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Thermodynamic perturbation theory for dipolar superparamagnets

P. E. Jo¨nsson and J. L. Garcı´a-Palacios*
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~Received 18 January 2001; revised manuscript received 13 July 2001; published 11 October 2001!

Thermodynamic perturbation theory is employed to derive analytical expressions for the equilibrium linear
susceptibility and specific heat of lattices of anisotropic classical spins weakly coupled by the dipole-dipole
interaction. The calculation is carried out to the second order in the coupling constant over the temperature,
while the single-spin anisotropy is treated exactly. The temperature range of applicability of the results is, for
weak anisotropy (A/kBT!1), similar to that of ordinary high-temperature expansions, but for moderately and
strongly anisotropic spins (A/kBT*1) it can extend down to the temperatures where the superparamagnetic
blocking takes place (A/kBT;25), provided only that the interaction strength is weak enough. Besides, taking
exactly the anisotropy into account, the results describe as particular cases the effects of the interactions on
isotropic (A50) as well as strongly anisotropic (uAu→`) systems~discrete orientation model and plane
rotators!.
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I. INTRODUCTION

In paramagnetic systems the relative weakness of
dipole-dipole interaction between magnetic ions results
characteristic temperatures lying in the range of 0.01–0.1
Besides, the dipolar coupling usually coexists with the
change interaction. However, for superparamagnets~nano-
scale solids or clusters whose net spin rotates thermally
tivated in the magnetic anisotropy potential!, the exchange or
other competing interactions can usually be discarded
the dipole-dipole interaction can be studied in pure form.
addition, the size of their typical magnetic momentsS
;102–105) shifts the relevant temperatures up to the ran
of a few K, facilitating greatly the experimental study of th
interaction.1

The calculation of the relevant statistical-mechani
quantities constitutes a formidable problem in most ma
body systems. Apart from various specific solution ansatz
number of systematic expansions~in the density, coupling
parameter, etc.! have been developed for weak interaction2

In spin and dipole systems, the moment method of V
Vleck3,4 ~a high-temperature expansion of the partition fun
tion! permits us to study the equilibrium properties in t
absence of cooperative phenomena. This technique is on
the few analytical tools available to handle systems coup
by the dipole-dipole interaction, due to the long-range a
reduced symmetry of this interaction.

An important property of superparamagnets is their m
netic anisotropy, which results in a number of spin orien
tions of minimum energy separated by potential barriers.
uniaxial spins5 the characteristic time for the thermoactivat
rotation of the spin over the anisotropy barrierA can ap-
proximately be written as

t.t0exp~A/kBT!, ~1.1!

wheret0 is weakly temperature dependent and takes va
t0;10210–10212 s for magnetic nanoparticles. Then, for
given measurement timetm the system exhibits its therma
0163-1829/2001/64~17!/174416~11!/$20.00 64 1744
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equilibrium response when thecondition of superparamag
netism, tm@t, is obeyed, which corresponds to the tempe
ture range~in units of A/kB):

ln~ tm/t0!.A/kBT>0. ~1.2!

In ‘‘static’’ measurements (tm;1 –100 s), due to the sma
value oft0, this equilibrium range extends down to very lo
temperatures (25.A/kBT), showing that the naive ascriptio
of superparamagnetism to the range in which ‘‘the therm
energy is comparable or larger than the anisotropy ener
(1*A/kBT) is unduly restrictive. Indeed, asT decreases the
system displays different behaviors ranging from almost i
tropic (A/kBT!1), then moderately anisotropic (A/kBT
;1), and eventually strongly anisotropic (A/kBT@1) with-
out leaving the equilibrium regime. Therefore descriptions
based on the assumption of isotropic behavior or the oppo
discrete-orientation or plane-rotator approximations~for
easy-axis and easy-plane anisotropy! necessarily have a re
duced range of validity in superparamagnets.

Due to the mentioned characteristics of the dipole-dip
coupling and the difficulties introduced by the anisotrop
most rigorous calculations in interacting superparamagn
have been done by numerical simulation techniques.6 In this
paper we apply thermodynamic perturbation theory7 to cal-
culate analytically the linear susceptibility and the spec
heat of lattices of uniaxial classical spins coupled by
dipole-dipole interaction, accounting exactly~nonperturba-
tively! for their anisotropy energy. Along with the study o
the dependence on the shape of the system of certain q
tities ~due to the long range of the dipole-dipole interaction8!,
our treatment permits us to investigate the effects of
strength and sign of the anisotropy, as well as of the ori
tational distribution of anisotropy axes.

We find that for systems with axesoriented at randomthe
corrections to the specific heat and the linear susceptib
become independent of the anisotropy~at least to second
order in the interaction coupling! in certain spatial arrange
ments of the spins~e.g., cubic or completely disordered!. The
latter is a generalization to interacting systems of the w
©2001 The American Physical Society16-1
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known absence of anisotropy effects on the equilibrium
ear susceptibility of dipoles with random anisotropy~dis-
cussed in Ref. 4!. However, apart from the importan
exception of random axes, the anisotropy is an essential
ment in the determination of the corrections due to the in
actions. This is illustrated with the response of systems w
parallel anisotropy axes, where an ordinary high-temperat
expansion, either disregarding the anisotropy or in the
crete orientation limit, poorly describes the susceptibil
curves ~computed for comparison by Monte Carlo simul
tion!, while the thermodynamic perturbation theory describ
the results with reasonable accuracy.

II. THERMODYNAMIC PERTURBATION THEORY FOR
INTERACTING DIPOLES

In this section we introduce the spin system studied
discuss the application of perturbation theory to calcul
approximately thermodynamic quantities.

A. Hamiltonian of a system of interacting anisotropic spins

Let us consider a system ofN magnetoanisotropic spin
coupled by the dipole-dipole interaction. The magnetic
isotropy energy is assumed to be uniaxial,

Ea52A(
i

~sW i•nW i !
2, ~2.1!

whereA is the anisotropy parameter~for magnetic nanopar
ticlesA5KV, whereK andV are the anisotropy constant an
volume!, andsW i and nW i are, respectively, unit vectors alon
the magnetic moment and anisotropy axis of thei th spin. The
dipole-dipole interaction energy can be written as

Ed52
m0m2

4pa3 (
i . j

v i j , v i j 5sW i•Gi j •sW j , ~2.2!

wherem is the magnitude of the magnetic moment,a is an
appropriate characteristic length~see below!, and

Gi j 5
1

r i j
3 ~3 r̂ i j r̂ i j 21!, ~2.3!

rW i j 5rW i2rW j , r̂ i j 5rW i j /r i j . ~2.4!

Here1 is the unit tensor andrW i j the vector joining the sitesi
and j ~measured in units ofa). The action of a tensor dyadi
T5uW vW on a vectorwW is the usual one (uW vW )wW [uW (vW •wW ), and
hence the tensorGi j , when multiplied withsW j , gives~except
for a constant! the field at the position of thei th dipole
created bysW j .

For notational simplicity we are assuming that the para
eters characterizing the different dipoles are identical, bu
is immediate to generalize the expressions for different
isotropy constants, magnetic moments, volumes, etc. S
larly, although the assumption of uniaxial anisotropy is n
necessary until the end of the calculation we made it here
definiteness. Concerning the characteristic lengtha, it is de-
17441
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fined in such a way thata3 is the mean volume around eac
spin. Thusa is the lattice constant in a simple cubic arrang
ment, and for nanoparticles the volume concentration of p
ticles isc5V/a3.

Finally, introducingb51/kBT and the following dimen-
sionless quantities~anisotropy and coupling constant relativ
to the thermal energy!,

s5
A

kBT
, jd5

m0m2

4pa3

1

kBT
, ~2.5!

we can write the total energyE5Ea1Ed as

2bE5s(
i

~sW i•nW i !
21jd(

i . j
v i j . ~2.6!

Note that the interaction strength can also be measured
the temperature-independent coupling parameter

hd5jd/2s, ~2.7!

which is the magnitude of the field~measured in units of the
maximum anisotropy fieldm0HK52A/m) produced at a
given position by a dipole at a distancea.9

B. Equilibrium linear susceptibility and specific heat

The thermal-equilibrium average of any quanti
B(sW1 , . . . ,sWN) is given by

^B&5
1

ZE dGB exp~2bE!, ~2.8!

whereZ5*dG exp(2bE) is the partition function. In classi-
cal spins the different states correspond to different spin
entations so thatdG5) idV i , with dV i5d2sW i /2p.

The linear susceptibility is defined as the derivative of t
magnetization (1/N)^( isW i& with respect to theexternalmag-
netic field~which is the experimentally manipulable quanti
in contrast to the internal macroscopic field!. However, from
basic statistical mechanics we know that the response
probing fieldDHW can be obtained in terms of suitable ave
ages of the net spin taken in the absence ofDHW . If in addi-
tion there is no externalbias field applied, the susceptibility
is simply given by

x5
m0m2

kBT

1

N
^sz

2&, sz5(
i

~sW i•hW !, ~2.9!

wherehW is a unit vector alongDHW andsz is the field projec-
tion of the net moment. The specific heat at constant volu
cv5]^E&/]T can be obtained directly fromZ as

cv

kB
5b2

]2

]b2
~ ln Z!5s2

]2

]s2
~ ln Z!, ~2.10!

where to take thes derivative, the coupling parameterjd is
expressed asjd52shd @Eq. ~2.7!#. As in the calculation of
x, we only consider the zero-field specific heat.10
6-2
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C. Thermodynamic perturbation theory

We shall now use thermodynamic perturbation theory,7 to
expand the Boltzmann distributionW5Z21exp(2bE) in
powers ofjd . This will lead to an expression of the form

W5Wa~11jdF11 1
2 jd

2F21••• !, ~2.11!

whereF1 is linear inEd ~and hence quadratic in the spins!,
F2 is up to quadratic inEd ~quartic in thesW i), and

Wa5Za
21exp~2bEa!, ~2.12!

is the Boltzmann distribution of the noninteracting ensemb
Therefore the calculation of an observable^B& is reduced to
the calculation of averages weighted byWa ~denoted̂ •&a) of
typically low grade powers of the spin variables:^B&a,
^BF1&a, ^BF2&a, etc. An ordinary high-temperature expa
sion corresponds to expand Eq.~2.12! further in powers of
b51/kBT. In the present calculation, however, the avera
are kept weighted overWa, so they will be exact in the
magnetic anisotropy and only perturbational in the dipo
interaction.11

A convenient way of performing the expansion in powe
of jd is to introduce the Mayer functionsf i j defined by 1
1 f i j 5exp(jdv i j ), which permits us to write the exponenti
in the Boltzmann factor as

exp~2bE!5exp~2bEa!)
i . j

~11 f i j !. ~2.13!

Expanding the product to second order in thef i j gives

)
i . j

~11 f i j !511jdG11 1
2 jd

2G21O~jd
3!, ~2.14!

where12

G15(
i . j

v i j , ~2.15!

G25(
i . j

v i j
2 1(

i . j
(
k. l

v i j vklqik: j l qil : jk , ~2.16!

and the symbolqik: j l annihilates terms containing duplica
pairs:qik: j l 5

1
2 (22d ik2d j l )(11d ik)(11d j l ).

To obtain the average of any quantityB we introduce the
expansion~2.14! in both the numerator and denominator
^B&5*dGB exp(2bE)/*dG exp(2bE), and work out the ex-
pansion of the quotient, getting13

^B&.^B&a1jd@^B G1&a2^B& â G1&a#1 1
2 jd

2$^B G2&a

2^B& â G2&a22^G1&a@^B G1&a2^B& â G1&a#%.

However, since in our caseWa(2sW i)5Wa(sW i) ~because the
single-spin anisotropy has inversion symmetry and ther
no bias field! and inG15( i . jv i j a dipole does not interac
with itself, the result̂ G1&a50 holds. Under these condition
we finally find the simpler form
17441
.
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^B&.^B&a1jd^B G1&a1
1
2 jd

2@^B G2&a2^B& â G2&a#.
~2.17!

To complete the calculation we need to obtain average
low grade powers ofsW weighted by the noninteracting distr
bution ~moments!, which is the only place where one nee
to specify the form ofEa. We can write the susceptibility
and specific heat to second order injd using up to
fourth-order moments, which are calculated in Append
A @Eqs. ~A1! and ~A2!# for the uniaxial distribution
Wa}exp@s(sW•nW)2#. For instance, the first two moments rea

^(cW1•sW)&a50 and

^~cW1•sW !~cW2•sW !&a5
12S2

3
cW1•cW21S2~cW1•nW !~cW2•nW !,

where thecWn are arbitrary constant vectors andSl is the
average of thel th Legendre polynomialPl(z) over Wa:

Sl~s!5^Pl~sW•nW !&a. ~2.18!

In particular,S051 andS2(s)5 1
2 ^3(sW•nW )221&a can be ex-

pressed in terms of familiar special functions~error functions
or the Dawson integral!, while otherSl appearing in higher-
order moments can be obtained by means of the recurre
relation they satisfy@Eq. ~A8!#.

III. ANALYTICAL EXPRESSIONS FOR THE
SUSCEPTIBILITY AND SPECIFIC HEAT

We shall now present the general form of the perturbat
expressions for the susceptibility and specific heat and
cuss their properties in some important cases.

A. Linear susceptibility

Using the results of the previous section, we have av
aged the square of the field projection of the net spin@B

5(( isW i•hW )2#, which yields an expansion for the equilibrium
linear susceptibility@Eq. ~2.9!# of the form

x5
m0m2

kBT
~a01jda11 1

2 jd
2a2!. ~3.1!

The lengthy general expressions for the coefficientsan ,
which include sums over the lattice of the dipolar tensorGi j
and theSl , are written in full in Appendix B.

The coefficientsan simplify notably for some orienta-
tional distributions of the anisotropy axes. For systems w
parallel axes~e.g., single crystals of magnetic molecul
clusters, or a ferrofluid frozen in a strong field!, the coeffi-
cients for the longitudinal response read

a0,i5
112S2

3
, ~3.2!

a1,i5
114S214S2

2

9
C, ~3.3!
6-3
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1
2 a2,i52

114S214S2
2

27
@~12S2!~R̄2S!13S2~T2U!#

1
7110S2235S2

2118S4

315
@~12S2!V

13S2~T2 1
3 R̄!#, ~3.4!

where C, R (R̄), S, T, U, and V are certain lattice sum
whose properties are discussed below.

To obtain the susceptibility when the anisotropy axes
distributed at random, we average the general expression
the an over nW , with help from Eqs.~A11! and ~A12! ~with
sW→nW ), getting

a0,ran5
1

3
, ~3.5!

a1,ran5
1

9
C, ~3.6!

1
2 a2,ran52

1

27
~R̄2S!1

1

45
~12S2

2!V. ~3.7!

Note that in the limit of isotropic spins~whereSl→0) the
results for coherent axes and for random anisotropy d
coincide.

B. Specific heat

To obtain the specific heat we can expand directly
partition function in powers ofjd by introducing the ex-
panded Boltzmann factor@Eqs.~2.13! and~2.14!# in the defi-
nition of Z,

Z5E dG exp~2bEa!~11jdG11 1
2 jd

2G2!

5Za~11 1
2 jd

2^G2&a!, ~3.8!

where the linear term vanishes because^G1&a50. Thencv is
obtained@Eq. ~2.10!# by differentiating the logarithm of the
above expansion, which poses no problem of the type
expanding a quotient, since to second order injd we can use
ln(11xjd

2).xjd
2 . The result has the form

cv

NkB
5s2b01 1

2 jd
2b2 , ~3.9!

where the zeroth-order coefficient

b05
4

315
~18S4235S2

2110S217!, ~3.10!

gives the specific heat in the absence of interactions.
The general formula forb2 is given in Appendix C@Eq.

~C1!#. Again, it simplifies for coherent axes and for rando
anisotropy. In the first case (nW i5nW ,; i ) we obtain
17441
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b2,i5
1
3 $12S2

224sS2S282s2@S2S291~S28!2#%R
1 1

3 ~2S2~12S2!14sS28~122S2!

1s2$S2922@S2S291~S28!2#%!V1$S2
214sS2S28

1s2@S2S291~S28!2#%T, ~3.11!

wheref 85d f /ds. For randomly distributed axes, on avera
ing the general expression forb2 over nW by means of Eq.
~A13!, one gets

b2,ran5
1
3 R. ~3.12!

This is the same correction term as that obtained forisotropic
spins by Waller14 and Van Vleck.3

C. Lattice sums

An essential element of the expressions derived forx and
cv are the following ‘‘lattice sums’’

C5
1

N (
i

(
j Þ i

hW •Gi j •hW , ~3.13!

R5
2

N (
i

(
j Þ i

r i j
26 , ~3.14!

R̄5
1

N (
i

(
j Þ i

hW •Gi j •Gi j •hW , ~3.15!

S5
1

N (
i

(
j Þ i

(
kÞ j

hW •Gi j •Gjk•hW , ~3.16!

T5
1

N (
i

(
j Þ i

~hW •Gi j •hW !2, ~3.17!

U5
1

N (
i

(
j Þ i

(
kÞ j

~hW •Gi j •hW !~hW •Gjk•hW !, ~3.18!

V5
1

N (
i

(
j Þ i

r i j
23hW •Gi j •hW ~3.19!

~replacehW by nW in the formulas forcv). Considering the
structure of these sums along with the form of the dipo
tensorGi j @Eq. ~2.2!#, some physical interpretation can b
provided for the different terms in the perturbative series12

The first-order terma1 incorporates throughC the direct ac-
tion ( j→ i ) on each spin of the remainder spins, wh
aligned along the probing field. No term of this type appe
in the specific heat since the absence of any external fi
yieldsb1[0. The second-order termsa2 andb2 involve lat-
tice sums including products ofGi j with Gjk so they take
into account the action on a given spin of the others
through intermediate spins~indirect actionk→ j→ i ). In par-
ticular, if k5 i we have thereaction on the i th spin of its
direct action on the remainder spins.

In the next section we shall computex andcv for ‘‘suf-
ficiently isotropic’’ lattices, in the sense of fulfilling((r x)

n

5((r y)
n5((r z)

n, e.g., cubic and completely disordered la
tices~incidentally, the type of arrangements for which in th
6-4
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classical Lorentz cavity-field calculation the contribution
the dipoles inside the ‘‘small sphere’’ vanishes!. In these lat-
tices we have two important results:~i! R̄ coincides with the
more familiar lattice sumR ~which justifies the notation! and
~ii ! V50.

D. Ordinary high-temperature expansions and other
approximations

The effects of the anisotropy are includedexactly in our
formulas through the anisotropy-weighted averages of
Legendre polynomialsS2(s) andS4(s), which modulate the
different contributions and introduce an extra dependence
the temperature vias5A/kBT. This reflects the fact that th
dipolar field at a given site is different if the source spins
almost freely rotating~high T, Sl→0) or, for example, lay
almost parallel to their respective anisotropy axes~low T,
Sl→1).

The approximate behavior ofS2 and S4 for weak
(usu!1) and strong (usu@1) anisotropy is15

S2~s!55
2

15
s1

4

315
s21••• usu!1

12
3

2s
2

3

4s2
1••• s@1

2
1

2 S 11
3

2s D1••• s!21,

~3.20!

S4~s!55
4

315
s21••• usu!1

12
5

s
1

25

4s2
1••• s@1

3

8 S 11
5

s
1

35

4s2D 1••• s!21.

~3.21!

The results of an ordinary high-temperature expansion
which all terms in exp(2bE) are expanded, correspond
replaceS2 andS4 in the coefficientsan andbn by their weak
anisotropy approximations. Besides, taking thes→0 limit
~whereSl50) we get the known results for isotropic spin
~in a slightly more general form, since the terms includingV
are usually omitted due to the lattices assumed12,16!. In addi-
tion, substituting the above strong anisotropy formulas inx
andcv we get these quantities in the discrete-orientation
plane-rotator cases~with the corresponding corrections i
powers of 1/s).

IV. BEHAVIOR OF THE SUSCEPTIBILITY AND THE
SPECIFIC HEAT

In this section we study the features of the susceptibi
and specific heat emerging from the analytical express
derived. We shall discuss the shape dependence of t
quantities, investigate the dependence on the anisotropy~on
both its strength and the axes distribution!, and finally esti-
mate the limits of validity of the expansions. For concre
17441
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ness, we shall consider the behavior of spins with easy-
anisotropy (A.0) in simple cubic lattices.

A. Shape dependence

Here we restrict our attention to systems with ellipsoid
shape, which is the geometry usually consider in studies
the dipole-dipole interaction because:~i! in the continuous
limit the demagnetizing field is spatially homogeneous a
parallel to the external field when this is along one of t
three principal axes17 and~ii ! it covers as limit cases impor
tant geometries such as those of disks or long cylinders.

The long range of the dipole-dipole interaction leads to
shape dependence of the physical quantities in an exte
field8 and hence of the linear susceptibility~which is a field
derivative!. In the expressions obtained, this shape dep
dence is borne by the slowly convergent lattice sumsC, S,
and U. For the class of sufficiently isotropic lattices me
tioned, these sums vanish in macroscopically largespherical

systems, being nonzero otherwise. The sumsR (R̄), T, and
V, on the other hand, containr i j

26 ~instead ofr i j
23 or r i j

23r jk
23),

which makes them rapidly convergent and sha
independent.18

Figure 1 shows the thermodynamic perturbation-the
susceptibility~thin lines! for hd5jd/2s50.02 andx in the
noninteracting limit~thick lines! for a system with parallel
axes with the form of a prolate ellipsoid, a sphere, and
oblate ellipsoid~the symbols correspond to Monte Car
simulations to be discussed below!. For the nonspherical sys
tems CÞ0,19 and the corrections to the susceptibility a
largely dominated by the first-order term, which correspon
to the direct action discussed above. The shape depend
is easily understood by recalling the behavior of two dipol
if their axes are aligned, they minimize their dipole-dipo
energy lying parallel along the line joining them, while if th
line is perpendicular to the axes, they minimize the inter
tion energy pointing along opposite directions. Therefore
elongated systems the aligning effect dominates andx is
larger than the noninteracting susceptibility@Fig. 1~a!#, while
in oblate systems the opposite occurs with the associ
decrease ofx @Fig. 1~c!#. In the sphere the direct term ex
actly cancels (C50), and negative second-order correctio
~which incorporate indirect and reaction terms! determine the
susceptibility@Fig. 1~b!#.

Concerning the specific heat, due to the presence of
rapidly convergent lattice sumsR, T, and V, this quantity
does not depend on the shape of the system. Physically,
is a consequence of the absence of linear term in Eq.~3.8!,
which follows from ^G1&a50, which in turn requires the
absence of a bias field.

B. Anisotropy dependence

To illustrate the importance of taking the anisotropy in
account, we are going to compare the thermodyna
perturbation-theory results with:~i! those obtained by an or
dinary high-temperature expansion for zero anisotropy~the
Sl→0 limit of our expressions! and ~ii ! the results in the
discrete orientation limit (Sl→1).
6-5
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In the cases of cubic or completely disordered lattices
already know that the lattice sumV vanishes. Then, the firs
corrections to the susceptibility due to the interactions
comeexactly independent of the anisotropyif the axes are
distributed at random@see Eqs.~3.5!–~3.7! where the only
anisotropy dependent term is multiplied byV#. Therefore the
susceptibility coincides with that obtained by an ordina
high-temperature expansion for isotropic dipoles~see Ref.
12; V50 was implicitly used in that work! but also with the
perturbativex for Ising-like spins with randomly distributed
‘‘Ising’’ axes @Fig. 2~a!#. This generalizes to interacting spin
the well-known result, discussed in Ref. 4~see also Ref. 20!,
i.e., the absence of anisotropy effects on the equilibrium
ear susceptibility of systems with random anisotropy.

Nevertheless, whenVÞ0 ~as occurs in tetragonal lattices!
the susceptibility will show some anisotropy dependence
random axes~although weak, sinceVÞ0 is accompanied by
CÞ0 andx is then dominated by the anisotropy independ
first-order term!. In any case, on inspecting Eqs.~3.2!–~3.4!
one would expect important differences for parallel axes
tween the thermodynamic perturbation-theory results
those where the anisotropy is not included (Sl→0). This is
what actually occurs, as Fig. 2~b! illustrates: the susceptibil

FIG. 1. Equilibrium linear susceptibility vs temperature for thr
different ellipsoidal systems with equationx2/a21y2/b21z2/c2

<1 resulting in a system ofN dipoles. The susceptibility is given in

reduced unitsx̄5x(HK /m), the spatial arrangement of the spins
simple cubic, and the probing field is applied along the anisotr
axes, which areparallel to thez axis. The thick lines are the equ
librium susceptibility of the corresponding noninteracting syste
~they are equal in all three cases!; thin lines are the susceptibilitie
including the corrections due to the dipolar interactions obtained
thermodynamic perturbation theory@Eq. ~3.1!#; and the symbols
represent the susceptibility obtained with a Monte Carlo meth
The dipolar interaction strength ishd5jd/2s50.02. ~For the pro-
late and oblate ellipsoids the second-order correction is very s
in the temperature interval displayed and omitting it the cur
visually coincide.!
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ity is not only larger for parallel axes than for isotropic d
poles, but also the temperature dependence is stronger,
ing to the extra, anisotropy-induced, temperature depende
of the coefficientsan via Sl(s). This is clearly seen when
comparing the correction termsDx themselves@inset of Fig.
2~b!#.

Note that the susceptibilities in the isotropic and Isi
cases constitute lower and upper bounds to the actualx. The
upper bound is slowly approached at low enough tempe
tures (s@1), completing in this way the crossover from is
tropic behavior at highT to the discrete-orientation behavio
at low T. Note finally that the lowest temperatures display
(s;20) are still inside the range where an ordinary mag
tization experiment yields the equilibrium responses
;25).

Concerning the specific heat, the part corresponding to
noninteracting system,b0, does not depend on the anisotrop
axes orientations. The reason is that if the spins are inde
dent, they cannot probe the relative orientations of their a
and there is no preferential direction to compare their ori
tations with~as that of the probing field in the susceptibility!.
Thus the noninteracting specific heat~inset in Fig. 3! only
reflects the individual behavior of the spins in their sing
spin anisotropy potentials, and its peak~at s;5) reflects the
‘‘transition’’ from the isotropic behavior at highT ~with cv
}1/T2) to the discrete orientation behavior at lowT. This can

y

s

y

.

all
s

FIG. 2. Equilibrium linear susceptibility vs temperature for th
same prolate ellipsoid as in Fig. 1~a! and the dipolar interaction
strengthhd5jd/2s50.004. The spins are arranged on a simple
bic lattice with ~a! randomly distributed anisotropy axes and~b!
parallel anisotropy axes. Thick lines are the susceptibilities for
dependent spins and thin lines are the susceptibilities obtaine
thermodynamic perturbation theory. For comparison we have
played x obtained by a classical high-temperature expansion
isotropic spins~crosses! and for Ising spins~dashed line!. Inset:
Comparison of the corrections to the susceptibility due to inter
tions (Dx5x2xnon-int). ~Note that the temperatures displayed a
above the lower validity limitjd;1/6 estimated in the text: 1/s
52hd /jd;0.048.!
6-6
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be considered as a sort of Schottky peak, due in this cas
the ‘‘depopulation’’ of the high-energy ‘‘barrier levels.’’21

The corrections due to the coupling depend naturally
the orientations of the axes. For a given axes distribution
specific heat increases with the interaction strength~Fig. 3!,
since an amount of heat injected in the system can part
be stored in the form of the potential energy of interactio
For the same reason, since the average of the interac
energy is larger~in magnitude! in systems with aligned axes
one would expect a largercv in this case. Figure 3 shows tha
the effect of the interaction is indeed stronger in a syst
with aligned axes than in a system with random anisotro

C. Validity limits of the perturbational results

Since the analytic expressions derived forx and cv are
expansions valid in principle forjd!1, which corresponds
to T}1/s@2hd @Eq. ~2.7!#, the results will deviate apprecia
bly from the exact quantities at sufficiently lowT. In order to
estimate the limits of validity, it would be desirable to com
pare the formulas with the results of some method trea
the interactions without approximations. Besides, as the
damentals of the expansion are the same for the diffe
quantities, it would suffice to estimate the range of valid
for one of them.

We have compared the analyticalx with the susceptibility
computed by a Monte Carlo method~described in Appendix
D!, which except for statistical and finite sampling errors
exact to compute equilibrium properties. Returning to Fig
we observe thatx obtained by thermodynamic perturbatio
theory~thin lines! describes accurately the simulated susc
tibility ~symbols! at high and intermediateT, while the re-
sults start to deviate slightly at the lowest temperatures
played (s;4). Therefore, sincehd50.02 was used in this
graph, an estimate of the lower temperatures attainabl
jd;1/6, which is milder than thea priori restrictionjd!1.

FIG. 3. Specific heat per spin vs temperature for noninterac
spins~thick line!, and weakly interacting spins with randomly di
tributed anisotropy axes~dashed lines! and parallel axes~thin lines!
arranged on a simple cubic lattice. In each case,hd5jd/2s
50.003 and 0.006 from bottom to top. The inset shows the spe
heat for noninteracting spins over a wider temperature interval
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V. SUMMARY AND CONCLUSIONS

We have obtained approximate analytical expressions
the equilibrium linear susceptibility and specific heat of cla
sical spins interacting via dipole-dipole interactions
means of thermodynamic perturbation theory. The formu
account for the interactions to second order in the coup
constant over temperature but are exact in the anisotropy
the results are valid for any strength and sign of the anis
ropy, provided only the interaction strength is weak enou
(jd&1/6), they include as particular cases the linear respo
and specific heat of isotropic as well as strongly anisotro
spins~discrete-orientation model and plane rotators!.

The expressions derived also account for the different
entational distributions of anisotropy axes. For randomly d
tributed axes and sufficiently isotropic lattices~e.g., cubic or
completely disordered!, the linear susceptibility becomes in
dependent of the anisotropy, at least to second order in
coupling constant. This extends to interacting systems
well-known absence of anisotropy effects on the equilibriu
linear response of systems with random anisotropy. T
same holds for the corrections to the specific heat due to
interactions~indeed, without restrictions on the lattice type!.
For a general axes distribution, however, the anisotropy
fects do not disappear. The importance of including them
been illustrated in the case of coherent axes by showing
failure of ordinary high-temperature expansions~for either
isotropic or strongly anisotropic spins! to describe the exac
susceptibility in cases where the thermodynamic perturba
theory yields accurate results.
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APPENDIX A: AVERAGES WEIGHTED WITH THE
UNIAXIAL ANISOTROPY BOLTZMANN FACTOR

The averages we need to calculate are all of product
the form I m5^)n51

m (cWn•sW)&a, where thecWn are arbitrary
constant vectors. Introducing the polar and azimuthal ang
of the spin, (q,w), we can writeI m as

I m5
*0

2pdw*0
pdq sinq)n51

m ~cWn•sW !exp@s~sW•nW !2#

*0
2pdw*0

pdq sinq exp@s~sW•nW !2#
.

For oddm, I m is an integral of an odd function over a sym
metric interval and henceI m50. To calculate the suscept
bility and specific heat to second order injd , we requireI 2
and I 4, which will be calculated using symmetry argumen
similar to those employed to derive thes50 unweighted
averages~see, for instance, Ref. 22!.

Note thatI 2 is a scalar bilinear incW1 and cW2. The most
general scalar with this property that can be constructed w
the vectors of the problem (cW1 , cW2, andnW ) has the form

I 25AcW1•cW21B~cW1•nW !~cW2•nW !.

g

c
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To find the coefficientsA andB one chooses particular value
for thecWn : ~i! If cW1icW2'nW thenI 25A. Thus, settingnW 5 ẑ and
cW15cW25 x̂, one hassW•nW 5cosq[z and (cW1•sW)(cW2•sW)5(1
2z2)cos2w, so the integral reads

A5
*0

2pdw cos2w*21
1 dz~12z2!exp~sz2!

*0
2pdw*21

1 dzexp~sz2!

5 1
2 @12^z2&a#5

12S2

3
,

where S2(s)5^P2(z)&a is the average of the second Le
endre polynomialP2(z)5 1

2 (3 z221) over the noninteract
ing distribution. ~ii ! If cW1icW2inW , then I 25A1B. Putting nW

5cW15cW25 ẑ the integral is given by
ia

rt

a

17441
A1B5
*21

1 dz z2exp~sz2!

*21
1 dzexp~sz2!

5^z2&a5
112S2

3
.

Therefore, since I 25^(cW1•sW)(cW2•sW)&a, we get for the
second-order moment

^~cW1•sW !~cW2•sW !&a5
12S2

3
cW1•cW21S2~cW1•nW !~cW2•nW !.

~A1!

We can similarly calculateI 4 by constructing the most gen
eral scalar fulfilling certain properties, getting
^~cW1•sW !~cW2•sW !~cW3•sW !~cW4•sW !&a5D4@~cW1•cW2!~cW3•cW4!1~cW1•cW3!~cW2•cW4!1~cW1•cW4!~cW2•cW3!#1D2@~cW1•cW2!~cW3•nW !~cW4•nW !

1~cW1•cW3!~cW2•nW !~cW4•nW !1~cW1•cW4!~cW2•nW !~cW3•nW !1~cW2•cW3!~cW1•nW !~cW4•nW !1~cW2•cW4!~cW1•nW !

3~cW3•nW !1~cW3•cW4!~cW1•nW !~cW2•nW !#1S4~cW1•nW !~cW2•nW !~cW3•nW !~cW4•nW !, ~A2!
g

l

ic
whereD2 andD4 are combinations of the firstSl(s)

D25
1

7
~S22S4!, D45

S4

35
2

2S2

21
1

1

15
. ~A3!

Therefore Eq. ~A2! involves S2 as well as S4(s)
5^P4(z)&a, the average of the fourth Legendre polynom
P4(z)5 1

8 (35z4230z213) with respect toWa.
Finally, introducing the following tensor and scalar sho

hands

G5
12S2

3
11S2nW nW , ~A4!

L5AD411
D2

AD4

nW nW , V5S423
D2

2

D4
, ~A5!

where1 is the identity tensor, the results for the moments c
compactly be written as

^~cW1•sW !~cW2•sW !&a5~cW1•G•cW2!, ~A6!

^~cW1•sW !~cW2•sW !~cW3•sW !~cW4•sW !&a

5~cW1•L•cW2!~cW3•L•cW4!1~cW1•L•cW3!~cW2•L•cW4!

1~cW1•L•cW4!~cW2•L•cW3!

1V~cW1•nW !~cW2•nW !~cW3•nW !~cW4•nW !, ~A7!

which facilitates the manipulation of the observables.
l

-

n

The quantitiesSl can be computed using the followin
homogeneous three-term recurrence relation:25

F12
2s

~2l 21!~2l 13!GSl2
2s

2l 11 F l 21

2l 21
Sl 222

l 12

2l 13
Sl 12G

50, ~A8!

knowing the first two terms:S051 andS2, which is given by

S25
3

2 S es

sZa
2

1

2s D2
1

2
. ~A9!

The one-spin partition functionZa5*21
1 dzexp(sz2) can be

written in terms oferror functions of real and ‘‘imaginary’’
argument as

Za5HAp/s erfi~As!, s.0

Ap/usu erf~Ausu!, s,0.
~A10!

The less familiar erfi(x) is related with the Dawson integra
D(x), so in the easy-axis case one can writeZa

5(2es/As)D(As) and computeD(x) with the subroutine
DAWSON of Ref. 23.

Note finally that in the isotropic limit (Sl→0), Eqs.~A1!
and ~A2! reduce to the known moments for the isotrop
distribution,12,22

^~cW1•sW !~cW2•sW !& iso5
1
3 cW1•cW2 , ~A11!
6-8
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^~cW1•sW !~cW2•sW !~cW3•sW !~cW4•sW !& iso

5 1
15 @~cW1•cW2!~cW3•cW4!1~cW1•cW3!~cW2•cW4!

1~cW1•cW4!~cW2•cW3!#. ~A12!

These expressions are formally identical to those for the
erage of a quantity involving the anisotropy axesnW i ,
when these are distributed at random 1/N( i f (nW i)
→*(d2nW /4p) f (nW )[ f̄ . For instance, for arbitrary
nW -independent vectorsvW 1 andvW 2, we have

1

N (
i

~vW 1•nW i !~vW 2•nW i !→~vW 1•nW ~vW 2•nW !5 1
3 vW 1•vW 2 .

~A13!
a
r
.
th
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APPENDIX B: GENERAL FORMULAS FOR THE
COEFFICIENTS OF THE SUSCEPTIBILITY

The general expression for the equilibrium linear susc
tibility is given by Eq. ~3.1! with the following expressions
for the coefficients:

a05
1

N (
i

hW •Gi•hW ,

a15
1

N (
i

(
j Þ i

hW •~Gi•Gi j •Gj !•hW ,
a252
2

N (
i

(
j Þ i

hW •~Gi•Gi j •Gj•Gi j •Gi !•hW 1
2

N (
i

(
j Þ i

(
kÞ j

hW •~Gi•Gi j •Gj•Gjk•Gk!•hW

1
1

N (
i

(
j Þ i

H 12S2

r i j
6 @~hW •Li•hW !~ r̂ i j •Li• r̂ i j !12~hW •Li• r̂ i j !

21V~hW •nW i !
2~nW i• r̂ i j !

2#

1S2@~hW •Li•hW !~nW j•Gi j •Li•Gi j •nW j !12~hW •Li•Gi j •nW j !
21V~hW •nW i !

2~nW i•Gi j •nW j !
2#J

2
1

N (
i

(
j Þ i

~hW •Gi•hW !F12S2

r i j
6 ~ r̂ i j •Gi• r̂ i j !1S2~nW j•Gi j •Gi•Gi j •nW j !G ,
s
ing

ing
whereGi j , rW i j , and r̂ i j are defined in Eq.~2.3!, andG, L,
andV in Eqs.~A4! and ~A5! and also involve theSl(s).

When calculating these coefficients, the same type of
erages appear as in the isotropic case~see Refs. 3 and 12 fo
details of the calculation! and with the same multiplicities
The only difference is the weight function and hence
formulas required to calculate those averages@Eqs.~A1! and
~A2! instead of Eqs.~A11! and ~A12!#.

APPENDIX C: GENERAL FORMULA FOR THE
COEFFICIENT B2 OF THE SPECIFIC HEAT

In the general expression~3.9! for the specific heat the
coefficientb0 is given by Eq.~3.10!, while b2 reads

Nb25 1
3 $2~12S2!24sS282s2S29%(

i
(
j Þ i

r i j
26

1 1
2 $2S2~12S2!14sS28~122S2!

1s2@S29~122S2!22~S28!2#%(
i

(
j Þ i

r i j
26

3@~ r̂ i j •nW i !
21~ r̂ i j •nW j !

2#1$S2
214sS2S28
v-

e

1s2@S2S291~S28!2#%(
i

(
j Þ i

~nW i•Gi j •nW j !
2, ~C1!

wheref 85d f /ds. An arbitrarySl8 can be expressed in term
of averaged Legendre polynomial by means of the follow
differential-recurrence relation:

dSl

ds
5

~ l 21!l

~2l 21!~2l 11!
Sl 221

2l ~ l 11!

3~2l 21!~2l 13!
Sl

1
~ l 11!~ l 12!

~2l 11!~2l 13!
Sl 122

2

3
S2Sl . ~C2!

This useful formula can readily be demonstrated by tak
the derivative of the definition of Sl[^Pl&a

5*21
1 dz Ple

sz2
/*21

1 dz esz2
:

dSl

ds
5

*21
1 dz z2Ple

sz2

*21
1 dz esz2 2

*21
1 dz Ple

sz2
*21

1 dz z2esz2

~*21
1 dz esz2

!2

5^z2Pl&a2
1
3 Sl~112S2!, ~C3!
6-9
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where^z2&a5(112S2)/3 has been used. The product ofPl
with z can be expanded in Legendre polynomials by us
the corresponding relation for associated Legendre funct
Pl

m ~Ref. 24, Chap. 12!,

zPl5
1

2l 11
@ lPl 211~ l 11!Pl 11#. ~C4!

Multiplying zPl by z, using again Eq.~C4! to expandzPl 61
on the right-hand side, and gathering terms yields

z2Pl5
~ l 21!l

~2l 21!~2l 11!
Pl 221

2l ~ l 11!21

~2l 21!~2l 13!
Pl

1
~ l 11!~ l 12!

~2l 11!~2l 13!
Pl 12 .

Averaging this result and substituting in Eq.~C3!, we finally
get the desired Eq.~C2!.

APPENDIX D: MONTE CARLO SIMULATIONS

In order to obtain nonperturbative results to test the a
lytical expressions we have performed careful Monte Ca
simulations, by a method similar to that employed in Ref. 2
The trial Monte Carlo step~MCS! is a random rotation of the
spin within a cone, achieved by generating a random ve
with uniform probability on the surface of a sphere of radi
%, adding the random vector to the initial spin, and fina
s

ig

r
c

L
r

,

.
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r

normalizing the resulting vector. For a better acceptance r
of the generated configurations, we scale that radius witT
as%50.7/As.

In terms of the maximum anisotropy fieldm0HK52A/m,
whereA is the anisotropy parameter andm is the magnetic
moment, a dimensionless probing field can be defined
DH/HK or, in temperature units, asDj52sDH/HK . The
latter is the argument in the Langevin function for th
~isotropic! magnetization, and it controls if the response
linear in DH. Therefore to treat all the temperatures on t
same footingDj}DH/T is kept constant in the simulation
(Dj50.15) which requires one to decrease the probing fi
with T. The valueDj50.15 used should ensure linear r
sponse since it is well below the valuesDj50.3–0.5, where
nonlinear terms can start to contribute appreciably to
equilibrium response~see, for instance, Appendix C o
Ref. 27!.

The number of dipoles in each simulation is indicated
the panels of Fig. 1 and the simulations are done with op
boundary conditions. The absolute value of the coefficien
front of Eq. ~2.2! can be written as 2A hd , so that hd
@Eq. ~2.7!# is used as the input in the simulation. In order
control that the response is the equilibrium one, we appl
sinusoidal probing field of low frequency
( f 5831026 MCS21) and check that further reducingf
does not change the results. Besides, the ten first periods
excluded from the average and the susceptibility samp
over the 20 following periods.
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