensions ibelow the ~ States belongs to the class of NP-hard problehi$This
lower critical dimensiond,. However, for bimodal £J)  means that only algorithms with exponentially increasing
disorder, inconsistent results have been found. Using exa&dnning time are known. However, for the special case
ground-state calculations of small systerhs<(30?) and in-  Of @ planar system without magnetic field, e.g., a square
troducing domain walls in the system by changing thelatt'ce with periodic boundary conditions in at most one

boundary conditions, Kawashima and Rieggso concluded direct.ion, there are _efficien_t polynomial-time “matching_"
thatT.=0 and probéblw ~2, though they could not rule algorithms!? The basic idea is to represent each realization
c c ’

out marginal behavior, i.ed,=2. On the other hand, from of the disorder by its frustrated plaquetté<Pairs of frus-

) ; . . trated plaquettes are connected by paths in the lattice and the
Monte-Carlo (MC) simulation$ on sizesN<18", it was weight of a path is defined by the sum of the absolute values

claimed thatT.>0. A calculation of dom;cu.n-vyall eNergies of the coupling constants which are crossed by the path. A
using a cluster MC methddor sizesN< 24 indicated mar- ground state corresponds the set of paths with minimum total
ginal behavior(i.e., d.=2), and this was interpreted as evi- weight, such that each frustrated plaquette is connected to
dence for the finitéF transition claimed in Ref. 6. Recently, exactly one other frustrated plaquette. This is called a
Houdaye? used a more efficient cluster MC algorithm, minimum-weight perfect matching. The bonds which are
which allows larger systemsd\(< 100%) to be studied down crossed by paths connecting the frustrated plaquettes are un-
to low temperaturel =0.1. Houdayer finds that,=0 but  satisfied in the ground state, and all other bonds are satisfied.
with an exponential divergence of the correlation length for For the calculation of the minimum-weight perfect match-
T—0, which is consistent witid.=2, in agreement with ing, efficient polynomial-time algorithms are availabfe?>
earlier work by Saul and Kardar. Recently, an implementation has been preséfitechere

To try to clarify the situation, we calculate here ground-ground-state energies of large systems of Blze1800 were
state domain-wall energieSE using anexactpolynomial-  calculated. Here, an algorithm from the LEDA librafjas
time matching algorithif for much larger system size®\(  been applied, which limits the system sized\ts- 4807, due
<48(0) than in previous work. For the Gaussian model ourto the restricted size of the main memory of the computers
results are consistent with earlier calculations and we finavhich we used.

that T,=0 andd.>2. For the+J model, we find marginal To study whether an ordered phase is stable at finite tem-
behavior expected at the lower critical dimension, and sdgeratures, the following procedure is usually appfietf:2~2°
conclude thad,=2. First a ground state of the system is calculated, having en-
The model consists oR=L? Ising spinsS=+1 on a €rgyEq. Then the system is perturbed to introduce a domain
square lattice with the Hamiltonian wall and the new ground-state ener@@g®™, is evaluated.

Typically, the system initially has periodic boundary condi-
H=—3 35S 1) f[ions in_bo_th directi(_)ns,_ an_d the perturbatior! i_nvol\_/es repla_c-
o ' ing periodic by antiperiodic boundary conditions in one di-
rection. However we cannot apply the matching algorithm
where the sum runs over all pairs of nearest neightioi3  for boundary conditions which “wrap around” in both direc-
and theJ;; are quenched random variables. Here, we contions, so instead we have investigated two slightly different
sider two kinds of disorder distributiongi) Gaussian with  procedures:
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TABLE I. The number of samples for each type of disorder and
system size.
Type L<160 L=240 L=320 L=480
+J P-AP 40000 45000 24000 5000
+J F-DW 10000 5500 4500
Gaussian P-AP 10000 2800 3700
Gaussian F-DW 10000 700

AE:|:|5E|:|aw ©)

where[ - - - |,, denotes an average over sampl&f course

the absolute value is not necessary for the F-DW boundary
FIG. 1. A domain wall created in an=320 system with Gauss- c0Nnditions sincefE=0.) It is expected thaA E will vary as

ian interactions. Free boundary conditions are applied across the top
and bottom edge&lashed lingsand periodic boundary conditions
applied across the vertical edgelid lineg. The domain wall is
induced by changing the periodic boundary conditions to antiperi-
odic, which is equivalent to changing the sign of the bonds whichwhered is a stiffness exponent. Fe 0 an ordered phase is
wrap around the system from left to right. only stable aff =0 and the correlation lengthdiverges for
T—0 asé~TY?. For #>0 an ordered phase also occurs for

(i) We choose boundary conditions which are free in onel > 0. At the lower critical dimension, one has=0 and
direction and periodic in the othek (for examplg. The pe- ~ €XPects an exponenue}l dlverge_nce qf the correlation Iength.
riodic boundary conditions are then replaced by antiperiodic, Domain-wall energies obtained in the way described
which is equivalent to changing the sign of the bonds whichfPove were obtained for systems with Gaussian addlis-
“wrap around” the system. This is very similar to the usual order, for both F-DW and P-AP boundary condition changes.
approach, except that the induced domain wall no longer hagizes up taN=480" were considered, and, for each size, the
to have the same coordinate at the top and bottom of the result was averaged over up to 45000 samples. Table |
sample. An example of a domain wall formed in this way isShows the number of samples for each system size and type
shown in Fig. 1. We denote these as “P-AP” boundary con-Of system. . _
dition changes. Note that the energy change can have either In Fig. 2 the defect energies are shown as a function of
sign, and the distribution of valugsbtained by repeating the System size. We first discuss the results for the Gaussian
calculation for many sampliss symmetric. distribution. The domqln-wall energy clearly decreases with

(i) We apply free boundary conditions in both directions@ power lawAE~ L with
and compute the ground state. We then add extra bonds
which wrap around the system in, for example, iheirec-
tion, and have a sign and strength such that they force the
spins they connect to have the opposite relative orientation to R -
that which they had in the original ground state. The new )
ground state is then computed and we remove from the

AE~LY, (4)

II\\I\Il T IIIIII\‘ T L

ground state energy the contribution from the added strong T -
bonds. The change in energy must then be positive. This <gg - _
procedure is similar to the “conjugate boundary conditions” 6 B R
chosen in Ref. 7. Since free boundary conditions are still L o FoDW & |
applied along the top and bottom edges, the domain walls 0.4 L 4 PP I B

look very similar to the one shown in Fig. 1. We denote this
boundary condition change by “F-DW,” since the initial
boundary condition is free, and it is then changed to induce a
domain wall.

For a given sample, the domain-wall energy is given by

© F-DW Gaussian
A P—-AP Gaussian

10

107
L

108

FIG. 2. The defect energ)E as a function of system size for

the different types of disorder and boundary condition changes. The

SE=EP™-E,. 2

lines are fitgfor L=8) to the formAE=AE..+bL? The following

fit parameters were obtaine&E.=0.96, b=0.99, §=-0.65
(=J P-AP); AE.=1.66, b=2.93, 4=—0.99 (*xJ F-DW); b

To study finite-size behavior we consider the “defect en-=1.58,

ergy” AE defined by

180404-2

6=-0.282 (AE.=0,
#=-0.266 AE..=0, Gaussian F-DW

Gaussian

P-AP b=2.78,
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0= —0.282+0.002 (P_AP), 0.6 FrorTm T T T T T T
F mmmmmoe e P PSS
0= —0.266-0.002 (F-DW). (5) 05 o P 3
For the goodness of the filswe obtainQ=0.48 andQ 2 . 4 P-AP 4] §
=0.62 for the P-AP and F-DW boundary conditions, respec- — E & F-DW ] 3
tively. In addition, we tried fits of the formAE=AE., 04 = =
+bL? obtaining AE..,=0.04+0.02 (Q=0.48) for P-AP o e En g ]
boundary conditions andE., = —0.03+0.07 (Q=0.54) for E (5 8% 8 ]
F-DW boundary conditions. Hence, we cannot rule out that 03 = =
the domain-wall energy converges to a small nonzero value E =
for L—< but this seems unlikely. s | | ;
The result of the exponent for the P-AP boundary condi- Or T e e 1o
tions is compatible with the value af=—0.281(2) found L

for full periodic boundary conditions and system sides

=<30. The value of the F-DW case disagrees with the value FIG. 4. The probabilityP(0) that the domain-wall energy is
for the P-AP case by more than the error bars, but the differexactly zero for the-J model as a function of system size. The
ence is quite small. We expect that this is due to systematilines are guides to the eye.

corrections to scaling and that asymptotically the same result

would be obtained, i.e., the same exponent would be ob-

tained for any reasonable definition of the defect energy. Ou&irection, a saturation has been observed béftre small
result for the F-DW boundary_ condition differs S|gn|f|ca_ntly system sized <24, using a Monte Carlo method to find
from the valued= —0.20 obtalned.The reason fo_r the dis- ground states, rather than an exact algorithm.

crepancy may be that Ref. 7 studied smaller sizes24, To show the effect of saturation into more detail, Fig. 3

and us_ed a Monte Carlo method_ to determine the grour‘gisplays the distribution of the domain-wall energies, with a
states instead of an exact algorithm. Nevertheless, to OLE’

knowledge, all results obtained for the Gaussian model ar ogarithmic vertical SC‘T"'.e' for thetJ_ d|sFr|b_ut|o_n with
compatible withT,=0 -DW boundary conditions. For this distribution, only
-=0.

Next we turn to the results for the J model. The differ-  €VEN integer values akE are found. Except for the largest

ence between these results and those for the Gaussian modé}/ues ofAE, where the weights are very small, the weights
both of which are shown in Fig. 2, is quite striking. Whereas®f the discrete bins are almost the same [or80 and

the data for the Gaussian model clearly tends to zero with 20 indicating that the whole distribution converges for
power law forL—oo, the data for thetJ distribution ap- large L. The probabilityP(0) that the domain-wall energy
pears to tend to a nonzero value. Fits of the same form as fd$ exactly zero is displayed in Fig. £(0) seems to con-
the Gaussian model givAE.,=0.96+0.01 (Q=0.23) for  verge towards a finite value less than unity for both boundary
the P-AP boundary conditions andE..=1.66+0.01 (Q  conditions.

=0.50) for the F-DW boundary conditions. Fits in which  From this data we deduce that0 for the =J distribu-
AE., was fixed to zero were also tried but gave ridiculouslytion, so the lower critical dimension 8,=2 exactly. The
low probabilities:Q=2x10"2" and Q=2x10"'7, respec- most likely scenario at finite temperature is that the correla-
tively. For the case with free boundary conditions in the tion length diverges exponentially a&—0, perhaps like
exp(CIT) or expC/T?). Detailed Monte Carlo simulatiofis
and the work of Saul and Kardsindicate that the former is
the case. The other possibility is a finite-Kosterlitz-
Thouless type of transition without true long range order
belowT,, as claimed by Ref. 6. However, the finite value for
v obtained in Ref. 6 seems incompatible with this picture.
The reason for this discrepancy is probably that the system
sizes were quite smalN<18°.

To conclude, we have studied the defect energy of the
two-dimensional Ising spin glass using much larger system
sizes than before, up td=48C. For Gaussian disorder we

i find that a spin-glass phase is not stablelat0, and that
. ii” i«l d.>2, in agreement with earlier findings for much smaller
10-4 Ll 1hi i L systems. For the+rJ model, the absolute value of the
6 2 4 6 8 10 domain-wall energy saturates at a nonzero valuel_fere,
indicating that the lower critical dimension is exactly=2,

FIG. 3. DistributionP(AE) of domain-wall energies for theJ ~ in agreement with Refs. 8 and 9. It is quite striking and
distribution with F-DW boundary conditions. The points for ~ perhaps surprising that the J model, which has a large
=320 andL =10 are slightly displaced on theaxis for visibility. ground state degeneracy, actually hasreorder at very low
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