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Lineshapes of dynamical correlation functions in Heisenberg chains
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We calculate lineshapes of correlation functions by use of complete diagonalization data of finite
chains and analytical implications from conformal-field theory, density of states, and Bethe ansatz. The
numerical data have different finite-size accuracy in the cases of the imaginary and real parts in the fre-
quency and time representations of spin-correlation functions, respectively. The low-temperature, conformally
invariant regime crosses over atT* '0.7J to a diffusive regime that in turn connects continuously
to the high-temperature, interacting-fermion regime. The first-moment sum rule is determined.

DOI: 10.1103/PhysRevB.64.174414 PACS number~s!: 75.10.Jm, 75.40.Gb
e
ud
ti

ult

e

e

in

of
by
um
f
he
ld
te

ha

re
b
ol
ns
s
h
is
ite
re
t.
iz

e
i

ld
on

.
onal

-
ns,
-

ms

in

cu-
in

r
ing
I. INTRODUCTION

Dynamical correlations characterize the spectral prop
ties of physical systems. They are accessible by a multit
of experimental setups. The access to dynamical correla
functions for physically relevant systems is usually diffic
even in exactly solvable models.1,2 Dynamical spin-
correlation functions in Heisenberg chains have been wid
studied. Numerically, the dynamics atT50 are accessible by
Lanczos and continued fraction techniques, which have b
applied to Heisenberg chains with dimerization3 and addi-
tional frustration.4,5 Dynamics of frustrated quantum-sp
systems in magnetic fields were studied6 as well as a spin
system coupled to a dynamical phonon.7 At finite tempera-
tures partially anisotropic Heisenberg chains8 and chains
with frustration9 were studied by complete diagonalization
finite systems. The Heisenberg chain was also studied
combination of high-temperature expansions with quant
Monte Carlo simulations.10 The analytical investigation o
dynamical spin-correlation functions usually involves t
Bethe ansatz or implications from conformal-fie
theory.11–13 The comparison of numerical and approxima
analytical results for the purpose of accuracy control
been used in various previous approaches.14–20

Usually the focus lies on the imaginary part of the cor
lation functions. The real and the imaginary parts can
Kramers-Kronig transformed into each other and thus h
the same information. This is also true for the Fourier tra
form. The information that can be extracted from finite sy
tems accessible by exact diagonalization concerning the t
modynamic limit is limited. The accuracy of the results
different for different representations. In the case of fin
systems it proves thus useful to actually calculate all th
representations to extrapolate to the thermodynamic limi21

The dynamical correlation functions become system s
independent for high excitation energies21 or, equivalently,
on short time scales.8 While finite systems thus allow for th
determination of correlation functions in the thermodynam
limit at high frequencies or on short time scales, fie
theoretical results describe their asymptotic behavior on l
time scales or for small frequencies.12,13 The perspective of
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this paper is to combine the strongholds of both methods
The system to be discussed here is the one-dimensi

antiferromagnetic Heisenberg model

H5(
l

~JSl
xSl 11

x 1JSl
ySl 11

y 1JzSl
zSl 11

z !

1J2(
l

~Sl
xSl 12

x 1Sl
ySl 12

y 1Sl
zSl 12

z ! ~1!

with the superexchange integralsJ andJ2 between nearest
neighbor and next-nearest-neighbor magnetic io
respectively,z-axis anisotropyJz and spin-1/2 operator com
ponentsSl

n with n5x,y,z at sitel. Energies will be given in
units of the in-plane exchange, i.e.,J[1. This Hamiltonian
is relevant for the description of the magnetic syste
in many quasi-one-dimensional materials as Sr2CuO3,22,23

Cs2CuCl4,24 KCuF3,25 or CuGeO3.26

We focus on the spin-correlation function

x~q,ivn!5
1

LE0

b

dt eivnt^Sq
z~t!S2q

z ~0!& ~2!

with Matsubara frequenciesvn52pn/b, inverse tempera-
ture b51/T, (kB[1), Fourier transformed spin operators
interaction representationSq

z(t)5e2Ht( le
2 iqlSl

zeHt, and
number of sitesL. In its analytically continued form, where
ivn→v1 i e with e→0, it determines the structure factor

S~q,v!5
1

p

Im x~q,v!

12e2bv
~3!

relevant for neutron scattering experiments.

A. Numerical methods

For finite systems the correlation function can be cal
lated through the diagonalization of the spin Hamiltonian
the spectral representation since eigenfunctionsun& and ei-
genvaluesEn are known. All numerical results in this pape
are obtained using periodic boundary conditions. Defin
the matrix elements
©2001 The American Physical Society14-1
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RALPH WERNER AND ANDREAS KLÜMPER PHYSICAL REVIEW B64 174414
Vnm5^nuSq
zum& ~4!

and the Boltzmann factor

f nm~b!5
1

Z
~e2bEn2e2bEm!, ~5!

whereZ5Tr e2bH is the partition function, one can write

Rex~q,v!52 lim
e→0

(
m,n

f nm~b!uVnmu2~v1En2Em!

~v1En2Em!21e2
, ~6!

Im x~q,v!5p(
m,n

f nm~b!uVnmu2d~v1En2Em!. ~7!

The corresponding real-time retarded spin-correlat
function is obtained via a Fourier transformation as

x~q,t !5
1

2pE2`

`

dv e2 ivtx~q,v!

52 iu~ t !(
m,n

f nm~b!uVnmu2ei (En2Em)t, ~8!

whereu(t) is the Heaviside function.
To determine the correlation functions in frequency sp

we use the same methods as described in Ref. 21 tha
briefly summarize. At low temperatures small systems
hibit a small number of dominant spectral lines at frequ
cies ṽ j that usually can be attributed to specifi
excitations.19,20 The imaginary part of the correlation func
tion is determined most accurately by ‘‘binning’’ the data

Im x~qz ,ṽ j
inf,v,ṽ j

sup!

5p(
m,n

f nm~b!uVnmu2@u~vnm2ṽ j
inf!2u~vnm2ṽ j

sup!#

ṽ j
sup2ṽ j

inf
.

~9!

For small systems at low temperatures the appropriate ch
is such that the interval boundaries lie in the middle betw
the dominant spectral lines, i.e.,ṽ j

sup5ṽ j 11
inf 5(ṽ j

1ṽ j 11)/2. If only the ‘‘dominant’’ spectral lines are presen
and if those lines form a well-defined continuum in the th
modynamic limit, i.e., forL→`, Karbach, Mu¨ller, and co-
workers have shown17,19,20 that Eq.~7! can be used, appro
priately scaled to the thermodynamic limit, by introducing
density of states with respect to appropriate quantum n
bers derived from Bethe ansatz. This leads to the follow
representation of the imaginary part of the correlat
function:21

Im x~qz ,ṽ j !5 (
m,n

ṽ j 5En2Em 2p f nm~b!uVnmu2

ṽ j 112ṽ j 21

. ~10!

The sum covers only values ofn and m such thatṽ j5En
2Em . In Heisenberg chains this representation is only
plicable atT50.
17441
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It can be shown that Eq.~6! gives very accurate results fo
the real part of the correlation function if it is evaluated at t
dominant spectral linesṽ j .21

Rex~qz ,ṽ j !52(
m,n

f nm~b!uVnmu2

~ṽ j1En2Em!

3u~ uEn2Em2ṽ j u2Dv!. ~11!

The regularization parameterDv can be set to zero if only
excitations atṽ j are present@defineu(0)50#. For Heisen-
berg chains at intermediate temperatures and frequenci
choice ofDv50.1J yields reliable results. For higher fre
quencies the results for the real part of the correlation fu
tions are free of finite-size effects.

B. Field-theoretical preliminaries and transformations

The correlations described byx(q,v) Eq. ~2! are domi-
nant atq5p reflecting the antiferromagnetic instability o
the system. We will thus focus on this wave vector. Forq
;p andJ250 the spin-correlation function has been studi
in detail with bosonization techniques by Schulz12 and has
later been improved including logarithmic corrections.18 The
result of conformal-field theory for any two-point functio
with scaling dimensionx in Euclidean space (r ,t) at low
temperatureT is13

xCFT~r ,t!5x0F pT

v

sinhpTS r

v
1 i t D

pT

v

sinhpTS r

v
2 i t D G

x

,

~12!

wherev denotes the velocity of the low-lying spin excita
tions, andx0 is some constant. The spin-wave velocity f
frustrated Heisenberg chains has been determined num
cally asv50.5p(121.12J2) for J2,0.2411.27–29 The Fou-
rier representation in momentumq and frequencyv space
with Im v.0 is

xCFT~q,v!5sin~px!v122xx0~pT!2x22

3FxS v2v~q2p!

2pT DFxS v1v~q2p!

2pT D
~13!

with

Fx~k!5E
0

`

dl
eilk

~sinhl!x

52x21G~12x!
G~x/22 ik/2!

G~12x/22 ik/2!
. ~14!

The value of the scaling dimensionx depends on the strengt
of the interaction or the anisotropy in case of a spin cha
For the XY model we havex51 and for the isotropic
Heisenberg chainx51/2. In the lower half planexCFT(q,v)
is given by Eq.~13! with v replaced by2v.
4-2
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LINESHAPES OF DYNAMICAL CORRELATION . . . PHYSICAL REVIEW B64 174414
From this representation we learn that the function on
right-hand side of Eq.~13! is analytic in a strip around the
real axis withuIm vu,x2pT as long asT.0; for T50 we
have

Im xCFT~q,v!.H 0 for v,vuq2pu

@v22v2~q2p!2#x21 else.
~15!

These analytical properties are shared by the structure fa
SCFT(q,v), which is related to ImxCFT(q,v) via Eq. ~3!,
i.e., it is analytic in uIm vu,x2pT for T.0, and
SCFT(p,v).v2x22 for T50.

Performing the Fourier transform to real time we see t
both xCFT(q,t) and SCFT(q,t) decay exponentially at finite
temperatures and algebraically forT50 andq5p,

xCFT~p,t !.H exp~2x2pTt! for T.0

t122x for T50.
~16!

For momentaqÞp the functionxCFT(q,t) decays exponen
tially with time t for any T.0 as well asT50.

There are additional contributions tox(q,v) andS(q,v)
on the lattice that are singular at finite values ofv even for
T.0. These contributions have their origin in the existen
of the lattice that leads to finite-energy bands with upp
band-edge singularities. There are no universal predict
like for the lower band edge governed by conformal-fie
theory and described above. An exception, of course, is
XY spin model that can be mapped to free fermions.

As we discuss in Sec. I C the case of theXY model sug-
gests to assume thatx(q,v) is singular at a frequencyL
where the imaginary part diverges like

Im x~q,v6 i e!5H 6~L2v!a for v,L

0 for v.L.
~17!

The upper~lower! sign yields the retarded~advanced! corre-
lation function. If not stated explicitly we discuss the r
tarded functions. The Kramers-Kronig transform yields t
singularity of the real part

Rex~q,v!5H cotpa~L2v!a for v,L

1

sinpa
~v2L!a for v.L.

~18!

In the neighborhood ofa50 we have a logarithmic
singularity21

Rex~q,v!5
1

p
lnuL2vu. ~19!

Regarding the time dependence we note that both funct
x(q,t) andS(q,t) are dominated by the singularity atL and
show long-time asymptotics

x~q,t !.t2(11a)exp~2 iLt !. ~20!

Since the operatorSz is self-adjoint Imx(p,v) is odd inv.
In general we thus set Imx(q,v);sgn(v)(L22v2)a. The
Fourier transform~FT! of x(p,v) is consequently identica
17441
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to twice the sine transform of Imx(p,v) andx(p,t) is real.
For theXY case witha521/2 we like to note more explic-
itly the qualitative result

Im x~v6 i e!5H 6
sgn~v!

AL22v2
for uvu,L

0 for uvu.L,

~21!

with Kramers-Kronig transform

Rex~v!55 2

p

arcsinhAS L

v D 2

21

AL22v2

for uvu,L

2
2

p

arcsinAL

v

Av22L2

for uvu.L.

~22!

For overcritical frustration15 J2.Jc50.2411 the Heisenberg
chain exhibits a gapped spectrum with a lower boundVg .
Considering square-root divergences at the lower and up
edge of the spectrum

Im x~v6 i e!

5H 6
sgn~v!

A~v22Vg
2!~L22v2!

for Vg,uvu,L

0 else,

~23!

we obtain the Kramers-Kronig transform

Rex~v!5H 0 for Vg,uvu,L,

6
sgn~v!

A~v22Vg
2!~v22L2!

else.

~24!

The upper-band-edge singularities and the resulting algeb
real-time asymptotics exist only at sufficiently lo
temperatures. At intermediate temperatures the upper lim
the continuum yields an antisymmetrized Lorentzi
contribution.

Im x~q,v!.L2~f!2L1~f!, ~25!

where

L6~f!5
G cosf2~L6v!usinfu

G21~L6v!2
. ~26!

Limiting 0<f<p/2 the real part is simply given by

Rex~q,v!.L2~f2p/2!1L1~f2p/2! ~27!

and the Fourier transform reads

x~q,v!.e2Gtsin~Lt1f!. ~28!
4-3
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RALPH WERNER AND ANDREAS KLÜMPER PHYSICAL REVIEW B64 174414
This temperature range will be referred to as ‘‘diffusi
regime.’’

C. XY model

We demonstrate the overlap of the accurate short-ti
scale results from the exact diagonalization of finite syste
and the asymptotic behavior accessible by field theory fo
exactly solvable case, theXY model, whereJ25Jz50. The
spin operators in this model can be transformed to n
interacting, spinless fermions via a Jordan-Wign
transformation.30 The structure factor Eq.~3! can be given
for L→` in closed form.8 The imaginary part of the suscep
tibility at q5p is

Im xXY~p,v!5tanh~bv/4!~42v2!20.5. ~29!

This is the field-theoretical result Eq.~13! with scaling di-
mensionx51 multiplied with the square-root divergence
the upper band edge. The limit ofT→0 is given by Eqs.~21!
and ~22!.

Figure 1~a! shows the imaginary part of the susceptibilit
The full line represents the exact results, the symbols
obtained via the regularization Eq.~10!, and the step func-
tions are given by Eq.~9!. The dashed line is the result from
field theory with an UV cutoff but without the upper-ban
edge divergence. Figure 1~b! shows the real part, the line
are the Kramers-Kronig transforms of the imaginary part a
the symbols are obtained using Eq.~11! with Dv50.

We conclude that the multiplicative approach of the lo
energy description from field theory with the high-ener
behavior is adequate. Also, the numerical approaches gi
reasonable approximation to the exact result. The value

FIG. 1. Susceptibility for theXY model:~a! imaginary part,~b!
real part. The full line in~a! is the exact results from Eq.~29!, the
symbols are obtained via Eq.~10!, and the step functions via Eq
~9!. The dashed line is the result from field theory with upper-ba
edge cutoff but without divergence. The lines in~b! are the
Kramers-Kronig transforms of the imaginary part, and the symb
are obtained using Eq.~11! with Dv50.
17441
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the real part forv.L show only very little finite-size ef-
fects. The divergences of the real and the imaginary par
the upper band edge show the correspondence predicte
Eqs.~21! and ~22!.

The retarded, real-time correlation function can be de
mined numerically in the thermodynamic limit

x~q,t !5 iu~ t ! lim
L→`

1

L (
k

~ f k2 f k1q!exp@ i ~Ek2Ek1q!t#.

~30!

The energy dispersion is given byEk5J cosk, f k are Fermi
distribution functions, and the sum covers the first Brillou
zone. In general forL>104 the result is independent ofL for
all practical purposes.

In Fig. 2 we show the retarded spin-correlation functi
for finite systems compared with the result in the thermo
namic limit (L→`, full lines! at T50 ~a! and atT50.3 ~b!.
The different broken lines show the deviation of results
finite systems Eq.~8!. L514 yields a good representation o
the correlation function up tot'2/J at T50 and up tot
'8/J at T50.3.

The thin solid lines in Fig. 2 show the asymptotict20.5

behavior from the upper-band-edge divergence. The con
bution from the low frequencies yields an additive ter
;t21 at T50 and;e2x2pTt with x51 at T50.3 as pre-
dicted in Sec. I B. The fits have been obtained for 80,tJ
,100 to assure the asymptotic limit. The numerical data
finite systems and forT'0.3 yield a good representation o
the correlation function in the thermodynamic limit up
time scales that are already dominated by the asympto
large-time-scale behavior.

-

ls

FIG. 2. Real-time spin-correlation function in theXY case at
T50 ~a! and T50.3 ~b!. Thermodynamic limit results~full lines!
are obtained via Eq.~30!. The different broken lines show the de
viation of results for finite systems from Eq.~8!. L514 yields a
good representation of the correlation function up tot'2/J at T
50 and up tot'8/J at T50.3. The thin lines show the asymptot
behavior as predicted in Sec. I B.
4-4
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LINESHAPES OF DYNAMICAL CORRELATION . . . PHYSICAL REVIEW B64 174414
D. Technical outline of the approach

Renormalization-group studies show that theXY model is
one point of the line of critical fixed points towards whic
the interaction flows in a bosonized representation of
Heisenberg model (Jz51).31,32 One thus expects qualita
tively similar results for the unfrustrated Heisenberg chain
in theXY model. This should also hold for frustrated Heise
berg chains, at least for under-criticalJ2<Jc50.2411.14,32,15

The discussion of theXY model implies that the represen
tation of the imaginary part of the correlation function is be
achieved by multiplying the upper-band-edge behavior to
field-theoretical expression,

Im x~p,v!5Im@xCFT~p,v!#
~L22v2!a

2L2a
u~L2uvu!.

~31!

The real part of the susceptibility is given by the numeri
Kramers-Kronig transform~KKT ! of Eq. ~31!. The real-time
representation is obtained by FT ofx(p,v). We attempt this
approach for frustrated Heisenberg chains and at finite t
peratures, where the exact form of the correlation functio
not known.

The field-theoretical expression in Eq.~31! depends on
the parameter of the scaling dimensionx and a global pre-
factor v122xx0. The latter is determined by requesting t
sum rule of the first moment of the susceptibility to be c
rectly reproduced. The sum rule

I 1~q,T!5
1

pE2`

`

dv v Im x~q,v! ~32!

can be extracted very accurately from the finite-size data
discussed in Sec. II. We are then left with the parame
vectorp(T)5@x,L,a# that we find to be temperature depe
dent. The scaling variablex determines the low-frequenc
behavior of the imaginary and the real part of the susce
bility @Eq. ~15!# as well as the decay in real-time space
given by Eq.~16!. The upper continuum edgeL positions
the cusp or divergence of the real part@Eq. ~18!# as well as
the oscillatory behavior ofx(p,t) as a function of time@Eq.
~20!#. Finally the exponenta describes the shape of the rea
part cusp or divergence@Eq. ~18!# and the decay of the os
cillations in time@Eq. ~20!#.

II. SUM RULES AND PREFACTORS

Since the imaginary and real representation of the s
correlation function are Kramers-Kronig related and as
consequence of the bounded excitation spectrum33 it is
straightforward to find that the sum-rule Eq.~32! is given by

I 1~q,T!52 lim
v→`

v2Rex~q,v!. ~33!

For limT→0I 1(q,T)54K1(q) the structure-factor sum rul
discussed in Ref. 17 is reproduced. For arbitrary frustra
J2 the structure-factor sum rules are connected to
ground-state energyEG of the system via K1(p)/2
17441
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1K1(0.5p)52EG/3. We recall that forJ250 andJ250.5
one hasK1(q)52(12cosq)EG/3. For J250.5 the average
^Sl

zSl 12
z &T5050 vanishes.34

The crucial point is that Rex(q,v→`) depends only
weakly on the system sizeL.21 Figure 3~c! showsI 1(q,T) as
a function of temperature for different system sizes and fr
tration parameters. In Fig. 3~a! it becomes obvious that th
result forJ250 andL514 is for all practical purposes in th
thermodynamic limit forT.0.3. Analyzing Eq.~12! one
finds the correlation length to bej5v/(2pxT). For x;0.5
and v50.5p(121.12J2) we find that the finite-size effect
are of the order of 1023 when the correlation length become
j;L.

Figure 3~b! shows the values ofI 1(p,0) as a function of
the system size. We determine the thermodynamic limit w
the algebraic scaling function I 1(p,0,L)5I 1(p,0,̀ )
1A0L2h. Systems withL mod 450 @open symbols in Fig.
3~b!# in general converge differently than systems w
L mod 452 ~full symbols!. The two cases yield two value
the difference of which serves as an error estimate. ForJ2
50 we find I 1(p,0,̀ )51.1821(7) that is very close to th
exact value ofI 1(p,0)51.181 725 8. . . . For J250.15 and
J250.2411 we find I 1(p,0)51.185(10) and I 1(p,0)
51.173(2), respectively. A value ofI 1(p,0)51.1521(5) has
been found for J250.35. The result forJ250.5 with
I 1(p,0)51.000(3) is extremely close to the exact value of
In Fig. 3~a! the peculiar finite-size effects forJ250.45 be-
come apparent. Obviously they result from the gap value15 of
Vg'0.12 being just in the temperature range where
finite-size effects appear. The determination ofI 1(p,0)
51.075(10) is thus less accurate. The results are represe
by the symbols in Fig. 3~a!.

In Fig. 3~c! the temperature dependence ofI 1(p,T) is

FIG. 3. First moment of the spin susceptibility as extracted fr
the asymptotics of the real part in finite systems.~a! Low-
temperature finite-size effects and thermodynamic limit values
extracted from the finite size scaling represented in~b!. ~c! Tem-
perature dependence.
4-5
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shown for different values of the frustration parameter. T
general asymptotic behavior of limT→`x(p,v);T21 be-
comes apparent from the discussion in Sec. III F. For the
moment we find limT→`I 1(p,T)50.5/T. This is reminiscent
of the structure-factor sum rule

2 lim
T→`
v→`

Tv2Rex~p,v!5 lim
T→`

E
2`

`

dv8v82S~p,v8!50.5

~34!

and is generic for all values ofJ2 and theXY model. Note
that limT→`S(q,v)5 limT→`S(q,2v).

The values of Rex(p,v50) show little finite-size effects
even at rather low temperatures. Figure 4 shows a log
plot from Eq.~6! for different values of the frustrationJ2 and
chain lengths as a function of temperature~broken lines!.
The full line shows the asymptotic behavior

2 lim
T→`

TRex~p,0!5 lim
T→`

E
2`

`

dv8 S~p,v8!50.25,

~35!

which reproduces a structure-factor sum rule and is ident
for all values of the frustration and theXY model. The field-
theoretical prediction Eq.~13! for the prefactorT2x22 with
constant scaling variablex is clearly inappropriate for the
temperature range shown. Our analysis in Sec. III shows
the deviation results from an explicit temperature dep
dence of thex(T) as well as from the temperature depe
dence of the singularity at the upper band edge, i.e.,L(T)
anda(T).

The inset of Fig. 4 shows the finite-size effects at lo
temperatures. limT→0Rex(p,v50) diverges for J2
<0.2411 and saturates forJ2.0.2411 which is reminiscen
of the presence of a gap.15

FIG. 4. Log-Log plot of Rex(p,v50) from Eq.~6! as a func-
tion of temperature. The full line is the universal largeT asymptotic
result;0.25/T. The inset shows the finite-size effects at low te
peratures. limT→0Rex(p,v50) diverges forJ2<0.2411 and satu-
rates forJ2.0.2411.
17441
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For completeness we show in Fig. 5 the temperature
pendence of Rex(p,3.8) from Eq.~6! for different values of
J2. The finite-size effects are<0.1% and hardly visible on
this scale~full lines L514, broken linesL512). We do not
show plots forJ250.5 since the presence of bound sta
makes the result unreliable, cf. Sec. III C.

III. FRUSTRATED HEISENBERG CHAINS

We now turn to the determination of lineshapes of t
spin-correlation function in frustrated Heisenberg cha
making use of the precise results obtained above.

A. Critical frustration

We first discuss the values ofJz51 and J25Jc at the
quantum-critical point making the field-theoretical resu
eligible for comparison. In frequency space atT50 for a
14-site chain there are four spectral lines at frequenciesṽ j

PW .2411
(14) 5$0.264,1.309,2.112,2.437% which, by analogy to

the dimer-dimer correlation functions,21 may be identified as
the triplet excitations out of the ground state.35 It is thus
reasonable to suppose them to form a well-defined c
tinuum in the thermodynamic limit and thus Eqs.~10! and
~11! can be applied withDv50.

The imaginary part of the spin-correlation function
shown in Fig. 6~a!. The bins are obtained using Eq.~9! and
the symbols are given using Eq.~10!. The symbols in Fig.
6~b! show the real part as given by Eq.~11!. Forv50 finite-
size effects are significant since one expects from fi
theory and by analogy to theXY model Rex (T50)(p,v
50)→`. For v.3 the numerical results are essentially
the thermodynamic limit as can be seen from the differ
broken lines in the inset of Fig. 6~b!. The real-time represen
tation of the spin-correlation function atT50 is given in Fig.
7~a!. As in the XY case the system withL514 yields a
useful representation of the correlation function up tot
'2/J.

The fit with the theoretical predictions from Eq.~31!, its
KKT, and FT are given by the full lines in Figs. 6~a!, 6~b!,
and 7~a! using the parameter set p0.2411(0)
5@0.50(1),2.6(1),20.10(7)#. The cutoff 2.5,L is bound
by the highest spectral lines that must lie in the continuu
Previous results5 suggestL to decrease monotonously wit
frustration and for reasons of consistencyL,2.7. The

FIG. 5. Temperature dependence of Rex(p,3.8) from Eq.~6!.
The finite-size effects are<0.1% and hardly visible on this scal
~full lines L514, broken linesL512).
4-6
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three parameters are then determined by matching the
maximum as well as the slope for 1,tJ,2 in the real-time
representation and the value of the real part forv;3.8 @cf.
Fig. ~5!#. The finite-size effects require us to allow for rath
large error margins.

The result ofx is consistent with the prediction from fiel
theory. The value ofaÞ0 suggests a more complicated u
per continuum edge than a simple ultraviolet cutoff. We e

FIG. 6. Imaginary part~a! and real part~b! of the spin-
correlation function in the frustrated Heisenberg chain atT50 with
J250.2411. The imaginary part for finite systems is binned@Eq.
~9!#, each bin holds one spectral line, symbols are from Eq.~10!.
The symbols for the real part are obtained by using Eq.~11!. The
full lines are the theoretical result from Eq.~31! and its KKT. Inset:
enlargement of cutoff region with finite-size results from Eq.~6!.

FIG. 7. Real-time spin-correlation function forJ250.2411 at~a!
T50 and~b! T50.3. Broken lines are finite-size data from Eq.~8!,
full lines are FT of Eq.~31!.
17441
rst
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phasize that the overall prefactor of the fit function is fix
by the sum rule Eq.~32! and that values forL anda have
been obtained without using the not-so-well-defined binn
data of the imaginary part.

The plot of the real-time representation of the sp
correlation function atT50.3 in Fig. 7~b! reveals the tem-
perature dependence of the parameter vectorp0.2411(0.3)
5@0.48(1),2.5(1),20.25(5)#. The result forL514 yields a
useful representation of the correlation function up tot
'4/J. The full line is the fit from the FT of Eq.~31!. The
exponential fall off predicted in Sec. I B is confirmed an
renders the value of the scaling dimension. The oscillati
are much less damped than would be obtained with an up
band-edge exponent ofa50 thus yielding the negative valu
of a520.25. The cutoffL is given via the period of the
oscillations.

Figures 8~a! and 8~b! show the imaginary and real part o
the frequency representation of the spin-correlation funct
at T50.3, respectively. The binned data for the imagina
part via Eq.~9! and the symbols for the real part via Eq.~11!
are obtained for the sets of dominant spectral lines,
the case ofL514 they are given by the frequenciesṽ j

PW̃.2411
(14) 5$0.311,0.971,1.517,2.068,2.301%. The condition

of a well-defined continuum with respect to Bethe ans
quantum numbers is violated and thus Eq.~10! cannot be
applied any more. For the real part the data are regular
with Dv50.1, which is determined to give reliable resu
analogously to the dimer-dimer correlation functions.21 An
exception is made atv50, where no regularization is ap
plied (Dv50).

The good correspondence of the field-theoretical fits fr
Eq. ~31! and its KKT ~solid lines! in Figs. 8~a! and 8~b!

FIG. 8. Imaginary part~a! and real part~b! of the spin-
correlation function in the frustrated Heisenberg chain atT50.3
with J250.2411. The imaginary part for finite systems is binn
@Eq. ~9!#, the symbols for the real part are obtained using Eq.~11!.
The full lines are the theoretical result from Eq.~31! and its KKT.
Inset: enlargement of cutoff region with finite-size results from E
~6!.
4-7
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proves the reliability of the parameters extracted from
real-time representation. Especially the good agreemen
the values of Rex(p,0) and of Rex(p,v.2.7) @inset Fig.
8~b!# are nontrivial consistency checks. We expect a ther
smearing out of the small divergence at the upper band e
of which the shape is not known and that we did not acco
for @solid line in Fig. 8~a!#. This might have a small influenc
on the parameters extracted and thus we adapted rather
servative error bars. The finite-size data in both the real
imaginary part suggest a steeper slope in the low-freque
dependence of the fitted curves. Together with the temp
ture dependence of the scaling dimensionx this indicates the
breakdown of the scale invariance predicted by field the
at finite temperatures.36

B. Unfrustrated Heisenberg chain

Heisenberg chains without frustration are relevant
most of the magnetically quasi-one-dimensional syste
studied experimentally. Since the system is integrable
numerical data can be compared to results from Bethe an

At T50 the four spectral lines of the triplet excitation
out of the ground state for a 14-site chain are at frequen
ṽ jPW 0

(14)5$0.307,1.57,2.56,3.10%.1,2,20It is thus reasonable
to suppose them to form a well-defined continuum in
thermodynamic limit and thus Eqs.~10! and~11! can be ap-
plied with Dv50. Binned data for the imaginary part a
obtained via Eq.~9!.

The imaginary part of the spin-correlation function
shown in Fig. 9~a!. The real part in Fig. 9~b! shows forv
50 significant finite-size effects since Rex (T50)(p,v50)
→`. For v.3.5 the numerical results are essentially in t

FIG. 9. Imaginary part~a! and real part~b! of the spin-
correlation function in the unfrustrated Heisenberg chain atT50.
The binned curves in~a! are from@Eq. ~9!#, the symbols are from
Eq. ~10!. The symbols for the real part~b! are obtained using Eq
~11!. The full lines are the fits from Eq.~31! and its KKT. Inset:
enlargement of cutoff region with finite-size results from Eq.~6!.
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thermodynamic limit@inset of Fig. 9~b!#. The real-time rep-
resentation of the spin-correlation function atT50 is given
in Fig. 10~a!.

The upper edge of the two-spinon continuum is kno
exactly to beL5p.37 Bethe ansatz results suggest that t
infrared divergence of the two-spinon contributionx (2) to the
imaginary part of the spin-correlation function has a logari
mic correction

lim
uvu→0

Im x (2)~p,v!}v21Alnuv21u, ~36!

while at the upper continuum edge it vanishes squ
rootlike.17 The two-spinon contribution has been found
contribute 72.89% to the total spectral weight.17 Our and
previous numerical studies show that the spectral weigh
the total correlation function for above the two-spinon co
tinuum (v.p) at q5p is less than 0.1%.8,5 Thus the total
spin-correlation function includes also about 27% high
order contributions and we have Imx(p,v).Im x (2)(p,v).
Consequently we must requirea<0.5 andL5p. Usingx as
an effective fit parameter we also havex<0.5. Note that
within the numerical precision of our results, the fit proc
dure with parameterx,0.5 is consistent with an actual sca
ing dimensionx50.5 plus logarithmic corrections.

From the amplitude in the real-time representation in F
10~a! we find that the parametersx and a fall on a line
defined by (0.38,0.25),(x,a),(0.44,0.5). Taking also the
value of the real part atv54 in the inset of Fig. 9~b! into
consideration we determine p0(0)5@0.40(3),p
60.01,0.33(5)#. The error margins have been chosen rat
large because of the obvious finite-size effects. The resul
fits with the theoretical predictions from Eq.~31!, its KKT,
and FT are given by the full lines Figs. 9~a!, 9~b!, and 10~a!
and show satisfactory agreement with the results from fin
systems.

FIG. 10. Real-time spin-correlation function forJ250 at ~a! T
50 and~b! T50.3. Broken lines are finite-size data from Eq.~8!,
full lines are FT of Eq.~31!.
4-8
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The short-dashed line in Fig. 10~b! shows the correlation
function for 14 sites in the real-time representation. The
ponential decay in time implies a scaling dimension ofx
.0.4 and the strongly damped oscillations an exponena
.0.5. The real part at higher frequencies as shown in
inset of Fig. 11~b! requires the exponent to bea,0.7. To-
gether with a matching value for Rex(p,v50) the param-
eter setp0(0.3)5@0.45(2),p60.1,0.64(10)# yields the best
fits from Eq. ~31! as shown by the full lines in Figs. 11~a!,
11~b!, and 10~b!. The overall agreement is satisfactory, f
small frequencies the numerical data suggest a slightly
tered functional dependence on the frequency than is re
duced by the field-theoretical fit.36

C. Overcritical frustration

In the case of overcritical frustration the spectrum of t
spin chains acquires a gapVg .34,15We discuss here the valu
of J250.5 for better comparability with results from
literature.34,38,39 For a two-particle~spinon! continuum one
expects a density of states that diverges square rootlike
at the lower as well as at the upper edge. Previous numer5

and variational39 results suggest sharp maxima in the dens
of states just above the lower edgeVg and just below the
upper edgeL of the continuum accompanied by a squa
rootlike vanishing at both edges. This can be understoo
connection with bound states being present close to the e
of the continuum.16

At T50 there are more spectral lines present than in
case of critical and undercritical frustration. Some of the
are signatures of the bound states present in the system.39 We
still apply Eqs.~10! and ~9! to extract the imaginary part o
the spin-correlation function as shown in Fig. 12~a!. The
fluctuations of the results at the upper band edge are re

FIG. 11. Imaginary part~a! and real part~b! of the spin-
correlation function in the unfrustrated Heisenberg chain aT
50.3. The step function in~a! is from @Eq. ~9!#, the symbols in~b!
from Eq. ~11!. The full lines are from Eq.~31! and its KKT. Inset:
enlargement of cutoff region with results from Eq.~6!.
17441
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niscent of the fact that the bound states do not form a c
tinuum in the thermodynamic limit. We do not attempt
refine the plot by extracting the bound-state contributio
since results of the real part and especially the real-time
resentation are more reliable anyway.

Figure 12~b! shows the real part from Eq.~11! with Dv
50.1 for 1.5,v,2.3 andDv50.001 else. The real-time
representation of the spin-correlation function atT50 is
given in Fig. 13~a!.

In order to adapt Eq.~31! to the gapped spectrum we hav
to include the value of the gap energy into the functionsFx
in the field-theoretical expression Eq.~13! as

FIG. 12. Imaginary part~a! and real part~b! of the spin-
correlation function forJ250.5 atT50. The binned curves in~a!
are from@Eq. ~9!#, the symbols are from Eq.~10!. The symbols for
the real part~b! are obtained using Eq.~11!. The full lines are the
fits from Eq.~31! and its KKT.

FIG. 13. Real-time spin-correlation function forJ250.5 at ~a!
T50 and~b! T50.3. Broken lines are finite-size data from Eq.~8!,
full lines are FT of Eq.~31!.
4-9
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FxS v6v~q2p!

2pT D→FxS v6AVg
21v2~q2p!2

2pT
D . ~37!

At T50 this yields the predicted divergence at the low
band edge Imx(p,v);@v22Vg

2#x21, cf. Eq.~15!, while for
finite temperatures Imx(p,v);v.

The full line in Fig. 13~a! shows the fit from the FT of Eq
~31! with x50.45(3), Vg50.25,38 L52.18(10), anda5
20.6(1). Theslow damping of the oscillations requires th
large value ofuau, there is a small frequency modulatio
stemming from the lower boundaryVg . The agreement with
the finite-size data~broken lines! for the finite-size effect free
time domaintJ,5 is not nearly as good as for the cases
lower frustration. We conclude that the simple function
form of Eq. ~31! is insufficient even with the included ga
via Eq. ~37!. The square-root dependence reported
literature39 must be included. A perturbative examination f
small Jz and J2 shows16 the strong interplay between th
spinon continuum and bound states. Since a theoretical
pression for the correct spectral weight distribution is n
known we limit ourselves here to the observation that
small damping of the oscillations in Fig. 13~a! requires a
rather sharp increase in Imx(p,v→L).

The full lines in Figs. 12~a! and 12~b! show the fit of Eq.
~31! and its KKT to the imaginary-part and real-part da
respectively. They are similar to the forms given by Eqs.~23!
and~24! wherex50.5 anda520.5. Here the parametersx
and a have been adapted to roughly match the numer
values of Rex(p,0) and Rex(p,3.8). Especially the dis-
crepancies of the fits atv;L indicate that a more involved
fit function is necessary.

Figure 13~b! shows that also atT50.3 an accurate fit~full
line! with the functional form of Eq.~31! to the finite-size
data ~broken lines! is not possible. The parameters for th
approximate fit arex50.48, Vg50.25,38 L52.2, anda5
20.55. Correspondingly, the fits to the imaginary- and
real-part representations in Figs. 14~a! and 14~b! show incon-
sistencies with the numerical data.

D. Comparison with Lanczos and continued fraction results

The Lanczos approach allows for the evaluation of lo
lying excitations in spin chains of much larger system siz
The magnetic structure factor and thus the imaginary par
the dynamical spin-correlation function can then be de
mined via a continued fraction approach. We apply Eq.~10!
to the results from Ref. 5 for chain lengthsL514 to L526.
We have selected only the dominant spectral lines identi
as the two-spinon triplet excitations out of the ground sta5

Figure 15 shows on a log-log scale the fit functions d
rived in the previous sections~full lines! together with the
results for L514–26 ~open circles! for next-nearest-
neighbor interactionsJ250 in panel~a!, J25Jc in panel~b!,
andJ250.5 in panel~c!. For J250 the overall agreement i
excellent. ForJ25Jc the discrepancies nearv;L can be
attributed at least in part to finite-size effects near the sin
lar continuum edge. ForJ250.5 we find qualitative agree
ment with quantitative discrepancies consistent with the
cussion in Sec. III C. A possible improvement of the
17441
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functions at the continuum edges requires a better theore
understanding of the interplay between bound states and
density of states at the continuum edge as discussed earl16

The overall agreement is quite satisfactory justifying bo
the fit parameters determined earlier and the validity of
regularization approach of Eq.~10!.

E. Intermediate temperatures

At intermediate temperatures the interaction in the syst
is expected to broaden out all sharp features in the corr

FIG. 14. Imaginary part~a! and real part~b! of the spin-
correlation function forJ250.5 atT50.3. The step function in~a!
is from @Eq. ~9!#, the symbols in~b! from Eq.~11!. The full lines are
from Eq. ~31! and its KKT.

FIG. 15. Comparison of the fits from field theory~full lines! and
the results obtained by applying Eq.~10! to the data for the spin
correlation function from Ref. 5~symbols! on a log-log scale. Pa-
rameters areT50 andJ250 in panel~a!, J250.2411 in panel~b!,
andJ250.5 in panel~c!.
4-10
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LINESHAPES OF DYNAMICAL CORRELATION . . . PHYSICAL REVIEW B64 174414
tion functions. The onset of this effect is already observed
T50.3 as discussed in the previous sections. AtT50.7 the
exponent of the upper continuum edge forJ250 is a
53.2(1) so that the singularity is basically complete
damped out. Also, the rather large effective continuum e
L53.45(10) does not quite reproduce the correct oscillat
behavior as a function of time.

At about the same temperature the scaling dimension
creases tox;1. T* '0.7 thus marks the crossover tempe
ture from strongly interacting, conformally invariant to no
interacting fermion and high-energy diffusive behavior. Th
is consistent with]TRex(p,`) and ]TRex(p,3.8) being
extremal atT'T* as seen in Figs. 3 and 5.

Figure 16~c! shows the real-time representation of t
spin-correlation function of the unfrustrated Heisenbe
chain atT51. The amplitude of the modulations betwe
tJ'2 and the onset of finite-size effect for the 14-site ch
at tJ;7 cannot be fitted algebraically. The exponential
from Eq. ~28! shown by the full line in Fig. 16~c! matches
excellently. The analogy to theXY model suggests that th
long-time asymptotics is captured in this fit. The extrac
value for L52.31(1) thus marks the effective, thermal
smeared out upper band edge. For the appropriate inte
tation of the parameterG50.941(5) refer to Sec. IV.

The discrepancy of the real-time fit function@full line in
Fig. 16~c!# and the correct line shape for small times do
not allow for a direct comparison of the results with its Fo
rier transforms. The difference between the fit and the ex
result is roughly exponential. The fit with Eq.~28! implies
that the real and imaginary part should contain contributi

FIG. 16. Spin-correlation function of the unfrustrated Heise
berg chain atT51. The broken line in~a! is the binned imaginary
representation, the broken lines in~b! are the real part from Eq.~6!
with two values ofe for regularization, all forL514. Full lines in
~a! and ~b! are double Lorentzian fits.~c! shows the real-time rep
resentation from finite systems~broken lines! and the asymptotic fit
~full line! with L52.31(1), G50.941(5), andA520.67(5).
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from the continuum boundary Lorentzians Eqs.~27! and
~25!. Indeed, the double Lorentzian fits@full lines in Figs.
16~a! and 16~b!# with an additive Lorentzian contribution
centered atv50 compare well with the binned data for th
imaginary part and the real-part data from Eq.~6! with e
50.03~broken lines!. The fit parameters even though simil
are not such that the fits are appropriately Kramers-Kro
and Fourier related. The fits must thus be regarded as sop
ticated guides to the eye. Similar results are obtained forJ2
.0. Similar line shapes are also found in systems with la
spins.40

F. High-temperature limit

In Figs. 17~a!, 17~b!, and 17~c! we show the respective
imaginary, real, and real-time representation of the susce
bility for different values of the frustration in the limit o
infinite temperatures. The data of the imaginary part~a! are
binned and the real part~b! is given by Eq. ~6! with e
50.02 forL514. The time representations~c! from Eq. ~8!
show finite-size effects fort.6/J.

For v→0 the slopes of the imaginary part are similar
the exact result for theXY model Eq.~29!. A small frustra-
tion dependence becomes obvious when plotting the st
ture factor instead of the correlation function.8,9

The oscillations in time shown in Fig. 17~c! can be
fitted very accurately for 1.5,tJ,6 with an exponential
decay via Eq. ~28!. The parameter sets@L,G,f# are
obtained as @2.15~1!,0.375~2!,20.87~1!# for J250,
@2.31~1!,0.323~2!,21.13~1!# for J250.2411, and
@2.21(1),0.345(2),20.82(1)# for J250.5. The full line
shows the resulting fit function forJ250.

- FIG. 17. Imaginary~a!, real~b!, and real-time~c! representation
of the susceptibility forT→`. Broken lines in~a! are binned, in Eq.
~6! with e50.02 was applied, and in~c! Eq. ~8!. The solid line in
~c! is the sinusoidal fit for the example ofJ250.
4-11
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RALPH WERNER AND ANDREAS KLÜMPER PHYSICAL REVIEW B64 174414
In the classical limit, wherêSz
2&T→`→`, paramagnetic

behavior is expected forT@J. This leads to an expecte
functional dependence of the structure factor
limT→`Sclass(q,v); lime→0e/(v21e2). From Eq. ~35! fol-
lows that limT→`T Rex(p,0)5^Sz

2&T→` that is consistent
with the expected functional dependence in the class
limit.

The XY model is one point of the line of critical fixed
points towards that the interaction flows in a bosonized r
resentation of the Heisenberg model.31,32 The susceptibility
of the XY model shows a square-root divergence atv52
and ImxXY(p,v.2)[0. The shape of the spectrum at th
upper band edge observed for Heisenberg chains is thu
interaction effect.8 The shape of Imx(p,v;L) indeed re-
sembles that of a Fermi distribution of weakly interacti
electrons. We thus interpret the limitT→` as best described
by weakly interacting spinless fermions.

IV. RESULTS

Figure 18 summarizes as a function of the frustrationJ2 at
T50 the extracted values for~a! the sum ruleI 1(p,0), ~b!
the scaling dimensionx, ~c! the upper edge of the continuum
L, and~d! the exponent at the upper edge of the continu
a.

~a! The values ofI 1 for J2<0.2411 are within error bars
almost identical that underlines the common features
Heisenberg chains with undercritical frustration.14,15,31,32

~b! The parameterx shows a stronger infrared divergen
for unfrustrated Heisenberg chains than for those with c
cal frustration. Our results withx,0.5 are consistent with
scaling dimensionx50.5 and additional logarithmic correc
tions. The values for overcritical frustration have to be

FIG. 18. Extracted values for~a! the sum ruleI 1(p,0), ~b! the
scaling dimensionx, ~c! the upper edge of the continuum, and~d!
the exponent at the upper edge of the continuum as a func
of J2 at T50.
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garded as effective ones as discussed in Sec. III C.
~c! The cutoff frequency of the upper limit of the spino

continuum is linear as a function of frustration forJ2,0.35.
~d! The exponent of the cusp at the upper boundary of

spinon continuum is always smaller than the value ofa
50.5 predicted for the two-spinon contribution forJ2. The
value of a vanishes forJ2'0.2 in agreement with the pre
vious observation5 that for that value the spectral propertie
of the frustrated Heisenberg chain are similar to the con
mally invariant Haldane-Shastry41,42 model.

The prefactorx0 from Eq. ~13! is of order 1 and slightly
frustration dependent. The values (J2 ,x0) are: „0,1.31(5)…,
„0.15,1.12(5)…, „0.2411,1.01(5)…, and „0.35,0.88(5)…. For
J250.5 one hasv122xx050.69(5). Values forJ250.45 are
not computed because of the peculiar finite-size effe
shown in Fig. 3.

Figure 19 summarizes the temperature dependence o
fit parameters for the experimentally most relevant unfr
trated chain withJ250.

~a! The scaling variable approaches the value of theXY
model limit at the crossover temperature to the diffusive
gime T* '0.7. The direct determination ofx(T.T* ) is not
possible but since forT→` the weakly interacting fermion
case is recovered it is expected to lock in atx(T.T* )51.

~b! The upper continuum edgeL(T,T* ) marks a sharp
cutoff ~full symbols! while in the diffusive regime~open
symbols! it is the effective, thermally smeared out upper co
tinuum boundary. In the weakly interacting fermion limit
saturates atL(T→`)52.15(1).

~c! The exponent of the upper continuum edgea in-

n

FIG. 19. Extracted values for~a! the scaling dimensionx for
T,T* , ~b! the upper-continuum cutoff frequency forT,T* ~full
symbols! and the effective upper continuum edge in the diffusiv
weakly interacting-fermion regime~open symbols!, ~c! the cutoff
exponent, and~d! the control parameterG determining the decay a
a function of time in the diffusive/weakly interacting-fermio
regime.
4-12
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LINESHAPES OF DYNAMICAL CORRELATION . . . PHYSICAL REVIEW B64 174414
creases with increasing temperature reflecting the ther
smearing out of the singularity. Its value atT5T* is so large
that the cutoff is barely singular and thus not very well d
fined. In the diffusive regime (T.T* ) this quantity is unde-
fined.

~d! G is an effective parameter that controls the contin
ous transition of the system from the diffusive behavior
T* to the weakly interacting fermion limit atT→`. For J2
50 it saturates atG(T→`)50.375(2)

V. CONCLUSIONS

We have compared numerical results from the exact
agonalization of finite systems with results from conform
field theory together with implications from the density
states, the exactly solvableXY model, and Bethe ansatz so
lutions for integrable systems. We use the different finite-s
accuracy of the imaginary, real, and time representation
the spin-correlation functions to extract reliable informati
on the thermodynamic limit.

At low temperatures the dynamical correlation functio
of frustrated Heisenberg chains are well described by a m
tiplicative superposition of the contribution from low-lyin
elementary excitations described by conformal-field the
ys

r-
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and a density of states and matrix-element-induced singu
ity near the upper edge of the two-spinon continuum. At
frustration value ofJ2'0.2 the system is closest to the co
formally invariant Haldane-Shastry model.

At T* '0.7 we observe the crossover from the low te
perature, conformally invariant regime to a diffusive regim
All correlations in time then decay exponentially. The diff
sive regime connects continuously to the weakly interact
fermion regime forT→`.

We give the frustration dependence of the control para
eters for the lineshapes of the spin-correlation functions
T50 and their temperature dependence for the experim
tally most relevant case ofJ250. The temperature depen
dence of the first moment sum rule of the spin-correlat
function is accurately determined.
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