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Lineshapes of dynamical correlation functions in Heisenberg chains
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We calculate lineshapes of correlation functions by use of complete diagonalization data of finite
chains and analytical implications from conformal-field theory, density of states, and Bethe ansatz. The
numerical data have different finite-size accuracy in the cases of the imaginary and real parts in the fre-
guency and time representations of spin-correlation functions, respectively. The low-temperature, conformally
invariant regime crosses over dt*~0.7J to a diffusive regime that in turn connects continuously
to the high-temperature, interacting-fermion regime. The first-moment sum rule is determined.
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[. INTRODUCTION this paper is to combine the strongholds of both methods.
The system to be discussed here is the one-dimensional
Dynamical correlations characterize the spectral properantiferromagnetic Heisenberg model

ties of physical systems. They are accessible by a multitude

of experimental setups. The access to dynamical correlation H=> (JSS,,+I9Y,,+I,5F, ;)

functions for physically relevant systems is usually difficult I

even in exactly solvable model$. Dynamical spin-

correlation functions in Heisenberg chains have been widely +322 (S, o+ IS, ,+ S ) (1)

studied. Numerically, the dynamics Bt 0 are accessible by [

Lanczos and continued fraction techniques, which have be

applied to Heisenberg chains with dimerizaficand addi-

tional frustration*® Dynamics of frustrated quantum-spin

systems in magnetic fields were studieds well as a spin

system coupled to a dynamical phorloat finite tempera- units of the in-plane exchange, i.d5=1. This Hamiltonian

tures part|a_lly anisotropic Heisenberg ch_ﬁ irend _chglns is relevant for the description of the magnetic systems
with frustratior? were studied by complete diagonalization of . 2323

finite systems. The Heisenberg chain was also studied by%1 many 94ua5|-one2-5d|men3|onaI26mater|aIs a0,
combination of high-temperature expansions with quantum $CUCL,™ KCuFs, or CuGeQ.. .
Monte Carlo simulation$’ The analytical investigation of We focus on the spin-correlation function
dynamical spin-correlation functions usually involves the 18 _
Bethe ansatz or implications from conformal-field x(q,iwn)=—f dre'“’nT<Sé(T)SZ,q(O)> (2
theory!*~2 The comparison of numerical and approximate LJo
analytical results for the purpose of accuracy control hagyith Matsubara frequencies,=2mn/ g, inverse tempera-
been used in various previous qpprogd‘fé%. ture B=1/T, (kg=1), Fourier transformed spin operators in
_Usually t_he focus lies on the imaginary part of the corre-jnteraction representatiors(zl(q_):e—Hrgle—inSZerr, and
lation functions. The real and the imaginary parts can b&,mper of sited.. In its analytically continued form, where
Kramers-Kronig transformed into each other and thus hold ,, ., +jc with e—0, it determines the structure factor
the same information. This is also true for the Fourier trans-
form. The information that can be extracted from finite sys-
tems accessible by exact diagonalization concerning the ther- S(q,w)
modynamic limit is limited. The accuracy of the results is
different for different representations. In the case of finite.g|avant for neutron scattering experiments.
systems it proves thus useful to actually calculate all three
representations to extrapolate to the thermodynamic finit.
The dynamical correlation functions become system size
independent for high excitation enerditsr, equivalently, For finite systems the correlation function can be calcu-
on short time scalé§While finite systems thus allow for the lated through the diagonalization of the spin Hamiltonian in
determination of correlation functions in the thermodynamicthe spectral representation since eigenfunctiorsand ei-
limit at high frequencies or on short time scales, field-genvaluesE, are known. All numerical results in this paper
theoretical results describe their asymptotic behavior on longre obtained using periodic boundary conditions. Defining
time scales or for small frequenci¥&s'® The perspective of the matrix elements

&Rith the superexchange integralsaand J, between nearest-
neighbor and next-nearest-neighbor magnetic ions,
respectivelyz-axis anisotropyd, and spin-1/2 operator com-
ponentsSy with v=x,y,z at sitel. Energies will be given in

~1Imx(q,w)
S m 1—e he

()

A. Numerical methods
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Vim=(n|S|m) (4) It can be shown that E(ﬁt_S) gives very accurate results for
the real part of the correlation function if it is evaluated at the

and the Boltzmann factor dominant spectral Iinij 21

- BEn_ @ BEm ~ f Vil
fam(B) = (e —e ) (5) ReX(Qz-wj):_z jm(ﬁ)l nm|

. . . . mn (w;+E,—Ep)
whereZ=Tre P is the partition function, one can write

, X 0(|Ey—Ep—0j| —Aw). (11)
+E,— — .
Rex(q,w)=—lim >, fom(A) [Vl “( 2E“ ZEm), (6)  The regularization parameté&rw can be set to zero if only
e—omn (0+En—Em)“te excitations atw; are presenfdefine #(0)=0]. For Heisen-
berg chains at intermediate temperatures and frequencies a
Imx(q,w)=w% £ BVl 28(0+E—Ep).  (7) choice of Aw=0.1] yields reliable results. For higher fre-

quencies the results for the real part of the correlation func-

tions are free of finite-size effects.
The corresponding real-time retarded spin-correlation

function is obtained via a Fourier transformation as

B. Field-theoretical preliminaries and transformations

1 (= A The correlations described by(q,») Eqg. (2) are domi-
X(q,t)=zj_xdw e '“'x(q,0) nant atq= 7 reflecting the antiferromagnetic instability of
the system. We will thus focus on this wave vector. gor
. A ~a andJ,=0 the spin-correlation function has been studied
=—i0() % fam(B)|Varl?€EEDY (8) iy detail with bosonization techniques by ScHdland has
mn later been improved including logarithmic correctidfdhe
where §(t) is the Heaviside function. result of conformal-field theory for any two-point function
To determine the correlation functions in frequency spaceavith scaling dimensiorx in Euclidean spacer(r) at low
we use the same methods as described in Ref. 21 that wemperaturel is'®
briefly summarize. At low temperatures small systems ex-
hibit a small number of dominant spectral lines at frequen- il T

cies wJ that usually can be attributed to specific rr)= v v
excitations'®?° The imaginary part of the correlation func-  XCFT(':7)=Xo r
tion is determined most accurately by “binning” the data as sinhzr T ;JF'T

r
S|nh7rT(— —
U
(12

wherev denotes the velocity of the low-lying spin excita-
fam(B) | Vam 2[ 0 @nm— w'”f) O wpm— wSUP)] tions, andy, is some constant. The spin-wave velocity for
~Sup_ ~inf frustrated Heisenberg chains has been determined numeri-
Y cally asv=0.57(1—1.12J,) for J,<0.2411%"-?*The Fou-
(9) rier representation in momentumand frequencyw space

with Imw>0 i
For small systems at low temperatures the appropriate ch0|cet ©=01s

is such that the interval boundaries lie in the m|dEIIe between Xerr O, @) =sin(mx) vt~ P yo( 7T 2
the dominant spectral lines, i.e. w5”p=w]“+1 (wJ

Im x(q, ,wmf< < wSUp)

S

m,n w;

+Z)J-+1)/2. If only the “dominant” spectral lines are present X Fy 0—v(d 77)) Fy wtu(g 77))
and if those lines form a well-defined continuum in the ther- 2T 2mT
modynamic limit, i.e., forL—o, Karbach, Miier, and co- (13
workers have showd!®?°that Eq.(7) can be used, appro- .
priately scaled to the thermodynamic limit, by introducing aW'th
density of states with respect to appropriate quantum num- . ik
bers derived from Bethe ansatz. This leads to the following Fx(k):f N ——
representation of the imaginary part of the correlation 0 (sinhn)X
function?! .
) e IP(1-x) I'(x/2—ik/2) (14
5 “’j:EnfEm o fnm(ﬁ)lvnm|2 F(l_X/2_|k/2)
M x(0z, ;)= % Z)ju—znﬂ - 10 The value of the scaling dimensiosrdepends on the strength

of the interaction or the anisotropy in case of a spin chain.
The sum covers only values of and m such that:uj=En For the XY model we havex=1 and for the isotropic
—E,,. In Heisenberg chains this representation is only apHeisenberg chain=1/2. In the lower half plangcr(q, )
plicable atT=0. is given by Eq.(13) with o replaced by—
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From this representation we learn that the function on theo twice the sine transform of Ia( 7, w) andy(,t) is real.
right-hand side of Eq(13) is analytic in a strip around the For theXY case witha= —1/2 we like to note more explic-
real axis with|Im w|<x2#T as long asT>0; for T=0 we itly the qualitative result

have
sgn o)
0 for w<v|q—m| ] +——" for |w|<A
IM xcrr(Q, @)= [0 02(q—m2]" ! else (15 Imy(w*ie)= VA?— w? (21)
' 0 for |w|>A,
These analytical properties are shared by the structure factor .
Scrr(g, @), which is related to Inycrr(Q, ) via Eq. (3),  With Kramers-Kronig transform
i.e., it is analytic in [Imw|<x2#T for T>0, and . 5
Scr(m 0)= 0> 2 for T=0. arcsint /(é) 1
Performing the Fourier transform to real time we see that 2 1) for |w|<A
both xyce(q,t) and Scer(q,t) decay exponentially at finite P A2— o2
temperatures and algebraically foe=0 andq= r, Rex(w)= @
A
. exp(—x27Tt) for T>0 18 2 arcsimy/ - for |w|>A.
Xert(m =] 11-ax for T=0. Ny
| w—A

For momentag # 7 the functionycr1(g,t) decays exponen- (22)

tially with time t for any T>0 as well asT=0. For overcritical frustratiot? J,>J.=0.2411 the Heisenberg

on the lattice that are singular at finite values«o®ven for  Considering square-root divergences at the lower and upper
T>0. These contributions have their origin in the existencezdge of the spectrum

of the lattice that leads to finite-energy bands with upper-
band-edge singularities. There are no universal predictions Imy(w=*ie)
like for the lower band edge governed by conformal-field

theory and described above. An exception, of course, is the sgnw)
XY spin model that can be mapped to free fermions. = J2— 02 (A—w?) for Qg<[w[<A
As we discuss in Sec. | C the case of ¥ model sug- g

gests to assume that(q,w) is singular at a frequency 0 else,

where the imaginary part diverges like (23)
F(A—w)* for w<A we obtain the Kramers-Kronig transform

Imx(q,o*xie)= (17)

0 for ©=A. 0 for Qy<|w|<A,

The upper(lower) sign yields the retarde@dvancegicorre-

lation function. If not stated explicitly we discuss the re- Rex(w)= + Sg;{w) else
tarded functions. The Kramers-Kronig transform yields the V(0?— Q%) (= A?)
singularity of the real part (24)

The upper-band-edge singularities and the resulting algebraic
real-time asymptotics exist only at sufficiently low

(18 temperatures. At intermediate temperatures the upper limit of
the continuum vyields an antisymmetrized Lorentzian
contribution.

cotra(A—w)® for w<A

Rex(q.«)= ——(w—A)* for w>A.
SinTTa

In the neighborhood ofa=0 we have a logarithmic

singularity* Im x(g,)=L_(p)—L,(¢), (25)
1 where
ReX(q,w)=;In|A—w|. (19
I' cosp— (A + w)|sin¢|

Regarding the time dependence we note that both functions L.(¢)= 21 (At o) : (26)
x(g,t) andS(q,t) are dominated by the singularity Atand @
show long-time asymptotics Limiting 0< ¢=< /2 the real part is simply given by

x(g,0)=t" (" Dexp(—iAt). (20) Rex(q,w)=L_(¢p—ml2)+L,(p—m2) (27

Since the operatd®” is self-adjoint Imy (7, w) is odd inw. and the Fourier transform reads
In general we thus set Ip(q, w) ~sgn(w)(A2— w?)?. The
Fourier transform(FT) of y(m, ) is consequently identical x(q,w)=e""'sin(At+ ¢). (28
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FIG. 2. Real-time spin-correlation function in the€Y case at
T=0 (a) and T=0.3 (b). Thermodynamic limit resultgfull lines)

;eilqk?gllzla-l;zeofbutgilrllr;% ICEZ) ésq;g)e Z);%Cttl:zsgés fer?rr::tlif)azsg)\,/i;heE are obtained via Eq30). The different broken lines show the de-
y ' P Y- Viation of results for finite systems from E¢B). L=14 yields a

gézhgu(tj:;hﬁﬂtm\];itﬁotgte ;?5;:;;rr?glﬂ?llﬂéhiﬁrg/svﬁr; l;egert}}beand'good representation of the correlation function upt4e2/J at T

. . . =0 and up tat~8/J at T=0.3. The thin lines show the asymptotic
Kramers-Kronig transforms of the imaginary part, and the Symb()lsoehavior as predicted in Sec. | B
are obtained using Eq1l) with Aw=0. P B

FIG. 1. Susceptibility for thex Y model:(a) imaginary partb)

This temperature range will be referred to as “diffusive the real part forw>A show only very little _f|n|te_-S|ze ef-
regime.” fects. The divergences of the real and the imaginary part at

the upper band edge show the correspondence predicted by
Egs.(21) and(22).
C. XY model The retarded, real-time correlation function can be deter-
We demonstrate the overlap of the accurate short-timemined numerically in the thermodynamic limit
scale results from the exact diagonalization of finite systems
and the asymptotic behavior accessible by field theory for an 1
exactly solvable case, théY model, wherel,=J,=0. The x(q,)=i6(t) lim - > (fe=fre g exi(Ex— Exigt].
spin operators in this model can be transformed to non- Loee K
interacting, spinless fermions via a Jordan-Wigner (30)

transformatior’” The structure factor E¢3) can be given H g o N " :
for L—c in closed fornf The imaginary part of the suscep- | '€ €nergy dispersion is given Iy =J cosk, f, are Fermi

tibility at q= 1 is distribution functions, and the sum covers the first Brillouin
zone. In general fok = 10* the result is independent affor
IM xxy( 7, @) =tanH Bwld) (4— w?) S, (29) all practical purposes.

In Fig. 2 we show the retarded spin-correlation function
This is the field-theoretical result E¢L3) with scaling di-  for finite systems compared with the result in the thermody-
mensionx=1 multiplied with the square-root divergence at hamic limit (L—ce, full lines) atT=0 (a) and atT= 0.3 (b).
the upper band edge. The limit -0 is given by Eqs(21) ~ The different broken lines show the deviation of results for
and(22). finite systems Eq(8). L =14 yields a good representation of
Figure Xa) shows the imaginary part of the susceptibility. the correlation function up té~2/J at T=0 and up tot
The full line represents the exact results, the symbols are=8/J at T=0.3.
obtained via the regularization E¢L0), and the step func-  The thin solid lines in Fig. 2 show the asymptotic®®
tions are given by Eq9). The dashed line is the result from behavior from the upper-band-edge divergence. The contri-
field theory with an UV cutoff but without the upper-band- bution from the low frequencies yields an additive term
edge divergence. Figure) shows the real part, the lines ~t ' at T=0 and~e **""" with x=1 atT=0.3 as pre-
are the Kramers-Kronig transforms of the imaginary part andlicted in Sec. | B. The fits have been obtained for&0
the symbols are obtained using Edl) with Aw=0. <100 to assure the asymptotic limit. The numerical data for
We conclude that the multiplicative approach of the low-finite systems and fof ~0.3 yield a good representation of
energy description from field theory with the high-energythe correlation function in the thermodynamic limit up to
behavior is adequate. Also, the numerical approaches givetane scales that are already dominated by the asymptotic,
reasonable approximation to the exact result. The values dérge-time-scale behavior.
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Renormalization-group studies show that ¥1é model is *Q L IR=NN 3
one point of the line of critical fixed points towards which 1ok o & O o
’ *

the interaction flows in a bosonized representation of the Ry ]
Heisenberg model J,=1) 332 One thus expects qualita- PUnlT @ | i T=0 (b) 1
tively similar results for the unfrustrated Heisenberg chain as S N 062

in the XY model. This should also hold for frustrated Heisen- 0 or 02 03 4 6 8 10 12 14
berg chains, at least for under-critichl<J,=0.24114321%

D. Technical outline of the approach

1.4 o

.. 0 Rey (m,0)

The discussion of th¥Y model implies that the represen- . ®/.=0
. ; : : S AJ=015
tation of the imaginary part of the correlation function is best = B =0411
achieved by multiplying the upper-band-edge behavior to the & 71;035
field-theoretical expression, TTI I XJ,=0.45
& €J,=0.5
( 2_ wZ)a 5;
lmX(W!w):Im[XCFT(Waw)]Wa(A_|w|) h

(31

The real part of the susceptibility is given by the numerical i

Kramers-Kronig transforntKKT) of Eq. (31). The real-time T

representation is obtained by FT pfm7, ). We attempt this _ ) -

approach for frustrated Heisenberg chains and at finite tem- FIG. 3. First moment of the spin susceptibility as extracted from

peratures, where the exact form of the correlation function i¢he asymptotics of the real part in finite systenig) Low-

not known. temperature flnlte-5|_ze_ eff(_ects ano_l thermodynamic limit values as
The field-theoretical expression in E61) depends on extracted from the finite size scaling representedbin (c) Tem-

the parameter of the scaling dimensiorand a global pre- perature dependence.

factor v~ #y,. The latter is determined by requesting the

sum rule of the first moment of the susceptibility to be cor-

rectly reproduced. The sum rule

+K1(0.57) =2E¢/3. We recall that fordJ,=0 andJ,=0.5
one hask;(q)=2(1-cosq)Eg/3. For J,=0.5 the average
('S, ,)1—0=0 vanishes?
1 (= The crucial point is that Re(q,w—=>) depends only
1,(q,T)= _j dow o Im x(q, ) (32)  weakly on the system size®! Figure 3c) showsl,(q,T) as

TJ a function of temperature for different system sizes and frus-

. tration parameters. In Fig.(® it becomes obvious that the
can be extracted very accurately from the finite-size data ag,q s ford,=0 andL =14 is for all practical purposes in the

discussed in Sec. Il. We are then left with the paramete{hermodynamic limit forT>0.3. Analyzing Eq.(12) one
vectorp(T)=[x_,A,a] t_hat we find to be temperature depen- finds the correlation length to b&=v/(27xT). For x~0.5
dent. The scaling variablg determines the low-frequency andv=0.57(1—1.12J,) we find that the finite-size effects

bg_havior of the imaginary and the rea] part Of the SUSCGptiélre of the order of 10° when the correlation length becomes
bility [Eq. (15)] as well as the decay in real-time space as, _

given by Eq.(16). The upper continuum edg& positions
the cusp or divergence of the real pHEQ. (18)] as well as
the oscillatory behavior of(,t) as a function of tim¢Eq.
(20)]. Finally the exponen& describes the shape of the real-
part cusp or divergenddeq. (18)] and the decay of the os-
cillations in time[Eq. (20)].

Figure 3b) shows the values df;(7,0) as a function of
the system size. We determine the thermodynamic limit with
the algebraic scaling functionl(7,0L)=14(m,02)
+AoL ™ 7. Systems withL mod 4=0 [open symbols in Fig.
3(b)] in general converge differently than systems with
L mod 4=2 (full symbolg. The two cases yield two values
the difference of which serves as an error estimate. Jsor
Il. SUM RULES AND PREFACTORS =0 we findl,(,0,)=1.1821(7) that is very close to the

Since the imaginary and real representation of the spin(—exfCt value ofl 1(7730):1'181 7_258 .. . ForJ,=0.15 and
correlation function are Kramers-Kronig related and as @2=0.2411 we f|'nd l1(7,0)=1.185(10) and |(w,0)
consequence of the bounded excitation specituin is =1.1732), respectively. A value ofy(m,0)=1.1521(5) has

straightforward to find that the sum-rule EG2) is given by ~ Peen found forJ,=0.35. The result forJ;=0.5 with
I1(7,0)=1.000(3) is extremely close to the exact value of 1.

i 2 In Fig. 3(@) the peculiar finite-size effects fal,=0.45 be-
(a.T) al,lwa Rex(q.w). 33 come apparent. Obviously they result from the gap Valae
14~0.12 being just in the temperature range where the
For limy_ol1(q,T)=4K,(q) the structure-factor sum rule finite-size effects appear. The determination Igf 7,0)
discussed in Ref. 17 is reproduced. For arbitrary frustration=1.075(10) is thus less accurate. The results are represented
J, the structure-factor sum rules are connected to thdy the symbols in Fig. @&).
ground-state energyEg of the system viaK,(w)/2 In Fig. 3(c) the temperature dependence lg{w,T) is
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0.1 =S ®/,=0 1
—~ r AJ=0.15
% 008 mJ=02411 A
£ I VJ,=0.35
& 006 +7,=0.45 .
1.0 g '
Z 0.04 +
a L
£ 0.02 : ' : : : '
N 0 0.5 1 1.5 2
[ T
:jfg';i“ FIG. 5. Temperature dependence of )Rer,3.8) from Eq.(6).
o1 L VJZ:O'35 The finite-size effects ares0.1% and hardly visible on this scale
Tt ><12:0'45 (full lines L=14, broken lined. =12).
,=0.
¢/,=0.5 J=1, 0=0 N
For completeness we show in Fig. 5 the temperature de-
: PR endence o ,3.8) from EQq.(6) for different values o
pend f Rg(7,3.8) f Eq.(6) for diff tval f
0.1 1.0

J,. The finite-size effects are0.1% and hardly visible on
Tl this scale(full lines L= 14, broken lined. =12). We do not
FIG. 4. Log-Log plot of Rey(s,w=0) from Eq.(6) as a func- show plots forJ,=0.5 since the presence of bound states

tion of temperature. The full line is the universal lafgasymptotic makes the result unreliable, cf. Sec. Il C.
result~0.25/T. The inset shows the finite-size effects at low tem-
peratures. lim_ oRe x(7,0=0) diverges forJ,<0.2411 and satu- Ill. FRUSTRATED HEISENBERG CHAINS

rates forJ,>0.2411. L .
We now turn to the determination of lineshapes of the

shown for different values of the frustration parameter. TheSPin-correlation function in frustrated Heisenberg chains
general asymptotic behavior of lim. x(m,w)~T ! be- Making use of the precise results obtained above.

comes apparent from the discussion in Sec. Il F. For the first

moment we find lim_,..1 (7, T)=0.5/T. This is reminiscent A. Critical frustration

of the structure-factor sum rule We first discuss the values df=1 andJ,=J, at the

w quantum-critical point making the field-theoretical results
— lim Tw?Rex(m,w)= lim J do’w'?S(7,0')=0.5 eligible for comparison. In frequency spaceTat0 for a
I)j; Tl o™ 14-site chain there are four spectral lines at frequen?ai,es
(34  ew() ={0.264,1.309,2.112,2.48Fhich, by analogy to
the dimer-dimer correlation functioRSmay be identified as
the triplet excitations out of the ground stdtelt is thus
reasonable to suppose them to form a well-defined con-
jnuum in the thermodynamic limit and thus Eq40) and
@11) can be applied witA w=0.
The imaginary part of the spin-correlation function is
shown in Fig. 6a). The bins are obtained using E®) and
the symbols are given using E(@L0). The symbols in Fig.
o 6(b) show the real part as given by Ed1). For o =0 finite-
— lim TRex(m7,0)= Iimf do’ S(70')=0.25, size effects are significant since one expects from field
T Toed ™% theory and by analogy to th&Y model Rex!"™=%(m, 0
(35 =0)—0. For >3 the numerical results are essentially in
which reproduces a structure-factor sum rule and is identicahe thermodynamic limit as can be seen from the different
for all values of the frustration and th€Y model. The field- broken lines in the inset of Fig.(I6). The real-time represen-
theoretical prediction Eq(13) for the prefactorT?*~2 with tation of the spin-correlation function @t=0 is given in Fig.
constant scaling variablg is clearly inappropriate for the 7(a). As in the XY case the system with =14 yields a
temperature range shown. Our analysis in Sec. Il shows thatseful representation of the correlation function uptto
the deviation results from an explicit temperature depen=2/J.
dence of thex(T) as well as from the temperature depen- The fit with the theoretical predictions from E1), its
dence of the singularity at the upper band edge, AT) KKT, and FT are given by the full lines in Figs(&, 6(b),
and a(T). and 7da) using the parameter set pg241{0)
The inset of Fig. 4 shows the finite-size effects at low=[0.50(1),2.6(1),~0.10(7)]. The cutoff 2.5<A is bound
temperatures. lign,oRex(m,0=0) diverges for J, by the highest spectral lines that must lie in the continuum.
<0.2411 and saturates fds>0.2411 which is reminiscent Previous resulfssuggestA to decrease monotonously with
of the presence of a gdp. frustration and for reasons of consistendy<2.7. The

and is generic for all values aF, and theXY model. Note
that limy_,..S(q,w)=lim;_..S(q, — ).

The values of Rg(m,w=0) show little finite-size effects
even at rather low temperatures. Figure 4 shows a log-lo
plot from Eq.(6) for different values of the frustratiad, and
chain lengths as a function of temperatbeoken lines.
The full line shows the asymptotic behavior
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¢ =12 ]
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FIG. 6. Imaginary part(a) and real part(b) of the spin-
correlation function in the frustrated Heisenberg chaif a0 with
J,=0.2411. The imaginary part for finite systems is binféd.
(9)], each bin holds one spectral line, symbols are from (E&f).
The symbols for the real part are obtained by using @&d). The
full lines are the theoretical result from E@1) and its KKT. Inset:
enlargement of cutoff region with finite-size results from Eg).
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FIG. 8. Imaginary part(@ and real part(b) of the spin-
correlation function in the frustrated Heisenberg chairl at0.3
with J,=0.2411. The imaginary part for finite systems is binned
[Eg. (9)], the symbols for the real part are obtained using Ed).
The full lines are the theoretical result from E§1) and its KKT.
Inset: enlargement of cutoff region with finite-size results from Eq.

(6).

phasize that the overall prefactor of the fit function is fixed

three parameters are then determined by matching the firg the sum rule Eq(32) and that values foA and « have

maximum as well as the slope forxtJ<2 in the real-time

representation and the value of the real partdor 3.8 [cf.

Fig. (5)]. The finite-size effects require us to allow for rather

large error margins.

been obtained without using the not-so-well-defined binned
data of the imaginary part.

The plot of the real-time representation of the spin-
correlation function aff=0.3 in Fig. 1b) reveals the tem-

The result ofx is consistent with the prediction from field perature dependence of the parameter vegips,;{0.3)
theory. The value otv#0 suggests a more complicated up- =[0.481),2.5(1),— 0.25(5)]. The result for. =14 yields a
per continuum edge than a simple ultraviolet cutoff. We em-seful representation of the correlation function uptto

1 T T / 7 T T \ T \ T A)
/ ,/,’/ \ N \
[ /1 \ \ \
N4 NN

o~ -7 NT= ’
S ~ >\
K 05 h
= x=0.5, A=2.6, o=—0.1

(@ J,=0.2411,7=0 ---- L=14

: : : L | == L=12

' ' T | ——-L=10
)

0.5

X (0

’’’’’
******

J,=0.2411,T=0.3

0 2 4
(7]
FIG. 7. Real-time spin-correlation function fés=0.2411 af(a)

T=0 and(b) T=0.3. Broken lines are finite-size data from E8§),
full lines are FT of Eq.(31).

~4/J. The full line is the fit from the FT of Eq(31). The
exponential fall off predicted in Sec. |1 B is confirmed and
renders the value of the scaling dimension. The oscillations
are much less damped than would be obtained with an upper-
band-edge exponent aef=0 thus yielding the negative value

of @=—0.25. The cutoffA is given via the period of the
oscillations.

Figures 8a) and &b) show the imaginary and real part of
the frequency representation of the spin-correlation function
at T=0.3, respectively. The binned data for the imaginary
part via Eq.(9) and the symbols for the real part via Ed1l)
are obtained for the sets of dominant spectral lines, in

the case ofL=14 they are given by the frequenciés,
e W),={0.311,0.971,1.517,2.068,2.301 The condition

of a well-defined continuum with respect to Bethe ansatz
guantum numbers is violated and thus Efj0) cannot be
applied any more. For the real part the data are regularized
with Aw=0.1, which is determined to give reliable results
analogously to the dimer-dimer correlation functiGhg\n
exception is made ab=0, where no regularization is ap-
plied (Aw=0).

The good correspondence of the field-theoretical fits from
Eqg. (31 and its KKT (solid lineg in Figs. 8a) and 8b)

174414-7
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FIG. 9. Imaginary part(@ and real part(b) of the spin- FIG. 10. Real-time spin-gorrelatior! f_unct_ion fdg=0 at(@) T
correlation function in the unfrustrated Heisenberg chaifa0. =0 and(b) T=0.3. Broken lines are finite-size data from E8),

The binned curves ifia) are from[Eq. (9)], the symbols are from full lines are FT of Eq(31).
Eq. (10). The symbols for the real pafb) are obtained using Eq.
(11). The full lines are the fits from Eq31) and its KKT. Inset:  thermodynamic limifinset of Fig. 9b)]. The real-time rep-
enlargement of cutoff region with finite-size results from Eg). resentation of the spin-correlation functionTat 0 is given

in Fig. 10@a).
proves the reliability of the parameters extracted from the 11€ UPPer edge370f the two-spinon continuum is known
real-time representation. Especially the good agreement cﬁxactly tq beA = 7. Bethe ansqtz results. suggﬁ)st that the
the values of Rg(,0) and of Rey(,w>2.7) [inset Fig. infrared divergence of the two-spinon contributigft’ to the

8(b)] are nontrivial consistency checks. We expect a thermalad!nary part of the spin-correlation function has a logarith-

i i mi rrection
smearing out of the small divergence at the upper band edge ¢ correctio

of which the shape is not known and that we did not account ) 2 4 —

for [solid line in Fig. a)]. This might have a small influence lim Im }**(7,0)<0™ Injo™ ], (36)

on the parameters extracted and thus we adapted rather con- o]0

servative error bars. The finite-size data in both the real ang\/hile at the upper continuum edge it vanishes square
Imaginary part suggest a steeper slope in the Iow-frequenc%ot"ke 17 The two-spinon contribution has been found to
dependence of the fitted curves. Together with the tempergc, i, \te 72 89% to the total spectral weightOur and
ture dependence of the s.cahn.g d|mensrd_h|s |nd|ce}tes the revious numerical studies show that the spectral weight of
breakdown of the scale invariance predicted by field theor he total correlation function for above the two-spinon con-

at finite temperature¥. tinuum (0> ) atq= is less than 0.19%> Thus the total
spin-correlation function includes also about 27% higher-
order contributions and we have i, w)>1m y® (7, ).
Consequently we must requice<0.5 andA = 7. Usingx as

Heisenberg chains without frustration are relevant foran effective fit parameter we also haxe=0.5. Note that
most of the magnetically quasi-one-dimensional systemgyithin the numerical precision of our results, the fit proce-
studied experimentally. Since the system is integrable thejure with parametex<0.5 is consistent with an actual scal-
numerical data can be compared to results from Bethe ansalag dimensionx=0.5 plus logarithmic corrections.

At T=0 the four spectral lines of the triplet excitations  From the amplitude in the real-time representation in Fig.
out of the ground state for a 14-site chain are at frequencie§0(a) we find that the parameters and « fall on a line
;e W§¥={0.307,1.57,2.56,3.33->®It is thus reasonable defined by (0.38,0.25) (x,«)<(0.44,0.5). Taking also the
to suppose them to form a well-defined continuum in thevalue of the real part ab=4 in the inset of Fig. @) into
thermodynamic limit and thus Eq&L0) and(11) can be ap- consideration we determine py(0)=[0.4Q(3),7
plied with Aw=0. Binned data for the imaginary part are +0.01,0.33(5]). The error margins have been chosen rather
obtained via Eq(9). large because of the obvious finite-size effects. The resulting

The imaginary part of the spin-correlation function is fits with the theoretical predictions from E(B1), its KKT,
shown in Fig. 9a). The real part in Fig. @) shows forw and FT are given by the full lines Figs(é9, 9(b), and 1Qa)
=0 significant finite-size effects since RE = (7, 0=0) and show satisfactory agreement with the results from finite
—o, For w>3.5 the numerical results are essentially in thesystems.

B. Unfrustrated Heisenberg chain

174414-8
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FIG. 11. Imaginary part(a) and real part(b) of the spin- ) )
correlation function in the unfrustrated Heisenberg chainTat FIG. 12. Imaginary part@ and real part(b) of the spin-
=0.3. The step function ifa) is from [Eq. (9)], the symbols inb) correlation function forJ,=0.5 atT=0. The binned curves ifg)
from Eq. (12). The full lines are from Eq(31) and its KKT. Inset: &€ from[Eq. (9], the symbols are from Eq10). The symbols for

enlargement of cutoff region with results from H6). the real partb) are optained using Edq11). The full lines are the
fits from Eq.(31) and its KKT.

The short-dashed line in Fig. () shows the correlation niscent of the fact that the bound states do not form a con-
function for 14 sites in the real-time representation. The extinuum in the thermodynamic limit. We do not attempt to
ponential decay in time implies a scaling dimensionxof refine the plot by extracting the bound-state contributions
>0.4 and the strongly damped oscillations an exponrent Since results of the real part and especially the real-time rep-
>0.5. The real part at higher frequencies as shown in th&esentation are more reliable anyway. _
inset of Fig. 11b) requires the exponent to he<0.7. To- Figure 12b) shows the real part from E¢l1) with Aw
gether with a matching value for Rém,w=0) the param- = 0-1 for 1.5<&<2.3 andAw=0.001 else. The real-time
eter setpy(0.3)=[0.452),7+0.1,0.64(10) yields the best representation of the spin-correlation function Tat0 is

: ; PR i in Fig. 13a).
fits from Eq.(31) as shown by the full lines in Figs. @@, 9Ve€N N
11(b), and 1@b). The overall agreement is satisfactory, for In order to adapt Eq31) to the gapped spectrum we have

small frequencies the numerical data suggest a slightly aff© include the value of the gap energy into the functiens

tered functional dependence on the frequency than is reprd? the field-theoretical expression EG-3) as

duced by the field-theoretical fif. : ; ; ; -
06 r 1,=0.5, T=0 1

x=0.45, 0=—0.6

C. Overcritical frustration 0.4

~—

In the case of overcritical frustration the spectrum of the & 0.2 I
spin chains acquires a g&h, .****We discuss here the value

of J,=0.5 for better comparability with results from 0 Y-~
literature3*8:3° For a two-particle(spinon continuum one ‘
expects a density of states that diverges square rootlike bot mmo L=la 1 l >
at the lower as well as at the upper edge. Previous numerical - ijz 1
and variationaf’ results suggest sharp maxima in the density 04 T /,=0.5,T=0.3 1

of states just above the lower ed@g and just below the < | x=0.48, 0=-0.55
upper edgeA of the continuum accompanied by a square & 0.2
rootlike vanishing at both edges. This can be understood ir ™
connection with bound states being present close to the edg 0
of the continuunt®

At T=0 there are more spectral lines present than in the
case of critical and undercritical frustration. Some of them
are signatures of the bound states present in the syStéra.
still apply Egs.(10) and(9) to extract the imaginary part of FIG. 13. Real-time spin-correlation function fds=0.5 at(a)
the spin-correlation function as shown in Fig.(d2 The  T=0 and(b) T=0.3. Broken lines are finite-size data from E8),
fluctuations of the results at the upper band edge are remiull lines are FT of Eq(31).

(v
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w*v(q—m) w0+ Q5 +o*(q—m)? 15 F — pem@mo) @25 4 ' -
Fx(T)HFx 2T - (37 |

3 | @ J,=0.5,T=0.3
At T=0 this yields the predicted divergence at the Iower‘:“< L=10

band edge Iny(7,0) ~[w?—~ Q51" %, cf. Eq.(15), while for & -
finite temperatures Ing(7, ) ~ w.

The full line in Fig. 13a) shows the fit from the FT of Eq.
(31) with x=0.453), Q,=0.25%® A=2.18(10), anda=
—0.6(1). Theslow damping of the oscillations requires the
large value of|«|, there is a small frequency modulation
stemming from the lower boundafy, . The agreement with E
the finite-size datébroken lineg for the finite-size effect free 3
time domaintJ<5 is not nearly as good as for the cases ofx
lower frustration. We conclude that the simple functional
form of Eq. (31 is insufficient even with the included gap
via Eq. (37). The square-root dependence reported in
literature®® must be included. A perturbative examination for
small J, and J, shows® the strong interplay between the ol
spinon continuum and bound states. Since a theoretical ex- ) )
pression for the correct spectral weight distribution is not F'CG: 14. Imaginary part@ and real part(b) of the spin-
known we limit ourselves here to the observation that the™0/rélation function fow,=0.5 atT=0.3. The step function ite)
small damping of the oscillations in Fig. (8 requires a is from [Eq.(9)],th¢ symbols irb) from Eq.(11). The full lines are

. . from Eq.(31) and its KKT.
rather sharp increase in Ig{7,0—A).

The full lines in Figs. 12a) and 12Zb) show the fit of Eq.
(31) and its KKT to the imaginary-part and real-part data

L=12

functions at the continuum edges requires a better theoretical
; - ; 'understanding of the interplay between bound states and the
respectively. They are similar to the forms given by H@S) density of states at the continuum edge as discussed é8rlier.
and(24) wherex=0.5 anda=—0.5. Here the parametexs 10 qyerall agreement is quite satisfactory justifying both
and o have been adapted to roughly match the num_erlca{he fit parameters determined earlier and the validity of the
values of Ree(m,0) and Rey(,3.8). Especially the dis- regularization approach of E¢L0).

crepancies of the fits ab~ A indicate that a more involved
fit function is necessary.

Figure 13b) shows that also at= 0.3 an accurate fifull
line) with the functional form of Eq(31) to the finite-size At intermediate temperatures the interaction in the system
data (broken line$ is not possible. The parameters for the is expected to broaden out all sharp features in the correla-
approximate fit arex=0.48, Qg=0.25,38 A=2.2, anda=
—0.55. Correspondingly, the fits to the imaginary- and the
real-part representations in Figs.(&4and 14b) show incon-
sistencies with the numerical data.

E. Intermediate temperatures

L@

Imy (7,0)

— CFT-fit

. ) ) . 0.1 0L=14-26 inued fracti
D. Comparison with Lanczos and continued fraction results E - continued fraction o)
| h

The Lanczos approach allows for the evaluation of low- cﬁr it '

lying excitations in spin chains of much larger system sizes.3 | 0l=14-26 ]
The magnetic structure factor and thus the imaginary part ole E[=06
the dynamical spin-correlation function can then be deter-& b L=14 ]

mined via a continued fraction approach. We apply @4) 0.1 = (b) 1,=0.2411, T=0 g

to the results from Ref. 5 for chain lengths=14 toL = 26. - : = ——

We have selected only the dominant spectral lines identifiec i 7.=0.5,T=0

as the two-spinon triplet excitations out of the ground state. E (3 ’ E
Figure 15 shows on a log-log scale the fit functions de- i

. . . . . . . —— CFTfi

rived in the previous sectiondull lines) together with the £ 0.1 £ (¢) o L=14_H26 © 1
results for L=14-26 (open circley for next-nearest- i ‘ o

neighbor interactiond,=0 in panel(a), J,=J; in panel(b), 0.1 1

andJ,= 0.5 in panel(c). ForJ,=0 the overall agreement is U]

excellent. ForJ,=J; the discrepancies neas~A can be FIG. 15. Comparison of the fits from field thea(full lines) and

attributed at least in part to finite-size effects near the singuthe results obtained by applying E€LO) to the data for the spin
lar continuum edge. Fal,=0.5 we find qualitative agree- correlation function from Ref. Ssymbol3 on a log-log scale. Pa-
ment with quantitative discrepancies consistent with the disrameters ar&=0 andJ,=0 in panel(a), J,=0.2411 in panelb),
cussion in Sec. Il C. A possible improvement of the fit andJ,=0.5 in panel(c).
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FIG. 16. Spin-correlation function of the unfrustrated Heisen- FIG. 17. Imaginary(a), real(b), and real-timgc) representation
berg chain aff=1. The broken line ina) is the binned imaginary of the susceptibility foT—o. Broken lines in(a) are binned, in Eq.
representation, the broken lines(in) are the real part from Ed6) (6) with €e=0.02 was applied, and ifc) Eqg. (8). The solid line in
with two values ofe for regularization, all fol.=14. Full lines in  (c) is the sinusoidal fit for the example d§=0.

(a) and (b) are double Lorentzian fitgc) shows the real-time rep-
resentation from finite systenfbroken lineg and the asymptotic fit

(full line) with A=2.31(1), I'=0.94X5), andA= —0.675). from the continuum boundary Lorentzians Eq87) and

(25). Indeed, the double Lorentzian fiffull lines in Figs.
tion functions. The onset of this effect is already observed a?‘6(a) and 1€b)] with an add"”? Lorent_2|an contribution
T=0.3 as discussed in the previous sectionsTAt0.7 the _cente_red ab=0 compare well with the binned datq for the
exponent of the upper continuum edge fds=0 is « imaginary part _and the rt_aal—part data from E6) W|th_e_
=3.2(1) so that the singularity is basically completelyzo'03(brOken lines. Th? fit parameters even though S|m|Iar_
damped out. Also, the rather large effective continuum edg&"® NOt such that the fits are appropriately Kramers-Kronig

A =3.45(10) does not quite reproduce the correct oscillator nd Fourier related. The fits must thus be regarded as sophis-
behavior as a function of time icated guides to the eye. Similar results are obtained for

At about the same temperature the scaling dimension in->Q' %imilar line shapes are also found in systems with large

creases tx~1. T*~0.7 thus marks the crossover tempera-SpmS'O

ture from strongly interacting, conformally invariant to non-

interacting fermion and high-energy diffusive behavior. This

is consistent withdtReyx(,%) and drRex(,3.8) being

extremal afT~T* as seen in Figs. 3 and 5. In Figs. 17a), 17(b), and 17c) we show the respective
Figure 16c) shows the real-time representation of theimaginary, real, and real-time representation of the suscepti-

spin-correlation function of the unfrustrated Heisenbergpility for different values of the frustration in the limit of

chain atT=1. The amplitude of the modulations between infinite temperatures. The data of the imaginary gartare

tJ~2 and the onset of finite-size effect for the 14-site chainbinned and the real pai) is given by Eq.(6) with €

attJ~7 cannot be fitted algebraically. The exponential fit=0.02 forL=14. The time representatiotie) from Eq. (8)

from Eq. (28) shown by the full line in Fig. 1&) matches show finite-size effects for>6/J.

excellently. The analogy to th¥Y model suggests that the  For w—0 the slopes of the imaginary part are similar to

long-time asymptotics is captured in this fit. The extractedthe exact result for th&XY model Eq.(29). A small frustra-

value for A=2.31(1) thus marks the effective, thermally tion dependence becomes obvious when plotting the struc-

smeared out upper band edge. For the appropriate interprére factor instead of the correlation functidn.

tation of the parametdr =0.941(5) refer to Sec. IV. The oscillations in time shown in Fig. (& can be
The discrepancy of the real-time fit functigfull line in  fitted very accurately for 18tJ<6 with an exponential

Fig. 160c)] and the correct line shape for small times doesdecay via Eq.(28). The parameter set§A,I',¢] are

not allow for a direct comparison of the results with its Fou-obtained as [2.151),0.3752),—0.891)] for J,=0,

rier transforms. The difference between the fit and the exadi2.31(1),0.3232),—1.131)] for J,=0.2411, and

result is roughly exponential. The fit with E(8) implies  [2.21(1),0.34%2),—0.82(1)] for J,=0.5. The full line

that the real and imaginary part should contain contributionshows the resulting fit function fal,=0.

F. High-temperature limit
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FIG. 18. Extracted values fdg) the sum rulel ;(,0), (b) the

FIG. 19. Extracted values fo@) the scaling dimensiox for
scaling dimensiorx, (c) the upper edge of the continuum, ad X values fa@) ng o !

the exponent at the upper edge of the continuum as a functioT<T*’ (b) the upper-continuum cutoff frequency for=T* (full
Qymbols) and the effective upper continuum edge in the diffusive/
of J; atT=0. weakly interacting-fermion regimépen symbols (c) the cutoff
exponent, andd) the control parametdr determining the decay as
In the classical limit, wheréSZ);_.,—, paramagnetic a function of time in the diffusive/weakly interacting-fermion
behavior is expected fof>J. This leads to an expected regime.
functional dependence of the structure factor of
“mTﬂwScla%(qvw)N“mﬁofl(‘”zzfz)- From Eq.(39) fol-  garded as effective ones as discussed in Sec. Iii C.
lows that limy_..T Rex(m,0)=(S;)7_... that is consistent  (¢) The cutoff frequency of the upper limit of the spinon
with the expected functional dependence in the classicalontinuum is linear as a function of frustration fiy<0.35.
limit. (d) The exponent of the cusp at the upper boundary of the
The XY model is one point of the line of critical fixed spinon continuum is always smaller than the valueaof
points towards that the interaction flows in a bosonized rep=0 5 predicted for the two-spinon contribution fds. The
resentation of the Heisenberg modef” The susceptibility  yajue of « vanishes ford,~0.2 in agreement with the pre-
of the XY model shows a square-root divergencewat2  vijous observatiohthat for that value the spectral properties
and Imyxy(m,0>2)=0. The shape of the spectrum at the of the frustrated Heisenberg chain are similar to the confor-
upper band edge observed for Heisenberg chains is thus @Rally invariant Haldane-Shasf*? model.
interaction effect. The shape of Iny(,w~A) indeed re- The prefactory, from Eq. (13) is of order 1 and slightly
sembles that of a Fermi distribution of weakly interacting frystration dependent. The valued,(y,) are:(0,1.31(5),
electrons. We thus interpret the linit- as best described (0.15,1.12(5), (0.2411,1.01(5), and (0.35,0.88(5). For
by weakly interacting spinless fermions. J,=0.5 one has >y,=0.695). Values forJ,=0.45 are
not computed because of the peculiar finite-size effects
shown in Fig. 3.
Figure 19 summarizes the temperature dependence of the
Figure 18 summarizes as a function of the frustrafipat  fit parameters for the experimentally most relevant unfrus-
T=0 the extracted values fdge) the sum rulel ;(#,0), (b)  trated chain withJ,=0.
the scaling dimensionr, (c) the upper edge of the continuum  (a) The scaling variable approaches the value of Xhé
A, and(d) the exponent at the upper edge of the continuunmodel limit at the crossover temperature to the diffusive re-
a. gime T*~0.7. The direct determination of T>T?*) is not
(a) The values ofl; for J,=<0.2411 are within error bars possible but since fof —« the weakly interacting fermion
almost identical that underlines the common features otase is recovered it is expected to lock ikt >T*)=1.
Heisenberg chains with undercritical frustratidrt®31-32 (b) The upper continuum edg&(T<T*) marks a sharp
(b) The parametex shows a stronger infrared divergence cutoff (full symbolg while in the diffusive regime(open
for unfrustrated Heisenberg chains than for those with criti-symbolg it is the effective, thermally smeared out upper con-
cal frustration. Our results with<<0.5 are consistent with tinuum boundary. In the weakly interacting fermion limit it
scaling dimensiox=0.5 and additional logarithmic correc- saturates at\(T—o)=2.151).
tions. The values for overcritical frustration have to be re- (c) The exponent of the upper continuum edgein-

IV. RESULTS
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creases with increasing temperature reflecting the thermalnd a density of states and matrix-element-induced singular-
smearing out of the singularity. Its value®t T* is so large ity near the upper edge of the two-spinon continuum. At the
that the cutoff is barely singular and thus not very well de-frustration value ofl,~0.2 the system is closest to the con-
fined. In the diffusive regimeT>T*) this quantity is unde- formally invariant Haldane-Shastry model.
fined. At T*~0.7 we observe the crossover from the low tem-
(d) I is an effective parameter that controls the continu-perature, conformally invariant regime to a diffusive regime.
ous transition of the system from the diffusive behavior atAll correlations in time then decay exponentially. The diffu-
T* to the weakly interacting fermion limit & — . For J, sive regime connects continuously to the weakly interacting
=0 it saturates al'(T—)=0.375(2) fermion regime forT — .
We give the frustration dependence of the control param-
eters for the lineshapes of the spin-correlation functions at
V. CONCLUSIONS T=0 and their temperature dependence for the experimen-
tally most relevant case af,=0. The temperature depen-
We have compared numerical results from the exact didence of the first moment sum rule of the spin-correlation
agonalization of finite systems with results from conformal-function is accurately determined.
field theory together with implications from the density of
states, the exactly solvab}Y model, and Bethe ansatz so-
lutions for mtegra}ble ;ystems. We use .the different f|n|t_e—S|ze ACKNOWLEDGMENTS
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