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Thermodynamic perturbation theory for dipolar superparamagnets
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Thermodynamic perturbation theory is employed to derive analytical expressions for the equilibrium linear
susceptibility and specific heat of lattices of anisotropic classical spins weakly coupled by the dipole-dipole
interaction. The calculation is carried out to the second order in the coupling constant over the temperature,
while the single-spin anisotropy is treated exactly. The temperature range of applicability of the results is, for
weak anisotropy A/kgT<<1), similar to that of ordinary high-temperature expansions, but for moderately and
strongly anisotropic spinsA(kgT=1) it can extend down to the temperatures where the superparamagnetic
blocking takes placeA/kgT~25), provided only that the interaction strength is weak enough. Besides, taking
exactly the anisotropy into account, the results describe as particular cases the effects of the interactions on
isotropic (A=0) as well as strongly anisotropid¢4|—) systems(discrete orientation model and plane
rotators.
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I. INTRODUCTION equilibrium response when theondition of superparamag-
netism t,,> 7, is obeyed, which corresponds to the tempera-

In paramagnetic systems the relative weakness of thture rangg(in units of A/kg):
dipole-dipole interaction between magnetic ions results in
characteristic temperatures lying in the range of 0.01-0.1 K. In(t,,/79)>AlkgT=0. (1.2
Besides, the dipolar coupling usually coexists with the ex-
change interaction. However, for superparamagie#o- In “static’ measurementst(,~1-100 s), due to the small
scale solids or clusters whose net spin rotates thermally asalue of r,, this equilibrium range extends down to very low
tivated in the magnetic anisotropy potentighe exchange or temperatures (25A/kgT), showing that the naive ascription
other competing interactions can usually be discarded andf superparamagnetism to the range in which “the thermal
the dipole-dipole interaction can be studied in pure form. Inenergy is comparable or larger than the anisotropy energy”
addition, the size of their typical magnetic momen8 ( (1=A/kgT) is unduly restrictive. Indeed, adecreases the
~10°-1C) shifts the relevant temperatures up to the rangesystem displays different behaviors ranging from almost iso-
of a few K, facilitating greatly the experimental study of this tropic (A/kgT<1), then moderately anisotropicA(kgT
interactiont ~1), and eventually strongly anisotropié/kgT>1) with-

The calculation of the relevant statistical-mechanicalout leaving the equilibrium regimeTherefore descriptions
quantities constitutes a formidable problem in most manybased on the assumption of isotropic behavior or the opposite
body systems. Apart from various specific solution ansatzs, discrete-orientation or plane-rotator approximatiotfsr
number of systematic expansiofis the density, coupling easy-axis and easy-plane anisotropgcessarily have a re-
parameter, etghave been developed for weak interactiéns. duced range of validity in superparamagnets.

In spin and dipole systems, the moment method of Van Due to the mentioned characteristics of the dipole-dipole
Vleck®* (a high-temperature expansion of the partition func-coupling and the difficulties introduced by the anisotropy,

tion) permits us to study the equilibrium properties in the most rigorous calculations in interacting superparamagnets
absence of cooperative phenomena. This technique is one hive been done by numerical simulation techniduiesthis

the few analytical tools available to handle systems couplegaper we apply thermodynamic perturbation thédoycal-

by the dipole-dipole interaction, due to the long-range anctulate analytically the linear susceptibility and the specific

reduced symmetry of this interaction. heat of lattices of uniaxial classical spins coupled by the

An important property of superparamagnets is their magdipole-dipole interaction, accounting exactlgonperturba-
netic anisotropy, which results in a number of spin orientatively) for their anisotropy energy. Along with the study of
tions of minimum energy separated by potential barriers. Fothe dependence on the shape of the system of certain quan-
uniaxial spins the characteristic time for the thermoactivated tities (due to the long range of the dipole-dipole interactipn
rotation of the spin over the anisotropy barri@rcan ap-  our treatment permits us to investigate the effects of the
proximately be written as strength and sign of the anisotropy, as well as of the orien-
tational distribution of anisotropy axes.

We find that for systems with ax@siented at randonthe
corrections to the specific heat and the linear susceptibility
become independent of the anisotrof@t least to second
where 7, is weakly temperature dependent and takes valuesrder in the interaction couplingn certain spatial arrange-
7o~1071%-10"12 s for magnetic nanoparticles. Then, for a ments of the spin.g., cubic or completely disordejedhe
given measurement timig, the system exhibits its thermal- latter is a generalization to interacting systems of the well-

7=T10eXP(A/KgT), (1.7
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known absence of anisotropy effects on the equilibrium lin-fined in such a way tha? is the mean volume around each
ear susceptibility of dipoles with random anisotroftlis-  spin. Thusa is the lattice constant in a simple cubic arrange-
cussed in Ref. 4 However, apart from the important ment, and for nanoparticles the volume concentration of par-
exception of random axes, the anisotropy is an essential elgicles isc=\V/a®.

ment in the determination of the corrections due to the inter- Finally, introducing8=1/kgT and the following dimen-
actions. This is illustrated with the response of systems witfsionless quantitie@nisotropy and coupling constant relative
parallel anisotropy axes, where an ordinary high-temperaturgo the thermal energy

expansion, either disregarding the anisotropy or in the dis-

crete orientation limit, poorly describes the susceptibility A wom? 1
curves(computed for comparison by Monte Carlo simula- o= kB_T’ d=4 25 kB_T’ (2.9
tion), while the thermodynamic perturbation theory describes .
the results with reasonable accuracy. we can write the total energy=E,+ E4 as
IIl. THERMODYNAMIC PERTURBATION THEORY FOR _ > =5
INTERACTING DIPOLES BE=02 (51) +§di2>,- @i - 28

In this section we introduce the spin system studied anqote that the interaction strength can also be measured by

discuss the application of perturbation theory to calculatghe temperature-independent coupling parameter
approximately thermodynamic quantities.
hg=&420, (2.7)

which is the magnitude of the fielgineasured in units of the

Let us consider a system &f magnetoanisotropic spins maximum anisotropy fieldugHy=2A/m) produced at a
coupled by the dipole-dipole interaction. The magnetic angiven position by a dipole at a distanaé
isotropy energy is assumed to be uniaxial,

A. Hamiltonian of a system of interacting anisotropic spins

B. Equilibrium linear susceptibility and specific heat
= — -)- . Q- 2 -y . -
= AZ (si-ni)*, 2.0 The thermal-equilibrium average of any quantity

B(Sy, ... ,Sy) is given b
whereA is the anisotropy parametéior magnetic nanopar- (51 N s g y

ticlesA=KYV, whereK andV are the anisotropy constant and 1

volume, ands; and n; are, respectively, unit vectors along (B)= zf dI'B exp(— BE), (2.8
the magnetic moment and anisotropy axis ofitiespin. The

dipole-dipole interaction energy can be written as whereZ= [dI" exp(— BE) is the partition function. In classi-

cal spins the different states correspond to different spin ori-
entations so thadl' =11,dQ); , with dQ,=d?s;/27.
The linear susceptibility is defined as the derivative of the

) . ) ) magnetization (N)(Eiéi) with respect to thexternalmag-
wherem is the magnitude of the magnetic momeatis an  peic field (which is the experimentally manipulable quantity

2
Mom - -
Ey=— wi, wi=Si-Gii-S, (2.2
d 4nad = ! v

appropriate characteristic lengtsee below, and in contrast to the internal macroscopic fieltlowever, from
1 basic statistical mechanics we know that the response to a
Gij=—5(3 Fij?ij —1), (2.3)  probing fieldAH can be obtained in terms oj suitable aver-
rij ages of the net spin taken in the absenca@Hbf. If in addi-
R, tion there is no externdias field applied, the susceptibility
Mp=ri—ry, ri=ri/rj. (2.4 s simply given by
Herel is the unit tensor anﬁij the vector joining the siteis wom? 1 L
; . . . . _ 2 _
andj (measured in units of). The action of a tensor dyadic X9 T N S7) SZ—Z (si-h), (2.9

T=uv on a vectow is the usual oneLIE)vT/E J(JVT/), and

hence the tensdg;; , when multiplied with§j , gives(except  whereh is a unit vector along\H ands, is the field projec-

for a constant the field at the position of théth dipole tion of the net moment. The specific heat at constant volume
created bygj . c,=d(E)/dT can be obtained directly frord as

For notational simplicity we are assuming that the param-
eters characterizing the different dipoles are identical, but it
is immediate to generalize the expressions for different an-
isotropy constants, magnetic moments, volumes, etc. Simi-
larly, although the assumption of uniaxial anisotropy is notwhere to take ther derivative, the coupling parametég is
necessary until the end of the calculation we made it here foexpressed agq=2chy [EqQ. (2.7)]. As in the calculation of
definiteness. Concerning the characteristic leragtit is de-  y, we only consider the zero-field specific h&t.

So_ 2(9_2“”2)_ 2(9—2(|n2) (2.10
ke P 32 ~7 902 ' '
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C. Thermodynamic perturbation theory

We shall now use thermodynamic perturbation thédry,
expand the Boltzmann distributiolv=2Z"texp(—BE) in
powers oféy. This will lead to an expression of the form

W=Wy(1+&F 1+ 3E3F,+ - 1), (2.11)

whereF is linear inE4 (and hence quadratic in the spins
F, is up to quadratic irE4 (quartic in the§i), and

W,=Z, *exp(— BE,), (2.12

PHYSICAL REVIEW B 64 174416

(BY=(B)at (B G1)at 3EX(B Go)a— (B)(Go)al.
(2.17

To complete the calculation we need to obtain averages of

low grade powers of weighted by the noninteracting distri-
bution (momentg, which is the only place where one needs
to specify the form ofE,. We can write the susceptibility
and specific heat to second order &y using up to
fourth-order moments, which are calculated in Appendix
A [Egs. (A1) and (A2)] for the uniaxial distribution

Waocexp[cr(é ﬁ)z]. For instance, the first two moments read

is the Boltzmann distribution of the noninteracting ensemble{(C1-$))a=0 and

Therefore the calculation of an observab®) is reduced to
the calculation of averages weighted\W (denoted - ),,) of
typically low grade powers of the spin variable&),,

(BF1)a, {(BF5)4, etc. An ordinary high-temperature expan-

sion corresponds to expand E@.12 further in powers of

L 1-S, L
<(Cl‘5)(02‘5)>a:Tcl‘C2+52(01'n)(Cz‘n),

where theEn are arbitrary constant vectors ai@l is the

B=1KkgT. In the present calculation, however, the average§verage of théth Legendre polynomialP|(z) overW,:

are kept weighted ovew,, so they will be exact in the

magnetic anisotropy and only perturbational in the dipolar

interaction*!

S(o)=(Py(s:N))a. (2.18

: _ _ 2 A2
A convenient way of performing the expansion in powers!n particular,So=1 andS;(o) = 2(3(s-n)?—1), can be ex-

of £y is to introduce the Mayer functionfy; defined by 1

+ fij=expyw;;), which permits us to write the exponential

in the Boltzmann factor as

exp(—,BE):exp(—,BEa)iI;[j (1+f;). (2.13

Expanding the product to second order in fhegives
I 148 =1+ 66143666, 0(6). (214

wheré?

G1:2 Wij

i>]

(2.15

Gz=2

i>]

C’)iziJrE > i@ iki ik, (2.16

=i k>

and the symbotj;.;; annihilates terms containing duplicate

pairs: Qi1 = 3 (2— Sik— ;1) (1+ 8 ) (1+ 8))).
To obtain the average of any quantBywe introduce the

pressed in terms of familiar special functio@sror functions

or the Dawson integral while otherS; appearing in higher-
order moments can be obtained by means of the recurrence
relation they satisfyEq. (A8)].

Ill. ANALYTICAL EXPRESSIONS FOR THE
SUSCEPTIBILITY AND SPECIFIC HEAT

We shall now present the general form of the perturbative
expressions for the susceptibility and specific heat and dis-
cuss their properties in some important cases.

A. Linear susceptibility

Using the results of the previous section, we have aver-
aged the square of the field projection of the net giBn
= (Ei§i . ﬁ)z], which yields an expansion for the equilibrium
linear susceptibilitfEq. (2.9)] of the form

pom?

X= " (Aot bddut 3Egaa). (3.1

The lengthy general expressions for the coefficieats
which include sums over the lattice of the dipolar tenGgr

expansion(2.14) in both the numerator and denominator of and theS;, are written in full in Appendix B.

(B)=[dI'B exp(- BE)/fdI" exp(— BE), and work out the ex-
pansion of the quotient, getti

(BY=(B)at &4 (B G1)a=(B)«(G1)al +35{(B Gy)a
—(B)«{G2)a=2(G1)d (B G1)a=(B)«(G1)al}-

However, since in our case/,(—s;)=W,(s;) (because the

single-spin anisotropy has inversion symmetry and there is
no bias field and inG; ==, ;wj;; a dipole does not interact
with itself, the resul{G,),=0 holds. Under these conditions

we finally find the simpler form

The coefficientsa,, simplify notably for some orienta-
tional distributions of the anisotropy axes. For systems with
parallel axes(e.g., single crystals of magnetic molecular
clusters, or a ferrofluid frozen in a strong figldhe coeffi-
cients for the longitudinal response read

1+2
aO,H= 3 Sz s (3.2)
1+4S,+4S;
ay| = 892 > ) (3.3

174416-3



P. E. JONSSON AND J. L. GARCA-PALACIOS PHYSICAL REVIEW B 64 174416

1+4S,+4S5 _ by = 11— S2— 40S,S, — 0[S, S0+ (S)) 2R
tay= - 2 (1) (R 9+ 38T 1) 231 5m 4055— 1SS+ (S
+1(25)(1-$)+40S}(1-25,)
_ 2
AR i A e + oS 2SS+ ()P V+ {5+ 405,
= + oSS+ ()T, (3.13
+38,(T-1R)], 3.4

wheref’ =df/do. For randomly distributed axes, on averag-

whereC, R (R), S, T, U, andV are certain lattice sums ing the general expression fox, over n by means of Eq.

whose properties are discussed below. (A13), one gets
To obtain the susceptibility when the anisotropy axes are b, —1R (3.12

distributed at random, we average the general expressions for 2.ran— 3 7% '

the a,, over n, with help from Eqgs.(A11) and (A12) (with This is the same correction term as that obtainedsimiropic
3—7), getting spins by Walle¥* and Van Vieck

C. Lattice sums

1
Ao~ 3 (3.9 An essential element of the expressions derivedyfand
c, are the following “lattice sums”
1 1 . -
al,ranzgcv (36) C: N 2| ]E#I h G” . h, (313
1 1 — 1 2 2 -6
380 ran— — 2—7(R_8)+ ZS(:L_SZ)V (37) R= N ~ & rij , (314)
Note that in the limit of isotropic spinéwvhere S —0) the — 1 . -
results for coherent axes and for random anisotropy duly R=q EI ZI h-G;-Gj-h, (3.19
coincide. .
1 _ -
B. Specific heat S=N Z o e h-Gij-Gjc-h, (3.16
To obtain the specific heat we can expand directly the 1
partition function in powers ofy by introducing the ex- - = S CL L R)2
panded Boltzmann factdEgs.(2.13 and(2.14)] in the defi- 7 N 2. 7 (h-Gij- )%, (3.17
nition of Z,
1 - L -
) UZNE. > 2 (h-Gy-h)(h-Gy-h), (318
2= [ ar expi— EL)(1+ 2,61+ 3662) A &
142 1 —3R N
=Z,(1+1£XG)), (3.9 V:NZ 2T h-Gj-h (3.19

where the linear term vanishes beca(8e),=0. Thenc, is

obtained[Eq. (2.10] by differentiating the logarithm of the
above expansion, which poses no problem of the type
expanding a quotient, since to second ordefjmve can use

(replaceh by n in the formulas forc,). Considering the
tructure of these sums along with the form of the dipolar
ensorG;; [Eq. (2.2)], some physical interpretation can be
provided for the different terms in the perturbative setfes.

In(1+x3) =x&5 . The result has the form The first-order terma, incorporates throughi the direct ac-
tion (j—i) on each spin of the remainder spins, when
izazb +1g2p (3.9 aligned along the probing field. No term of this type appears
Nkg 07 25d%2 ' in the specific heat since the absence of any external field

o yieldsb,;=0. The second-order ternas andb, involve lat-
where the zeroth-order coefficient tice sums including products d&;; with Gj, so they take
into account the action on a given spin of the others but
through intermediate spirigdirect actionk— j—i). In par-
ticular, if k=i we have thereaction on theith spin of its
direct action on the remainder spins.
gives the specific heat in the absence of interactions. In the next section we shall compugeandc, for “suf-

The general formula fob, is given in Appendix JEQ.  ficiently isotropic” lattices, in the sense of fulfilling (r,)"
(CD)]. Again, it simplifies foE cot]erent axes and for random =3(r,)"==(r,)", e.g., cubic and completely disordered lat-
anisotropy. In the first casen(=n,Vi) we obtain tices(incidentally, the type of arrangements for which in the

4
bo=ﬁ(1884—3583+1082+7), (3.10
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classical Lorentz cavity-field calculation the contribution of ness, we shall consider the behavior of spins with easy-axis
the dipoles inside the “small sphere” vanishel these lat- anisotropy A>0) in simple cubic lattices.

tices we have two important resulfs} R coincides with the
more familiar lattice sunk (which justifies the notatiorand A. Shape dependence
(i) y=0. Here we restrict our attention to systems with ellipsoidal
shape, which is the geometry usually consider in studies of
the dipole-dipole interaction becaudg) in the continuous
limit the demagnetizing field is spatially homogeneous and
The effects of the anisotropy are includegactlyin our  parallel to the external field when this is along one of the
formulas through the anisotropy-weighted averages of thenree principal axé$ and(ii) it covers as limit cases impor-
Legendre polynomialS,(o) andS,(o), which modulate the  tant geometries such as those of disks or long cylinders.
different contributions and introduce an extra dependence on The long range of the dipole-dipole interaction leads to a
the temperature via=A/kgT. This reflects the fact that the shape dependence of the physical quantities in an external
dipolar field at a given site is different if the source spins arefield® and hence of the linear susceptibilitywhich is a field
almost freely rotatinghigh T, S—0) or, for example, lay derivative. In the expressions obtained, this shape depen-
almost parallel to their respective anisotropy axesv T,  dence is borne by the slowly convergent lattice suinss,

D. Ordinary high-temperature expansions and other
approximations

S—1). and Y. For the class of sufficiently isotropic lattices men-
The approximate behavior o5, and S, for weak tioned, these sums vanish in macroscopically lagjeerical
(lo|<1) and strong [¢|>1) anisotropy & systems, being nonzero otherwise. The siRngR), 7, and
(o 4 V, on the other hand, contaify ® (instead ofr;;* or r; °r;, %),
— 0+ —0%+... |o|<1 which makes them rapidly convergent and shape
15° 315 independent®
3 3 Figure 1 shows the thermodynamic perturbation-theory
Sy(o)={ 1— 55 — . o>1 (3.20  susceptibility(thin lines for hy= ¢4/20=0.02 andy in the
4o noninteracting limit(thick lines for a system with parallel
3 axes with the form of a prolate ellipsoid, a sphere, and an
) 1+% +oo o<—1, oblate ellipsoid(the symbols correspond to Monte Carlo
\ simulations to be discussed belpwor the nonspherical sys-
(24 tems C+0,° and the corrections to the susceptibility are
3—150'2+ e lo|<1 largely dominated by the first-order term, which corresponds
to the direct action discussed above. The shape dependence
5 25 is easily understood by recalling the behavior of two dipoles:
Sy(o)=¢ 1=+ F+ o o>1 (321 if their axes are aligned, they minimize their dipole-dipole
a energy lying parallel along the line joining them, while if this
3 5 135 line is perpendicular to the axes, they minimize the interac-
8 + ;Jr rtz +... o<-1 tion energy pointing along opposite directions. Therefore in
\

elongated systems the aligning effect dominates gnid

The results of an ordinary high-temperature expansion, ifarger than the noninteracting susceptibifiig. 1(a)], while
which all terms in expt BE) are expanded, correspond to in oblate systems the opposite occurs with the associated
replaceS, andS, in the coefficientsa,, andb,, by their weak  decrease of [Fig. 1(c)]. In the sphere the direct term ex-
anisotropy approximations. Besides, taking the-0 limit ~ actly cancels ¢=0), and negative second-order corrections
(whereS;=0) we get the known results for isotropic spins (which incorporate indirect and reaction tepndgtermine the

(in a slightly more general form, since the terms including susceptibility[Fig. 1(b)].

are usually omitted due to the lattices assuthéd. In addi- Concerning the specific heat, due to the presence of the
tion, substituting the above strong anisotropy formulag in rapidly convergent lattice sung, 7, and V), this quantity
andc, we get these quantities in the discrete-orientation angloes not depend on the shape of the system. Physically, this
plane-rotator caseéwith the corresponding corrections in is @ consequence of the absence of linear term in(&§),
powers of 1¢). which follows from (G;),=0, which in turn requires the
absence of a bias field.

IV. BEHAVIOR OF THE SUSCEPTIBILITY AND THE
SPECIFIC HEAT B. Anisotropy dependence

In this section we study the features of the susceptibility To illustrate the importance of taking the anisotropy into
and specific heat emerging from the analytical expressionaccount, we are going to compare the thermodynamic
derived. We shall discuss the shape dependence of theperturbation-theory results witlii) those obtained by an or-
quantities, investigate the dependence on the anisotimpy dinary high-temperature expansion for zero anisotr@hg
both its strength and the axes distribugioand finally esti- S§—0 limit of our expressionsand (ii) the results in the
mate the limits of validity of the expansions. For concrete-discrete orientation limit$—1).
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Random anisotropy axes and cubic lattice. Prolate spheriod

Prolate spheroid: a=b=2, ¢c=6; N=97

Sphere: a=b=c=3; N=123

X [ ] a)

4t 60Parallel anisotropy axes and cubic lattice. Prolate spheriod.

7 \ ‘ I 20 I I

2 401

6 .
% Oblate spheroid: a=b=4, c=2; N=125

A, | 20t

2r M ob) TXXXXTXXXXTXXXXTX;;:(i

c) g 0.05 0.1 0.15 0.2 0.25 0.3

02 s ‘ - 1/ T

.25 0.3 0.35 0.4 0.45 0.5

16T FIG. 2. Equilibrium linear susceptibility vs temperature for the

A . . same prolate ellipsoid as in Fig(al and the dipolar interaction
FIG. 1. Equilibrium linear susceptibility vs temperature for three strengthh,= £4/20=0.004. The spins are arranged on a simple cu-
different ellipsoidal systems with equatio?/a’+y?/b®+2%/c® 1"\ wice with (@) randomly distributed anisotropy axes afig
<1 res“'t'“g'_“ a system of dlpoles: The susceptibility is glve.n |n. parallel anisotropy axes. Thick lines are the susceptibilities for in-
reduced unitg = x(Hy /m), the spatial arrangement of the spins is gependent spins and thin lines are the susceptibilities obtained by
simple cubic, and the probing field is applied along the anisotropythermodynamic perturbation theory. For comparison we have dis-
axes, which argarallel to thez axis. The thick lines are the equi- played y obtained by a classical high-temperature expansion for
librium susceptibility of the corresponding noninteracting SYStemﬁsotropic spins(crosses and for Ising spins(dashed ling Inset:
(they are equal in all three cagethin lines are the susceptibilities  comparison of the corrections to the susceptibility due to interac-
including the corrections due to the dipolar interactions obtained byjong (Ax=X— Xnonin)- (NOte that the temperatures displayed are

thermodynamic perturbation theof§£q. (3.1]; and the symbols  apove the lower validity limités~1/6 estimated in the text: &/
represent the susceptibility obtained with a Monte Carlo method— op, /¢£,~0.048)

The dipolar interaction strength Ig;= £4/20=0.02. (For the pro-

late and oblate ellipsoids the second-order correction is very small i o
in the temperature interval displayed and omitting it the curvedty is not only larger for parallel axes than for' isotropic di-
visually coincide). poles, but also the temperature dependence is stronger, ow-

ing to the extra, anisotropy-induced, temperature dependence

In the cases of cubic or completely disordered lattices wéf the coefficientsa,, via §(o). This is clearly seen when
already know that the lattice subivanishes. Then, the first comparing the correction ternisy themselvesinset of Fig.
corrections to the susceptibility due to the interactions be2(b)].
come exactlyindependent of the anisotropf/ the axes are Note that the susceptibilities in the isotropic and Ising
distributed at randonisee Eqgs(3.5—(3.7) where the only cases constitute lower and upper bounds to the agtuhe
anisotropy dependent term is multiplied bY. Therefore the upper bound is slowly approached at low enough tempera-
susceptibility coincides with that obtained by an ordinarytures (@>1), completing in this way the crossover from iso-
high-temperature expansion for isotropic dipolese Ref. tropic behavior at higii to the discrete-orientation behavior
12; V=0 was implicitly used in that wopkbut also with the at low T. Note finally that the lowest temperatures displayed
perturbativey for Ising-like spins with randomly distributed (o~ 20) are still inside the range where an ordinary magne-
“Ising” axes [Fig. 2(a)]. This generalizes to interacting spins tization experiment yields the equilibrium response (

the well-known result, discussed in Ref(gke also Ref. 20  ~25).
i.e., the absence of anisotropy effects on the equilibrium lin- Concerning the specific heat, the part corresponding to the
ear susceptibility of systems with random anisotropy. noninteracting systeni,, does not depend on the anisotropy

Nevertheless, wheW+ 0 (as occurs in tetragonal lattidges axes orientations. The reason is that if the spins are indepen-
the susceptibility will show some anisotropy dependence fodent, they cannot probe the relative orientations of their axes
random axesalthough weak, sinc®+ 0 is accompanied by and there is no preferential direction to compare their orien-
C+#0 andy is then dominated by the anisotropy independentations with(as that of the probing field in the susceptibility
first-order term. In any case, on inspecting Eq8.2)—(3.4) Thus the noninteracting specific he@tset in Fig. 3 only
one would expect important differences for parallel axes bereflects the individual behavior of the spins in their single-
tween the thermodynamic perturbation-theory results andpin anisotropy potentials, and its pe@io~5) reflects the
those where the anisotropy is not includéf-¢0). This is  “transition” from the isotropic behavior at higf (with c,
what actually occurs, as Fig(l® illustrates: the susceptibil- 1/T?) to the discrete orientation behavior at IdwThis can
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¢ /kgN ‘ . V. SUMMARY AND CONCLUSIONS
135 1 1 We have obtained approximate analytical expressions for
| < the equilibrium linear susceptibility and specific heat of clas-

] sical spins interacting via dipole-dipole interactions by
1 means of thermodynamic perturbation theory. The formulas
account for the interactions to second order in the coupling
constant over temperature but are exact in the anisotropy. As
the results are valid for any strength and sign of the anisot-
ropy, provided only the interaction strength is weak enough
(£€4=1/6), they include as particular cases the linear response
and specific heat of isotropic as well as strongly anisotropic
03 o 2 05 spins(discrete-orientation model and plane rotators
1o The expressions derived also account for the different ori-
entational distributions of anisotropy axes. For randomly dis-
FIG. 3. Specific heat per spin vs temperature for noninteractingyjhuted axes and sufficiently isotropic latticgsg., cubic or
spins(thick_ line), and weakly intz_aracting spins with ran_dor_nly dis- completely disorderedthe linear susceptibility becomes in-
tributed anisotropy axelashed linesand parallel axefthin lines  yonendent of the anisotropy, at least to second order in the
arranged on a simple cubic lattice. In each cabig=¢d20 o pling constant. This extends to interacting systems the
fvell-known absence of anisotropy effects on the equilibrium
linear response of systems with random anisotropy. The
same holds for the corrections to the specific heat due to the
be considered as a sort of Schottky peak, due in this case iateractions(indeed, without restrictions on the lattice type
the “depopulation” of the high-energy “barrier level$® For a general axes distribution, however, the anisotropy ef-
The corrections due to the coupling depend naturally orfects do not disappear. The importance of including them has
the orientations of the axes. For a given axes distribution théeen illustrated in the case of coherent axes by showing the
specific heat increases with the interaction strerigtp. 3),  failure of ordinary high-temperature expansialffisr either
since an amount of heat injected in the system can partialljsotropic or strongly anisotropic sping describe the exact
be stored in the form of the potential energy of interaction.susceptibility in cases where the thermodynamic perturbation
For the same reason, since the average of the interactidReory yields accurate results.
energy is largefin magnitude in systems with aligned axes,
one would expect a largey, in this case. Figure 3 shows that ACKNOWLEDGMENTS
the effect of the interaction is indeed stronger in a system
with aligned axes than in a system with random anisotropy.-l-h
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heat for noninteracting spins over a wider temperature interval.
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C. Validity limits of the perturbational results
APPENDIX A: AVERAGES WEIGHTED WITH THE

Since the analytic expressions derived jorand c, are UNIAXIAL ANISOTROPY BOLTZMANN FACTOR
expansions valid in principle foé;<1, which corresponds
to T=1/o>2hy [Eq. (2.7)], the results will deviate apprecia- The averages we peczd to calculate are all of products of
bly from the exact quantities at sufficiently Il In order to ~ the form I, =(II{L,(c,-S))a, Where thec, are arbitrary
estimate the limits of validity, it would be desirable to com- constant vectors. Introducing the polar and azimuthal angles
pare the formulas with the results of some method treatin@f the spin, @,¢), we can writel , as
the interactions without approximations. Besides, as the fun- 5 . .. ..
damentals of the expansion are the same for the different JoTde 5d9 sin oIl (C,- S)ex o(s-n)?]
quantities, it would suffice to estimate the range of validity m J2"de[Td9 sin® exd o(s-n)?]
for one of them.

We have compared the analytigalwith the susceptibility ~For oddm, |, is an integral of an odd function over a sym-
computed by a Monte Carlo methddescribed in Appendix Mmetric interval and henck,=0. To calculate the suscepti-
D), which except for statistical and finite sampling errors isbility and specific heat to second orderdgp, we requirel
exact to compute equilibrium properties. Returning to Fig. 1and 14, which will be calculated using symmetry arguments
we observe thaj obtained by thermodynamic perturbation Similar to those employed to derive the=0 unweighted
theory(thin lines describes accurately the simulated suscep@veragessee, for instance, Ref. 22 R
tibility (symbol3 at high and intermediat&, while the re- Note thatl, is a scalar bilinear irc; andc,. The most
sults start to deviate slightly at the lowest temperatures disgeneral scalar with this property that can be constructed with
played (~4). Therefore, sincény=0.02 was used in this the vectors of the problerrﬁ(, 52, andﬁ) has the form
graph, an estimate of the lower temperatures attainable is
£4~1/6, which is milder than the priori restriction&y<1. l,=AC;-Co+B(Cq-N)(Cyp-N).
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To find the coefficienté andB one chooses particular values fl_ldz Zexp( 22
for thecn (i) If cl||czrn thenl,=A. Thus, settrng1 z and A+B=

01—02 X, one hass-n=cosd=z and (cl s)(02 s) (1
-2%) cos’-cp, so the integral reads

L 1425,
1 =(2°) = .
St dzexpoz?) 3

Therefore, sincel,=((C;-5)(C,-S))a, We get for the

B f%”dgo coszqofl_ld 21— 22 exp( o 22) second-order moment
- f%”dcpfl_ldzexp( o7?)
Sz _
—3l1-(z 2>a]_ <(C1 5)(C2 S)>a Szc1 C2+32(C1 n)(Cz n).
where S,(0) =(P,(2)), is the average of the second Leg- (A1)

endre polynomialP,(z)=3(3z?—1) over the noninteract-

ing distribution. (ii) If cillcoIn, thenl,=A+B. Puttingn  We can similarly calculaté, by constructing the most gen-
=c,=C,=2 the integral is given by eral scalar fulfilling certain properties, getting

((C1-8)(C2-S)(C3-S)(C4-S))a=A4[(€1- C2)(Cz+ Cg) +(C1- C3)(Ca- €4) + (C1- Ca)(Cy- C3) 1+ A[ (C1- C2)(C3-N)(Cy-N)
+(Cy1-C3)(Co-N)(C4-N)+(Cp-C4)(Co-N)(Cg- M)+ (Cp- C3)(Cy-N)(C4-N)+(Cp-Cy)(Cy- M)

X(C3-N)+(Ca-C4)(C1-N)(Co-N)]+S4(C1-N)(Co-N)(Ca-N)(Cy-N), (A2)

whereA, andA, are combinations of the fir§ (o) The quantitiesS, can be computed using the following
homogeneous three-term recurrence relatfon:

T P o e A3
2=7(S78) Aemggm ot A9 ) N T L DA I
- _ - _ —27 5L aV+2
Therefore Eq. (A2) involves S, as well as S,(o) (21-1)(21+3) 2l+1{21-1 21+3

=<P4(z)>a, the average of the fourth Legendre polynomial  —q, (A8)
P4(2) =5(352*— 3022+ 3) with respect to\,.

Finally, introducing the following tensor and scalar short-knowing the first two termsS, =1 andS,, which is given by
hands

-s, 3( e 1 1
r= 1+S,nn, (A4) =3 0Z, 20| 2 (A9)
A 2 Th_e ona-spin partition functipﬁa=f£ldzexp(a£) can be
A=A 1+ —2an, Q= S,— (A5)  Written in terms oferror functions of real and “imaginary”
JA, A4 argument as
wherel is the identity tensor, the results for the moments can i
compactly be written as _ Valoerfi(\o), >0 (AL0)
I * [Wallolerf(\]o]), o<0.
((c1-8)(Cz-9))a=(C1-T-Cy), (AB)
The less familiar erfi) is related with the Dawson integral
(C1-S)(Cy-S)(Ca-S)(Cy-S) D(x), so in the easy-axis case one can Wwriig,
(e N 2 . ° ) ¢ . )a . o ) =(2e/\Jo)D(yo) and computeD (x) with the subroutine
=(C1-A-Cy)(Cz-A-Cy)+(Ci-A-C3)(Ca-A-Cy) DAWSON of Ref. 23.
. o . Note finally that in the isotropic limit$—0), Egs.(Al)
+(C1-A-cy)(Co-A-C3) and (A2) reduce to the known moments for the isotropic
e e distribution?22
+Q(cy-n)(cy-n)(csz-n)(cy-n), (A7)
which facilitates the manipulation of the observables. ((c1 S)(Cyp- s))ISO ic,-c,, (A11)
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((€1-8)(C2-9)(Ca-5)(Ca-S)iso N COEFFICIENTS OF THE SUSCEPTIBILITY
= 75[(C1-C2)(C3+ C4) + (C1+ C3)(Cy Cy)
oL The general expression for the equilibrium linear suscep-
+(C1-C4)(C2-Ca)]. (Al2)  tibility is given by Eq.(3.1) with the following expressions
These expressions are formally identical to those for the avior the coefficients:
erage of a quantity involving the anisotropy axé.s,
when these are distributed at random NI{f(ﬁi) 1 ) )
—[(d®n/4m)f(n)=f. For instance, for arbitrary =y > h-Iy-h,
n-independent vectors, andv,, we have

1 e e . === - -

NZ (v1-N) (V2 N)—(v1-N(V2-N) =301 Vy. 1 - >

| (AL13) = 2 & h-(I-Gy-T-h,
e

3

h-(I-Gj; T} G- Ty) - h

ZI N

> 2 h(Iy-Gj-I}-G;;-Ty)-h+

i J#FI

Z||\>

j#i k#j

i

|—Sz[(h A h)(rIJ A r,J)+2(h A r”) +Q(h-n
rij

+
Z|l -

EI 02N Ti)%]

(i

+S,[(h-Ai-h)(nj-Gjj- A Gij-np) +2(h- Ay Gy - np) 2+ Q(h- ﬁi)z(ﬁi'Gij'ﬁj)z]]

1

-=> > (h-I}: h)

Ea!

Sz

J'

— (r ij'Fi'Fij)+52(ﬁj'Gij'Fi'Gij'ﬁj)]y

Z

whereG;;, r;;, andr;; are defined in Eq(2.3), andT’, A . , - -

and () inJEqs]. (A4) aan (A5) and also involve th& (o). +02[5252+(52)2]}Z < (- Gjj '”i)z’ (CY
When calculating these coefficients, the same type of av-

erages appear as in the isotropic case Refs. 3 and 12 for

details of the calculationand with the same multiplicities. wheref’=df/do. An arbitraryS/ can be expressed in terms

The only difference is the weight function and hence theof averaged Legendre polynomial by means of the following

formulas required to calculate those averadess.(Al) and  differential-recurrence relation:

(A2) instead of Eqs(A11l) and (A12)].

ds (1= 21(1+1)
APPENDIX C: GENERAL FORMULA FOR THE do msl 2t 3(21-1)(21+3)
COEFFICIENT B, OF THE SPECIFIC HEAT
. o (I1+1)(1+2)
In the general expressiof8.9) for the specific heat the ———5,,— =55. (C2
coefficientbg is given by Eq.(3.10, while b, reads (21+1)(21+3) 3

This useful formula can readily be demonstrated by taking
szz%{Z(l—Sz)—4o'Sé—o'ZS'2/}2 2 ri]ﬁ the derivative of the definition of S=(P)),
L =ftdz P|e”22/f1_ldz &7
+7{25,(1-S;) +40S5(1-2S,)

roASy1-25) - 2SS T 1 95 _[tidzZPer [0z Re S dz Zer
L do jldze” (Sldze)?
X[(ri-m)2+ (10 2] +{S5+40S,S; —(22P))— 15/(1+2S,), (C3
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where(z%),= (1+2S,)/3 has been used. The productRf

PHYSICAL REVIEW B 64 174416

normalizing the resulting vector. For a better acceptance ratio

with z can be expanded in Legendre polynomials by usingdf the generated configurations, we scale that radius With
the corresponding relation for associated Legendre functionas 0 =0.7N/o-.

P (Ref. 24, Chap. 12

zPR, [IP,_1+(I+1)P,4]. (CH

B 1
S 21+1

Multiplying zP, by z using again Eq(C4) to expandzP, .,
on the right-hand side, and gathering terms yields

oo (=1 21(1+1)—1
2Py T 2isniia)
(+1)(1+2)

2T D)2 +3) 2

Averaging this result and substituting in EG3), we finally
get the desired EqC2).

APPENDIX D: MONTE CARLO SIMULATIONS

In terms of the maximum anisotropy fieldyH ¢ =2A/m,
whereA is the anisotropy parameter andis the magnetic
moment, a dimensionless probing field can be defined as
AH/Hg or, in temperature units, a&8¢é=20AH/Hy. The
latter is the argument in the Langevin function for the
(isotropig magnetization, and it controls if the response is
linear in AH. Therefore to treat all the temperatures on the
same footingA é<AH/T is kept constant in the simulation
(A¢=0.15) which requires one to decrease the probing field
with T. The valueA¢=0.15 used should ensure linear re-
sponse since it is well below the valuAg=0.3-0.5, where
nonlinear terms can start to contribute appreciably to the
equilibrium response(see, for instance, Appendix C of
Ref. 27.

The number of dipoles in each simulation is indicated in
the panels of Fig. 1 and the simulations are done with open
boundary conditions. The absolute value of the coefficient in
front of Eq. (2.2) can be written as & hy, so thathy

In order to obtain nonperturbative results to test the anafEq. (2.7)] is used as the input in the simulation. In order to
lytical expressions we have performed careful Monte Carlacontrol that the response is the equilibrium one, we apply a

simulations, by a method similar to that employed in Ref. 26 sinusoidal

The trial Monte Carlo stegMCS) is a random rotation of the

probing field of low frequency
(f=8x10"% MCS™') and check that further reducinfy

spin within a cone, achieved by generating a random vectotdoes not change the results. Besides, the ten first periods are
with uniform probability on the surface of a sphere of radiusexcluded from the average and the susceptibility sampled

¢, adding the random vector to the initial spin, and finally

over the 20 following periods.
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