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Models of c-axis twist Josephson tunneling
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We calculate the critical current densityJc
J(f0) for Josephson tunneling between identical high-temperature

superconductors twisted an anglef0 about thec axis. Regardless of the shape of the two-dimensional Fermi
surface and for very general tunneling matrix elements, an order parameter~OP! with generald-wave symme-
try leads toJc

J(p/4)50. This general result is inconsistent with the data of Liet al. @Phys. Rev. Lett.83, 4160
~1999!# on Bi2Sr2CaCu2O81d ~Bi2212!, which showedJc

J to be independent off0. If the momentum parallel
to the barrier is conserved in the tunneling process,Jc

J should vary substantially with the twist anglef0 when
the tight-binding Fermi surface appropriate for Bi2212 is taken into account, even if the OP is completely
isotropic. We quantify the degree of momentum nonconservation necessary to renderJc

J(f0) constant within
experimental error for a variety of pair states by interpolating between the coherent and incoherent limits using
five specific models to describe the momentum dependence of the tunneling matrix element squared. From the
data of Liet al., we conclude that thec-axis tunneling in Bi2212 must be very nearly incoherent, and that the
OP must have a nonvanishing Fermi-surface average forT<Tc . We further show that the apparent conven-
tional sum-rule violation observed by Basovet al. @Science283, 49 ~1999!# can be consistent with such
strongly incoherentc-axis tunneling.

DOI: 10.1103/PhysRevB.64.174507 PACS number~s!: 74.72.Hs, 74.50.1r, 74.80.Dm, 74.60.Jg
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I. INTRODUCTION

There is still considerable interest in the symmetry of
order parameter~OP! in the high-temperature superconduc
ors ~HTSC!.1–11Although many phase-sensitive experimen
were interpreted as giving evidence for an OP
YBa2Cu3O72d ~YBCO! consistent with thedx22y2-wave
form,1,2 it is only recently that the same type of phas
sensitive experiments on the electron-doped HT
Nd1.85Ce0.15CuO42y ~NCCO! and Pr1.85Ce0.15CuO42y
~PCCO! were also interpreted in terms of adx22y2-wave
OP,3 possibly in agreement with penetration dep
measurements,4,5 although those experiments could on
place upper limits upon the gap minimum. However, t
zero-bias conductance peak, often associated with And
bound states for tunneling into certain directions of adx22y2

superconductor, was usually absent in NCCO and PCC5

The presence or absence of such peaks in YBCO is v
sensitive to the surface properties, especially to the oxy
doping.6 Furthermore, the recent nonlinear transverse m
netization experiment on YBCO provided a minimum val
of the superconducting gap, inconsistent with the scenari
a dominant dx22y2 component of a mixeds1dx22y2-
wave OP.7

An older pair of experiments with superconductin
quantum-interference device~SQUID!-like devices with Pb
or Nb around a corner of YBCO12,13 involved extrapolation
of either the critical current or the voltage to zero. In t
latter case, it also involved fitting a sharp, delta-function-l
peak to a sine wave. However, detailed studies on thin fi
demonstrated conclusively that both of those extrapolati
were unreliable.14 A subsequent experiment involving P
junctions straddling a corner of a YBCO single crystal15

while suggestive of ap junction arising from a predominan
0163-1829/2001/64~17!/174507~23!/$20.00 64 1745
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dx22y2-wave OP, was explainable in terms of trapped fl
lying within the layers and pinned at the corners,16 as has
been directly observed in related materials using a scan
SQUID microscope.17 This situation maps precisely into th
case of a monopole vortex at the center of a conventio
superconducting-normal-superconducting junction, result
in a node in the center of the ‘‘Fraunhofer’’I c(B) pattern.18

In addition, an interesting YBCO/Pb SQUID configuration19

while suggestive ofdx22y2-wave OP symmetry, was subse
quently found to depend upon the details of the junct
fabrication in a manner inconsistent with that analysis.20

Phase-sensitive experiments on Bi2Sr2CaCu2O81d
~Bi2212! gave strong evidence that the OP has a nonvan
ing Fermi-surface average.8–10,21First, c-axis Josephson tun
neling between Bi2212 and either Pb or Nb demonstra
that the OP has a nonvanishing Fermi-surface averag
Bi2212 below their respective transition temperatureTc
values.9,10 Although the magnitude ofI cRn was found to be
very small ~a few microvolts!, such values were also see
with Josephson junctions between Pb and thec axis of
single-crystal NCCO and thin films of YBCO.11,22 Since un-
twinned single crystals of YBCO gave much largerc-axis
I cRn values, these low values might arise from materi
problems at the Bi2212/Pb interface, as was suggested
NCCO/Pb junctions.11 In fact, theTc values of the Bi2212
layers at the Pb interface were generally suppressed by m
than a factor of 2 from the bulk values.9

Second,c-axis tunneling across the junctions of Bi221
intercalated with HgBr2 has been studied using mesas.21,23In
these experiments, increasing thec-axis spacing by 6.3 Å
increased the normal-state resistivity by a factor of 200.
the superconducting state,Rn andI c changed by comparabl
factors, but their productI cRn'10 mV was about half the
optimal value expected in the Ambegaokar-Baratoff mode
©2001 The American Physical Society07-1
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A. BILLE, R. A. KLEMM, AND K. SCHARNBERG PHYSICAL REVIEW B 64 174507
purely incoherentc-axis tunneling between identical, isotro
pic s-wave superconductors.21,24 Such behavior is very diffi-
cult to understand in terms of adx22y2-wave OP.25 Moreover,
these conventionally largeI cRn values measured between e
tremely weak tunnel junctions interior to the crystal strong
suggest the dominant OP iss wave and the tunneling is in
coherent.

Also, recent experiments on Nb Josephson-junction arr
have provided an explanation not only of the paramagn
Meissner effect, sometimes observed in ceramic Bi22
samples,26 but also of spontaneous flux generation itself, n
necessarily proportional to an integral multiple of the fl
quantumF0, when three or more conventional Josephs
junctions in a loop are present.27 Combined with the fact tha
it is often very difficult to determine precisely over how larg
a region away from a vortex core one has to integrate
field using a SQUID microscope in order to obtain the c
rect value of the trapped flux,28 such spontaneous, noninte
gral flux generation with three junctions in a ring might pr
vide an alternative explanation of the IBM tricryst
experiment.1

The critical currentI c(f) through YBCO in-plane~001!-
tilt bicrystalline grain-boundary junctions has been found
decrease exponentially as the misorientation anglef is var-
ied from 10° to 45° in a number of experiments~see Refs. 29
and 30 and references therein!. In experiments on thin films
prepared by vapor phase epitaxy, a decrease inI cRn with
increasingf is usually observed. This has been interpre
as evidence ford-wave pairing, asd-wave effects would re-
duceI c with increasingf without affectingRn .30 However,
I c andRn across in-plane YBCO grain boundaries obtain
from bulk bicrystal seed growths, which were shown
electron microscopy studies to be much straighter than
usual thin-film grain boundaries, varied inversely withf,
such thatI cRn remainedconstant('12 mV), even asf
→45°!29 TheseI cRn values are much smaller than measur
on thin-film samples, but there the values depend upon
critical current and the substrate, which seems to indic
that one is not measuring intrinsic properties of the superc
ducting state. Curiously, the smallI cRn values measured in
these greatly improved junctions are comparable to th
obtained inc-axis tunneling between Pb and Bi2212, NCC
and heavily twinned thin films of YBCO.9,11,22

Furthermore, very high-quality (100)u(110) in-plane
grain-boundary junctions were prepared by liquid phase
itaxy, and some of these junctions gave rise to a stand
Fraunhofer diffraction pattern upon application of a para
magnetic field nearTc .31 Such an observation is also easy
understand from incoherent tunneling withs-wave supercon-
ductivity, but is very difficult to explain withdx22y2-wave
superconductivity.32 Since the IBM tricrystal experiment
were always performed on samples prepared by the o
vapor phase deposition technique, the grain boundaries
andered greatly, and did not show the constantI cRn
behavior.29 Thus, defects in the grain boundaries and the
fluence of the substrate might provide a second possible
planation of the IBM tricrystal experiment.

In addition, the temperatureT and magnetic-fieldH de-
pendencies of the intrinsic tunneling in such Bi2212 a
17450
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(HgBr2)Bi2212 mesas have been reported, providing co
pelling evidence that the pseudogap and the supercondu
gap or gaplike density-of-states features are completely
related to one another.23 This independence of the pseudog
and superconducting state is also evident in the NM
1/(T1T) measurements as a function ofT and H, with the
results being stronglyH dependent belowTc , but completely
independent ofH above Tc in optimally and underdoped
YBCO samples.33,34 Similar conclusions were attained usin
ultrafast optical relaxation measurements, in which the
perconducting gap in YBCO was also found to bes wave
nearTc .35

The resonant peak observed in neutron scattering, pr
ously thought to arise upon entry into adx22y2 superconduct-
ing state, has recently been confirmed to be stabilized
impurities which themselves destroy the superconductivit36

Thus, this experiment, if phase sensitive, is apparently s
sitive to the phase of the ordering responsible for
pseudogap, such as charge- and/or spin-density wave fo
tion, rather than to the superconducting OP itself.37 Hence,
experiments such as photoemission, neutron scattering,
low-temperature thermodynamic and transport phenome
etc., which can be influenced by the nonsuperconduc
~e.g., density wave! ordering responsible for the pseudoga
are unreliable tests of the OP symmetry.

More directly, a phase-sensitive experiment which c
test the symmetry of the OP over the entire rangeT<Tc was
performed.8 In this experiment, a single crystal of Bi221
was cleaved in theab plane, and the two cleaves wer
twisted in a chosen anglef0 about thec axis with respect to
each other, and fused back together. Various experime
probes, including high-resolution TEM, confirmed that t
bicrystal junctions were of exceptionally good quality.38 In
particular, atomic-scale steps that are known to be crea
during cleavage apparently completely disappear during
high-temperature sintering process, so that any signific
contribution from tunneling in theab direction can be ruled
out. After lead attachment, the critical currentsI c

J(T) and
I c

S(T) across the twist junction and single crystals were m
sured, as were the respective junction areasAJ andAS. For
11 of the 12 twist junctions measured, the resulting criti
current densitiesJc

J(T) and Jc
S(T) were the same atT/Tc

50.9, independent off0.8 SinceJc
J(f0)/Jc

S51 applies both
to several samples at 45° and several a few degrees a
from 45°, the tunneling at the twist junction is not due to a
defects other than those naturally present within an untwis
single crystal. Liet al.claimed that~a! the intrinsic junctions
and the twist junction behaved identically,~b! thec-axis tun-
neling is strongly incoherent, and~c! the OP contains an
isotropic component, but not any purporteddx22y2-wave
component forT,Tc , except possibly below a second, u
observed phase transition.8

Since then, the group-theoretic arguments upon wh
conclusion~c! were based have been published.40 In addi-
tion, an exact calculation of the possible roles of coher
c-axis tunneling was published.41 For the tight-binding Fermi
surface generally thought to be applicable to Bi2212,42,43 it
was shown that such coherent tunneling was inconsis
7-2
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MODELS OFc-AXIS TWIST JOSEPHSON TUNNELING PHYSICAL REVIEW B64 174507
with the data,8 even for an isotropics-wave OP. Since the
claim ~a! of Li et al. is just a statement of their experiment
observations, and the claim~b! is clearly correct in the limit
of purely incoherent tunneling, it remains to quantify pr
cisely just how incoherent the tunneling must be in order
fit the data.

There have been earlier measurements of~001! twist
boundaries in sintered Bi2212 bicrystals.39 In those experi-
ments, there seem to have been severe problems with j
tion quality, since most of the junctionTc values differed
substantially from their respective bulk values. According
the measuredJc

J values varied unsystematically withf0. For
one sample withf0536°, however, for which the junction
Tc was almost identical to the bulk value,Jc

J ~4.2 K! was
found to be 40 A/cm2, close to the value of 50 A/cm2 mea-
sured on the reference sample withf052°. Even ifJc

J of the
reference sample was suppressed and we were to
Jc

J(4.2 K)'100 A/cm2, as observed by Liet al.,8 Jc
J for the

36° sample would be incompatible with the predictions
the d-wave model.

In a recent review article,1 Tsuei, Kirtley, et al., while
briefly addressingc-axis twist junctions, quoted a large num
ber of papers in support of the view that momentum-n
conserving~e.g., incoherent! processes should be include
when discussingc-axis transport. They then conclude th
such processes would reduce any sensitivity of the junc
critical current density to the twist anglef0. However, as
shown in the following, such a conclusion applies only
pair states withs-wave symmetry. To make this quite clea
in Sec. II, we proved a theorem about the vanishing of
c-axis critical current for a 45° twist junction betwee
d-wave superconductors, which is valid for a very gene
momentum dependence of the tunneling matrix elem
squared. For ad-wave superconductor, the critical curre
becomes insensitive tof0 only in the sense that it is zero fo
all f0 values in the extreme limit of incoherent tunneling.
Sec. IV, we show analytically for a general Fermi surface
tetragonal symmetry that the critical current density betw
d-wave superconductors, normalized to itsf050 value, var-
ies as cos(2f0) as the incoherent limit is approached, almo
independently of the chosen model for the tunneling ma
element squared, and of the particular form of thed-wave
OP.

We remark that although thec-axis twist experiments o
Li et al.have not yet been fully reproduced in a second la
ratory, neither have the tricrystal experiments of Tsuei, K
ley et al.1,8 However, it is expected that within the next ye
or two, serious attempts to reproduce and extend both exp
ments will have been made. We would like to seec-axis twist
experiments performed on small mesas containing a t
junction, to test the robustness of the scaling of the criti
current with the junction area. With small mesas, one co
also see the Fraunhofer diffraction pattern characteristic
each junction in the mesa, and could measureRn for the total
number of junctions in the mesa. In addition, we would li
to see the IBM tricrystal experiment reproduced usingc-axis
twist junctions, as we suggested previously.40

In the meantime, since the question of the symmetry
17450
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the OP is by no means settled, it is very important that
many calculations intended to aid in our understanding
these important experimental results be presented. To d
the only published theories of this twist experiment did n
explain it quantitatively,40,41except for the unlikely case of a
circular intralayer Fermi-surface cross section and v
strong coherent interlayer intrinsic tunneling, leading to u
reasonably isotropic normal-state behavior of Bi2212.41 Here
we present and solve five tunneling models and several
models which can actually fit the data quantitatively, usi
parameters appropriate for Bi2212.

II. GENERAL CONSIDERATIONS

Since Bi2212 behaves as a stack of weakly coupled
sephson junctions,44 the static critical current densityJc
across each junction may be evaluated by neglecting the
plings between the other junctions.8,40 Specifically,Jc

J across
the twist junction between adjacent layers is given for\
5c5kB51 by

Jc
J~f0!5U4eT(

v
^ f J~k,k8!Fv~k!Fv

† ~ k̃8!&U, ~1!

wheree is the electronic charge,v represents the Matsubar
frequencies,f J(k,k8) is the spatial average over the junctio
area of the tunneling matrix element squared,40 ^•••& repre-
sents two-dimensional integrals over each of the two fi
Brillouin zones~BZ’s!, and the wave-vectork̃8 is obtained
from k85(kx8 ,ky8) by a rotation off0 about thec axis. The
anomalous Green’s functions areFv(k)5D(k,T)/@v2

1j2(k)1uD(k,T)u2# andFv
† 5Fv* , whereD(k,T) andj(k)

are the OP and quasiparticle dispersion on the layer w
wave vectork, respectively. SinceJc

J is proportional to the
magnitude of the maximum supercurrent, the relative pha
of the OP’s of each side of the junction can be ignored,
that Fv

† (k) can be replaced byFv(k). For Bi2212, we as-
sume the quasiparticle dispersionj(k) has the tight-binding
form,

j~k!52t@cos~kxa!1cos~kya!#1t8cos~kxa!cos~kya!2m,
~2!

where we taket5306 meV, t8/t50.90, andm/t520.675
to give a good fit to the Fermi surface of Bi2212, for whic
j(kF)50. These values are slightly different from those us
previously.45 A plot of this Fermi surface is shown in Fig. 1

We first consider a generaldx22y2- or dxy-wave OP, which
is odd underp/2 rotations about thec axis.40 Let Rk8(f0) be
a rotation about thec axis by the anglef0 of the wave
vector k8, so that Fv( k̃8)5Rk8(f0)Fv(k8). Then
Rk(2p/4)Fv(k)52Rk(p/4)Fv(k) for a general
dx22y2-wave ~or generaldxy-wave! OP and a quasiparticle
dispersionj(k) that exhibits tetragonal symmetry, as in E
~2!. This crucial point only applies for ap/4 rotation, since
for f0Þp/4, Rk(2f0)Fv(k)Þ2Rk(f0)Fv(k). Then, the
critical currentJc,d

J (p/4) across a 45°c-axis twist junction in
7-3
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A. BILLE, R. A. KLEMM, AND K. SCHARNBERG PHYSICAL REVIEW B 64 174507
a tetragonal layered superconductor with a generaldx22y2- or
dxy-wave OP at an arbitraryT<Tc , to leading order in the
tunneling strength, satisfies

Jc,d
J ~p/4!5U4eT(

v
QvU, ~3!

where

Qv5^ f J~k,k8!@Rk8~p/4!Fv~k8!#Fv~k!&

5^ f J~k,k8!Fv~k8!@Rk~2p/4!Fv~k!#& ~4!

5^ f J~k,k8!Fv~k8!@2Rk~p/4!Fv~k!#& ~5!

5^ f J~k8,k!Fv~k!@2Rk8~p/4!Fv~k8!#& ~6!

52Qv50. ~7!

In the above, we assumedf J(k,k8)5 f J~k8,k!. In the next-to-
last step, we merely changed the integration variables. T
we have proven the general theorem that for any weak
neling matrix element squared satisfyingf J(k,k8)
5 f J(k8,k), an arbitrary OP of generaldx22y2- or dxy-wave
symmetry in a tetragonal crystal gives rise to avanishing
c-axis critical current across an internal 45° twist juncti
for T<Tc . The only requirements for this theorem to ho
are~1! f J(k,k8)5 f J(k8,k), which is a consequence of time
reversal invariance,~2! the tunneling is sufficiently weak tha
higher-order tunneling processes can be neglected, whic
certainly the case for Bi2212,44 ~3! the crystal is tetragonal
and ~4! the OP has either puredxy- or pure dx22y2-wave
symmetry. If these criteria are satisfied, different tunnel
models yield only slightly different precise values
Jc,d

J (f0) for 0,f0,p/4.
To the extent that Bi2212 is slightly orthorhombic, a bit

a gxy(x22y2)-wave OP component can mix with

FIG. 1. Schematic plot of the Bi2212 Fermi surface used
these calculations. The concentric circles represent the portion
the BZ for which the tunneling strength is within 1/e for the Gauss-
ian and exponential models (1/2 for the rotationally invaria
Lorentzian and extended Lorentzian models! of its maximum value,
for dimensionless parameterss2 of magnitudes 0.0005, 0.005, an
0.05, as indicated.
17450
s,
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dx22y2-wave OP, in which the mixing would shift the ang
at whichJc,d

J (f0)50 slightly away fromp/4.40 In addition,
if there is a secondary phase transition, such as one
mixes OP’s ofdx22y2- and eitherdxy- or s-wave symmetry,
then this theorem does not apply.40 However, we showed tha
for parameters relevant to Bi2212, such a possibility co
only hope to explain low-T data, not the data nearTc .40 In
addition, higher-order tunneling processes were shown
give a finite but entirely negligible contribution t
Jc,d(p/4).41 We remark that there have been a number
theories of the HTSC that relied upon coherent tunneling
thec axis, with ak-dependent matrix element, between ea
of the layers.46,47 But, that model not only givesJc,d

J (p/4)
50, it gave the worst agreement with the experiment of
et al. of all of the coherent tunneling models studied, ev
for an ordinarys-wave OP.41

The theorem holds for an arbitraryf J(k,k8) and for an
arbitrary form of ad-wave OP. But we would like to deter
mine quantitatively the dependencies of theJc,s

J (f0 ,T) and
Jc,d

J (f0 ,T), both for a variety of tunneling models and for
variety of s and dx22y2 OP forms. In particular, when the
tunneling is not purely incoherent, differences could arise

In order to investigate how sensitive our results are to
particular form of the OP, and still be consistent with t
c-axis twist experiments, we have made a systematic st
of the effect of various OP anisotropies, using the we
coupling BCS theory of superconductivity. In this study, w
did not vary the pairing interaction directly, but only a
sumed that the OP had a variety of particular forms t
differed sufficiently from each other, in order to be as gene
in our conclusions as possible. We study the gap functi
c i ze(k) corresponding to the OP’s D i ze(k,T)
5D0(T)c i ze(k) for generals- and dx22y2-wave supercon-
ductors withz5s,d, and i 5o,e,c,a, respectively,

cos~k!51, ~8!

cese~k!5$@cos~kxa!2cos~kya!#21e2%1/2/~11e2!1/2,
~9!

ccse~k!5@sin2~kxa!sin2~kya!1e2#1/2/~11e2!1/2, ~10!

cas~k!5cos~kxa!1cos~kya!, ~11!

cod~k!5cos~kxa!2cos~kya!, ~12!

cede~k!5@cos~kxa!2cos~kya!#$@cos~kxa!2cos~kya!#2

1e2%1/2/~11e2!1/2, ~13!

ccde~k!5@cos~kxa!2cos~kya!#@sin2~kxa!sin2~kya!

1e2#1/2/~11e2!1/2, ~14!

and

cad~k!5@cos~kxa!2cos~kya!#@cos~kxa!1cos~kya!#.
~15!

For simplicity, we shall denote these the ‘‘ordinary-s-wave,’’
‘‘extended-s-wave,’’ ‘‘compressed-s-wave,’’ ‘‘anomalous-
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MODELS OFc-AXIS TWIST JOSEPHSON TUNNELING PHYSICAL REVIEW B64 174507
s-wave,’’ ‘‘ordinary-dx22y2-wave,’’ ‘‘extended-dx22y2-
wave,’’ ‘‘compressed-dx22y2-wave,’’ and ‘‘anomalous-
dx22y2-wave’’ OP’s, respectively.48 Since the ordinary- and
anomalous-s- anddx22y2-wave OP’s do not depend upon th
parametere, we drop thee in their gap function subscripts

Setting e→0 leads to the ‘‘fully extended-’’ or ‘‘fully
compressed-’’s-wave anddx22y2-wave forms, each propor
tional to ucos(kxa)2cos(kya)u and usin(kxa)sin(kya)u, respec-
tively, which have nodes at the same places on the Fe
surface as do the ordinary-dx22y2- and dxy-wave supercon-
ductors, respectively. The first four and the second four
specific examples of the ‘‘general-s-wave’’ and ‘‘general-
dx22y2-wave’’ OP’s,

c ise~k!5 (
n,m50

`

ai ,nm~e!cos~nkxa!cos~mkya! ~16!

and

c ide~k!5 (
n,m50

`

ãi ,nm~e!@cos~kxa!2cos~kya!#

3cos~nkxa!cos~mkya!, ~17!

respectively, where ai ,nm(e)5ai ,mn(e) and ãi ,nm(e)
5ãi ,mn(e), which were described previously.40 Here we take
ãi ,nm(e)5ai ,nm(e).

We remark that the anomalous-s-wave OP changes sig
on the tight-binding Fermi surface, and averages to zero o
the first BZ. However, its average on the tight-binding Fer
surface is not zero, so we include it for comparison. T
simplest coefficients are for the ordinary and anomal
functions, which are

ao,nm5dn,0dm,0 ~18!

and

aa,nm5dn,1dm,01dn,0dm,1 ,

respectively, wheredn,0 is the Kronecker delta. The full se
of coefficientsai ,nm(0) for i 5c,e from which thec i z0(k)
are constructed are given in Appendix A. Keeping only t
leading terms in the expansions forces0(k) andccs0(k) in
the e→0 limit, one finds

ces0~k!→ 8

p2 S 12
4

3
cos~kxa!cos~kya!

1
2

9
@cos~2kxa!1cos~2kya!#1••• D ~19!

and

ccs0~k!→ 4

p2 S 12
2

3
@cos~2kxa!1cos~2kya!#1••• D .

~20!

When the phenomenological pairing interacti
lces0(k)ces0(k8), which leads to the gap functionces0(k),
is transformed into real space, one sees thatces0(k) involves
17450
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strong on-site pairing, stronger next-nearest neighbor re
sion, weak next-next-nearest-neighbor attraction, and the
maining real-space interaction terms are successiv
weaker. Similarly,ccs0(k) involves strong on-site pairing
slightly weaker next-next-nearest-neighbor repulsion, e
SettingeÞ0 modifies the relative strengths of theae,nm(e)
andac,nm(e).

We also studied thedx22y2-wave OP obtained from the
repulsive interaction,49,50

V~q!52V0 (
Q5(61,61)p/a

G/@~q2Q!21G2#, ~21!

where V05556 meV andG50.1. The BCS equation wa
solved forD(k,T) in terms ofV(k2k8), yielding D(k,T)
5D0(T)wd(k). We then constructed an extended-s-wave OP
from the absolute magnitude of thedx22y2-wave form ob-
tained from Eq.~21!, wes(k)5uwd(k)u. The isotropics-wave
OP was taken to have its maximum magnitude,ws(k)
5maxk$uwd(k)u%, a constant. The main differences betwe
these models and the OP forms studied in Eqs.~8!–~15! are
that thed-wave and extended-s-wave forms so obtained hav
somewhat different wave-vector forms from those withe
50 in Eqs.~12! and ~9!, respectively. We included the um
klapp terms which occur with rotated Fermi surfaces, but
effects of doing so were very small in all cases we studied
found previously.41

We remark that this particular form of pairing interactio
does not easily lead to an extended-s-wave form of the OP,
even when one changes the sign of the interaction, or add
attractive term of similar form. However, semimicroscop
models of the pairing interaction exist which result in high
anisotropic OP’s of general-s-wave symmetry,51 some of
which even give OP’s with nodes.52 One such model is base
upon the work of Andersenet al.,46 in which they showed
that the interaction could be large only at rather isola
points in the BZ. Although those authors did not explicit
consider ans-wave state, we have modified their procedur
to do so. Through the various hopping matrix elements,
interaction between the quasiparticles depends upon t
particular positions within the BZ. This is particularly tru
when one considers the large density of states present o
saddle bands, such as those near to theM̄ point in the first
BZ of Bi2212. Such an interaction could give an OP that
nearly zero over large regions of the BZ, and hence o
finite regions of the Fermi surface. In general, an extend
s-wave gap function proportional towes(k) is consistent
with essentially all non-phase-sensitive experiments.

We shall also use a simpler model, which might be app
priate for electron-doped HTSC, with an isotropic in-pla
quasiparticle dispersion. Assuming as usual that the m
contributions to all the momentum integrals come from t
vicinity of the Fermi surface, we can integrate out the qu
siparticle energy. We then only need to consider the OP’s
a circular Fermi surface, which allows us to perform many
the calculations analytically.

In analogy with the real-space pairing OP’s, we study
Fermi-surface-restricted pairing ordinary-, extende
7-5
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compressed-, and anomalous-s- and dx22y2-wave OP’s, re-
spectively,D i ze(fk ,T)5D0(T)c̃ i ze(fk), wherei 5o,e,c,a,
andz5s,d,

c̃os~fk!51, ~22!

c̃ese~fk!5@cos2~2fk!1e2#1/2/~11e2!1/2, ~23!

c̃cse~fk!5@sin2~2fk!1e2#1/2/~11e2!1/2, ~24!

c̃ase~fk!5@e1cos~4fk!#/~11ueu!, ~25!

c̃od~fk!5cos~2fk!, ~26!

c̃ede~fk!5cos~2fk!@cos2~2fk!1e2#1/2/~11e2!1/2,
~27!

c̃cde~fk!5cos~2fk!@sin2~2fk!1e2#1/2/~11e2!1/2,
~28!

and

c̃ade~fk!5cos~2fk!@e1cos~4fk!#/~11ueu!, ~29!

respectively. We allow the anomalous OP’s to have ane
Þ0 in order that the average over the Fermi surface
c̃ase(fk) might be finite. These and similar functions may
written as Fourier series, in analogy to Eqs.~16! and ~17!,

c̃ ise~fk!5 (
n50

`

aisn~e!cos~4nfk! ~30!

and

c̃ ide~fk!5 (
n50

`

aidn~e!cos@~4n12!fk#, ~31!

for i 5o,e,c,a, respectively. The ordinary and anomalo
coefficients are

aosn5aodn5dn,0 , ~32!

aasn~e!5
edn,01dn,1

11ueu
, ~33!

and

aadn~e!5
~2e11!dn,01dn,1

2~11ueu!
.

The extended and compressed coefficientsai zn(0) for i
5e,c andz5s,d are given in Appendix A.

III. THE TUNNELING MODELS

We shall assume thatf J(k,k8)5 f J(k2k8) satisfies time-
reversal invariance and depends only upon the change in
quasiparticle momentum parallel to the tunnel junctionk
2k8. Previously, we investigated the case in whichf J(k
2k8)}d(k2k8), appropriate for coherent tunneling.41 We
found that it made very little difference whether or not o
17450
f

he

included umklapp terms in the integrals in Eq.~1!. We solved
the model to all orders in the tunneling strength, optimizi
Jc

J(f0) with respect to the phase difference across adjac
junctions. For the ordinary-dx22y2-wave OP, weak coheren
tunneling always gaveJc,d

J (p/4)50. Although higher-order
coherent tunneling processes allowedJc,d

J (p/4)Þ0, inevita-
bly Jc,d

J (p/4)/Jc,d
J (0)!1 for all T<Tc ,41 so that it was still

impossible to fit the data of Liet al. with a d-wave OP.
Twisting of the nominallydx22y2-wave OP by mixing in
components ofdxy symmetry was found to give a potentiall
substantialJc,d

J (p/4)/Jc,d
J (0) for T!Tc , but we always

found Jc,d
J (p/4)/Jc,d

J (0)!1 near Tc .40 For Bi2212, the
c-axis tunneling is so much weaker than the in-plane inter
hopping strength, thatJc,d

J (p/4)/Jc,d
J (0)!1 for a wide-T re-

gion belowTc .
However, we found that for Fermi surfaces similar to th

pictured in Fig. 1, even for an isotropics-wave OP, it was not
possible to obtain a quantitative fit to the data with coher
tunneling.8,41 We then argued that for extremely incohere
tunneling, with f J(k2k8)5 f 0

J , a constant, thes-wave and
extended-s-wave OP’s could both fit the data quantitativel
But, we did not discuss the intermediate tunneling cohere
cases in any detail, and that is our purpose here. To b
general as possible, we shall study five tunneling mod
which interpolate between these two limits, using the ei
OP’s ofs- anddx22y2-wave symmetry described in Eqs.~8!–
~15!.

The most natural model quantifying the coherence of
tunneling matrix element squared is a Gaussian function
k2k8,

f G
J ~k2k8!5 f 0G

J exp@2~k2k8!2/s̃2#, ~34!

where

s̃521/2ps/a. ~35!

Sinces50 ands→` result in purely coherent and incohe
ent tunneling,s is the dimensionless parameter quantifyi
the coherence of the tunneling. In addition, we shall stu
four other models,

f E
J ~k2k8!5 f 0E

J exp@2uk2k8u/s̃#, ~36!

f L
J~k2k8!5

f 0L
J

@11~kx2kx8!2/s̃2#@11~ky2ky8!2/s̃2#
,

~37!

f RL
J ~k2k8!5

f 0RL
J

11~k2k8!4/s̃4
, ~38!

and

f SL
J ~k2k8!5

f 0SL
J

11~k2k8!2/s̃2
, ~39!

which are exponential, Lorentzian, rotationally invaria
Lorentzian, and ‘‘stretched Lorentzian,’’ respectively, ink
2k8. We included the exponential and Lorentzian mode
which are nonanalytic ink2k8 and nonrotationally invari-
7-6
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ant, respectively, in order to investigate the most gen
types of tunneling behavior that can occur between the
herent and incoherent limits. In addition, we included bo
the rotationally invariant and stretched Lorentzian mode
since their leading contributions near the incoherent li
coupling d-wave superconductors have different signs. T
f 0i

J are constants that normalize the overall tunneling t
particular strength, which we characterize equivalently foi
5G,E,L,RL,SL in terms of an effectivec-axis ‘‘scattering
rate’’ 1/t' for all processes in the first BZ,53

^ f i
J~k2k8!&51/t' . ~40!

Similar models were employed by others.25,53–56 In Fig. 1,
the shaded concentric circles indicate how the range of
mentum states accessible by tunneling from the central p
increases with s2. In the shaded regions, 1/e< f G

J (k
2k8)/ f 0G

J , f E
J (k2k8)/ f 0E

J <1 and 1/2< f RL
J (k2k8)/ f 0L

J ,
f SL

J (k2k8)/ f 0SL
J <1. For a givens2, the various models dif-

fer considerably, when one defines a range of tunneling p
cesses by requiringf J to be less than some fraction of i
maximum. We note that for the Lorentzian model, one wo
have to replace these concentric circles with concentric
ures of tetragonal symmetry, having minima along thex and
y axes, and maxima along the diagonals. The dependenc
each of these tunneling functions uponuk2k8u is shown in
Fig. 2. For the Lorentzian model, we only showed the dep
dencies along the axes and the diagonals.

A. Circular Fermi-surface models

For a circular Fermi-surface cross section, we writek
5kF(cosfk ,sinfk), etc. Then, Eqs.~34!–~39! can be re-
written, letting

g5~akF /ps!2, ~41!

leading to

FIG. 2. Plots off J(k2k8) for the five models of the tunneling
matrix element squared. The Gaussian~solid circles!, exponential
~open circles!, rotationally invariant Lorentzian~open triangles!,
and stretched Lorentzian~solid inverted triangles! models are
shown as indicated.f J for the Lorentzian model varies from th
curve with open diamonds forukx2kx8u5uky2ky8u to that of the
stretched Lorentzian~solid inverted triangles! for either kx5kx8 or
ky5ky8.
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f G
J ~fk2fk8!5 f̃ 0G

J exp$2g@12cos~fk2fk8!#%, ~42!

f E
J ~fk2fk8!5 f̃ 0E

J exp$2A2gusin@~fk2fk8!/2#u%,
~43!

f L
J~fk ,fk8!

5
f̃ 0L

J

@11g~cosfk2cosfk8!
2#@11g~sinfk2sinfk8!

2#
,

~44!

f RL
J ~fk2fk8!5

f̃ 0RL
J

11g2@12cos~fk2fk8!#
2 , ~45!

and

f SL
J ~fk2fk8!5

f̃ 0SL
J

11g@12cos~fk2fk8!#
, ~46!

~47!

where the f̃ 0i
J are different normalization constants. Th

Gaussian function,f G
J (fk2fk8), is identical to that of Graf

et al.,53 provided thatf̃ 0G
J 5exp(g)/@t'I0(g)#, whereI n(z) is a

Bessel function and 1/t' is the effective interlayer tunneling
rate,

1/t'5E
0

2p

df f i
J~f!/2p ~48!

and

1/t'5E
0

2p

dfE
0

2p

df8 f L
J~f,f8!/~2p!2 ~49!

for the rotationally invariant models and for the Lorentzi
model, respectively.

We first consider anarbitrary rotationally invariant
f J(g,fk2fk8) on a circular Fermi-surface cross sectio
whereg is the parameter characterizingf J such that in the
incoherent limit,g→0, f J(0,fk2fk8)51/t' , and in the
coherent limit,g→`, f J(`,fk2fk8)5d(fk2fk8)/t' , re-
spectively. To do so, we writef J in terms of its Fourier
series.

f J~g,fk2fk8!5
1

t'
(
n50

`

f n~g!cos@n~fk2fk8!#, ~50!

where

f n~g!5
*0

2pdf f J~g,f!cos~nf!

*0
2p f J~g,f!df

. ~51!

For the Lorentzian model, f L
J(g,fk ,fk8) may be

expanded as

f L
J~g,fk ,fk8!5

1

t'
(

n,m50

`

f n,m
L ~g!cos@2n~fk2fk8!#

3cos@4m~fk1fk8!#. ~52!
7-7
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The f n(g) for the four specific rotationally invariant mode
and thef n,m

L (g) are given in Appendix B, along with som
useful asymptotic expansions near the coherent and inco
ent limits.

Just belowTc , D0(T)→0, and

FIG. 3. Plots oft'Jc
J/C0D0

2 at Tc andf050, which isf iee(g,0)
and f od(g) for the extended- and compressed-s-wave with e50
~dotted curves! and e51 ~dashed curves!, and ordinary-
dx22y2-wave ~solid curves! OP’s on the circular Fermi surface, re
spectively, versus 1/g. Results for the Gaussian~solid circles!, ex-
ponential~open circles!, rotationally invariant Lorentzian~open tri-
angles!, stretched Lorentzian~solid inverted triangles!, and
Lorentzian~open diamonds! models are shown.

FIG. 4. Plots off is0(g,f0)5t'Jc,is0
J (f0)/C0D0

2 just belowTc

for the extended- and compressed-s-wave OP’s (i 5e,c) on a cir-
cular Fermi surface, as a function off0, at theg values 10x, where
x50 ~thick line!, 1/2 ~dash-dotted!, 1 ~dashed!, 3/2 ~dotted!, 2 ~thin
solid!, and for the coherent limitg→` ~thick solid curve!. Results
for the Gaussian~solid circles!, exponential~open circles!, rotation-
ally invariant Lorentzian~open triangles!, and stretched Lorentzian
~solid inverted triangles! are shown.
17450
er-

Jc,i ze
J ~g,f0!

5C0u^ f J~g,fk ,fk8!D i ze~fk ,T!D i ze~f k̃8 ,T!&fk ,fk8
u,

~53!

whereC05em2/(4Tc), m is the in-plane effective mass,z
5s,d andi 5o,e,c,a index the OP’s, andf k̃85fk1f0. We
find for a general rotationally invariant tunneling model th

Jc,i ze
J ~g,f0!5C0D0

2~T!u f i ze~g,f0!u/t' , ~54!

for i 5o,e,c,a andz5s,d, where

f ise~g,f0!5
1

2 (
n50

`

~11dn,0!aisn
2 ~e!cos~4nf0! f 4n~g!,

~55!

f ide~g,f0!5
1

2 (
n50

`

aidn
2 ~e!cos@~4n12!f0# f 4n12~g!,

~56!

and thef n(g) are given by Eq.~51!. These results are pre
sented in Figs. 3–6.

For the Lorentzian model, Eq.~54! still applies, but the
functions f ise(g,f0) and f ide(g,f0) for i 5o,e,c,a are, re-
spectively replaced by

f ise~g,f0!5
1

2 (
n,m50

`

aisn~e!aism~e!cos~4mf0!

3@ f 2(n1m),un2mu
L ~g!1 f 2un2mu,n1m

L ~g!#

~57!

and

FIG. 5. Plots of f id0(g,0)5t'Jc
J/C0D0

2 at Tc , e50, and f0

50, for the extended-~dotted! and compressed-~solid! dx2y2-wave
OP’s on the circular Fermi surface, respectively, versus 1/g. Results
for the Gaussian~solid circles!, exponential~open circles!, rotation-
ally invariant Lorentzian~open triangles!, stretched Lorentzian~in-
verted solid triangles!, and Lorentzian~open diamonds! models are
shown.
7-8
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f ide~g,f0!5
1

2 (
n,m50

`

aidn~e!aidm~e!cos@~4m12!f0#

3@ f 2un2mu,n1m11
L ~g!1 f 2(n1m11),un2mu

L ~g!#.

~58!

The ordinary-dx22y2-wave Jc,od
J (g,f0)}u f od(g,f0)u. In

the four rotationally invariant models, f od(g,f0)
5cos(2f0)f2(g)/2, and in the Lorentzian model,f od(g,f0)
5cos(2f0)@f2,0

L (g)1 f 0,1
L (g)#/2. Hence, we conclude that fo

all five tunneling models,Jc,od
J (g,f0)}ucos(2f0)u, even for

the Lorentzian model, which is somewhat surprising, as i
not rotationally invariant. We note that these calculatio
were only performed just belowTc , and one might therefore
imagine that a more complicatedf0 dependence would oc
cur at lowerT. As shown in the following, however, suc
corrections are weak, and do not change the result of
theorem thatJc,d(g,p/4)50 for all T<Tc . In addition, in
the incoherent limit, f od(0,f0)50, with the exponential
model giving the slowest approach to 0. In contrast,
ordinary-s-wave Jc,os

J (g,f0)}u f os(g,f0)u51 for all five
tunneling models is completely independent off0 and of the
details of f J(g,fk ,fk8);g.

At f050, the ordinary-dx22y2-wave functionsf od(g,0)
for all five tunneling models are plotted versus 1/g in Fig. 3.
The rotationally invariant Lorentzian model gives rise to
f od(g,0) that changes sign with decreasingg, as evidenced
by comparing Eqs.~B7! and ~B11! and by examining the
figure. This is not too surprising, because in the approac
the incoherent limit, the tunneling process can occur betw
different lobes of thedx22y2-wave OP, which can give a
negative contribution toJc,ide

J (g,0). Whether an overall posi
tive or negative sign wins thus depends on the precise de
of the falloff of f J(fk2fk8) with fk2fk8 . Almost all
models, including the four other models we have explici
studied, give rise to a positive overall value, but the rotati

FIG. 6. Plots ofJc
J(f0)/Jc

J(0) at Tc and the coherent limitg
→`, for the ordinary-dx22y2-wave ~solid!, ucos(2f0)u, extended-
dx22y2-wave ~dashed!, compressed-dx22y2-wave ~dotted!, and
anomalous-dx22y2-wave ~dash-dotted! f id0(`,f0) (e50), and the
anomalous-s-wave ~dash-dot-dot-dotted! f as0(`,f0) on a circular
Fermi surface, respectively, with rotationally invariant tunneli
matrix elements squared. Results for the Lorentzian~open dia-
monds! model are also shown.
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ally invariant Lorentzian model is special, since expand
Eq. ~45! to order g2 leads to a negative leading term fo
Jc,ide

J (g,0) for sufficiently smallg. In addition, it is easily
seen from Fig. 3 that the Lorentzian model gives the larg
ordinary-dx22y2-wave f od(g,0) value at intermediateg val-
ues in this circular Fermi-surface calculation. For smalleg
values~not pictured!, the exponential model gives the large
f od(g,0). The same qualitative features are seen for
extended-d-wave and compressed-d-wave models, as shown
in Fig. 5. Regardless of the value ofg @e.g., even wheng is
near to the value at whichf ide(g,0) changes sign in the
rotationally invariant tunneling model#, Eq. ~56! shows that
f ide(g,f0) has the same basicf0 dependence as for an
otherg value, vanishing atf050.

For the general Fermi-surface restricted mod
Jc,ise

J (g,f0)/Jc,s
J 5 f ise(g,f0) at Tc , which is periodic inf0

with period p/2, satisfying f ise(g,6p/22f0)5 f ise(g,f0)
for i 5c,e,a. We first consider the anomalous-s-wave case,
f ase(g,f0)5@e21 1

2 f 4(g)cos(4f0)#/(11ueu)2. For each rota-
tionally invariant tunneling model, this varies smooth
between the coherent limit @e21 1

2 cos(4f0)#/(11ueu)2

and the incoherent limit e2/(11ueu)2. For the
Lorentzian model,f ase(g,f0)5$e21e@11cos(4f0)#f2,1

L (g)
1 1

2 cos(4f0)@f0,2
L (g)1 f 4,0

L (g)#%/(11ueu)2. This has the same
incoherent limit as for the rotationally invariant tunnelin
models, but the coherent limit also contains
f0-independent part that vanishes in the incoherent limit.
note that the ‘‘fully’’ anomalous-s-wave OP hasf as0(g,f0)
}cos(4f0), with a coefficient, f 4(g)/2 or @ f 0,2

L (g)
1 f 4,0

L (g)#/2 for the Lorentzian model, that vanishes in th
incoherent limit.Jc,as0

J (g,f0) vanishes atf05p/8, but not
at p/4, as shown in Fig. 6.

Next, we consider thei 5e,c s-wave cases. For the fou
rotationally invariant models, these functions are identical
Fig. 3, we show the very weakg dependence off iee(g,0) for
e50,1 for all five tunneling models. In Fig. 4, we plo
f ie0(g,f0) for the four rotationally invariant models. W
omitted the Lorentzian model for clarity of presentation.
the coherent limit fore50, f is0(`,f0)5@ usin(2f0)u1(p/2
22uf0u)cos(2f0)#/p in the domainuf0u<p/2. f is0(`,f0)
has maxima of 1/2 atf05np/2 and minima of 1/p at f0
5(2n11)p/4 for integern. In the incoherent limitg→0 for
all five tunneling models,f ise(0,f0)→@2E(k)/p#2, where
k5(e211)21/2 and E(k) is a complete elliptic integral. In
addition, regardless ofg and of the form off J(g,fk2fk8),
the mean value (4/p)*0

p/4df0f ise(g,f0)5@2E(k)/p#2, pre-
cisely the incoherent limit. This reduces to (2/p)2 and 1 in
the e→0 ande→` limits, respectively.

In addition, thes-wave functionsf ise(g,0) for i 5c,e also
decrease from (1/21e2)/(11e2) at g→` with decreasing
g, but not nearly as dramatically, approaching@2E(k)/p#2

as g→0, nearly independent of the details of the tunneli
model. For smalle, however,f ase(g,0) decreases dramat
cally, almost as much asf od(g,0), as the cos(4f0) part of
f ase(g,f0) gets washed out by the rapidly decreasingf 4(g)
coefficient. In the isotropics-wave limit e→`, f is`(g,0)
51 for i 5c,e,a is completely independent ofg for all mod-
els. The functionsf od(g,0) andf ise(g,0) for e50 and 1 are
7-9
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compared in Fig. 3, where they are plotted as functions
1/g for clarity. Clearly, fore>1, f ise(g,0) is nearly indepen-
dent ofg, which also impliesJc,ise

J (g,f0) is nearly indepen-
dent off0 for e>1.

For the dx22y2-wave OP’s, Jc,ide
J (g,f0)/Jc,s

J

5 f ide(g,f0) at Tc . Again, f ide(g,6p/22f0)
5 f ide(g,f0). Theg andf0 dependencies of thef ide(g,f0)
are shown in Figs. 3, 5, and 6. For the anomalo
dx22y2-wave case with the four rotationally invariant tunne
ing models, f ade(g,f0)5@(2e11)2f 2(g)cos(2f0)
1f6(g)cos(6f0)#/@8(11ueu)2#. For the Lorentzian
model, f ade(g,f0)5@(A1C)cos(2f0)1(B1C)cos(6f0)#/
@8(11ueu)2#, where A5(2e11)2@ f 2,0

L (g)1 f 0,1
L (g)#, B

54@ f 6,0
L (g)1 f 0,3

L (g)#, and C52(e11)@ f 2,2
L (g)1 f 4,1

L (g)#.
Hence, for all five models,f ade(g,f0) clearly vanishes a
f05p/4 for all e,g values. In the coherent limit for all fou
rotationally invariant tunneling models, this approach
@(2e11)2cos(2f0)1cos(6f0)#/@8(11ueu)2#. For the Lorentz-
ian model, the coefficients are slightly different, as fou
from Eq. ~B19! in Appendix B. Asg→0, f ade(0,f0)→0.
The exponential model gives the slowest approach to z
for both the cos(2f0) and cos(6f0) terms, of all five models.

For the i 5c,e dx22y2-wave OP models ase→0 for all
four rotationally invariant tunneling models in the cohere

limit, f ed0(`,f0)5@ 3
2 usin(4f0)u1(p24uf0u)cos(4f0)#/(4p)

and f cd0(`,f0)5@ usin(4f0)u1(p24uf0u)cos(4f0)#/(8p). Al-
though these functions both vanish atp/4, they are not
equivalent, asf ed0(`,0)5 3

8 , but f cd0(`,0)5 1
8 , as seen in

Fig. 5. This difference atf050 arises from the anisotropy o
the c̃ is0(fk) relative to that of c̃od(fk) present in the
c̃ id0(fk). In Fig. 6, we show thef0 dependence of the ro
tationally invariant coherent limitf id0(`,f0), along with the
ucos(2f0)u behavior obtained for thedx22y2-wave OP. We
also show the results for the coherent limit in the Lorentz
model, which are indicated by the open diamonds. We n
that for thedx22y2-wave OP, the Lorentzian tunneling resu
for Jc,od

J (f0)/Jc,od
J (0) are indistinguishable from those o

the rotationally invariant models. This is somewhat rema
able, as the magnitudes ofJc,od

J (0) are not identical. For the
compressed- and extended-dx22y2-wave OP’s, however, the
identicalf0 dependence ofJc,ide

J obtained with the Lorent-
zian model is somewhat different from that obtained fro
the rotationally invariant tunneling models. Asg→0, both of
the f ide(0,f0)→0. Again, the exponential model has th
slowest decay to zero. Regardless ofe,g, f ide(g,p/4)50.

In the coherent limit, except for the Lorentzian mod
f ase(`,0)→(e211/2)/(11ueu)2 and for i 5c,e, f ise(`,0)
→@(1/21e2)/(11e2)# for arbitrarye. These results interpo
late smoothly and monotonically between 1/2 and 1 ae
→0 and ase→`, respectively. For other values off0 and
g, we resort to numerical evaluations. For the Lorentz
model in the coherent limit, the coefficientsf n,m

L (g→`) are
given in Appendix B. Numerically, we findf es0(`,0)
→0.530, f cs0(`,0)→0.465, but atf05p/4, f cs0(`,p/4)
5 f es0(`,p/4)50.3175. For the dx22y2-wave functions,
f ed0(`,0)→0.406, f cd0(`,0)→0.121, but they both satisfy
f id0(`,p/4)50, as required by the theorem.
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It is a curious feature of the Lorentzian model that t
coherent limits obtained for thed-wave and extended-s-wave
models are not precisely the same as those obtained by
ting f J(fk ,fk8)}d(fk2fk8). This detail is not present in
the tight-binding Lorentzian model, Eq.~37!. In that case, the
Lorentzian model is an effective smearing of the tw
dimensionald function,d (2)(k2k8), which provides two re-
lations between the four momentum variables. For circu
Fermi-surface-restricted pairings, there are only two va
ablesfk and fk8 , which again must satisfy two relation
present in the Lorentzian model, especially in the coher
limit. Hence, this overrestriction leads to a spurious slig
excess in the coherent critical current.

For all g values and for any type of time-reversa
invariant tunneling, an ordinary-dx22y2-wave OP propor-
tional to cos(2fk) satisfiesJc,od

J (f0)}ucos(2f0)u, which van-
ishes atf0545°, as shown in Fig. 6. Otherdx22y2-wave
forms, while containing contributions toJc,ide

J of the form
cos@(4n12)f0#, closely approximate the simple form
ucos(2f0)u, and always vanish atf0545°. On the other hand
Jc,ise(g,f0) for a general-s-wave superconductor is very un
likely to vanish atf05p/4, and in the incoherent limit
f ise(g,f0)→ais0

2 (e), a constant. This constant is nonvanis
ing except for the fully anomalous OP,Das0(fk)
5D0cos(4fk), but in that particular caseJc,as0

J (g,f0)
}ucos(4f0)u, and in the incoherent limit,f as0(0,f0)50, just
as all of thef ide(0,f0)50. But, f as0(g,f0) vanishes atf0
5p/8, and not atp/4, as seen in Fig. 6. Thus, even a
s-wave OP which averages to 0 over the Fermi surface
be distinguished from a general-dx22y2-wave OP in the
c-axis twist experiment.

B. Tight-binding Fermi-surface models

We calculatedJc,i ze
J (s,f0) in the standard BCS model o

superconductivity, assuming a phenomenological pairing
teraction which gives an OP of one of the forms, Eqs.~8!–
~15!, for each of the five tunneling models presented in E
~34!–~39!. For simplicity, we limit our presentation to th
caseT→Tc , since results for the Monthoux-Pines-like pa
ing models with the Gaussian tunneling model atT50.5Tc
and 0.9Tc were shown elsewhere.57 In Figs. 7–13, we pre-
sented our results for the ordinary-, extended-, compress
and anomalous-s- anddx22y2-wave OP’s withe50. Results
for intermediate values ofe, such ase51, are intermediate
between thee50 ande→` cases presented, and are omitt
for brevity of presentation.

We calculatedJc,i ze
J (s,f0) from Eq. ~1!, where just be-

low Tc , we setFv(k)5D(k,T)/@v21j2(k)# and Fv
† ( k̃8)

5Fv( k̃8) inside the argument of the absolute value sign.
each figure, the curves representing the results for the Ga
ian, exponential, rotationally invariant Lorentzian, stretch
Lorentzian, and Lorentzian models are tagged with so
circles, open circles, open triangles, inverted solid triang
and open diamonds, respectively. In addition, results for
s2 values 0.0005, 0.005, 0.05, and 0.20 are shown w
solid, dotted, dashed, and dot-dashed curves, respecti
except that for the anomalous OP’s, the solid curves rep
7-10
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MODELS OFc-AXIS TWIST JOSEPHSON TUNNELING PHYSICAL REVIEW B64 174507
FIG. 7. Plots ofJc
J(f0)/Jc

J(0) just belowTc for twist junctions
with the Fermi surface shown in Fig. 1, and an ordina
dx22y2-wave OP,D0(T)cod(k), Eq.~12!. The dimensionless param
eter s2 values 0.0005, 0.005, 0.05, and 0.20 are indicated by
thin solid, dotted, dashed, and dot-dashed curves, respectively
thick curves correspond to the coherent (s250) limit and the func-
tion ucos(2f0)u, as indicated. Results for the Gaussian~solid circles!,
exponential~open circles!, rotationally invariant Lorentzian~open
triangles!, stretched Lorentzian~solid inverted triangles!, and
Lorentzian~open diamonds! tunneling models are shown.

FIG. 8. Plots ofJc
J(f0)/Jc

J(0) just belowTc for twist junctions
with the Fermi surface shown in Fig. 1 and a compress
dx22y2-wave OP,D0(T)ccd0(k), Eq. ~14!, with e50. The curve
types and symbols are the same as in Fig. 7.
17450
sents250.0015. We also present the results for the coher
limit s250 as the thick solid curves labeled 0. For th
dx22y2-wave OP’s, the functionucos(2f0)u is shown in Figs.
7–9 as a thick solid curve for comparison. For the extend

-

e
he
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FIG. 9. Plots ofJc
J(f0)/Jc

J(0) just belowTc for twist junctions
with the Fermi surface shown in Fig. 1 and an anomalo
dx22y2-wave OP,D0(T)cad(k), Eq. ~15!. The curve types and sym
bols are the same as in Fig. 7, except that curves fors250.20 are
not shown.

FIG. 10. Plots ofJc
J(f0)/Jc

J(0) just belowTc for twist junctions
with the Fermi surface shown in Fig. 1 and an ordinary-s-wave OP,
D0(T)cos(k), a constant. The thick curves correspond to the coh
ent (s250) and incoherent (s25`, unity! limits. The thin-curve
types and symbols are the same as in Fig. 7. For clarity, the ver
axis begins at 0.2.
7-11
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d-wave OP, the peak for coherent tunneling atf0'20° is
somewhat stronger than that pictured in Fig. 7. Otherw
curves for the extended-d-wave OP are nearly indistinguish
able from those or the ordinary-d-wave OP, Fig. 7, and are
omitted for brevity. Results for the general-s-wave OP’s are

FIG. 11. Plots ofJc
J(f0)/Jc

J(0) just belowTc for twist junctions
with the Fermi surface shown in Fig. 1 and an extended-s-wave OP,
D0(T)ces0(k), Eq. ~9! with e50. The curve types and symbols a
the same as in Fig. 10.

FIG. 12. Plots ofJc
J(f0)/Jc

J(0) just belowTc for twist junctions
with the Fermi surface shown in Fig. 1 and a compressed-s-wave
OP,D0(T)ccs0(k), Eq. ~10!, with e50. The curve types and sym
bols are the same as in Fig. 10, except that curves fors250.20 are
not shown.
17450
e,
pictured in Figs. 10–13. In these figures, we label the in
herent limitJc,ise

J (`,f0)/Jc,ise(`,0)51 at the figure bound-
ary by the symbol̀ .

For each OP, coherent tunneling causesJc
J(s,f0)/Jc

J(s,0)
to decrease sharply asf0 increases from 0°.41 This occurs
because the overlap of the tight-binding Fermi surfa
changes dramatically from a continuous curve forf050 to a
set of four points forf0.0°.

In comparing Figs. 7–9 for OP’s with general-d-wave
symmetry, we first see that they all obey the theorem req
ing Jc,ide

J (s,p/4)50. This is contrasted sharply with the be
havior of the general-s-wave OP’s, shown in Figs. 10–13. I
those figures, Jc,s

J (s,p/4), while often smaller than
Jc,s

J (s,0), is always finite. In addition, we see that for Fig
7, 8, 10, and 11, and also for the unpictured results for
extended-d-wave OP, the precise details of the Fermi surfa
give rise to a prominent peak inJc,i ze

J (s,f0) at f05f0*
'20° in the coherent limit. In these figures, this peak ari
when the rotated Fermi surfaces intersect at eight poi
instead of just four forf0,f0* . However, in Figs. 9, 12,
and 13, the anomalous-dx22y2-wave and compressed- an
anomalous-s-wave OP’s yield somewhat different results.
these cases, the parts of the Fermi surface that play the d
nant role in this peak effect are those nearest to the edg
the Brillouin zone, where these OP’s vanish. Thus, we obt
instead a smooth curve, which flattens for large twist ang
This arises from a complicated mix of the Fermi surface a
OP anisotropy.

For tunneling that is nearly coherent,s2,0.005, we see
in each of these seven figures that the coherent limit res
for Jc,i ze

J (s,f0)/Jc,i ze
J (s,0) are most closely approximate

by the Gaussian tunneling model, followed by the rotatio

FIG. 13. Plots ofJc
J(f0)/Jc

J(0) just belowTc for twist junctions
with the Fermi surface shown in Fig. 1 and an anomalous-s-wave
OP, D0(T)cas(k), Eq. ~11!. The curve types and symbols are th
same as in Fig. 10, except that curves fors250.20 are not shown.
7-12
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MODELS OFc-AXIS TWIST JOSEPHSON TUNNELING PHYSICAL REVIEW B64 174507
ally invariant Lorentzian, the exponential, the Lorentzia
and the stretched Lorentzian models. This order is ne
maintained fors250.005, although in Fig. 7, there is a slig
change in the order of the results from the Lorentzian a
exponential tunneling models forf0,f0* . For s250.0005,
the peak inJc,i ze

J (f0) at f0* is still evident in Figs. 7, 8, 10
and 11, although in the stretched Lorentzian model, it
been smeared out the most, having been reduced to a s
der in some of the figures. Fors250.005, the peak atf0* has
been reduced to a shoulder at best in Figs. 7, 8, 10, and

As for Fig. 6, we see that in Figs. 7–9 for the vario
general-dx22y2-wave models, thes250.05 curves differ
from ucos(2f0)u by less than 10%, and thes250.2 results
are almost indistinguishable from it. In Fig. 7, the differenc
are barely perceptible. But, in Fig. 8, the compress
dx22y2-wave OP results fors250.2 fall within the width of
the thick solid line representingucos(2f0)u. Although not pic-
tured, this is also true for the anomalous-dx22y2-wave OP
results. The approach to the incoherent limit for t
dx22y2-wave OP’s depends somewhat upon the particu
tunneling model. Fors250.05 and 0.2, the order of the re
sults obtained with the various tunneling models has b
altered from that near the coherent limit, but differently
each figure. Most prominent is the curve fors250.2 ob-
tained with the rotationally invariant Lorentzian model a
the compressed-dx22y2-wave OP, which actually lies abov
the ucos(2f0)u curve. Likewise, for the general-s-wave mod-
els, Figs. 10 – 13 show that fors250.05 and 0.2, the orde
of the results obtained with the different models has b
altered somewhat from that near the coherent limit. Althou
the Gaussian results still lie below the others, the orde
increasingJc,ise

J (s,f0)/Jc,ise
J (s,0) is now Gaussian, expo

nential, Lorentzian, stretched Lorentzian, and finally ro
tionally invariant Lorentzian.

We remark that for the ordinary-s-wave OP, Fig. 10
shows that all of thes250.2 curves are consistent with th
data of Li et al., and the curves fors250.05 are generally
inconsistent with the data, although the exponential, Lore
zian, and stretched Lorentzian models give results that d
from the data by only one standard deviation.8 For the
extended-s-wave OP, however, Fig. 11 shows that all of t
s250.05 curves are inconsistent with the data, but thes2

50.2 curves for the rotationally invariant Lorentzian a
stretched Lorentzian models are consistent with the dat
Li et al., with the other tunneling models giving results th
are only marginally consistent with the data fors250.2.
However, Figs. 12 and 13 show that the compressed-
anomalous-s-wave OP’s are less sensitive to the amount
tunneling incoherence than are the other general-s-wave
OP’s. In this case, all of the curves fors250.2 are rather
indistinguishable from unity, and thus cannot be exclud
Furthermore, the curves fors250.05 are at least marginall
consistent with the data, and for the stretched and rotat
ally invariant Lorentzian tunneling models are within o
standard deviation of the data. In any event, one must ha
general-s-wave OP symmetry to fit the data, and the tunn
ing must be very nearly incoherent, withs2>0.05. As seen
from Fig. 1, this implies that the change in parallel wa
17450
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vector of the quasiparticles involved in the tunneling mu
cover a substantial fraction(7%) of thefirst BZ.

For the Monthoux-Pines-like pairing models leading
the ordinary-d-wave, extended-s-wave and ordinary-s-wave
OP’s, we previously performed explicit calculations
Jc

J(f0) at T/Tc50.5,0.9, with the Gaussian tunneling mode
Eq. ~34!.57 In Fig. 14, we normalized those results for th
dx22y2-wave OP atT50.5Tc relative to its value atf050,
for comparison with the results shown in Figs. 7–13. It
easily seen that the curves in Fig. 14 are nearly indistingu
able from the respective Gaussian tunneling curves for
ordinary-d-wave OP just belowTc , pictured in Fig. 7. Simi-
larly, the analogous curves for the Monthoux-Pines-li
extended-s OP at 0.5Tc are nearly indistinguishable from th
respective Gaussian curves just belowT5Tc , pictured in
Fig. 11. Results for the ordinary-s-wave OP are slightly dif-
ferent from the Gaussian curves pictured in Fig. 10, with
largest difference being in the coherent limit atf0545°,
where the unpictured result has the value 0.35. The gen
shapes of the curves are otherwise nearly indistinguish
from those pictured in Fig. 10, and hence for brevity the
extended- and ordinary-s-wave results are not pictured. W
remark that going to lower-T values does not change an
thing qualitatively. The criteria for the twist theorem to ho
do not involve the temperature, as long as it is belowTc , so
that the critical current for a superconductor with gener
d-wave symmetry must vanish atf050. The only changes
that we expect are thus small ones for the general-s-wave OP
forms.

The fact that our results for OP forms with somewh
different wave-vector dependencies are so similar is imp
tant. This demonstrates that the dominant contributions to
c-axis tunneling arise from pairing in the regions in the fi
BZ nearest to the Fermi surface. Thus, we expect that
models which also involve pairing away from the Fermi su
face should not differ substantially from those presen

FIG. 14. Plots ofJc
J(f0)/Jc

J(0) at T/Tc50.5 for Gaussian twist
junctions with the Fermi surface shown in Fig. 1, and
dx22y2-wave OP obtained from the Monthoux-Pines pairing mod
The Gaussian dimensionless parameterss2 values are indicated
Curves fors250.25 and 0.50 are nearly indistinguishable from t
incoherent limit functionucos(2f0)u.
7-13
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here, as long as their projections onto the Fermi surface
similar to those of the OP forms studied here.

IV. THE INCOHERENT LIMIT

We now discuss in detail the approach to the incoher
limit for c-axis twist junctions involving adx22y2-wave su-
perconductor. For each of the five models we have con
ered, we have characterized the crossover from the cohe
to the incoherent limits with a single parameters̃. As s̃
→`, f J(k2k8)→1/t' , a constant. Thus, for there to be an
coupling between twodx22y2-wave superconductors,f J(k
2k8) must depend uponk2k8. In the circular Fermi-surface
model, this can be incorporated by lettingf J(fk2fk8)
51/t's11/t'dcos@2(fk2fk8)#.25,53–56 However, it is el-
ementary to show that this model leads toJc,ise

J (f0)}1/t's

andJc,ide
J (f0)}ucos(2f0)u/t'd , even for the most general-s-

and dx22y2-wave OP forms given by Eqs.~30! and ~31!,
respectively. For more general forms off J(fk2fk8), the
critical current just belowTc is given by Eqs.~54!–~58! for
arbitraryg, including the incoherent limitg→0

A similar statement can be made for the tight-bindi
band, as well. We assume thatf J(k2k8) is rotationally in-
variant. As the incoherent limit is approached, we then
sume

f J~k2k8!→@12cmu~k2k8!/s̃ !um]/ t' , ~59!

wherecm is a dimensionless constant of order unity. In t
models discussed here,m51,2,4, but we can generally allow
m to be any positive real number. We then writet' f J(k
2k8)21 in terms of a Taylor series ink•k8, which does not
terminate unlessm is an even integer,

t' f J~k2k8!21→2cmF ~k21k82!

s̃2 Gm/2

(
l 50

S 2k•k8

k21k82D 2l

Alm ,

~60!

where

Alm5
G~m/211!

G~m/222l 11!~2l !!
~61!

and G(x) is the gamma function. Some features of theAlm
are discussed in Appendix C. We have kept only terms w
even powers ofk•k8, as the terms with odd powers are on
appropriate for triplet superconductors. Since our numer
calculations have shown that it makes essentially no dif
ence if one includes umklapp processes or not, we are fre
include the wave vectors that appear in only one of the fi
BZ’s on an equal basis with those that appear in both fi
BZ’s. Now, it is simplest to do the integral in Eq.~1! in the
following way. We let the integration variables bek and k̃8.
Then, we rotate the variablesk̃8 and k8 in f J(k2k8) by
2f0 about thec axis, relative to thek̃8. Now, the integration
variables are justk andk8 instead of rotated ones. We the
redefinek andk8 to be the wave vectors in theF functions in
Eq. ~1!, and letk̃5k andk̃8 be these rotated wave vectors
17450
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f J. Sincek̃21 k̃825k21k82 is invariant under such rotations
the only quantity in Eq.~60! which is altered by the rotation
is k•k8, which becomes

k̃• k̃85kk8cos~fk2fk82f0!, ~62!

where we used polar coordinates,k5k(cosfk ,sinfk), etc.
It is then straightforward to show that the general-s- and
dx22y2-wave critical current densities, for arbitraryT<Tc ,
and an arbitrary tetragonal Fermi surface, near the incohe
limit of an arbitrary tunneling matrix element squared, r
duce to

Jc,s
J ~s,f0 ,T! s@1

→ U4eT

t'
(
v

FPs0
00~v!2

cm

s̃m (
l 50

`

Alm

3 (
m50

E( l /2)

CslmPsm
lm~v!cos~4mf0!GU

~63!

and

Jc,d
J ~s,f0 ,T! s@1

→ U4eT

t'
(
v

~2cm!

s̃m (
l 51

`

Alm

3 (
m50

E@~ l 21!/2#

CdlmPdm
lm ~v!cos@~4m12!f0#U,

~64!

where

Psm
lm~v!5^Fv~k!Fv~k8!Slm~k!Slm~k8!~k21k82!m/222l&,

~65!

Pdm
lm ~v!5^Fv~k!Fv~k8!Dx22y2

lm
~k!Dx22y2

lm
~k8!

3~k21k82!m/222l&, ~66!

E(x) is the integer function, and the constantsCslm andCdlm

and the ‘‘tunnel functions’’Slm(k) andDx22y2
lm (k) of s- and

dx22y2-wave symmetry, respectively, are given in Append
C. There we list the tunnel functions for all (l ,m) in polar
coordinates and forl<4 in rectangular coordinates, and als
present some details of the calculation. Equations~65! and
~66! are evaluated in rectangular coordinates over the
BZ, using the tight-binding quasiparticle dispersion, Eq.~2!,
and the appropriate particular choice of the OP’s in E
~8!–~15! under study.

We rewrite Eqs.~63! and ~64! as

Jc,ise
J ~s,f0 ,T! s@1

→ U(
n50

`

bisn~e,s,T!cos~4nf0!U ~67!

and

Jc,ide
J ~s,f0 ,T!s@1

→ U(
n50

`

bidn~e,s,T!cos@~4n12!f0#U,
~68!
7-14
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MODELS OFc-AXIS TWIST JOSEPHSON TUNNELING PHYSICAL REVIEW B64 174507
which defines the coefficientsbisn andbidn . Then50 term
bis0(e,s,T) is the only nonvanishing coefficient in the inco
herent limit. Although all of thebidn(e,s,T) vanish ass
→`, the dominant one fors@1 is the n50 term,
bid0(e,s,T). For most tunneling models,bisn(e,s,T) and
bidn(e,s,T) can be shown to be of increasing order ins22

asn increases.
For the Gaussian and the stretched Lorentzian tunne

models, the leading correction to a constantf J hasm52 in
Eq. ~59! near the incoherent limit. For adx22y2-wave super-
conductor, the m52 term leads to a vanishin
Jc,ide

J (s,f0 ,T) for all f0, so one needs to go to the ne
order, m54. The resulting leading term is proportional
ucos(2f0)u. In these cases,c4,0, as in adx22y2-wave scat-
tering model.54 For the rotationally invariant Lorentzian tun
neling model, the leading correction hasm54. For a
dx22y2-wave superconductor, the leading contribution
Jc,ide

J is again proportional toucos(2f0)u. However,c4.0, so
that the model simulates ap junction betweendx22y2-wave
superconductors forf050, as one approaches the incohere
limit.

The more complicated cases are the models in which
~60! applies with 0,m,2, such asm51 for the exponential
model. In such cases, all terms in the expansion contribut
the leading correction tof J. For 0,m,2, cm.0, andA0m
51, but the remainingAlm,0, leading to results consisten
with thes- anddx22y2-wave scattering model.54 In the expo-
nential model, the leading contributions to thebisn(e,s,T)
for n>1 ~subsequent to the constantn50 term! and to all of
the bidn(e,s,T) for n>0 are all of the same order ins22.
Numerically, the exponential model doesn’t appear to
much different than the other models for the rather larges2

value of 0.05. The differences inJc,ide
J (s,f0 ,T) between the

four rotationally invariant tunneling models for the vario
dx22y2-wave OP models we considered are only a few p
cent for s250.5, and all are very close toucos(2f0)u. Al-
though this is not obvious for the exponential model, at le
in the circular Fermi-surface model, the contributions of
der cos@(4n12)f0# fall off rapidly with increasingn, as seen
from Eq. ~56! and Eq.~B10! of Appendix B.

We now consider the Lorentzian model, which is not r
tationally invariant. Expandingf L

J( k̃2 k̃8) near the incoher-
ent limit, we have

f L
J~ k̃2 k̃8!5 f 0L

J $12~ k̃2 k̃8!2/s̃21@~ k̃2 k̃8!4

2~ k̃x2 k̃x8!2~ k̃y2 k̃y8!2#/s̃41•••%. ~69!

Clearly, the leading terms for adx22y2-wave superconducto
are proportional to 4(k̃• k̃8)22( k̃x2 k̃x8)

2( k̃y2 k̃y8)
2. The (k̃

• k̃8)2 term is given in Appendix C. The remaining part d
agonal in the dx22y2-wave tunnel functions is
1
2 cos(2f0)Dx22y2

10 (k)Dx22y2
10 (k8). Taken together, the domi

nant part off L
J( k̃2 k̃8) which contributes toJc,ide

J (s,f0 ,T)

is f 0L
J 5

2 cos(2f0)Dx22y2
10 (k)Dx22y2

10 (k8)/s̃4, implying c4,0.
Hence,Jc,ide

J (s,f0 ,T)}ucos(2f0)u as the incoherent limit is
approached.
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Thus, the extreme incoherent limit gives the most p
found difference between a general-s-wave superconducto
and a general-dx22y2-wave superconductor. Independent
the details of the tunneling, the shape of the Fermi surfa
and the precise form of the OP’s,

lim
s→`

@Jc,ise
J ~s,f0 ,T!#5

4eT

t'
(
v

^Fv~k!&2.0 ~70!

and

lim
s→`

FJc,ise
J ~s,f0 ,T!

Jc,ise
J ~s,0,T! G51 for general-s-wave OP’s,

~71!

whereas

lim
s→`

@Jc,ide
J ~s,f0 ,T!#50, ~72!

Jc,ide
J ~s,p/4,T!

Jc,ide
J ~s,0,T!

50 ~; s!, ~73!

and

lim
s→`

FJc,ide
J ~s,f0 ,T!

Jc,ide
J ~s,0,T! G'ucos~2f0!u,

for general-dx2-y22wave OP’s. ~74!

Equation ~70! is the Ambegaokar-Baratoff result,24 which
holds for all general-s-wave OP’s with a nonvanishing ave
age over the Fermi surface. In Eq.~74!, the relation is exact
in all of the models we investigated, except for the expon
tial model, for which it is still a good approximation. Henc
the more incoherent the tunneling, the easier it is for
c-axis twist experiment to distinguish the OP’s.

V. OTHER FEATURES OF INCOHERENT c-AXIS
TUNNELING

Next, we studied the reductions in the productI cRn of the
critical current times the resistance across a junction from
AB limit, I cRn(T)uAB , for the case of a fully extended
s-wave OP, defined in Eq.~23! with e50, ass→`.24 We
first define

I cRn~T!5C~T/Tc!I cRn~T!uAB , ~75!

where the AB limit curve corresponds to the ordinary-s-wave
case withs→` for any Fermi surface. A few limits can b
investigated analytically. For a circular Fermi-surface cro
section, we can analytically evaluateI cRn for all five models
both atTc and asT→0. We findC(1)5(2/p)2'0.405, as in
Sec. III A, andC(0)5(2/p)2ln 4'0.562.

For the Fermi surface shown in Fig. 1, we find nume
cally in the incoherent limit for all five tunneling models th
C(0.9)50.416, C(0.5)50.465, andC(0)50.572. For the
slightly different Fermi surface studied elsewhere,41,45 with
t8/t51.3 andm/t520.6, we foundC(0.9)50.400, C(0.5)
50.450, andC(0)50.578. Thus, the result of Yurgenset al.
7-15
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that I cRn(T50)'10 mV for the HgBr2-intercalated Bi2212
is in rather good agreement with that expected for
extended-s OP.21

Although there have not yet been many infrared refl
tance measurements on Bi2212, the available experim
strongly suggest that thec-axis tunneling is not metallic.58 In
Ref. 58, not only was no Drude edge above 30 cm21 seen in
the c-axis conduction in the normal state, none was see
the superconducting state as well. In addition, there is n
strong evidence that all underdoped HTSC have incohe
c-axis normal-state tunneling, with the sole exception
YBCO with d<0.15.59–62This is also the case in the rece
measurements on the electron-doped material NCCO.63 Al-
though aboveTc , the nonmetallic behavior is clearly see
belowTc , metalliclike behavior reminiscent of a Drude ed
for wave vectors in the range 10–200 cm21 has been
observed,60 although none has yet been seen in Bi221258

This metalliclike behavior is most likely associated with t
c-axis supercurrent.60 Thus, if Bi2212 were to behave th
same as the other materials with an incoherentc-axis normal-
state conduction, one would expect it to show this same
talliclike behavior belowTc .

There have been two other schools of thought on
issue. One is that the interlayer tunneling processes cha
dramatically from incoherent to coherent belowTc .64 Our
analysis of thec-axis twist experiments of Liet al. strongly
contradicts this idea, since the quasiparticle tunneling be
Tc must be strongly incoherent. The second school holds
there is no quasiparticle tunneling belowTc due to an ‘‘or-
thogonality catastrophe,’’ but that the only tunneling proce
occurs by the simultaneous tunneling of pairs.65 However,
the fact that HgBr2-intercalated Bi2212 has nearly the sam
Tc as does unintercalated Bi2212 argues strongly that
interlayer pair tunneling model as a mechanism for sup
conductivity is not correct.21 Thus, we consider it much mor
likely that the superconductivity arises from intralayer pa
ing. Then the individual particles do the actual tunneling.

Another experimental observation relevant to the ques
of thec-axis tunneling coherence is the apparent violation
the conventional sum rule, as observed by Basovet al.60 This
was investigated theoretically by Kim and Carbotte~KC!.54

Those workers assumed adx22y2-wave OP, and an incoher
ent interlayer tunneling matrix element squared of the fo
f J(fk ,fk8)5uV0u1uV1u2cos(2fk)cos(2fk8). By equating
1/lc

2 derived from the conductivity and the superfluid dens
rS , each evaluated to lowest order inf J, they wrote~without
the i ze supscripts!54

dNi ze~T/Tc!5
1

2
1

(v^ f J~g,fk ,fk8!@12v i ze,kv i ze,k8#&
2(v^ f J~g,fk ,fk8!d i ze,kd i ze,k8&

,

~76!

where dNi ze5(NN2NS,i ze)/rS,i ze , v i z,e,k5v/V i ze,k ,
v i ze,k85v/V i zek8 , d i ze,k5D i ze(fk ,T)/V i ze,k , d i ze,k8
5D i ze(fk8 ,T)/V i ze,k8 , V i ze,k5@v21D i ze

2 (fk ,T)#1/2, and
V i ze,k85@v21D i ze

2 (fk8 ,T)#1/2. It is easy to show that for
17450
n

-
ts

in
w
nt
f

e-

is
ge

w
at

s

is
r-

-

n
f

coherent tunneling with a rotationally-invariantf J,
dNz(T/Tc)51 for any OP, for all T/Tc<1, and that
dNos(T/Tc)51, regardless of the form off J(fk ,fk8). For
the dx22y2-wave case, KC showed that incoherent tunnel
gives a conductivity sum-rule violation that is strong and
the wrong sign.54,60,66They gave a lower limit on the viola
tion, based upon restrictions of the parametersV0 and V1.
However, KC did not calculate the sum-rule violation resu
ing from other OP forms.

We studied this effect in our five circular Fermi-surfa
tunneling models. In most of these models, we can ana
cally perform the calculations atTc for the i 5o,e,c,a, z
5s,d cases, corresponding to the notation in Eqs.~22!–~29!.
We shall first present the exact formulas for general-s- and
dx22y2-wave OP forms, both for the rotationally invarian
tunneling models, and for the Lorentzian model, evaluate
Tc . The general formulas for thedNi ze(1) for the rotation-
ally invariant and the Lorentzian tunneling models are giv
in Appendix D.

We first consider the coherent limit. In this limit, each
the f 4n(g) and f 4n12(g) approach unity. Thus, from Eqs
~D1! and~D2! in Appendix D, all of the rotationally invarian
tunneling models show no sum-rule violation for any of t
OP models in the coherent limit. For the Lorentzian tunn
ing model, our results are given in Eqs.~D3! and ~D4! in
Appendix D. We note from Eq.~B19! that f n,m

L (g→`) is
only a function ofm. Thus, it is also easy to see that both t
general-s- and dx22y2-wave OP forms satisfy the sum rul
even for the nonrotationally invariant Lorentzian tunneli
model. This is interesting because the Lorentzian mo
gives rise to slightly larger critical current values for each
the anisotropic OP’s than do the other models.

We now discuss the particular OP and tunneling mod
away from the coherent limit. In the incoherent limit for
general-s-wave OP, all five of the tunneling models reduce
the sum-rule violation amount

dNise~1!21→
(n51

` aisn
2 ~e!

4ais0
2 ~e!

. ~77!

Clearly, the ordinary-s-wave OP givesdNos(1)2150.
From Eqs.~A3!, ~A4!, and~33!, we find asg→0,

dNes0~1!215dNcs0~1!21→ (
n51

`
1

@~2n!221#2 '0.117,

~78!

dNase~1!21→ 1

4e21ca~e,g!
, ~79!

whereca(e,0) vanishes asg→0 if eÞ0. Thus, the extended
and compressed-s-wave OP’s only violate the sum rule by
small amount, albeit of the wrong sign. The anomalo
s-wave OP, on the other hand, violates the sum rule b
large amount, especially ife!1. In this case, we expan
ca(e,g) for both e!1 andg!1. We findca(e,g)→(g/2)4

in the rotationally invariant and stretched Lorentzian mode
7-16
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(g/2)4/(4!) in the Gaussian model, 4(2g)1/2/(63p) in the
exponential model, andeg21383g4/128 in the Lorentzian
model. Thus, fore50, these functions all diverge asg→0,
with the exponential model giving the slowest divergence

For the general-dx22y2-wave models in the incoheren
limit, the Gaussian, Lorentzian, rotationally invariant Loren
zian, and stretched Lorentzian tunneling models all beh
similarly, yielding

dNide~1!2
1

2
→

(n50
` aidn

2 ~e!

2aid0
2 ~e!cdg2 , ~80!

where cd5 1
8 in the Gaussian model,13

8 in the Lorentzian
model,2 1

4 in the rotationally invariant model, and14 in the
stretched Lorentzian model. The negative sign obtained
all of the dx22y2-wave OP’s in the rotationally invarian
model has an origin that is similar to the change in s
obtained in the critical current. The OP forms give rise
the overall factors Cid(e)5(n50

` aidn
2 (e)/aid0

2 (e) for i
5o,e,c,a. We find Cod51, Ced(0)5119(n51

` @(2n13)
3(2n11)(2n21)#22'1.041, Ccd(0)5119(n51

` @(2n
13)(2n21)#22'1.39, and Cad(e)5111/(2e11)2. Ex-
cept for the rotationally invariant Lorentzian tunnelin
model, the sum-rule violation is strong and of the oppos
sign to that observed in experiment for all of the
dx22y2-wave OP’s, but the OP ranking in terms of increas
sum-rule violation is ordinary-, extended-, compressed-,
anomalous-dx22y2 wave, respectively.

For the exponential tunneling model, the situation is a
more complicated. Near the incoherent limit, we obtain
the dx22y2-wave functions,

dNide~1!2
1

2
→

p(n50
` aidn

2 ~e!

4~2g!1/2(n50
` aidn

2 ~e!/@~8n14!221#
,

~81!

which diverges only asg21/2 instead ofg22 for the other
models, but it also depends slightly more on the particu
OP form than do the results for other tunneling models. L
ting dNide(1)2 1

2 515pCid
E (e)/@4(2g)1/2#, we find Cod

E

51, Ced
E (0)'1.04, Ccd

E (0)'1.38, andCad
E (e)5@(2e11)2

11#/@(2e11)21 15
143 #. The OP ranking in terms of the vio

lation of the sum rule is thus the same as for the Gauss
Lorentzian, and stretched Lorentzian tunneling models.

For the extended- and compressed-s-wave OP’s in the
incoherent limit of all five tunneling models,dNise(1)
→1/21(112e2)/$(11e2)@4E(k)/p#2%, which varies be-
tween a maximum of'1.117 ase→0 and 1 ase→`. At the
intermediate valuee51, dNis1(1)'1.007. AsT→0 in the
coherent limitg→`, we again havedNz(0)51 in the four
rotationally invariant tunneling models for all OP’s, as e
pected. AsT→0 in the incoherent limit for bothz5cs,es,
we can evaluate the denominator in Eq.~76! exactly in all
five tunneling models, and the numerator numerically.
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find dNes0(0)5dNcs0(0)→1.087. All of the dx22y2-wave
OP’s have divergentdNide(0) values.

We thus conclude that none of the eight OP’s gives
dN,1 in most tunneling models. However, near the inc
herent limit, the four dx22y2-wave cases and the fully
anomalous-s-wave case are by far the worst, except for t
rotationally invariant Lorentzian model. In that case, each
the dx22y2-wave OP’s gave rise to a sum-rule violation th
was both large and of the same sign as observed
experiment.60 Except for this particular case, it is likely to b
much easier to construct a theory that can incorporate b
incoherent interlayer tunneling and adN,1 if the OP is a
general-s-wave one, and not adx22y2-wave one. But even for
ans-wave OP that changes sign on the Fermi surface, suc
the anomalous-s-wave OP, these results make a reconcil
tion with the sum-rule violation more difficult.

VI. SUMMARY AND CONCLUSIONS

An important question to resolve is the amount of coh
ence of the tunneling processes. Since coherent tunne
preserves the momentum parallel to the junction, and in
herent tunneling allows a random change in parallel mom
tum, it is important to determine just how sensitive the int
mediate coherence regime is to the particular form of
tunneling matrix element squared. We have therefore stud
five models of Josephson tunnel junctions, which are
signed to be applicable to the high-temperature superc
ductor materials. In particular, these models are, respectiv
Gaussian, exponential, Lorentzian, and two versions
Lorentzian, which we denote rotationally invariant Lorent
ian and stretched Lorentzian. These models interpo
smoothly between the coherent and incoherent tunneling
its by varying a single parameter.

An experiment that can provide information about t
amount of coherence in the intrinsicc-axis tunneling in
Bi2212 is the bicrystalc-axis twist junction experiment.8

Since Bi2212 is generally thought to have a Fermi surfa
that is not rotationally invariant about theG point,42,43 rotat-
ing one layer with respect to an adjacent one about thec axis
forces the quasiparticles to either change momentum or
ergy during the tunneling process. Thus, to emphasize
differences between different Fermi surfaces we have stu
two model Fermi surfaces, one which is circular and cente
about theG point, and the other which has been specifica
chosen to fit the Bi2212 Fermi surface as measured in an
resolved photoemission spectroscopy experiments.43

In addition, an important study that can also be made is
test the orbital symmetry of the OP. When the supercond
ing layers are very weakly coupled, the OP must lock o
the lattice on each layer.40 Thus, OP’s on opposite sides o
the twist junction will be rotated with respect to one anoth
In coherent tunneling through a twist junction, a particle w
be transferred to a different energy state, if the OP is in a
way anisotropic. Since the particular crystal structure
Bi2212 allows the OP to be in one of only two groups, o
containing all functions withs-wave symmetry and the othe
containing all functions ofdx22y2-wave symmetry,40 we have
modeled each of these general OP symmetries with f
7-17
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simple OP forms. Thes-wave OP’s are a constant, a
extended-s-wave OP, which has nodes along theG-X and
G-Y lines, but which does not change sign on the Fe
surface, a compressed-s-wave OP, which has nodes at th
points at which the Bi2212 Fermi surface intersects
Brillouin-zone edge, and an anomalous-s-wave OP, which
arises from near-neighbor attractive pairing. This OP
nodes on the Fermi surface at points different from
extended-s and compressed-s-wave OP’s, and changes sig
on the Fermi surface, averaging to zero in the entire Brillo
zone, but not on the Fermi surface.

We first proved a theorem, which states that for we
time-reversal-invariant tunneling between layers of
tetragonal crystal twisted 45° about thec axis with respect to
one another, thec-axis critical current for a superconducto
with either general-dx22y2- or general-dxy-wave symmetry
vanishes. Since the three exceptional cases to these req
ments, slight orthorhombicity, mixing ofdx22y2 and dxy or
other OP components, and higher-order~strong! tunneling
processes, have already been discussed in the literatur40,41

and found to be unable to explain the experiments wit
dominantdx22y2-wave OP, it is important to show just how
robust is the interpretation of the experimental results. T
result that the critical current density across the twist ju
tion is the same as that across the single crystal itse
profound.8 First, it implies that the tunneling must be ve
incoherent. In order to fit the data with models that ha
rather sharp cutoffs in the parallel momentum change, s
as the Gaussian model, it is necesssary for the chang
quasiparticle momentum to cover roughly 30% of the B
louin zone. If one were to identify the full width at ha
maximum ~FWHM! in the tunneling amplitude as a cuto
for the other models we studied, this would reduce to o
'7% of the BZ. However, such models allow a substan
number of processes well beyond the FWHM.

In any event, there is also one other inescapable con
sion of the experiment. We showed for quite general tunn
ing forms near to the incoherent limit that the differenc
between the twist angle dependence of the Josephson tu
ing between ans-wave and adx22y2-wave superconducto
become the most robust. In this limit,Jc,s(f0 ,T)/Jc,s(0,T)
51 for T<Tc , but for the dx22y2-wave case,Jc,d(f0 ,T)
50, and the ratio of the two vanishing quantitie
Jc,d(f0 ,T)/Jc,d(0,T)'ucos(2f0)u, for T<Tc . In addition,
we showed by studying five specific tunneling models a
four varieties ofdx22y2-wave OP forms that none of th
d-wave OP forms could fit the data. However, each of
four general-s-wave OP forms we studied can easily fit th
data, provided that the tunneling is very incoherent. Thus,
conclude that the OP on each side of the junction can
possibly be of puredx22y2-wave symmetry. This conclusio
also must apply to the untwisted intrinsic junctions in t
bulk of the Bi2212 single crystal.

In addition, we applied our models for the circular Fer
surface~at f050) to investigate the question of how th
degree of coherence affects the Thomas-Reiche-Kuhn s
rule violation in c-axis transport. We used the simple a
proach of Kim and Carbotte,54 and found that none of the
s-wave OP’s we studied can give rise to a sum-rule violat
17450
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of the sign that has been observed in optical reflectivity
periments. Except for the anomalous-s-wave OP, the sum-
rule violation was rather small. For thedx22y2-wave OP’s,
the sign of the sum-rule violation depends upon the detail
the tunneling model. For most models, the sign is opposit
that which has been observed, and the magnitude is v
large. However, for the sufficiently incoherent rotationa
invariant Lorentzian tunneling model, each of th
dx22y2-wave OP’s studied has a large sum-rule violation
the same sign that was observed. In this particular case
untwisted junctions appear to act likep junctions.

In conclusion, we found that thec-axis twist experiments
of Li et al. provide compelling evidence that thec-axis tun-
neling in Bi2212 is strongly incoherent.8 As a consequence
the experiment cannot distinguish between an isotro
s-wave and an extremely anisotropics-wave OP. However,
the purporteddx22y2-wave OP is inconsistent with the ex
periments. These conclusions appear to be incompatible
those derived from the tricrystal experiment.1

There are only two possible scenarios that might allow
a compatibility. One is that thes- and dx22y2-wave OP’s
have indistinguishableTc values. However, sinceTc depends
upon doping and impurities, it is unlikely that this will be th
case in every sample studied. Second, it is possible that
mirror plane symmetry~thebc plane containing the periodic
lattice distortion! we and others have generally assumed
be present in Bi2212 could be broken. One electro
diffraction experiment performed long ago on a differe
Bi2212 sample is suggestive of this scenario.67 But, explicit
electron-diffraction studies of the samples used by Liet al.
indicate that 90% of them do exhibit thebc-mirror plane.68

Experiments to test this hypothesis are currently plann
Since neither thec-axis twist experiment nor the tricrysta
experiment has yet been fully reproduced in a second la
ratory, it remains to be seen which will ultimately preva
We encourage reproduction of thec-axis twist experiment
using mesa structures, so that the currents can be safel
sumed to be uniform over the entire junctions, bothI c andRn
can be measured, and the Fraunhofer pattern can be obta
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APPENDIX A

The coefficients of the real-space expansion of the
tended and compressed OP’s in Eqs.~16! and~17! are easily
obtained in the limite→0 by Fourier series transformation
For i 5e,c, these are
7-18
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ae,nm~0!5
8

p2

~22dn,0!~22dm,0!

@~n2m!221#@~n1m!221#
, ~A1!

ac,nm~0!5
4

p2

~22dn,0!~22dm,0!

@~2n!221#@~2m!221#
. ~A2!

For the circular Fermi-surface model, the analogous coe
cients of the extended and compressed OP’s in Eqs.~30! and
~31! are

aesn~0!5
2~21!n11~22dn,0!

p@~2n!221#
, ~A3!

acsn~0!5
22~22dn,0!

p@~2n!221#
, ~A4!

aedn~0!5
8~21!n11

p~2n13!~2n11!~2n21!
, ~A5!

and

acdn~0!5
24

p~2n13!~2n21!
. ~A6!

APPENDIX B

For the four specific rotationally invariant tunneling mo
els, Eqs.~42!, ~43!, ~45!, and~46!, the respectivef n(g) val-
ues obtained from Eq.~51! are

f nG~g!5I n~g!/I 0~g!, ~B1!

f nE~g!5
*0

pdx exp@2~2g!1/2sinx#cos~2nx!

*0
pdx exp@2~2g!1/2sinx#

, ~B2!

f nRL~g!

5ReS @12 i /g1 i ~112ig!1/2/g#n

~112ig!1/2 D Y Re
1

~112ig!1/2,

~B3!

and

f nSL~g!5F g

11g1~112g!1/2Gn

. ~B4!

Asymptotically, these functions approach the coherent li
g→` as

f nG~g!→12
n2

2g
, ~B5!

f nE~g!→12
2n2

g
, ~B6!

f nRL~g!→12
n2

g
, ~B7!

and
17450
-

it

f nSL~g!→12
21/2n

g1/2 . ~B8!

They approach the incoherent limitg→0 as

f nG~g!→ ~2g/2!n

n!
, ~B9!

f nE~g!→dn,01~12dn,0!
2~2g!1/2

p@~2n!221#
, ~B10!

f nRL~g!→H ~21!m~g/2!2m : n52m,

~21!mg2m12~m11!/22m : n52m11,
~B11!

and

f nSL→~g/2!n. ~B12!

For the Lorentzian model, thef n,m
L (g) in Eq. ~52! are

defined by

f n,m
L ~g!5

1

D0
E

0

p dfx2m~f!cos~2nf!

p2mD1@x~f!#D2
m@x~f!#

, ~B13!

x~f!5g~12cos 2f!, ~B14!

D1~x!5~11x!~112x!1/2, ~B15!

D2~x!5112x1x2/21~11x!~112x!1/2, ~B16!

and

D05E
0

p/2 2df

pD1@x~f!#
. ~B17!

In the coherent limitg→`, the f n,m
L (g) approach

f n,m
L ~g!→Cm

L 2OS ln g

g D , ~B18!

where

Cm
L 5E

0

`dx tanh4m~x/2!

11cosh2x Y E
0

` dx

11cosh2x
. ~B19!

As g→0, the leadingg dependencies of thef n,m
L (g) for the

lowest evenn values are

f 0,m
L ~g!→ g2m

23m S 4m

2mD , ~B20!

f 2,m
L ~g!→ 7

8
g2dm,01

g2mQ~m21!

23m S 4m

2m22D , ~B21!

f 4,m
L ~g!→ g4

27 ~83dm,0114dm,1!1
g2mQ~m22!

23m S 4m

2m24D ,

~B22!
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f 6,m
L ~g!→ g6

210~543dm,0183dm,1114dm,2!

1
g2mQ~m23!

23m S 4m

2m26D , ~B23!

etc., whereQ(n)51 for n>0, andQ(n)50 for n,0 is the
Heaviside step function. In particular,f od(g,0) in the Lorent-
zian model approaches the incoherent limitg→0 as 13

16 g2.

APPENDIX C

Here we present the details of the expansion of a rotat
17450
n-

ally invariant tunneling matrix element squared in powers
k•k8. First, we note thatAlm can be written as

Alm5d l ,01~12d l ,0!
1

~2l !! )
p50

2l 21

~m/22p!. ~C1!

For m52, only thel 50,1 terms remain. Form52q, an even
integer, theAlm50 for l>q. For 0,m,2, all of the Alm

,0, except forA0m .
We begin by using polar coordinates, obtaining
~2k̃• k̃8!2l5~2kk8!2lcos2l~fk2fk82f0! ~C2!

5~kk8!2l (
p50

l

~22dp,0!cos@2p~fk2fk82f0!#S 2l

l 1pD ~C3!

5 (
m50

ES l
2D

CslmS cos~4mf0!@Slm~k!Slm~k8!1Gxy(x22y2)
lm

~k!Gxy(x22y2)
lm

~k8!#1sin~4mf0!@Gxy(x22y2)
lm

~k!Slm~k8!

2Slm~k!Gxy(x22y2)
lm

~k8!# D 1 (
m50

ES l 21
2 D

CdlmS cos@~4m12!f0#@Dx22y2
lm

~k!Dx22y2
lm

~k8!1Dxy
lm~k!Dxy

lm~k8!#

1sin@~4m12!f0#@Dxy
lm~k!Dx22y2

lm
~k8!2Dx22y2

lm
~k!Dxy

lm~k8!# D , ~C4!
where

Cslm5~22dm,0!S 2l

l 12mD , ~C5!

Cdlm52S 2l

l 12m11D , ~C6!
and E(x) is the largest nonnegative integer<x. In polar
coordinates, the tunnel functions are given by

Slm~k!5k2lcos~4mfk! for 0<m<ES l

2D ,

~C7!
TABLE I. Tunnel functions in rectangular coordinates forl<4.

( lm) Slm(k) Gxy(x22y2)
lm (k) Dx22y2

lm (k) Dxy
lm(k)

~00! 1 0 0 0
~10! k2 0 kx

22ky
2 2kxky

~20! k4 0 (kx
22ky

2)k2 2kxkyk
2

~21! k428kx
2ky

2 2kxky(kx
22ky

2) 0 0
~30! k6 0 (kx

22ky
2)k4 2kxkyk

4

~31! (k428kx
2ky

2)k2 2kxky(kx
2ky

2)k2 @(kx
22ky

2) @2kxky

3(k4216kx
2ky

2)] 3(k4216kx
2ky

2)]
~40! k8 0 (kx

22ky
2)k6 2kxkyk

6

~41! (k428kx
2ky

2)k4 2kxky(kx
22ky

2)k4 @(kx
22ky

2)k2 @2kxkyk
2

3(k4216kx
2ky

2)] 3(k4216kx
2ky

2)]
~42! @k8232k4kx

2ky
2 @4kxky(kx

22ky
2) 0 0

1128kx
4ky

4] 3(k428kx
2ky

2)]
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Dx22y2
lm

~k!5k2lcos@~4m12!fk# for 0<m<ES l 21

2
D ,

~C8!

Dxy
lm~k!5k2lsin@~4m12!fk# for 0<m<DS l 21

2 D ,

~C9!

and

Gxy(x22y2)
lm

~k!5k2lsin~4mfk! for 1<m<ES l

2D .

~C10!

These functions are elements of the general-s-, dx22y2-, dxy-,
andgxy(x22y2)-wave-function sets, respectively. Elements
different function sets are orthogonal with each other wh
integrated overfk at fixedk,

E
0

2p

dfkS
lm~k!Dx22y2

l 8m8 ~k!50, ~C11!

etc. We also have that elements from the same function
with different m values are orthogonal when integrated ov
fk at fixedk,

E
0

2p

dfkS
lm~k!Sl 8m8~k!5pk2(l 1 l 8)dm,m8~11dm,0!,

~C12!
a

.Z

eh
ei

hy

.

M.

,

17450
f
n

et
r

and similar relations for elements of the other function se
In Table I, we present the tunnel functions forl<4 in

rectangular coordinates. In this representation, elements f
different function sets are orthogonal over the first BZ a
over a Fermi surface of tetragonal symmetry,

E
2p/a

p/a

dkxE
2p/a

p/a

dkyS
lm~k!Dx22y2

l 8m8 ~k!50, ~C13!

etc., but elements within a function set with different (l ,m)
values are not orthogonal with each other on that domai

APPENDIX D

Here we list the results for the sum-rule violation calc
lation. For the four rotationally invariant tunneling mode
we obtain

dNise~1!5
1

2 S 11
(n50

` ~11dn,0!aisn
2 ~e!

(n50
` ~11dn,0!aisn

2 ~e! f 4n~g!
D ,

~D1!

dNide~1!5
1

2 S 11
(n50

` aidn
2 ~e!

(n50
` aidn

2 ~e! f 4n12~g!
D , ~D2!

where thef n(g) are defined in Eq.~51!. For the Lorentzian
model, we find
dNise
L ~1!5

1

2 S 11
(n,m50

` aisn~e!aism~e!@ f 2n12m,n1m
L ~g!1 f 2un2mu,un2mu

L ~g!#

(n,m50
` aisn~e!aism~e!@ f 2un2mu,n1m

L ~g!1 f 2n12m,un2mu
L ~g!#

D , ~D3!

dNide
L ~1!5

1

2 S 11
(n,m50

` aidn~e!aidm~e!@ f 2(n1m11),n1m11
L ~g!1 f 2un2mu,un2mu

L ~g!#

(n,m50
` aidn~e!aidm~e!@ f 2un2mu,n1m11

L ~g!1 f 2(n1m11),un2mu
L ~g!#

D , ~D4!

where thef n,m
L (g) are given in Eq.~B13!.
,

.

i,

,

g,

.
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