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We calculate the critical current densiliz(%) for Josephson tunneling between identical high-temperature
superconductors twisted an anghg about thec axis. Regardless of the shape of the two-dimensional Fermi
surface and for very general tunneling matrix elements, an order parai@®&ewith generald-wave symme-
try leads toJ“C‘(w/4)=O. This general result is inconsistent with the data oéLal.[Phys. Rev. Lett83, 4160
(1999] on Bi,Sr,CaCyOg, 5 (Bi2212), which showed)? to be independent ap,. If the momentum parallel
to the barrier is conserved in the tunneling procéé;should vary substantially with the twist angfg when
the tight-binding Fermi surface appropriate for Bi2212 is taken into account, even if the OP is completely
isotropic. We quantify the degree of momentum nonconservation necessary to Jé(nﬁ@r constant within
experimental error for a variety of pair states by interpolating between the coherent and incoherent limits using
five specific models to describe the momentum dependence of the tunneling matrix element squared. From the
data of Liet al, we conclude that the-axis tunneling in Bi2212 must be very nearly incoherent, and that the
OP must have a nonvanishing Fermi-surface averagd fot.. We further show that the apparent conven-
tional sum-rule violation observed by Baset al. [Science283 49 (1999] can be consistent with such
strongly incoherent-axis tunneling.
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I. INTRODUCTION dy2_y2-wave OP, was explainable in terms of trapped flux
lying within the layers and pinned at the cornétsss has
There is still considerable interest in the symmetry of thebeen directly observed in related materials using a scanning
order parametefOP) in the high-temperature superconduct- SQUID microscopé’ This situation maps precisely into the
ors (HTSO).1"* Although many phase-sensitive experimentscase of a monopole vortex at the center of a conventional
were interpreted as giving evidence for an OP insuperconducting-normal-superconducting junction, resulting
YBa,Cu;0;_; (YBCO) consistent with thed,2_,2-wave in a node in the center of the “Fraunhofery(B) pattern:®
form,'2 it is only recently that the same type of phase-In addition, an interesting YBCO/Pb SQUID configuratidh,
sensitive experiments on the electron-doped HTSGvhile suggestive ofl,>_,2-wave OP symmetry, was subse-
Nd; gCe 1CUO,—y (NCCO) and PjglCe;CuQ,—,  quently found to depend upon the details of the junction
(PCCO were also interpreted in terms of d2_ 2-wave fabrication in a manner inconsistent with that analySis.
OP? possibly in agreement with penetration depth Phase-sensitive experiments on ,®,CaCyOg. s
measurements® although those experiments could only (Bi2212) gave strong evidence that the OP has a nonvanish-
place upper limits upon the gap minimum. However, theing Fermi-surface averade!®#'First, c-axis Josephson tun-
zero-bias conductance peak, often associated with Andreeneling between Bi2212 and either Pb or Nb demonstrated
bound states for tunneling into certain directions af,a .  that the OP has a nonvanishing Fermi-surface average in
superconductor, was usually absent in NCCO and PECOBI2212 below their respective transition temperatrg
The presence or absence of such peaks in YBCO is veryaluesg.”lOAIthough the magnitude df:R,, was found to be
sensitive to the surface properties, especially to the oxygewery small(a few microvoltg, such values were also seen
doping® Furthermore, the recent nonlinear transverse magwith Josephson junctions between Pb and thexis of
netization experiment on YBCO provided a minimum valuesingle-crystal NCCO and thin films of YBC8:?? Since un-
of the superconducting gap, inconsistent with the scenario dfvinned single crystals of YBCO gave much largeaxis
a dominantd,2_y» component of a mixeds+d,2_2- IcR, values, these low values might arise from materials
wave OF. problems at the Bi2212/Pb interface, as was suggested for
An older pair of experiments with superconducting NCCO/Pb junctions? In fact, theT, values of the Bi2212
guantum-interference devid&QUID)-like devices with Pb layers at the Pb interface were generally suppressed by more
or Nb around a corner of YBC®*3involved extrapolation than a factor of 2 from the bulk valués.
of either the critical current or the voltage to zero. In the Second,c-axis tunneling across the junctions of Bi2212
latter case, it also involved fitting a sharp, delta-function-likeintercalated with HgBr has been studied using me$&&3in
peak to a sine wave. However, detailed studies on thin filmshese experiments, increasing tbexis spacing by 6.3 A
demonstrated conclusively that both of those extrapolationgcreased the normal-state resistivity by a factor of 200. In
were unreliablé? A subsequent experiment involving Pb the superconducting state, andl, changed by comparable
junctions straddling a corner of a YBCO single crystal, factors, but their produdt.R,~10 mV was about half the
while suggestive of ar junction arising from a predominant optimal value expected in the Ambegaokar-Baratoff model of
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purely incoherent-axis tunneling between identical, isotro- (HgBr,)Bi2212 mesas have been reported, providing com-
pic swave superconductofs?* Such behavior is very diffi- pelling evidence that the pseudogap and the superconducting
cult to understand in terms ofdjz_,2-wave OF:> Moreover,  gap or gaplike density-of-states features are completely un-
these conventionally largeR,, values measured between ex- related to one anothét.This independence of the pseudogap
tremely weak tunnel junctions interior to the crystal stronglyand superconducting state is also evident in the NMR
suggest the dominant OP sswave and the tunneling is in- 1/(T,T) measurements as a function Bfand H, with the

coherent. results being stronglil dependent belowW,, but completely

Also, recent experiments_ on Nb Josephson-junction a”aYﬁdependent ofH above T, in optimally and underdoped
have provided an explanation not only of the paramagnetic,gc samples23* Similar conclusions were attained using

Melssnere effect, sometimes observed in ceramic BI221%Jltrafast optical relaxation measurements, in which the su-
sample<® but also of spontaneous flux generation itself, not : )
. . : : perconducting gap in YBCO was also found to bevave
necessarily proportional to an integral multiple of the flux arT.
c-

guantum®,, when three or more conventional Josephsonne . . .
junctions in a loop are presefftCombined with the fact that The resonant p_eak observed n neutron scattering, previ-
it i often very difficult to determine precisely over how large ©USly thought to arise upon entry intalg 2 superconduct-
a region away from a vortex core one has to integrate thé'd State, has recently been confirmed to be stabilized by
field using a SQUID microscope in order to obtain the cor-impurities which themselves destroy the su_perconducn”@ny.
rect value of the trapped flt& such spontaneous, noninte- Thus, this experiment, if phase sensitive, is apparently sen-
gral flux generation with three junctions in a ring might pro- Sitive to the phase of the ordering responsible for the
vide an alternative explanation of the IBM tricrystal PSeudogap, such as charge- and/or spin-density wave forma-
experiment. tion, rather than to the superconducting OP |t§élf-lenpe,

The critical current ((¢) through YBCO in-plan€001)- experiments such as photoem|_SS|on, neutron scattering, and
tilt bicrystalline grain-boundary junctions has been found toloW-temperature thermodynamic and transport phenomena,
decrease exponentially as the misorientation aggle var-  €tC., which can be influenced by the nonsuperconducting
ied from 10° to 45° in a number of experimerise Refs. 29 (e.g., densﬂy waveordering responsible for the pseudogap,
and 30 and references thergiin experiments on thin films ~are unreliable tests of the OP symmetry. _
prepared by vapor phase epitaxy, a decreask.Ry with More directly, a phase-sensitive experiment which can
increasings is usually observed. This has been interpreted€St the symmetry of the OP over the entire raligeT . was
as evidence fod-wave pairing, asi-wave effects would re- performecf In -thIS experiment, a single crystal of Bi2212
ducel, with increasings without affectingR,,.%° However, ~Was cleaved in theab plane, and the two cleaves were
I, and R, across in-plane YBCO grain boundaries obtainedWisted in a chosen angig, about thec axis with respect to
from bulk bicrystal seed growths, which were shown byeach other, aljd fu;ed back t_ogether. Vanogs experimental
electron microscopy studies to be much straighter than thBroPes, including high-resolution TEM, confirmed that the
usual thin-film grain boundaries, varied inversely with ~ Picrystal junctions were of exceptionally good quafftyn
such thatl R, remainedconstant(~12 wV), even as¢ parfucular, atomic-scale steps that are known to be (_:reated
—.45°?° Thesel R, values are much smaller than measureddU!ing cleavage apparently completely disappear during the
on thin-film samples, but there the values depend upon thBigh-temperature sintering process, so that any significant
critical current and the substrate, which seems to indicat§Ontribution from tunneling in thab direction can be ruled
that one is not measuring intrinsic properties of the supercorUt: After lead attachment, the critical current§T) and
ducting state. Curiously, the smallR, values measured in !c(T) across the twist junction and single crystals were mea-
these greatly improved junctions are comparable to thosgured, as were the respective junction ar&asnd A®. For
obtained inc-axis tunneling between Pb and Bi2212, NCCO, 11 of the 12 twist junctions measured, the resulting critical
and heavily twinned thin films of YBCO22 current densities))(T) and J(T) were the same af/T,

Furthermore, very high-quality (10@L10) in-plane =0.9, independent ob,.® SinceJ(¢o)/IS=1 applies both
grain-boundary junctions were prepared by liquid phase epto several samples at 45° and several a few degrees away
itaxy, and some of these junctions gave rise to a standarfilom 45°, the tunneling at the twist junction is not due to any
Fraunhofer diffraction pattern upon application of a paralleldefects other than those naturally present within an untwisted
magnetic field neaf.3! Such an observation is also easy to single crystal. Liet al. claimed thaia) the intrinsic junctions
understand from incoherent tunneling withvave supercon- and the twist junction behaved identicallz) the c-axis tun-
ductivity, but is very difficult to explain withd,2_,>-wave  neling is strongly incoherent, an@) the OP contains an
superconductivity? Since the IBM tricrystal experiments isotropic component, but not any purportegl> _2-wave
were always performed on samples prepared by the oldevomponent folT<T., except possibly below a second, un-
vapor phase deposition technique, the grain boundaries mebserved phase transitién.
andered greatly, and did not show the const&gR, Since then, the group-theoretic arguments upon which
behavior® Thus, defects in the grain boundaries and the inconclusion(c) were based have been publisl‘ﬂ%dn addi-
fluence of the substrate might provide a second possible exion, an exact calculation of the possible roles of coherent
planation of the IBM tricrystal experiment. c-axis tunneling was publishéd For the tight-binding Fermi

In addition, the temperatur& and magnetic-field de-  surface generally thought to be applicable to Bi224% it
pendencies of the intrinsic tunneling in such Bi2212 andwas shown that such coherent tunneling was inconsistent
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with the daté even for an isotropics-wave OP. Since the the OP is by no means settled, it is very important that as

claim (a) of Li et al.is just a statement of their experimental many calculations intended to aid in our understanding of

observations, and the claith) is clearly correct in the limit these important experimental results be presented. To date,

of purely incoherent tunneling, it remains to quantify pre-the only published theories of this twist experiment did not

cisely just how incoherent the tunneling must be in order tgxplain it quantitatively** except for the unlikely case of a

fit the data. circular intralayer Fermi-surface cross section and very
There have been earlier measurements(@fil) twist ~ Strong coherent interlayer intrinsic tunneling, leading to un-

boundaries in sintered Bi2212 bicrystdlsin those experi- éasenably isotropic normal-state behavior of Bi221Bere

ments, there seem to have been severe problems with junf€ Present and solve five tunneling models and several OP

tion quality, since most of the junctiof, values differed models which can a_lctually flt_ the data quantitatively, using

substantially from their respective bulk values. Accordingly, parameters appropriate for Bi2212.

the measuredf: values varied unsystematically with,. For

one sample withpy=36°, however, for which the junction Il. GENERAL CONSIDERATIONS

; : J
Tc was almost identical to the bulk valud, (4.2 K) was Since Bi2212 behaves as a stack of weakly coupled Jo-
found to be 40 Alcrhy close to the value of 50 A/(Jﬁ‘rmea- sephson junction® the static critical current density,
sured on the reference sample witg=2°. Even ifJ; of the  4¢ross each junction may be evaluated by neglecting the cou-
reference sample was suppressed and we were to talings between the other junctioh&’ Specifically,J across
J(4.2 K)=~100 Alcnt, as observed by Lét al,’ J2 forthe  the twist junction between adjacent layers is given fior
36° sample would be incompatible with the predictions of=c=kg=1 by
the d-wave model.

In a recent review articlé, Tsuei, Kirtley, et al, while
briefly addressing-axis twist junctions, quoted a large num- I o) =4eT, (U KHF(KFI &), (@
ber of papers in support of the view that momentum-non- @
conserving(e.g., incoherentprocesses should be included
when discussing-axis transport. They then conclude that Wheree s the electronic chargey represents the Matsubara
such processes would reduce any sensitivity of the junctioffequenciesf’(k,k’) is the spatial average over the junction
critical current density to the twist anglé,. However, as area of the tunneling matrix element squat@d; - -) repre-
shown in the following, such a conclusion applies only toSents two-dimensional integrals over each of the two first
pair states withs-wave symmetry. To make this quite clear, Brillouin zones(BZ’s), and the wave-vectck’ is obtained
in Sec. I, we proved a theorem about the vanishing of therom k' = (k;, ,ky) by a rotation of¢, about thec axis. The
c-axis critical current for a 45° twist junction between anomalous Green’s functions ar€ ,(k)=A(Kk,T)/[w?
d-wave superconductors, which is valid for a very generalt £2(k)+|A(k,T)|?] and FL:FZ , whereA (k,T) and £(k)
momentum dependence of the tunneling matrix elemengre the OP and quasiparticle dispersion on the layer with
squared. For al-wave superconductor, the critical current yave vectork, respectively. Sincd? is proportional to the
becomes insensitive i, only in the sense that it is zero for magnitude of the maximum supercurrent, the relative phases
all ¢, values in the extreme limit of incoherent tunneling. In of the OP’s of each side of the junction can be ignored, so
Sec. IV, we show analytically for a general Fermi surface ofi, ¢ Fl(k) can be replaced bf (k). For Bi2212, we as-

tetragonal symmetry that the critical current density betweergume the quasiparticle dispersi has the tight-bindin
d-wave superconductors, normalized todig=0 value, var- g P persiatk) g g

ies as cos(@p) as the incoherent limit is approached, almost
independently of the chosen model for the tunneling matrix ,
element squared, and of the particular form of thwave  ¢(K)=—tlcodk.a)+cogkya)]+t cos(kxa)cos(kya)—;(bz,)
OP.

We remark that although theaxis twist experiments of ,
Li et al. have not yet been fully reproduced in a second |aboyvhe.re we taka.:306 mevV. t _/t=0.90, and!“/t: _0'675.
ratory, neither have the tricrystal experiments of Tsuei, Kirt-1° 9ive @ good fit to the Fermi surface of Bi2212, for which
ley et al® However, it is expected that within the next year §(ke) =0. These values are slightly different from those used
or two, serious attempts to reproduce and extend both experﬁ’-rev'c’u_s‘l3/'1 A plot of this Fermi surface is shown in Fig. 1.
ments will have been made. We would like to sesxis twist Ve first consider a generdlz_y2- or d, swvave OP, which
experiments performed on small mesas containing a twidf 0dd underr/2 rotations about the axis.™ Let R/ (o) be
junction, to test the robustness of the scaling of the criticaP "otation about the axis by the angled, of the wave
current with the junction area. With small mesas, one couldector k', so that F,(k')=Rq(¢o)F,(k’). Then
also see the Fraunhofer diffraction pattern characteristic oRx(— 7/4)F (k)= —Ry(m/4)F (k) for —a  general
each junction in the mesa, and could measyréor the total ~ dy2_y2-wave (or generald,,-wave) OP and a quasiparticle
number of junctions in the mesa. In addition, we would like dispersioné(k) that exhibits tetragonal symmetry, as in Eq.
to see the IBM tricrystal experiment reproduced usiraxis  (2). This crucial point only applies for a/4 rotation, since
twist junctions, as we suggested previodSly. for ¢o# 74, Ry(— ¢o)F,(K)# —Ry(pg)F,(K). Then, the

In the meantime, since the question of the symmetry otritical currenug,d(wm) across a 45g-axis twist junction in
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1

0.5

dy2_,2-wave OP, in which the mixing would shift the angle
at whichJ? 4(¢) =0 slightly away from/4.%* In addition,

if there is a secondary phase transition, such as one that
mixes OP’s ofd,2_,2- and eitherd,,- or swave symmetry,
then this theorem does not apffHHowever, we showed that
for parameters relevant to Bi2212, such a possibility could
only hope to explain lovi data, not the data nedr,.*° In
addition, higher-order tunneling processes were shown to
give a finite but entirely negligible contribution to
Je.q(m4) ™t We remark that there have been a number of
theories of the HTSC that relied upon coherent tunneling in
the ¢ axis, with ak-dependent matrix element, between each

-1 -0.5

of the layers'®4” But, that model not only gives} 4(/4)
=0, it gave the worst agreement with the experiment of Li
et al. of all of the coherent tunneling models studied, even

; 1
FIG. 1. Schematic plot of the Bi2212 Fermi surface used infOr @n ordinarys-wave OF! _ ,
these calculations. The concentric circles represent the portions of The theorem holds for an arbitrary (k k) and for an
the BZ for which the tunneling strength is withinelfor the Gauss- ~ arbitrary form of ad-wave OP. But we would like to deter-

ian and exponential models

(1/2 for the rotationally invariantmine quantitatively the dependencies of ﬂ'ges(%,T) and

Lorentzian and extended Lorentzian modelfits maximum value, Jg d(¢o.T), both for a variety of tunneling models and for a
for dimensionless parametes$ of magnitudes 0.0005, 0.005, and vériety of s and dx27y2 OP forms. In particular, when the

0.05, as indicated.

tunneling is not purely incoherent, differences could arise.
In order to investigate how sensitive our results are to the

a tetragonal layered superconductor with a genggaly2- or  particular form of the OP, and still be consistent with the
dy,-wave OP at an arbitrary <T, to leading order in the ¢ axis twist experiments, we have made a systematic study

tunneling strength, satisfies

of the effect of various OP anisotropies, using the weak-
coupling BCS theory of superconductivity. In this study, we

32 J(wld)= 4eT>, Q,l, (3) did not vary the pairing interaction directly, but only as-
’ ) sumed that the OP had a variety of particular forms that
Where differed sufficiently from each other, in order to be as general
in our conclusions as possible. We study the gap functions
Q.= (F (kK[ Ry (m/4)F (k') F ,(K)) Ui¢e(K)  corresponding to the OP’s Aj.(k,T)
=Ao(T) ize(k) for generals- and dy2_2-wave supercon-
=<fJ(k,k')Fw(k')[Rk(—77/4)Fw(k)]> (4) ductors with{=s,d, andi=o0,e,c,a, respectively,
= (kK (K[ =R m4)F ,(K) 1) (5) Yos)=1, ®
=P WL (K- Ro(mF (k) @ Vestl)={lcothoa) “cothoa 4 ST HT,
=7 Q=0 @ ese(K) =[ siPP(k,@)sirP(kya) + €2]¥2(1+ €2)12, (10)

In the above, we assuméd(k,k’)=f’(k’ k). In the next-to-
last step, we merely changed the integration variables. Thus, as(k) =cogk,a) +cogk,a), (11
we have proven the general theorem that for any weak tun-

neling matrix element

squared satisfying’(k,k") Yod(K) =cogk,a)—cogkya), (12

=fJ(k’,k), an arbitrary OP of general2_2- or dy,-wave
symmetry in a tetragonal crystal gives rise tovanishing t/fedf(k)=[Cos(kxa)—cos(kya)]{[cos{kxa)—cos(kya)]2

c-axis critical current across an internal 45° twist junction
for T<T.. The only requirements for this theorem to hold
are(1) f(k,k")=fI(k’ k), which is a consequence of time-
reversal invariance?) the tunneling is sufficiently weak that

+e M (1+ €)1, (13

Peac(K) =[cogkea) — cogk,a) ][ sinP(k.a)sint(kya)

higher-order tunneling processes can be neglected, which is + €21V (14 €2)12 (14)
certainly the case for Bi221%,(3) the crystal is tetragonal,

and (4) the OP has either

pure,,- or pured,:_j-wave and

symmetry. If these criteria are satisfied, different tunneling

models yield only slightly different precise values of ¥ad(k)=[cogk.a)—coskya)][cogk,a)+cogkya)].

J2 4( o) for 0< o</

(15

To the extent that Bi2212 is slightly orthorhombic, a bit of For simplicity, we shall denote these the “ordinaywave,”
a Oyyx2-y2wave OP component can mix with a “extendeds-wave,” “compresseds-wave,” “anomalous-
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s-wave,”  “ordinary-d,2_2-wave,”  “extendedd,z - strong on-site pairing, stronger next-nearest neighbor repul-

wave,” ‘“compressedi,>_,o-wave,” and “anomalous- sion, weak next-next-nearest-neighbor attraction, and the re-

dy2_,2-wave” OP’s, respectivel§® Since the ordinary- and maining real-space interaction terms are successively

anomalouss- andd,2_2-wave OP’s do not depend upon the weaker. Similarly,j.5(k) involves strong on-site pairing,

parametere, we drop thee in their gap function subscripts. slightly weaker next-next-nearest-neighbor repulsion, etc.
Setting e—0 leads to the “fully extended-" or “fully — Settinge#0 modifies the relative strengths of thg ()

compressed-5-wave andd,z_,2-wave forms, each propor- andag nm(€).

tional to |cosk.a)—cosk,a)| and |sinka)sinka)|, respec- We also studied thel,>_,>-wave OP obtained from the

tively, which have nodes at the same places on the Ferniepulsive interactioA?>

surface as do the ordinadys_,2- and d,,-wave supercon-

ductors, respectively. The first four and the second four are

specific examples of the “generalwave” and “general- Vig)=—-Vy > I/[(q=Q)*+I?], (21

d,2_y2-wave” OP’s, Q=(=1=1)mla

* where Vo=556 meV andl’'=0.1. The BCS equation was
YiseK)= X am(e)cognkaicogmka) (16)  solved forA(k,T) in terms of V(k—k'), yielding A(k,T)
nm=0 =Ay(T) pq4(k). We then constructed an extendedrave OP
and from the absolute magnitude of thg2_,2-wave form ob-
tained from Eq(21), ¢.{K) =|@q4(k)|. The isotropics-wave

S OP was taken to have its maximum magnitude (k)
'/’ide(k):néo ai,nm( €)[ cogk,a) —cogkya)] =max]|¢eq4(K)|}, a constant. The main differences between
' these models and the OP forms studied in E§s-(15) are
X cognk,a)cogmka), (17) that thed-wave and extendeskwave forms so obtained have
) ~ somewhat different wave-vector forms from those with
respectively, ~where a; nn(€)=amn(¢) and ainm(€) =0 in Eqs.(12) and(9), respectively. We included the um-
=a; mn(€), which were described previousiyHere we take klapp terms which occur with rotated Fermi surfaces, but the
A (€)= il €)- effects of doing so were very small in all cases we studied, as

We remark that the anomalosswave OP changes sign found previously:'
on the tight-binding Fermi surface, and averages to zero over We remark that this particular form of pairing interaction
the first BZ. However, its average on the tight-binding Fermidoes not easily lead to an extended:ave form of the OP,
surface is not zero, so we include it for comparison. Theeven when one changes the sign of the interaction, or adds an

simplest coefficients are for the ordinary and anomalougttractive term of similar form. However, semimicroscopic
functions, which are models of the pairing interaction exist which result in highly

anisotropic OP’s of generalwave symmetry: some of
o nm= 0n.00m0 (18 which even give OP’s with nod€$ One such model is based
upon the work of Anderseet al,*® in which they showed
that the interaction could be large only at rather isolated
84 nm= 0n10m0+ On.00m.1, points in the BZ. Although those authors did not explicitly
consider ars-wave state, we have modified their procedures
respectively, wheres, o is the Kronecker delta. The full set to do so. Through the various hopping matrix elements, the
of coefficientsa; ,,(0) for i=c,e from which they;,o(k)  interaction between the quasiparticles depends upon their
are constructed are given in Appendix A. Keeping only theparticular positions within the BZ. This is particularly true
leading terms in the expansions (k) and .5(K) in when one considers the large density of states present on the

the e—0 limit, one finds saddle bands, such as those near toMh@oint in the first
8 4 BZ of Bi2212. Such an interaction could give an OP that is
l//eso(k)—>—z(l— ~cogk,a)cogk,a) nearly zero over large regions of the BZ, and hence over
™ 3 finite regions of the Fermi surface. In general, an extended-
s-wave gap function proportional te.(k) is consistent
(190  with essentially all non-phase-sensitive experiments.
We shall also use a simpler model, which might be appro-
and priate for electron-doped HTSC, with an isotropic in-plane
quasiparticle dispersion. Assuming as usual that the main
4 2 contributions to all the momentum integrals come from the
‘ﬂcw(k)H?( 1- §[cos(2kxa)+cos(2kya)]+ A E vicinity of the Fermi surface, we can integrate out the qua-
(20) siparticle energy. We then only need to consider the OP’s on
a circular Fermi surface, which allows us to perform many of
When the phenomenological pairing interactionthe calculations analytically.
N egn(K) en(k”), which leads to the gap functiop. g (k), In analogy with the real-space pairing OP’s, we study the
is transformed into real space, one sees ¢haj(k) involves  Fermi-surface-restricted pairing ordinary-, extended-,

and

+ g[cos(ZKXa)+coe(2kya)]+ e
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compressed-, and anomalogtisand d,2_2-wave OP’s, re- included umklapp terms in the integrals in Et). We solved
spectively,A; (b, T)=Ao(T) i, H1), Wherei=o0,e,c,a, the model to all orders in the tunneling strength, optimizing
and{=s,d, Jg(¢0) with respect to the phase difference across adjacent
B junctions. For the ordinargs2_,2-wave OP, weak coherent
bos(Pr) =1, (220 tunneling always gavég’d(a-r/4)=0. Although higher-order
B coherent tunneling processes allowlgcg(wm);to, inevita-
Ves(d)=[COS(2¢p) + €1V (1+ €)Y (23)  bly I ((w/4)13] 4(0)<1 for all T<T, 50 that it was still
5 impossible to fit the data of Let al. with a d-wave OP.
ese( D) =[SiIP(2¢,) + €21Y% (1 + €2)12) (24)  Twisting of the nominallyd,z_,2-wave OP by mixing in
components ofl,, symmetry was found to give a potentially

Yase(P)=[e+cod4p )]/ (1+]e]), (25 substantialJiyd(w/4)/Jg’d(O) for T<T., but we always
found J7 4(7/4)/13] ((0)<1 near T..*® For Bi2212, the
Yod ) =cog2¢y), (26)  c-axis tunneling is so much weaker than the in-plane intersite
hopping strength, thal] 4(/4)/3] 4(0)<1 for a wideT re-
Pede d) = oL 2¢)[COZ(2 ) + €211 (1+ €) 172, gion belowT,.
(27) However, we found that for Fermi surfaces similar to that
pictured in Fig. 1, even for an isotropgewave OP, it was not
Yegel ) =02 )[SIP(2¢hy) + €21V (1+ €212, possible to obtain a quantitative fit to the data with coherent

(28)  tunneling®** We then argued that for extremely incoherent
tunneling, withf’(k—k’)=fJ, a constant, the-wave and
extendeds-wave OP’s could both fit the data quantitatively.

Vage( b)) = o2 )[e+cogddy)]/(1+]|e]), (29  But wedid not discuss the intermediate tunneling coherence
cases in any detail, and that is our purpose here. To be as

respectively. We allow the anomalous OP's to haveean general as possible, we shall study five tunneling models
#0 in order that the average over the Fermi surface oiyhich interpolate between these two limits, using the eight
Wase( @) might be finite. These and similar functions may be OP’s ofs- andd,2_ ,>-wave symmetry described in E48)—
written as Fourier series, in analogy to E¢E6) and (17), (15).

The most natural model quantifying the coherence of the
tunneling matrix element squared is a Gaussian function of

and

[

ise( $1) = 2 Aisn(€)c0tAnghy) (30 k.
and fo(k—k')=f)cexd — (k—k')?/o?], (34)
_ < where
iae($)= 2 agn(e)cog(4n+2)¢], (3D -
n=0 oc=2"x0la. (35)
for i=o,e,c,a, respectively. The ordinary and anomalous sjnceg=0 ando— = result in purely coherent and incoher-
coefficients are ent tunneling,o is the dimensionless parameter quantifying
_ _ the coherence of the tunneling. In addition, we shall study
Bosn=8odn= On0; 32 four other models
Snot S , .
Ay €)= om0 Ond (33) fi(k—k')="fjcexd — |k—k'|/7], (36)
1+|€
and fJ(k_k/): fél—
- [1+ (ke— kX G2I[ 1+ (k,— k)2 52]
a ( _ (2&'+ 1)5n,0+ 6[’1,1 (37)
adnt T T2(1+ e o
The extended and compressed coefficieais,(0) for i fh (k—k')= L&m' (39
=e,c and{=s,d are given in Appendix A. 1+ (k=k")"o
and
lll. THE TUNNELING MODELS .
We shall assume thdf(k,k’)=f)(k—k’) satisfies time- (k=K )= —— 0 (39

reversal invariance and depend I i 1+ (k=Ko

pends only upon the change in the
quasiparticle momentum parallel to the tunnel junctign, which are exponential, Lorentzian, rotationally invariant
—k’. Previously, we investigated the case in whitt{k Lorentzian, and “stretched Lorentzian,” respectively, kn
—k")c8(k—k’), appropriate for coherent tunneliffWe  —k’. We included the exponential and Lorentzian models,
found that it made very little difference whether or not onewhich are nonanalytic itkk—k’ and nonrotationally invari-
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1 . . . . ird
, , fa( k= di) =Tocexp(— v 1-cos d— B}, (42
08| ~ _
- f2(d— bir) =Toeexp[— V2v(sin (b — i) /12][},
o (43
< 06
) (. bir)
- 0.4 5
S i,
0.2 ~ [1+4 y(coS¢y— cosdy ) ][ 1+ y(singy—Singy)?]’
0 ; (44
0 05 1 15 2 25 3 35 4
|k-k'|a/2"*nc forL
fRu(dk— b)) =772 2, (45
FIG. 2. Plots off’(k—k’) for the five models of the tunneling 1+ ¥y 1-cos ¢y— )]
matrix element squared. The Gaussiablid circles, exponential gnd
(open circleg rotationally invariant Lorentziarfopen triangles
and stretched Lorentziaitsolid inverted triangles models are "f‘gSL
shown as indicatedi’ for the Lorentzian model varies from the fJSL( b— b)) = 51 — , (46)
curve with open diamonds folik,—ky|=|k,—kj| to that of the 1= cosd b= )]
stretched Lorentziagsolid inverted trianglesfor eitherk,=k; or (47)
ky=ky. where theféi are different normalization constants. The

Gaussian functionté(¢>k— ¢é+), is identical to that of Graf

ant, respectively, in order to investigate the most general 53 . =3 .
types of tunneling behavior that can occur between the cogt al,”" provided thatf oo = exp(y)/[ 7. lo(y)], wherel ,(2) is a

herent and incoherent limits. In addition, we included bothBessel function and & is the effective interlayer tunneling

the rotationally invariant and stretched Lorentzian models,rate'

since their leading contributions near the incoherent limit 2m

coupling d-wave superconductors have different signs. The 1/TJ_=J’ d¢ff(¢)/27r (48
fy; are constants that normalize the overall tunneling to a 0

particular strength, which we characterize equivalentlyifor and

=G,E,L,RL,SL in terms of an effectives-axis “scattering

” : . 2 2
rate” 1/, for all processes in the first BZ, Ur = fo d¢jo dop' (b, b )(27)? (49)

(Fl(k—k"))y=1/r, . (40)
o _ for the rotationally invariant models and for the Lorentzian
Similar models were employed by othéfs*~*°In Fig. 1,  model, respectively.

the shaded concentric circles indicate how the range of mo- \we first consider anarbitrary rotationally invariant
mentum states accessible by tunneling from the central poirftJ(% éx— dys) on a circular Fermi-surface cross section,
increases witho?. In the shaded regions, et fi(k  wherey is the parameter characterizifig such that in the
—K')/f3e . fR(k—k')/fe<1 and 1/2<f} (k—K')/f3., incoherent limit, y—0, f(0,¢—b/)=1/7,, and in the
feu(k—k')/f3s <1. For a givero?, the various models dif- coherent limit,y—x, f)(c0, by — dyr) = (b — i)/ 7, , re-
fer considerably, when one defines a range of tunneling prospectively. To do so, we writé’ in terms of its Fourier
cesses by requiring’ to be less than some fraction of its series.

maximum. We note that for the Lorentzian model, one would B

have to replace these concentric circles with concentric fig- ; 1

ures of tetragonal symmetry, having minima along xtend Py b= dw) = En}::o f(v)cogn(de— )], (50

y axes, and maxima along the diagonals. The dependence of

each of these tunneling functions uppn-k’| is shown in ~ where

Fig. 2. For the Lorentzian model, we only showed the depen- 5

dencies along the axes and the diagonals. JoTdot(y,p)cogng)

fo(y)=
=0 a0

For the Lorentzian model, f}(y, ¢«,d) may be
expanded as

(52)
A. Circular Fermi-surface models

For a circular Fermi-surface cross section, we wkte
=kg(cosey,singy), etc. Then, Egs(34)—(39) can be re-
written, letting

(v, bx ¢k/):i i fr m(v)co$2n( by — bicr)]
y=(ake/70)?, (41) AR T, nfto MM

leading to X cog4m( e+ o) ]. (52
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0.8

Pl = e o= e P S = N Y —— — —

extended-s (¢ = 1)

extended-s (¢ = 0)

circular Fermi surface

FIG. 3. Plots ofr, JY/CoA3 at T, and ¢po=0, which isfie.(¥,0)
and fy4(7y) for the extended- and compressedsave with e=0
(dotted curves and e=1 (dashed curves and ordinary-
dy2_y2-wave (solid curveg OP’s on the circular Fermi surface, re-
spectively, versus ¥ Results for the Gaussigsolid circles, ex-
ponential(open circleg, rotationally invariant Lorentziafopen tri-
angles, stretched Lorentzian(solid inverted triangles and
Lorentzian(open diamondsmodels are shown.

The f,(y) for the four specific rotationally invariant models
and thefhym(y) are given in Appendix B, along with some

useful asymptotic expansions near the coherent and incoher-

ent limits.
Just belowT;, Ay(T)—0, and

0.5
(coherent)

o0
In, (v} values
2

extended-s
circular Fermi surface

0.3

10 40

05 (deg)”

FIG. 4. Plots offso( ¥, do) = 71 I21s0( o)/ CoA§ just belowT,
for the extended- and compressedrave OP’s (=e,c) on a cir-
cular Fermi surface, as a function #f, at they values 16, where
x=0 (thick line), 1/2 (dash-dottey 1 (dashegl 3/2 (dotted, 2 (thin
solid), and for the coherent limigz— o« (thick solid curve. Results
for the Gaussiafsolid circles, exponentialopen circleg rotation-

ally invariant Lorentziar(open triangles and stretched Lorentzian
(solid inverted trianglesare shown.
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‘]g,ige( Y, ¢O)
=Col(F (7, bic, B ) Aigel b DA (B T g
(53

where Co=en?/(4T,), mis the in-plane effective mass,
=s,d andi=o0,e,c,a index the OP’s, andi, = ¢+ ¢o. We
find for a general rotationally invariant tunneling model that

'J;:],ige( Y ¢0):C0A(2)(T)|fI§E( Y ¢O)|/TL ’ (54)
for i=o0,e,c,a and/=s,d, where

©

go (14 8, 0)@%n(€)co4n o) f4n( ),
(55)

=

fiSe( Y, ¢O) = 2

1 S 2
fiae(7,60)= 5 2, agn(€)c0g(4n+2) bo]fan o),
(56

and thef,(y) are given by Eq(51). These results are pre-
sented in Figs. 3—6.

For the Lorentzian model, Eq54) still applies, but the

functionsfis. (v, ¢o) andfiy.(7y,¢o) for i=o,e,c,a are, re-
spectively replaced by

[

1
fise 7,00 =5 2 isn(€)aism( €)cOL4meby)

><[f|2_(n+m),|nfm\(7)+ flz_\nfm\,ner( 7)]
(57

and

circular Fermi surface |

extended-d-wave
compressed-d-wave

15

FIG. 5. Plots offiqo(7,0)=17,JYCoA3 at T,, €=0, and ¢,
=0, for the extendeddotted and compressedsolid) d-,2-wave
OP’s on the circular Fermi surface, respectively, versys Results
for the Gaussiaffsolid circles, exponentialopen circley rotation-
ally invariant Lorentziar(open triangles stretched Lorentziafin-
verted solid triangles and Lorentziariopen diamondsmodels are
shown.
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1 ~_circular Fermi surface,"" ally invariant Lorentzian model is special, since expanding
—_ t“\ \ coherent /* Eq. (45) to order y? leads to a negative leading term for
o 08 N J3214.(7,0) for sufficiently smally. In addition, it is easily
3«0 seen from Fig. 3 that the Lorentzian model gives the largest
"3 0.6 ] ordinaryd,2_2-wave f,4(y,0) value at intermediate val-
= o4 ] ues in this c_ircular Fermi-surface_ calculatior_l. For smaiter
g values(not pictured, the exponential model gives the largest
5 ©0.2 N\ ] foa(v,0). The same qualitative features are seen for the
= extendedd-wave and compressatiwave models, as shown
0 o in Fig. 5. Regardless of the value ¢f{e.g., even whery is
40 near to the value at whiclf,4.(7y,0) changes sign in the

rotationally invariant tunneling modglEq. (56) shows that
fiae(v,¢o) has the same basi¢, dependence as for any

FIG. 6. Plots ofJ;(¢0)/J:(0) at T, and the coherent limity other y value, vanishing atby=

—e, for the ordinaryd,e_z=-wave (solid), |cos(2g)|, extended- For the general Fermi-surface restricted model,
dy2_y2-wave (dashedl compressedk._,.-wave (dotted, and /3 - hich i iodic i
anomalousd,z_2-wave (dash-dottefl f;4o(, ¢bo) (€=0), and the e, cise( V2 ¢0) c.s= fise( 7, ¢0) al T, which is periodic ingo

anomalouss-wave (dash-dot-dot-dottedf ,(, ¢g) On a circular W'th period /2, sgtlsfylngfiSe( Y, = 72— o) = fise( 7, ¢o)
Fermi surface, respectively, with rotationally invariant tunneling for i =c.€,a. We first consider the anomalosswave case,
matrix elements squared. Results for the Lorentziapen dia- fase(7: o) =[ €7+ 5 4(v) cOS(4ho) V(1+|e]). For each rota-
monds model are also shown. tionally invariant tunneling model, this varies smoothly
between the coherent limit[ €+ 3cos(4py)V/(1+|€])?
1 and the incoherent limit 62/(1+|E|)2 For the
figcd(7:0)== > aign(€)aigm(€)cog(4m=+2) o] Lorentzian modelfasE(y bo) ={ €+ e[ 1+ cos(4po)f5 1( )
2 njm=o0 +1cos(4po) s )+ Fho(7) 1}/(1+|e])2. This has the same
X[ (y)+ 15 9] incoherent limit as for the rotationally invariant tunneling
2[n=ml,n+m+1l YT 24 me 1) [n-m/t V)1 models, but the coherent limit also contains a
(58  ¢p-independent part that vanishes in the incoherent limit. We
note that the “fully” anomalous-wave OP hasfaso(y bo)

The ordinaryd,z_ 2-wave ngod(% b0) | foa( ¥, d0o)|. In occos(4q§0) with a coefficient, f4(y)/2 or [foz(y)
the four rotationally invariant models, fy4(7y, ®o) +f40(y)]/2 for the Lorentzian model, that vanishes in the
—cos(?qso)fz(y)lz and in the Lorentzian model,4(y, ¢o) incoherent I|m|tJC aso(7: #o) vanishes atpo= /8, but not
—cos(2¢0)[f20(y)+fO 1(7/)]/2 Hence, we conclude that for at 77/4, as shown in Fig. 6.
all five tunneling models,]C od(7: o) | cOS(2hp)|, even for Next, we consider thé=e,c swave cases. For the four
the Lorentzian model, which is somewhat surprising, as it igotationally invariant models, these functions are identical. In
not rotationally invariant. We note that these calculationsFig. 3, we show the very weak dependence df,.(,0) for
were only performed just beloW,, and one might therefore €=0,1 for all five tunneling models. In Fig. 4, we plot
imagine that a more complicategl, dependence would oc- fieo(y,¢o) for the four rotationally invariant models. We
cur at lowerT. As shown in the following, however, such omitted the Lorentzian model for clarity of presentation. In
corrections are weak, and do not change the result of ththe coherent limit fore=0, f;50(, Po) =[|Sin(2¢po)|+ (/2
theorem thatl; 4(y,m/4)=0 for all T<T,. In addition, in  —2|¢o|)cos(2pe) )/ in the domain|po|<7/2. fiso(=, o)
the incoherent limit,f,4(0,00) =0, with the exponential has maxima of 1/2 apo=nw/2 and minima of 1# at ¢,
model giving the slowest approach to 0. In contrast, the=(2n+ 1)w/4 for integem. In the incoherent limity— O for
ordinarys-wave J2 oy, )| fos(7,0)| =1 for all five all five tunneling modelsf;s(0,¢o) —[2E(K)/m]? where
tunneling models is completely independentgfand of the k= (e?+ 1)~ Y2 and E(k) is a complete eIIiptic integral. In
details of fY(y, by, by )V y. addition, regardless of and of the form off (v, b — ¢y1),

At ¢o=0, the ordinaryd,>_,2-wave functionsf,q(y,0) the mean value (4:/)[0’4d¢0 isc(7, o) =[2E(K)/]?, pre-
for all five tunneling models are plotted versus It Fig. 3. cisely the incoherent limit. This reduces to £2# and 1 in
The rotationally invariant Lorentzian model gives rise to athe e—0 ande—c limits, respectively.
foa(,0) that changes sign with decreasipgas evidenced In addition, thes-wave functiond s (,0) fori=c,e also
by comparing Eqs(B7) and (B11) and by examining the decrease from (1/2€%)/(1+ €%) at y—o with decreasing
figure. This is not too surprising, because in the approach te, but not nearly as dramatically, approachir2f (k)/7]?
the incoherent limit, the tunneling process can occur betweeas y— 0, nearly independent of the details of the tunneling
different lobes of thedxz_ 2-wave OP, which can give a model. For smalle, however,f,..(v,0) decreases dramati-
negative contribution tdc |de( v,0). Whether an overall posi- cally, almost as much ak,4(7y,0), as the cos(d,) part of
tive or negative sign wins thus depends on the precise details,s.(y, ¢o) gets washed out by the rapidly decreasiny)
of the falloff of fI(dy— py:) With ¢ — by . Almost all  coefficient. In the isotropics-wave limit e—c, fig.(y,0)
models, including the four other models we have explicitly =1 fori=c,e,a is completely independent of for all mod-
studied, give rise to a positive overall value, but the rotationels. The functions ,4(y,0) andf;s.(y,0) for e=0 and 1 are
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compared in Fig. 3, where they are plotted as functions of It is a curious feature of the Lorentzian model that the

1/y for clarity. Clearly, fore=1, f,;.(,0) is nearly indepen- coherent limits obtained for thetwave and extendeshwave

dent of y, which also imp”esjg,ise('y’ ¢o) is nearly indepen- models are not precisely the same as those obtained by let-

dent of ¢, for e=1. ting _fJ(qﬁk_, ¢Kr)o<5(¢k— (.ﬁkr). This detail is not present in
For the de j-wave OP's, J2..(y.d0)/J2, the tight-binding Lorentzian model, E(B7). In that case, the

- : Lorentzian model is an effective smearing of the two-
=f; , at T.. Agan, fy(y,=w/2— ) ) . . .
szdEEy 20; The ancid; dep?endenciéds (cJ?‘,thEW ( zog dimensionals function, 52 (k—k'), which provides two re-
idel Y, P0J- Y 0 del 7> Po lations between the four momentum variables. For circular
are shown in Figs. 3, 5, and 6. For the anomalous; ; . . !
d.2_.2-wave case with the four rotationally invariant tunnel- | c/m-surface-restricted pairings, there are only two vari-
Ux2-y2 ol p C(2et1 %f ables ¢, and ¢,,, which again must satisfy two relations
ing MOGE's, ade( 7, 00) =[(26+1)7F2(¥)€0S(2b)  precent in the Lorentzian model, especially in the coherent

2 .
+1e()cos(6po)[8(1+[e)].  For  the  Lorentzian jimit Hence, this overrestriction leads to a spurious slight
model,  fage( v, bo) =[(A+C)cos(Zh)+(B+C)cos(6))  excess in the coherent critical current.

[8(1+1€|)2]: vt/here A:(2€+1)2[f5,o(7)L+f5,1(7)L], B For all y values and for any type of time-reversal-
=Alfgov) TTod7)], and C=2(e+1)[f; () +T4(¥)].  invariant tunneling, an ordinargz2_,2-wave OP propor-
Hence, for all five modelsfaq(y, o) clearly vanishes at tional to cos(2h,) satisfies)? . 4(#o)|cos(Zpy)|, which van-
¢o= /4 for all €,y values. In the coherent limit for all four jgpes atp,=45°, as shown in Fig. 6. Othat,2_2-wave
rotat|onaI2Iy invariant tunneling modzels, this approachesforms, while containing contributions ta? . of the form
[(2€+1)"cos(2po) +cos(bho) J[8(L+|e)]. For the Lorentz- o4 (4n+2)g.], closely approximate the simple form
ian model, the coefficients are slightly different, as found|cos(2¢o)| and always vanish a,=45°. On the other hand

from Eq. (819) in Appendjx B. Asy—0, faqe(0.4o) 0. Je.ise( v, ¢o) for a generak-wave superconductor is very un-
The exponential model gives the slowest approach to Zer‘?i'kely to vanish at¢o=/4, and in the incoherent limit,

for both the cos(2,) and cos(@,) terms, of all five models. fio(y, d’O)_>aizso(E)1 a constant. This constant is nonvanish-

For thei=c,e d,2_,2-wave OP models as—0 for all .
four rotationally invariant tunneling models in the coherent'fgA except  for the fully anpmalous (JJPAaSO(¢k)
o 5l =AoCos(4p), but in that particular casel; ,«(7v,®o)
limit,  fego(o°, ¢o) :.[E|5|n(4¢’o)|+(7T_4|¢o|)003(4¢0)]/(477) «|cos(4pg)|, and in the incoherent limitf,,(0,40) =0, just
and fcqo(>2, o) =[|sin(4eo)| + (m—4|dol)cos(4pg) V(8). Al-  as all of thef,y.(0,0) =0. BUL, f .y, bo) vanishes atpy
equivalent, asfeu(,0)=3, but feg(,0)=35, as seen in  swave OP which averages to 0 over the Fermi surface can
Fig. 5. This difference ap, =0 arises from the anisotropy of pe distinguished from a genemjs_,>-wave OP in the
the #iso( i) relative to that of ¢,q(dk) present in the c-axis twist experiment.

Uiao(). In Fig. 6, we show thep, dependence of the ro-
tationally invariant coherent limit;4o(2°, ¢¢), along with the
|cos(2p)| behavior obtained for thel,._,.-wave OP. We
also show the results for the coherent limit in the Lorentzian We calculated)y (o, $o) in the standard BCS model of
model, which are indicated by the open diamonds. We notsuperconductivity, assuming a phenomenological pairing in-
that for thed,2_,2-wave OP, the Lorentzian tunneling results teraction which gives an OP of one of the forms, E@-—

for 33 oq(¢0)/ 37 04(0) are indistinguishable from those of (15), for each of the five tunneling models presented in Egs.
the rotationally invariant models. This is somewhat remark{34)—(39). For simplicity, we limit our presentation to the
able, as the magnitudes & ,4(0) are not identical. For the CaseT—T,, since results for the Monthoux-Pines-like pair-
compressed- and extendd@z,yz—wave OP’s, however, the INg models with the Gaussian tunneln_wg modelTat 0.5T
identical ¢, dependence of? . obtained with the Lorent- and 0.9c were shown elsewheé.in Figs. 7-13, we pre-
zian model is somewhat different from that obtained fromSeénted our results for the ordinary-, extended-, compressed-,
the rotationally invariant tunneling models. As~0, both of ~ and anomalous- andd,z_y2-wave OP’s withe=0. Results

the fi4.(0,0)—0. Again, the exponential model has the for intermediate values of, such ase=1, are intermediate

B. Tight-binding Fermi-surface models

slowest decay to zero. Regardlesseof, fiq.(y, m/4)=0 between the=0 ande— e« cases presented, and are omitted
. y € il . . .
In the coherent limit, except for the Lorentzian model, for brevity of presJentanon. .
fase(2,0)— (€24 1/2)/(1+|€])? and fori=c,e, fis.(=,0) We calculatedl; i, (o, ¢o) from Eq. (1), where just be-

—[(1/2+ €2)/(1+ €?)] for arbitrarye. These results interpo- low T, we setF,(k)=A(k,T)/[w?+ (k)] and F! (k")

late smoothly and monotonically between 1/2 and leas =fF (k') inside the argument of the absolute value sign. In
—0 and ase—x, respectively. For other values g, and  each figure, the curves representing the results for the Gauss-
¥, we resort to numerical evaluations. For the Lorentzianan, exponential, rotationally invariant Lorentzian, stretched
model in the coherent limit, the coefficierit#lm(y—mo) are  Lorentzian, and Lorentzian models are tagged with solid
given in Appendix B. Numerically, we findf.g(,0) circles, open circles, open triangles, inverted solid triangles,
—0.530, f.s(*,0)—0.465, but atpy= /4, f.q(e,7/4) and open diamonds, respectively. In addition, results for the
=feg(,m/4)=0.3175. For thed,2_,2-wave functions, o? values 0.0005, 0.005, 0.05, and 0.20 are shown with
fedo(,0)—0.406, f.40(2,0)—0.121, but they both satisfy solid, dotted, dashed, and dot-dashed curves, respectively,
figo(e°,m/4)=0, as required by the theorem. except that for the anomalous OP’s, the solid curves repre-
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J%,od((fa‘bo)/ Jg,od(G,O)

25 30 35 40 45

do(deg)

FIG. 7. Plots ofJ2(¢0)/J2(0) just belowT, for twist junctions

thick curves correspond to the cohereat € 0) limit and the func-
tion |cos(24y)|, as indicated. Results for the Gaussisaolid circles,

exponential(open circley rotationally invariant Lorentzialiopen
triangles, stretched Lorentzian(solid inverted triangles and

Lorentzian(open diamondstunneling models are shown.

compressed-d

———0.0005
......... 0.005 H
---0.05
-——0.20

08 F

0.6 -

0.4

J%,Cd(o,(PO)/J%,Cd(G,O)

02

0 5 10 15 20 25 30 35 40 45

do(deg

FIG. 8. Plots 0fJ)(0)/J2(0) just belowT, for twist junctions

dy2_y2-wave OP,Aq(T)tcao(K), Eq. (14), with e=0. The curve

types and symbols are the same as in Fig. 7.

J2 ad(0.90)/J¢ ad(c.0)
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anomalous-d

10

20 25
do(deg)

30 35 40 45

FIG. 9. Plots 0fJ)(0)/J2(0) just belowT, for twist junctions
with the Fermi surface shown in Fig. 1, and an ordinary-with the Fermi surface shown in Fig. 1 and an anomalous-
dyz_y2-wave OPA(T) #,4(k), EQ.(12). The dimensionless param- d,2_y2-wave OPA(T) #,4(K), EQ.(15). The curve types and sym-
eter a2 values 0.0005, 0.005, 0.05, and 0.20 are indicated by thdols are the same as in Fig. 7, except that curvesrfor0.20 are
thin solid, dotted, dashed, and dot-dashed curves, respectively. Th@t shown.

sento?=0.0015. We also present the results for the coherent
limit ¢?=0 as the thick solid curves labeled 0. For the
dy2_y2-wave OP's, the functioficos(2p)| is shown in Figs.
7-9 as a thick solid curve for comparison. For the extended-

0.9

0.3

0.2

———0.0005
......... 0.005
---0.05
-——-0.2

ordinary-s

5 10 15

20 25 30 35 40 45

do(deg)

FIG. 10. Plots ofJ)( #0)/J2(0) just belowT, for twist junctions
with the Fermi surface shown in Fig. 1 and an ordinssyave OP,
Ao(T) po(K), a constant. The thick curves correspond to the coher-
with the Fermi surface shown in Fig. 1 and a compressedent (¢>=0) and incoherentd?=o, unity) limits. The thin-curve
types and symbols are the same as in Fig. 7. For clarity, the vertical
axis begins at 0.2.
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o2+ ——0.0005
......... 0.005
-——02 exiendaed-s -—--0.05 anomalous-s
% 5 10 15 20 25 30 35 40 45 04 T e e o s
do(deg) do(deg)
FIG. 11. Plots ofJ)(¢0)/J2(0) just belowT, for twist junctions FIG. 13. Plots 002(cg)/J%(0) just belowT, for twist junctions

with the Fermi surface shown in Fig. 1 and an extensiedave OP,  \ith the Fermi surface shown in Fig. 1 and an anoma®usve

Ao(T) Pexn(K), EQ-(9) with €=0. The curve types and symbols are op, A(T) (k) Eq. (11). The curve types and symbols are the
the same as in Fig. 10. same as in Fig. 10, except that curves 6= 0.20 are not shown.

d-wave OP, the peak for coherent tunnelingdat~20° is  pictured in Figs. 10-13. In these figures, we label the inco-
somewhat stronger than that pictured in Fig. 7. Otherwiseherent limitJﬂ,iSE(OC,d)O)/chise(oc,O):l at the figure bound-
curves for the extended-wave OP are nearly indistinguish- ary by the symbote.

able from those or the ordinagrvave OP, Fig. 7, and are For each OP, coherent tunneling caud¥sr, ¢,)/J2(,0)
omitted for brevity. Results for the genemlwave OP’s are to decrease sharply af, increases from 0! This occurs
because the overlap of the tight-binding Fermi surfaces
changes dramatically from a continuous curvedgr=0 to a

set of four points forgy>0°.

In comparing Figs. 7-9 for OP’s with geneidiwave
symmetry, we first see that they all obey the theorem requir-
ing Jg'idf(a, 7/4)=0. This is contrasted sharply with the be-
havior of the generas-wave OP’s, shown in Figs. 10—13. In
those figures, Jg,s((r,w/4), while often smaller than
Jg‘S(U,O), is always finite. In addition, we see that for Figs.
7, 8, 10, and 11, and also for the unpictured results for the
extendedd-wave OP, the precise details of the Fermi surface
give rise to a prominent peak iﬁﬂ,ige(a,qso) at ¢o= g
~20° in the coherent limit. In these figures, this peak arises
when the rotated Fermi surfaces intersect at eight points,
instead of just four forgo<¢g . However, in Figs. 9, 12,
and 13, the anomalowse 2-wave and compressed- and

——0.0005 anomalouss-wave OP'’s yield somewhat different results. In

D 0.005 : these cases, the parts of the Fermi surface that play the domi-
---0.05 compressed-s nant role in this peak effect are those nearest to the edge of

0.2 L L L L L L L L the Brillouin zone, where these OP’s vanish. Thus, we obtain

°o 5 1o 18 2o(dezs) 80 3% 4 4 instead a smooth curve, which flattens for large twist angles.

%o This arises from a complicated mix of the Fermi surface and

FIG. 12. Plots 0%()/J2(0) just belowT, for twist junctions ~ OP anisotropy. _
with the Fermi surface shown in Fig. 1 and a compressedve For tunneling that is nearly coherent?<0.005, we see

OP, Ao(T) #hen(K), Eq. (10), with e=0. The curve types and sym- N each of these seven figures that the coherent limit results

bols are the same as in Fig. 10, except that curvesfer0.20 are  for Ji,igf(o,qﬁo)/Ji,igE(a,O) are most closely approximated
not shown. by the Gaussian tunneling model, followed by the rotation-
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ally invariant Lorentzian, the exponential, the Lorentzian, 1 .

and the stretched Lorentzian models. This order is nearly

maintained forr?=0.005, although in Fig. 7, there is a slight 0.8/ d-wave

change in the order of the results from the Lorentzian and

exponential tunneling models faf,< ¢§ . For 2=0.0005,

the peak img'ige(%) at ¢y is still evident in Figs. 7, 8, 10,

and 11, although in the stretched Lorentzian model, it has

been smeared out the most, having been reduced to a shoul-

der in some of the figures. For’=0.005, the peak apj has (]

been reduced to a shoulder at best in Figs. 7, 8, 10, and 11. 021 ]
As for Fig. 6, we see that in Figs. 7-9 for the various

generald,2_,>-wave models, theo?=0.05 curves differ 0 ‘ ‘ ‘

from |cos(2hy)| by less than 10%, and the®*=0.2 results 0 10 20 30 40

are almost indistinguishable from it. In Fig. 7, the differences 9, (deg)

are barely perceptible. But, in Fig. 8, the compressed-

dy2_2-wave OP results forr?=0.2 fall within the width of

0.05

|cos(20,)|
0.005 0.25

0.4 0.50

J (0,19 %(0)

FIG. 14. Plots ofJ)(¢0)/J2(0) atT/T.=0.5 for Gaussian twist

. . . . junctions with the Fermi surface shown in Fig. 1, and a
the thick solid line representirigos(2p)|. Although not pic- d,2_2-wave OP obtained from the Monthoux-Pines pairing model.

tured, this is also true for the anomalo:m)&-,yz-wave oP The Gaussian dimensionless parametetsvalues are indicated.

results. The approach to the incoherent limit for thecyryes fors2=0.25 and 0.50 are nearly indistinguishable from the
dy2_y2-wave OP’s depends somewhat upon the particulafcoherent limit functiorcos(2hy)|.

tunneling model. For?=0.05 and 0.2, the order of the re-

sults obtained with the various tunneling models has been N . . .
altered from that near the coherent limit, but differently in VECLOr Of the quasiparticles involved in the tunneling must

each figure. Most prominent is the curve fof=0.2 ob-  COVer a substantial fractiofv %) of thefirst BZ. _
tained with the rotationally invariant Lorentzian model and For '_[he Monthoux-Pines-like pairing mod_els leading to
the compresseds2_,2-wave OP, which actually lies above the ordinarye-wave, extended-wave and ordinarg-wave

the |cos(2p)| curve. Likewise, for the generabwave mod- OP’s, we previously performed explicit calculations of
els, Figs. 10 — 13 show that fer?=0.05 and 0.2, the order Ji(¢o) atT/T,=0.5,0.9, with the Gaussian tunneling model,
of the results obtained with the different models has beerq. (34).%" In Fig. 14, we normalized those results for the
altered somewhat from that near the coherent limit. Althoughd,._,2>-wave OP aff =0.5T, relative to its value ath,=0,

the Gaussian results still lie below the others, the order ofor comparison with the results shown in Figs. 7-13. It is
increasing\]g'ise(o,qso)/Ji,ise(a,O) is now Gaussian, expo- easily seen that the curves in Fig. 14 are nearly indistinguish-
nential, Lorentzian, stretched Lorentzian, and finally rota-able from the respective Gaussian tunneling curves for the
tionally invariant Lorentzian. ordinaryd-wave OP just below ., pictured in Fig. 7. Simi-

We remark that for the ordinargswave OP, Fig. 10 larly, the analogous curves for the Monthoux-Pines-like
shows that all of ther?=0.2 curves are consistent with the extendeds OP at 0.9 are nearly indistinguishable from the
data of Liet al, and the curves for?=0.05 are generally respective Gaussian curves just beldw T., pictured in
inconsistent with the data, although the exponential, LorentFig. 11. Results for the ordinarsrwave OP are slightly dif-
zian, and stretched Lorentzian models give results that diffeferent from the Gaussian curves pictured in Fig. 10, with the
from the data by only one standard deviatfoifor the largest difference being in the coherent limit &= 45°,
extendeds-wave OP, however, Fig. 11 shows that all of the where the unpictured result has the value 0.35. The general
0?=0.05 curves are inconsistent with the data, but dfe shapes of the curves are otherwise nearly indistinguishable
=0.2 curves for the rotationally invariant Lorentzian andfrom those pictured in Fig. 10, and hence for brevity these
stretched Lorentzian models are consistent with the data axtended- and ordinarg~wave results are not pictured. We
Li et al, with the other tunneling models giving results that remark that going to loweT- values does not change any-
are only marginally consistent with the data fof=0.2.  thing qualitatively. The criteria for the twist theorem to hold
However, Figs. 12 and 13 show that the compressed- ando not involve the temperature, as long as it is belqw so
anomalouss-wave OP’s are less sensitive to the amount ofthat the critical current for a superconductor with general-
tunneling incoherence than are the other genemsve  d-wave symmetry must vanish @, =0. The only changes
OP’s. In this case, all of the curves for’=0.2 are rather that we expect are thus small ones for the genesahve OP
indistinguishable from unity, and thus cannot be excludedforms.

Furthermore, the curves fer?=0.05 are at least marginally The fact that our results for OP forms with somewhat
consistent with the data, and for the stretched and rotatiordifferent wave-vector dependencies are so similar is impor-
ally invariant Lorentzian tunneling models are within onetant. This demonstrates that the dominant contributions to the
standard deviation of the data. In any event, one must have@axis tunneling arise from pairing in the regions in the first
generals-wave OP symmetry to fit the data, and the tunnel-BZ nearest to the Fermi surface. Thus, we expect that any
ing must be very nearly incoherent, wittf=0.05. As seen models which also involve pairing away from the Fermi sur-
from Fig. 1, this implies that the change in parallel waveface should not differ substantially from those presented
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here, as long as their projections onto the Fermi surface arg', Sincek?+k’2=k2+k’? is invariant under such rotations,
similar to those of the OP forms studied here. the only quantity in Eq(60) which is altered by the rotation
is k-k’, which becomes
IV. THE INCOHERENT LIMIT

r_ !

We now discuss in detail the approach to the incoherent k-k'=kk'cos = i = do), 62
limit for c-axis twist junctions involving al,2_2-wave su-  where we used polar coordinatdss k(cosey,Sindgy), etc.
perconductor. For each of the five models we have considk is then straightforward to show that the genesaland
ered, we have characterized the crossover from the coheredf._,.-wave critical current densities, for arbitrafly<T,,
to the incoherent limits with a single parameier As ¢  and an arbitrary tetragonal Fermi surface, near the incoherent
—o, f)(k—k')—1/7, , a constant. Thus, for there to be any limit of an arbitrary tunneling matrix element squared, re-
coupling between twad,2_,2-wave superconductors,’(k duce to
—k') must depend upok—k’. In the circular Fermi-surface

model, this can be incorporated by lettinfg(d— dy:) J _, |4eT 00 Ch <
=1/7, o+ 17, 4c032(d— i) 1.2>%°7¢ However, it is el- Jes(0:60.T) 551 T% {Hso(w)_ = |:20 Al
ementary to show that this model Ieads.]ﬂqsé(%)ocllqs
anng,idE(qSo)oc|cos(2¢o)|/71d, even for the most general- E(1/2)
and d,2_,2-wave OP forms given by Eq€30) and (31), X 2 CS,mH'STL(w)cos(4m¢O)H
respectively. For more general forms 6t(¢— ¢y:), the m=0
critical current just belowl ., is given by Eqs(54)—(58) for (63
arbitrary y, including the incoherent limity— 0 and
A similar statement can be made for the tight-binding
band, as well. We assume thiZ{k—k’) is rotationally in- 4eT (—c,) <
variant. As the incoherent limit is approached, we then asdio(0,¢0,T) yo1| — 2 —=—— 2, A,
T o ot 1=1

sume

5 ) N E[(1-1)/2]

Pk =felk-k)iof Y, (69 xS Canllfiw)cod(4m 2],
wherec,, is a dimensionless constant of order unity. In the " (64)
models discussed herg=1,2,4, but we can generally allow
wu to be any positive real number. We then writef’(k ~ Where
—k’)—1 in terms of a Taylor series ik-k’, which does not Im dm T N
terminate unlesg is an even integer, g (@) =(F,(K)F (k") ST (k) S™(k") (k*+k")* (>6’5)

| / (k2+ k/Z) ul2 2k -k’ 2l . ’ " " ,
m k=) 1o oy = ZO 0z A () =(F ,(K)F,(k)D}3_ 2(K)DZ (k')
(60) X (K24 k' 2)mf2=21y, (66)
where E(x) is the integer function, and the constagtg,, andCy,
and the “tunnel functions’S™(k) andD'? (k) of s- and
I'(ul2+1) y

= - (62) dy2_y2-wave symmetry, respectivgly, are given ir_1 Appendix
[(ul2=21+1)(21)! C. There we list the tunnel functions for all,n) in polar
coordinates and fdr<4 in rectangular coordinates, and also
resent some details of the calculation. Equati6® and
66) are evaluated in rectangular coordinates over the first

andI'(x) is the gamma function. Some features of e
are discussed in Appendix C. We have kept only terms wit

even powers ok-k’, as the terms with odd powers are only Z, using the tight-binding quasiparticle dispersion, E),

appropriate for triplet superconductors. Since our numeric nd the appropriate particular choice of the OP's in Egs.
calculations have shown that it makes essentially no differ-(g)_(15) under study.

ence if one includes umklapp processes or not, we are free 10" \ya rewrite Eqs(63) and (64) as
include the wave vectors that appear in only one of the first

BZ's on an equal basis with those that appear in both first

BZ's. Now, it is simplest to do the integral in E¢L) in the J‘C]’i56(o"¢0’T) o1
following way. We let the integration variables keandk’.

Then, we rotate the variablds andk’ in f’(k—k’) by and

— ¢, about thec axis, relative to thé’. Now, the integration .
variables are jusk andk’ instead of rotated ones. We then J .
redefinek andk’ to be the wave vectors in tiefunctions in Jeiael 0,60 Tzt ngo bian(€, 0, T)cog (4n+2) ¢o]|,

Eq. (1), and letk=k andk’ be these rotated wave vectors in (68)

0

2, bisa(€,7,T)cog4ngo) | (67)
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which defines the coefficientss, andb;y,. Then=0 term Thus, the extreme incoherent limit gives the most pro-
biso(€,0,T) is the only nonvanishing coefficient in the inco- found difference between a genesawave superconductor
herent limit. Although all of thebiy,(€,0,T) vanish asc  and a generaty2_2-wave superconductor. Independent of
—o, the dominant one foro>1 is the n=0 term, the details of the tunneling, the shape of the Fermi surface,
bigo(€,0,T). For most tunneling modeldy;s,(€,0,T) and  and the precise form of the OP’s,
bian(€,0,T) can be shown to be of increasing orderoin?
asn increases.

For the Gaussian and the stretched Lorentzian tunneling
models, the leading correction to a constéhhasu=2 in
Eq. (59) near the incoherent limit. For @2_2-wave super- and
conductor, the u=2 term leads to a vanishing J
JLigel 0., T) for all ¢o, SO one needs to go to the next |; [Jc,iSE(U:%aT)
order, u=4. The resulting leading term is proportional t0  ,_. | Jtise(0.0.T)
|cos(2py)|. In these cases,<0, as in ad,2_2-wave scat- (72)
tering modeP* For the rotationally invariant Lorentzian tun-

lim [Ji,i55<o,¢o,T>]=4Ti:2 (F,(k)2>0 (70

o—

} =1 for generals-wave OP’s,

neling model, the leading correction has=4. For a whereas

dJXz_yz_-wavg supercqnductor, the leading contribution to lim [Jg,ide(tf’(ﬁo,T)]:Oa (72)

J: id is again proportional tgcos(2p)|. However,c,>0, so oo

that the model simulates & junction betweerd,2 2-wave

s_uperconductors fap,=0, as one approaches the incoherent Jg’ide(a, l4,T) B

limit. 3 a7 -0 (V o), (73
JC,idE(U’O’T)

The more complicated cases are the models in which Eq.
(60) applies with 6< u<2, such agw=1 for the exponential and
model. In such cases, all terms in the expansion contribute to
the leading correction t6’. For 0<u <2, c,>0, andAy,
=1, but the remaining\ ,<0, leading to results consistent
with the s- andd,2_2-wave scattering modéf.In the expo-
nential model, the leading contributions to thg,(e,0,T) forgenerald,z.,—wave OP’s. (79

for n=1 (subsequent to the constant 0 term) and to all of . . .
the byg,(e,o,T) for n=0 are all of the same order 2. Equation (70) is the Ambegaokar-Baratoff resdft,which

Numerically, the exponential model doesn’t appear to bJ]oIds for all genera}i;—wave OP's with a nonvamshmg aver-
much different than the other models for the rather larde age over the Fermi surface. In Hg4), the relation is exact

| £0.05. The diff b T bet th in all of the models we investigated, except for the exponen-
;/a ueq{ t" '“ ed gretni:es Iaidf(o"d’é)’l )f € )[/;/]een € ial model, for which it is still a good approximation. Hence,
dour rota |onaO>|; mvadrlelm unne 'n.g mc:j els orl € ]\c/anousthe more incoherent the tunneling, the easier it is for the
céznicy;(_)\/rv?rgio c ";Cr’]de ejlv;\:reecsgrs;/ slfseat;o(;??éﬁ eAvlv PEIe-axis twist experiment to distinguish the OP’s.
though this is not obvious for the exponential model, at least
in the circular Fermi-surface model, the contributions of or-
der co$(4n+2)¢,] fall off rapidly with increasingn, as seen
from Eq.(56) and Eq.(B10) of Appendix B. Next, we studied the reductions in the produg,, of the

We now consider the Lorentzian model, which is not ro-critical current times the resistance across a junction from the
tationally invariant. Expandingﬂ(k—k’) near the incoher- AB limit, 1.R,(T)|ag, for the case of a fully extended-
ent limit, we have s-wave OP, defined in Eq23) with e=0, aso—».2* We

first define

Jg,ide(o-! ¢0 vT)

JJ'd (O'OT) %|C0i2¢0)|'

V. OTHER FEATURES OF INCOHERENT c-AXIS
TUNNELING

JT_Try— ¢J T_Tr\2/.2 T_Tr\4
ftk=kD=fo {1~ (k=k")T o+ [(k=k") |RA(T) = C(T/TO) Ro(T) e (75

— (ke k) ?(ky—k))?1/a*+---}. (69  where the AB limit curve corresponds to the ordinaryave

case withc—o for any Fermi surface. A few limits can be

Clearly, the leading terms for@_2-wave superconductor investigated analytically. For a circular Fermi-surface cross
are proportional to 4(-k’)2—(kx—k)’()2(ky—k§)2. The section, we can analytically evaludtdr,, for all five models
-K")2 term is given in Appendix C. The remaining part di- both atT. and asT—0. We findC(1)= (2/7)?~0.405, as in
agonal in the d. ,-wave tunnel functions is Sec.lll A, andC(0)=(2/m)?In4~0.562.

L1cos(2p)Ds A(K)DS o(k’). Taken together, the domi-  FO the Fermi surface shown in Fig. 1, we find numeri-
v Y cally in the incoherent limit for all five tunneling models that

nant part offy (k—k') which contributes tZ4.(7,60.T)  ¢(0.9)=0.416, C(0.5)=0.465, andC(0)=0.572. For the
is 3, 3c0s(20)D;z o(K)Dj2_o(k')/ o, implying ¢,<0.  slightly different Fermi surface studied elsewh&&° with
Hence,Jg,idE(o,¢0,T)oc|cos(2¢o)| as the incoherent limit is t’'/t=1.3 andu/t=—0.6, we foundC(0.9)=0.400,C(0.5)
approached. =0.450, andC(0)=0.578. Thus, the result of Yurgers al.
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thatl ,R,(T=0)~10 mV for the HgBs-intercalated Bi2212 coherent tunneling with a rotationally-invariant~,

is in rather good agreement with that expected for amdN(T/T;)=1 for any OP, for all T/T,<1, and that

extendeds OP?! ONo(T/T)=1, regardless of the form dP( ¢y ,dy:). For
Although there have not yet been many infrared reflecine€ dy2-y2-wave case, KC showed that incoherent tunneling

tance measurements on Bi2212, the available experiment#Ves a con(_:luc‘t‘néét%/esum-rule violation that is strong and of

strongly suggest that theaxis tunneling is not metalli¢d In ~ the wrong sigrt. They gave a lower limit on the viola-

Ref. 58, not only was no Drude edge above 30~¢rseen in tion, based upon restrictions of the parametégsand V.

the c-axis conduction in the normal state. none was seen ihiowever, KC did not calculate the sum-rule violation result-

the superconducting state as well. In addition, there is noWY from other OP forms.

strong evidence that all underdoped HTSC have incoherent We.stud|ed this effect in our five circular Ferml—surface_
tunneling models. In most of these models, we can analyti-

c-axis normal-state tunneling, with the sole exception of . .

: 2 . cally perform the calculations &k, for thei=o0,e,c,a,
YBCO with §<0.15>°"%*This is also the case in the recent =s):j Eases corresponding to the notation in EQQ)—(ZQ)QV
measurements on the electron—.doped matgnal NECR: We shall first present the exact formulas for gensradnd
though abover ., the nonmetallic behavior is clearly seen, d,2_,e-wave OP forms, both for the rotationally invariant

belowT, metalliclike behavior reminiscent of a Drude edge ynneling models, and for the Lorentzian model, evaluated at
for wave vectors in the range 10-200 Chnhas been T . The general formulas for théN; (1) for the rotation-

observed although none has yet been seen in Bi2212. |y invariant and the Lorentzian tunneling models are given
This metalliclike behavior is most likely associated with thein Appendix D.

c-axis supercurretft’ Thus, if Bi2212 were to behave the  \we first consider the coherent limit. In this limit, each of
same as the other materials with an incohecegitis normal-  the f, () and f4,,.(y) approach unity. Thus, from Egs.

state conduction, one would expect it to show this same ME&D1) and(D2) in Appendix D, all of the rotationally invariant
talliclike behavior belowT . tunneling models show no sum-rule violation for any of the
There have been two other schools of thought on thisop models in the coherent limit. For the Lorentzian tunnel-
issue. One is that the interlayer tunneling processes changeg model, our results are given in Eq®3) and (D4) in
dramatically from incoherent to coherent beldy.%* Our Appendix D. We note from Eq(B19) that f- (y—) is
analysis of thec-axis twist experiments of Let al. strongly oy a function ofm. Thus, it is also easy to see that both the
contradicts this idea, since the quasiparticle tunneling beloWeperals- and de_,2-wave OP forms satisfy the sum rule
T must be strongly incoherent. The second school holds thayen for the nonrotationally invariant Lorentzian tunneling
there is no quasiparticle tunneling beldw due to an “or-  model. This is interesting because the Lorentzian model
thogonality catastrophe,” but that the only tunneling procesgjives rise to slightly larger critical current values for each of
occurs by the simultaneous tunneling of p&fsdowever, the anisotropic OP’s than do the other models.
the fact that HgBy-intercalated Bi2212 has nearly the same  \\e now discuss the particular OP and tunneling models
Tc as does unintercalated Bi2212 argues strongly that thigway from the coherent limit. In the incoherent limit for a

interlayer pair tunneling gnodel as a mechanism for superyenerals-wave OP, all five of the tunneling models reduce to
conductivity is not correct Thus, we consider it much more he sum-rule violation amount

likely that the superconductivity arises from intralayer pair-
ing. Then the individual particles do the actual tunneling. $*_ a2 (e)

Another experimental observation relevant to the question SN (1) -1 —n=2iem 77
of the c-axis tunneling coherence is the apparent violation of ‘ 4ajgo(€)
the conventional sum rule, as observed by Basioal & This
was investigated theoretically by Kim and CarbdeC).>*  Clearly, the ordinans-wave OP givesdNyg(1)—1=0.
Those workers assumeddgz_2-wave OP, and an incoher- From Eqgs.(A3), (A4), and(33), we find asy—0,
ent interlayer tunneling matrix element squared of the form
(i, bi) =Vl +|V1|*cos(2h)cos(2h). By equating ” 1
1/)\5 derived from the conductivity and the superfluid density Ngg(1) —1=0N (1) —1— 2 ———3~0.117,

. ! =1 [(2n)2—1]

ps, each evaluated to lowest orderfih) they wrote(without
theie supscripty* (78)

5Na55(1)_1_’ (79)

BNigu(T/To)= E+ 2w<fJ(77J¢k k) 1= wigek@igekr]) , 4€°+cy(€,y)’
2 22w<f (’yv¢k!¢k’)5i§e,k6i§e,k’> . .
(76)  wherec,(€,0) vanishes ag—0 if €#0. Thus, the extended-
and compresseshwave OP’s only violate the sum rule by a
small amount, albeit of the wrong sign. The anomalous-
where  ONj;.=(NN—Nsicd)/psice:  ®igex=0/Qigex,  s-wave OP, on the other hand, violates the sum rule by a
Oigex =0 Qigeery  Oizex=Aige( D, T)Qigek,  Sigexr  large amount, especially ié<1. In this case, we expand
=D b DI Qizerr s Qiger=[0?+A% (., T)IY2 and  c,(e,y) for both e<1 andy<1. We findc,(e,y)— (/2)*
Qige,k':[w2+ Aﬁge(qsk, ,T)]*2. It is easy to show that for in the rotationally invariant and stretched Lorentzian models,
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(y/2)*(4!) in the Gaussian model, 4(@%(63m) in the  find Neg(0)=ON.g(0)—1.087. All of the dy2_,2-wave
exponential model, andy?+383y*/128 in the Lorentzian OP’s have divergendN;q.(0) values.
model. Thus, fore=0, these functions all diverge gs—0, We thus conclude that none of the eight OP’s gives a
with the exponential model giving the slowest divergence. SN<1 in most tunneling models. However, near the inco-
For the generath. \2-wave models in the incoherent herent limit, the fourd,. ,>-wave cases and the fully
limit, the Gaussian, Lorentzian, rotationally invariant Lorent-anomalouss-wave case are by far the worst, except for the
zian, and stretched Lorentzian tunneling models all behaveotationally invariant Lorentzian model. In that case, each of
similarly, yielding thed,2_,2-wave OP’s gave rise to a sum-rule violation that
was both large and of the same sign as observed in
experimenf? Except for this particular case, it is likely to be
1 i saia(e) much easier to construct a theory that can incorporate both
Nige(l) = 5= -5 (800 incoherent interlayer tunneling and@N<1 if the OP is a
2 2ajgo(€)cqy
generals-wave one, and notd,. ,>-wave one. But even for
ans-wave OP that changes sign on the Fermi surface, such as

wherecy=1 in the Gaussian model2 in the Lorentzian the anomalous-wave OP, these results make a reconcilia-

model, — 2 in the rotationally invariant model, aniin the  tion with the sum-rule violation more difficult.
stretched Lorentzian model. The negative sign obtained for
all of the dxz,yz-\_NiTlVG OP’S |n the rotationally invgrian_t VI. SUMMARY AND CONCLUSIONS
model has an origin that is similar to the change in sign

obtained in the critical current. The OP forms give rise to An important question to resolve is the amount of coher-
the overall factors Ciq(€)=37_qa2,(€)/aZ,(e) for i ence of the tunneling processes. Since coherent tunneling

=0,e,c,a. We find Cog=1, Ceo(0)=1+957_,[(2n+3)  Preserves thg momentum parallel to the j.unction, and inco-
X(2n+1)(2n—1)]2~1.041, C.4(0)=1+95*_,[(2n herent tunneling allows a random change in parallel momen-
+3)(2n—1)] 2~1.39, andC,y(€)=1+1/(2e+1)%. Ex- tum, it is important to determine just how sensitive the inter-

cept for the rotationally invariant Lorentzian tunneling Mediate coherence regime is to the particular form of the
model, the sum-rule violation is strong and of the opposite unnelmg matrix element squared. We have therefore studied
sign to that observed in experiment for all of thesefve models of Josephson tunnel junctions, which are de-

dy2_y2-wave OP’s, but the OP ranking in terms of increased” igned to be applicable to the high-temperature supercon-

sum-rule violation is ordinary-, extended-, compressed-, an@icjts);ir:r?tegslsor:gnagrlctﬁlrre::;zi mggglst\?vrs \r/eefsii%téveg
anomalousd,2 2 wave, respectively. » EXp ' ’

For the exponentlal tunneling model, the situation is a bit Lorentzian, which we denote rotationally invariant Lorentz-

more complicated. Near the incoherent limit, we obtain for!samnogrr:? s;zscggﬁdthlé%fﬁetf;? ar;rdhﬁsz:%hrgrcéi?lti nlr?éﬁapolu?rtf
the d,2_,2-wave functions, y g

its by varying a single parameter.
An experiment that can provide information about the
1 737 a2 (€) amount _of cohe_rence in t_he in.trin.s'u:—a>_<is tunneli_ng in
SNy (1)— = — n=0%dn Bi2212 is the bicrystalc-axis twist junction experimerit.
1ae 2 42y)YEr_jad.(e)/[(8n+4)2—1] Since Bi2212 is generally thought to have a Fermi surface
(81) that is not rotationally invariant about thie point**“3rotat-
ing one layer with respect to an adjacent one about tivds
_ _ e _ forces the quasiparticles to either change momentum or en-
which diverges only ag/~ ™ instead ofy™ < for the other  grgy during the tunneling process. Thus, to emphasize the
models, but it also depends slightly more on the particulagjifferences between different Fermi surfaces we have studied
OP form than do the results for other tunneling models. Letyyo model Fermi surfaces, one which is circular and centered
ting SNig(1)— 157TC (6)/[4(27)1/2] we find C5q  about thel’ point, and the other which has been specifically
=1, Ccy(0)~1. 04 Ce, (0) 1.38, andCZ,(€)=[(2e+1)*  chosen to fit the Bi2212 Fermi surface as measured in angle-
+1]/[(2€+1)?+ 153]. The OP ranking in terms of the vio- resolved photoemission spectroscopy experim&nts.
lation of the sum rule is thus the same as for the Gaussian, In addition, an important study that can also be made is to
Lorentzian, and stretched Lorentzian tunneling models.  test the orbital symmetry of the OP. When the superconduct-
For the extended- and compressedrave OP’s in the ing layers are very weakly coupled, the OP must lock onto
incoherent limit of all five tunneling models§N;..(1) the lattice on each Iayé?.Thus, OP’s on opposite sides of
—1/24+ (1+2€%)/{(1+ €*)[4E(K)/m]?}, which varies be- the twist junction will be rotated with respect to one another.
tween a maximum of1.117 ass—0 and 1 ag—x. Atthe  In coherent tunneling through a twist junction, a particle will
intermediate value=1, 6N;s;(1)~1.007. AsT—O0 in the be transferred to a different energy state, if the OP is in any
coherent limity—o, we again have’SN,(0)=1 in the four ~ way anisotropic. Since the particular crystal structure of
rotationally invariant tunneling models for all OP’s, as ex- Bi2212 allows the OP to be in one of only two groups, one
pected. AsT—O0 in the incoherent limit for botli=cs,es, containing all functions witls-wave symmetry and the other
we can evaluate the denominator in E@6) exactly in all  containing all functions ofl,2_2>-wave symmetry° we have
five tunneling models, and the numerator numerically. Wemodeled each of these general OP symmetries with four
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simple OP forms. Theswave OP’s are a constant, an of the sign that has been observed in optical reflectivity ex-
extendeds-wave OP, which has nodes along theX and  periments. Except for the anomalosisvave OP, the sum-
I'-Y lines, but which does not change sign on the Fermiule violation was rather small. For thg._,2-wave OP’s,
surface, a compressedwave OP, which has nodes at the the sign of the sum-rule violation depends upon the details of
points at which the Bi2212 Fermi surface intersects thethe tunneling model. For most models, the sign is opposite to
Brillouin-zone edge, and an anomalasisvave OP, which that which has been observed, and the magnitude is very
arises from near-neighbor attractive pairing. This OP hadarge. However, for the sufficiently incoherent rotationally
nodes on the Fermi surface at points different from thenvariant Lorentzian tunneling model, each of the
extendeds and compressestwave OP’s, and changes sign dy2_y2-wave OP’s studied has a large sum-rule violation of
on the Fermi surface, averaging to zero in the entire Brillouinthe same sign that was observed. In this particular case, the
zone, but not on the Fermi surface. untwisted junctions appear to act like junctions.

We first proved a theorem, which states that for weak, In conclusion, we found that theaxis twist experiments
time-reversal-invariant tunneling between layers of aof Li et al. provide compelling evidence that tleeaxis tun-
tetragonal crystal twisted 45° about thaxis with respectto  neling in Bi2212 is strongly incoherefiAs a consequence,
one another, the-axis critical current for a superconductor the experiment cannot distinguish between an isotropic
with either generath_,2- or generald,,-wave symmetry swave and an extremely anisotropgavave OP. However,
vanishes. Since the three exceptional cases to these requitbe purportedd,>_,2-wave OP is inconsistent with the ex-
ments, slight orthorhombicity, mixing al,>_,> andd,, or ~ periments. These conclusions appear to be incompatible with
other OP components, and higher-ordstrong tunneling  those derived from the tricrystal experimént.
processes, have already been discussed in the litetatire ~ There are only two possible scenarios that might allow for
and found to be unable to explain the experiments with & compatibility. One is that the- and d,2_,2-wave OP’s
dominantd,2_.-wave OP, it is important to show just how have indistinguishabl&. values. However, sincé. depends
robust is the interpretation of the experimental results. Theipon doping and impurities, it is unlikely that this will be the
result that the critical current density across the twist junccase in every sample studied. Second, it is possible that the
tion is the same as that across the single crystal itself ignirror plane symmetrythe bc plane containing the periodic
profound® First, it implies that the tunneling must be very lattice distortion we and others have generally assumed to
incoherent. In order to fit the data with models that havebe present in Bi2212 could be broken. One electron-
rather sharp cutoffs in the parallel momentum change, suctliffraction experiment performed long ago on a different
as the Gaussian model, it is necesssary for the change Bi2212 sample is suggestive of this scen&fi@ut, explicit
quasiparticle momentum to cover roughly 30% of the Bril- electron-diffraction studies of the samples used byetal.
louin zone. If one were to identify the full width at half indicate that 90% of them do exhibit thec-mirror plane®
maximum (FWHM) in the tunneling amplitude as a cutoff Experiments to test this hypothesis are currently planned.
for the other models we studied, this would reduce to onlySince neither thes-axis twist experiment nor the tricrystal
~7% of the BZ. However, such models allow a substantialexperiment has yet been fully reproduced in a second labo-
number of processes well beyond the FWHM. ratory, it remains to be seen which will ultimately prevail.

In any event, there is also one other inescapable concliMe encourage reproduction of tleaxis twist experiment
sion of the experiment. We showed for quite general tunnelusing mesa structures, so that the currents can be safely as-
ing forms near to the incoherent limit that the differencessumed to be uniform over the entire junctions, bigtandR,
between the twist angle dependence of the Josephson tunnekn be measured, and the Fraunhofer pattern can be obtained.
ing between ars-wave and ad,>_,2-wave superconductor
become the most robust. In this limi, s(¢o,T)/Jcs(0,T)
=1 for T<T,, but for thed,2_y>-wave case]; 4($o,T)
=0, and the ratio of the two vanishing quantities The authors thank G. Arnold, R. Kleiner, A. J. Leggett,
Je (0, T)/Jc.4(0,T)~|cos(2hy)|, for T<T.. In addition, Qiang Li, and M. Md&le for useful discussions. One of us
we showed by studying five specific tunneling models andR.A.K.) would like to thank T. Hasegawa for partial support
four varieties ofd,2_,2-wave OP forms that none of the and for showing him directly a few of the problems with
d-wave OP forms could fit the data. However, each of theSQUID microscope flux integrations. This work was sup-
four generals-wave OP forms we studied can easily fit the ported by U.S. D.O.E.-BES Contract No. W-31-109-ENG-
data, provided that the tunneling is very incoherent. Thus, w88, NATO Collaborative Research Grant No. 960102, the
conclude that the OP on each side of the junction canndy.S. Office of Naval Research Contract No. NO0014-94-1-
possibly be of purel,2_,2-wave symmetry. This conclusion 0147, and by the DFG through the Graduiertenkolleg
also must apply to the untwisted intrinsic junctions in the“Physik nanostrukturierter Festkper.”
bulk of the Bi2212 single crystal.

In addition, we applied our models for the circular Fermi
surface(at ¢,=0) to investigate the question of how the
degree of coherence affects the Thomas-Reiche-Kuhn sum- The coefficients of the real-space expansion of the ex-
rule violation in c-axis transport. We used the simple ap-tended and compressed OP’s in E4$) and(17) are easily
proach of Kim and Carbott® and found that none of the obtained in the limite— 0 by Fourier series transformation.
s-wave OP’s we studied can give rise to a sum-rule violationFor i =e,c, these are
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21/2n

ae,nm(o):?[(n_m)Z_l][(n+m)2_1]! (Al) fnSL(V)Hl_WZ_- (88)
4 (2=68,0(2=8mo) They approach the incoherent limit-0 as
a 0)=— ; —. A2
el - aieme-1 A2 e Ny
For the circular Fermi-surface model, the analogous coeffi- na(7) = n (B9)
cients of the extended and compressed OP’s in &f5.and
(31) are 2(2y)Y2
an( 7)_>5n,0+ (1- 5n,0)—2_y (BlO)
n+1 m[(2n)°—1]
2(=1)" (2= 6np)
Aes 0)= 2m2—1 ) (A3) 2
w[(2n)°—1] f (—1)™(y/2)%™ n=2m,
~2(2-840) RUV T (L ymy2mi2my 1y22n - n=2me 1,
= B11
acsn(o) 77[(2”)2_ 1] ’ (A4) ( )
and
01— 8(_1)n+1 A ]
aedn( )_ 7T(2n+3)(2n+ 1)(2n_1)1 ( ) fnSL—>(’)//2) . (812)
and For the Lorentzian model, théh,m()/) in Eq. (52) are
4 defined by
qean0) = o 3 2n=1) (A6) . ifw dpx?™( ) cog 2nh) o1
"™ Y77 Do Jo 2D, [x(6) IDFIX(4)]”
APPENDIX B
X(¢)=7y(1l—cos , B14
For the four specific rotationally invariant tunneling mod- ()= 20) (B14)
els, Eqs.(42), (43), (45), and(46), the respectivé ,(y) val- D = (14 x)(1+2x)2 B15
ues obtained from Eq51) are 100=(14x)( )7 (B19
fa(n) =1 (Ma(y), (B1) Do(x)=1+2x+x%2+(1+x)(1+2x)",  (B16)
. and
f Jodxexd — (2y)Y%sinx]cog 2nx) -
) T ket — (2 Vsink] (B2 b :F’Z 2d¢ (817)
O Jo wDix(¢)]
frml?) In the coherent limity—, the f- () h
n the coherent limity— o, the approac
Re([l_i/7+i(1+2i7)1’2/7]”)/ . 1 i nm(¥) 2PP
- 1+2iy)7 Ar2ip™ In
(2 ( 7)(83) i y)aCh—O(T , (818)
and where
y n CI__J3<detanH““(x/2) Jw dx 819
fsu(y)= T+ y+(1+ 27)1/2} . (B4) m— |y 1+cosHx o 1+cosHx” (B19)
Asymptotically, these functions approach the coherent limitAs y— 0, the leadingy dependencies of thé;‘m(y) for the
Yy—®* as lowest evem values are
n2 2m [ 4m
_ Y
fac(y)—1 2y’ (B5) fg,m(y)HW(Zm» (B20)
2n2 2m
-_ 7 y"O(m-1)( 4m
an(’Y)*)l , (BG) f;,m(y)_}§725m,O+T(2m_2 ’ (821)
faru(¥)—1— n—2 (B7) v Y""O(m-2)[ 4m
nRt ’ Fam(7) = 57(830m0+ 145’“'1”T(2m—4)'
and (B22)
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. ¥® ally invariant tunneling matrix element squared in powers of
Fem(¥)— 510(5430m,01 836m,1+ 1461 2) k-k'. First, we note tha#\,,, can be written as

+ , (B23) 21-1
23m 2m—6 1
_ A=8iot (=807 L1 (w2=p). (€D
etc., where® (n) =1 for n=0, and®(n)=0 for n<0 is the p=0
Heaviside step function. In particuldy,y( y,0) in the Lorent-

zian model approaches the incoherent limit:0 asi2 2.

72m®(m—3)( 4m )

For w=2, only thel=0,1 terms remain. Fge=2q, an even
integer, theA,,=0 for I=q. For 0<u<2, all of the A,
<0, except forA,, .

Here we present the details of the expansion of a rotation- We begin by using polar coordinates, obtaining

APPENDIX C

(2k-k")? =(2kk")? co' (¢ — dyr — do) (€2
|

=(|<k')2'pg0 (2 8,,0€0$ 2p( b — by — o) ] (C3

I+p
el
=2 csm( cog4meo)[S™(K)S™(K') + Gy o o (K) Gy 2y (K')1+SINAMBo) G o o) (K)S™(K')

E(I—l)

=S™(K)G ey (KT |+ 2 Cam| cog(4m+2)$ol[Dy3 2(KIDZ_ (k') + Di(K)D(K')]
+sin (4m+2) ][ Dyy(k)D X2_yz(k) Xz_yz(k)D y(KDT (CH
|
where and E(x) is the largest nonnegative integerx. In polar
coordinates, the tunnel functions are given by
slm (2 5m0) [+2m)’ (CS)
|
21 S™(k)=k?cog4me,) for OgmsE(E),
Cam=2 | omy1): €6 (o))

TABLE |. Tunnel functions in rectangular coordinates fet4.

(Im) s"(k) G-y (K) D2 a(K) DYy(k)

(00) 1 0 0 0

(10 k? 0 kZ—kZ 2kyk,

(20) k* 0 (Ki—k2)k? 2K,k k?

(21 k4~ 8kZk: 2keky (K —K?) 0 0

(30) k8 0 (ke —k2)k* 2kykyk*

(31) (k*—8KZkZ)k? 2Kk (KZkZ)k? [(ki—K?) . [2k,k, »
X (K= 16kZK2)] X (k= 16Kk2K3)]

(40) K8 0 (K—k2)k® 2kyk k®

(41 (K*—8KkZkZ)k* 2K,k (KZ— k5 k* [(k§—4k§) k2 ., [2kkak2 .,
X (k= 16KkZk2)] X (k= 16KkZK?2)]

(42 [K®—32K*kZk] [4kyky (K —K2) 0 0

+ 128Ky

x (k*— 8k2k2)]
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| |—1 and similar relations for elements of the other function sets.
D,2_2(k)=k*cog(4m+2)¢,]  for O=m=<E — In Table I, we present the tunnel functions floe4 in
C9) rectangular coordinates. In this representation, elements from
different function sets are orthogonal over the first BZ and
-1 over a Fermi surface of tetragonal symmetry,
Dyy(k)=k?sin (4m+2) ¢y ] for o<m<D<T>, » »
(C9 f L f . d kS™(k)D}z" 2(k)=0, (C13
and
| etc., but elements within a function set with differehng)
G'Xn;(xz,yz)(k)=k2'sin(4md>k) for 1$msE(§). values are not orthogonal with each other on that domain.
(C10

APPENDIX D
These functions are elements of the generathz2_y2-, d,-,

and g,y ,2)-wave-function sets, respectively. Elements of Here we list the resullts for the sum—rule viol'ation calcu-
different function sets are orthogonal with each other wheration. For the four rotationally invariant tunneling models,

integrated overp, at fixedk, we obtain

2w [ 1 Eoc_ 1+ 5 a2

f dyS™(k)D}" (k) =0, (Cc11) SNig(1)= —( 1+ — n-of ”’2) an <) )

0 2 En:O(:I-‘l'5n,0)"31isn(€)f4n("}’)
etc. We also have that elements from the same function set (D1)
with differentm values are orthogonal when integrated over B
¢y at fixedk, 1( 25—0@ign(€) )

Nig(D) == 1+ == , (D2
al 2 2n=0’5‘i2dn(6)f4n+2(7’)

27
d S™(K)S' ™ (k)= 7k S (14 8o,
fo HSTK) (k)=m mm( mo) where thef, () are defined in Eq(51). For the Lorentzian
(C12 model, we find

L 1 Z?‘Ic,m:OaiSh(6)aism(€)[flén+2m,n+m('y)+.I:IZ_\n—m|,\n—m|('y):|
5Ni55(1) =z 1+ © L L ) (D3)
2 2 m=08isn( €)@ism( E)[f2|n—m\,n+m( y)+ f2n+2m,\n—m|(7)]
) 1 27 meoion(©@iam(E) famime 1yt me 1M + o0 m n-mi(¥)]
ONp (== 1+ — T T , (D4)
2 En,m:Oaidn(G)aidm(‘E)[lenfm\,n+m+1( y)+ f2(n+m+1),\n7m|(7)]

where thefhvm(y) are given in Eq(B13).
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