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Elementary excitations in the spin-tube and spin-orbit models
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A bond operator representation for thrﬁe% spins is obtained along the same line as the two-spin cases.
With the spin and the chirality freedom expressed by the same bond operators, we studied the elementary
excitations of the spin-tube and the spin-orbit models. For 3-leg spin ladders and general spin ladders with an
odd number of legs and periodic boundary conditions in the rung direction, the spinonlike excitations, which
carry% spin and chirality freedoms, are calculated by a variational ansatz. The magnonlike excitations, which
denote the change of a dimerized bond from spin singlet to spin triplet and/or from chirality triplet to chirality
singlet, or from one kind of chirality triplet to another chirality triplet, with differeatomponent, are also
studied. Bound states of spinonlike excitation pairs exist near the vicinity of momentum zonemxkht&he
bond operators are also applied to other general spin-orbit models with spontaneously dimerized ground states,
and the elementary excitations are studied.
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[. INTRODUCTION to what occurs in the single spiantiferromagnetic chait?
By the DMRG alogrithm Kawano and Takahashi also

One-dimensional and quasi-one-dimensional quantunshowed that there is no transition betweeaX}/J;<3. On
spin systems have been extensively studied in the past yeatbe other hand, partly stimulated by the progress in the ex-
More recently, a combination of experimental and theoreticaperimental study of the the quasi-one-dimensional spin gap
efforts has produced significant advances in the realizatiomaterials NaTi,Sb,O and Na\sOs,'® some other spin-tube
and understanding of the properties of spin laddafstious  models, double chain models with biquadratic interactions
double-chain modets’ with S=% have been studied in re- and spin-orbit models are extensively studied. For example,
lation to Haldane conjectufeHowever, when the number of the SU8) quantum spin tub&? the spin ladder with single-
chains is odd, the case becomes different. In the case of opéon anisotropy and bond alternatibhhave been studied by
boundary conditions in the rung direction, the spin ladder iSBethe ansatz or bosonization technique. As a generalized
massless and effectively equivalent to a spiohain. While  spin-orbit model and a candidate model of,NaSh,O and
for the periodical boundary conditions in the rung direction,NaV,Os, the coupledXXZ chains with biquadratic interac-
the spin-ladders are frustrating in the rung direction andions with a Hamiltonian
show different properties such as spin-gap and exponential
decay correlation functions. Kawano and Takahasbnsid- b - sz
ered such a three-leg moddlis often called spin tube if the H= Z [t 7S S1+S S )+ 355 4]
periodic boundary conditions are applied in the rung direc-
tion) with the next-nearest neighbor interactions included: X[v+a(r 7+ 7 750+ ottt ], 3)

3 o L o was studied by the bosonization technidgtigvith different
H =2 2 (JoSip-Sip+1131Sp-Siv1ptI2Sip St 2p), symmetries between the spin and orbital variables, the spin-
=1p=1 1 orbit models have different properties. The @WUpoint (y
@ =a=J,/2=J,/2, u=v=1J,/4) is Bethe ansatz solvable and
where, periodic boundary condition in the rung direction iscritical with three gapless bosonic modésMany studies
applied,p+3=p, Jg is the intrarung interaction, antj and  focus on this point or near this poitt!®A phase diagram of
J, are the nearest- and next-nearest-neighbor interactioribe SU(2)X SU(2) spin-orbit model {=J,/2,a=J}/2) was
along the chain. In the limit of strong intrarung interaction, it given by Itoi et al*® by the bosonization and DMRG tech-
can can be mapped to a spin-orbital mdd¥ nigue. When the symmetry of the orbital partX¥-like (y
=J,/2,,=0), another phase diagram is given by Pati and
Singh?° At some special points, the spin-orbit model may be
exactly solvablé!~?* Kolezhuk and Mikesk&?? found a
family of spin-ladder models which can be exactly solvable
by the matrix product approach. For the checkboard-dimer
model, they found that the elementary excitation is neither a
magnon nor a spinon, but a pair of propagating triplet or
where S and 7 are the effective spin and chirality, respec- singlet solitons connecting the two spontaneously dimerized
tively. At J,=2J,, the effective Hamiltonian is exactly solv- ground states, belonging to the non-Haldane gap behavior
able and has a spontaneously dimerized ground state, similaredicted by Nersesyan and TsvelikBy a strong-coupling
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expansion and numerical diagonalizations, Cabtal?® A complete bond operator representation, with the remaining
studied the excitations of the spin-tube mod&l with J, S=$% eigenstates included, can also be obtaffiethe re-
=0, they obtained the magnonlike and spinonlike excitatiorstriction that the physical states are either of the doublets
spectra. In this paper, starting from the three-leg spin ladddeads to the constraint

model, we obtain a generalized bond operator representation : : : :

for three spinj spins along the same line to that of two spin u'u+utu+ddi+d fd =1 (6)
case<’28With the spin and the chirality operators expressed
by the same bond operators, the representations are applieg
to the 3-leg spin ladders and then in general, to spin ladder
with any odd number of legs and periodical boundary con- S*=—(u'd,+uld,)
ditions in the rung direction. The spinonlike and magnonlike PR

The total spin of every triangle§=S;+S,+ S;, can be
tained as

elementary excitations are studied by a variational ansatz. S = —(dTu +du ) )
These excitations provide another example of non-Haldane PE TS S

spin-liquid properties. The obtained bond operator represen- 1

tations can also be applied to the general spin-orbit models. SZ=§(U|TU|+U:U,—d|Td|—d:rdr).

I. BOND OPERATOR REPRESENTATION OF THREE

1 For the chirality freedom, definifig
SPIN-3 SPINS

For threeS=1 spins,S;, S, andS;, which form an equi- -L)=0, [-R)=[-L), 7|-L)=[-R),
lateral triangle as a rung of the spin ladder, the ground state _ . ®
with energy— 2J, is fourfold degenerate, composed of two T [-R)=0,
doublets of spirg excitations, corresponding to the right and we can express the chirality operators as
left chirality. The excited states are spinquadruplet with

energy3J,. Since the quadruplet has much higher energy in =ulu+d/d,,
the largel, limit, we can project out the quadruplet in study- 9
ing the zero and low-temperature properties. Just as Sachdev T = urTu| +d,Td, .

and Bhatt’ did in the case of tw®=1% spins, we can intro- _ .
duce four bosonic bond operators to denote the tonhe 7, can be obta|r_1ed_ from the $p) alget_)ra_. The spin
doublets2—11 operators and the chirality operators have similar form. With

Egs.(7) and(9), the original spinsS;, can be expressed Bs
1

|TL>:UIT|0>: \/§(|TTl>+J|TlT>+J_1|lTT)i SSZ%S+_§j2p8+T+_§jpS+T—,
10
g0y = - 1 A N O o
[LL)=d, |0>—E(|lLT>+JIlTi>+J IT11), Sj=387— 5i%8 T - 5iPS
4
1 @ Although Eqgs.(7) and(9) are obtained from the three-leg
ITR)=u,"|0)= ﬁ(HTl)H*lHH)ﬂIlTT), spin ladders, they are general for all spin ladders with any

odd number of legs and periodical boundary conditions in
the rung direction. It is remarked that with the same basis
states, a fermionic SU4) representation, similar to Eqé7)
and (9), was obtained from the group theory anly¥isThe

, concrete representations 8f [Egs. (5) and (10)] may be
where] and| denote the spin states ah@ndRthe leftand  pepfy in studying the frustrated Heisenberg models on

right chirality. |O> is the vacuum state and=exfi(27/3)].  kagonieand triangular lattice®* The obtained representa-
With these definitionsS, with p=1,2,3 can be expressed as {jons can also be used to study the general spin-orbit models
1 > > when we regard the c_hirality freedom as the orbit freedom.
S;= — §(urd|+ufdr)+ §j2purdr+ §jpuerl , I_n the following, we will use the _bor_ld operator representa-
tions to study the elementary excitations of the spin-tube and
spin-orbit models.

1
|¢R>=dr*|0>=E(|m>+r1|m>+1|mu,

Sp - (Sp ) 1
1 1 ) Ill. ELEMENTARY EXCITATIONS OF SPIN-TUBE
Sé=g(u|Tu| +ulu,—d/d,—dld,)+ §j 2p(dd, AND SPIN-ORBIT MODELS

Substituting the bond operator representations in EQs.
and(9) into the effective Hamiltonial?) [or substituting Eq.

1
—ut ZirdTd = ut
U Up) 3 JR(drdi—ur ), (5) into Hamiltonian(1)], we get
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H=2 (Hijeat BHi2), (11)
where, we have sel;=1, J,/J;=8, andH; ;; s with 6=1,2 are

11 4 4
Hi,i+5:2i > §(U|Tid|i+UrTidri)(drHaUn+5+drTi+aUri+5)+ §UITidridIi+5uIi+§+_u:idlidITi+§uri+5+ H.c.

3

1 1
+2i [TZ(UEUH +ufiug—didi—dlid) (Ul gui s+ Ul sUns o= dilf i s—dly 0 )+ §(leridri —ufuy)

T T 1 4 T T T
X(dri+5d|i+5_Uri+5uli+a)+§(drid|i_Uriun)(dn+5dri+5_u|i+5uri+5) . (12
|
At B=13, Kawano and Takahashshowed that the spin tube l)=[1,2][3,4]- - ~[2n—3,2n—2]aJ2rn_1
has two degenerate spontaneously dimerized ground states,
corresponding to the Majumdar-Ghosh pdfrin the single X[2n,2n+1]---[2N,2N+1], (16)

spin4 antiferromagnetic chain. They also showed by the

DMRG technique that there is no transition betweea® wherea denotes any one of the four operatorsupf uy,, di,

. X : ... _andd, . In the calculations we choose operagoasu,. The
<3. Using the bond operator representation, which unifie ! P '

the spin and chirality freedom together, we can easily des_scattenng spinonlike state is

scribe the ground state as N+1

ly= >, ePCn=Dy . (17)
®,=[1,2][3,4]---[2N—1,2N], n=1

(13 I . :
®p=[2,3][4,5] - -[2N—2,2N—1][2N,1], The variational soliton energy is then
where[2i—1,21] denotes a bond with a spin singlet and e(p)= (¥lHI¥) +§(2N+1), (18)
chirality triplet of 7,=0: [2i—1,2]=23(uly_,d/5, (Yly) 8

—diy qUp+ Uy qdiy—diy1Uf)|0)  with [0) the \yhere —5(2N+1) is the zero energy of the

vacuum state. After a direct calculation, we obtain (2N+1)-triangle system.
When n—n’=1, the inner products that appear in Eq.
S S (18) are
(D[H| D)=~ N (Pp|H|Dp)=— 2N (14
n—-n’
whereN is the number of the bond. Especially, @& 3, we <¢n,|¢n>=( - Z) ,

have (19

!

l n—n
_Z) [N+B8+(1-28)(n—n")].

5 5 —
HI®a)=— ZN[®g),  HIDp)=— ZN|®y). (15 <¢’n"“'¢’n>—< 2

The norm of the wave function is then
The excited state of the spin tube with two spontaneously

dimerized ground states are likely to be domain walls be-

tween the two ground states. For the checkboard-dimer (Plyy= E/ 2Py i)

states’>?’the domain wall is represented by a diagonal spin- n.n

orbit bond and described by the matrix product. In the 15 17

present case, the domain waI_I can be d_escribed py a single =N 17+8cos D + 17+8cos D

bond operator, it carries half-integer spin and chirality de-

grees of freedom. In the following, we will call the domain 30(4 cosp+1)

wall a soliton or spinonlike excitation. Since the spinonlike (17+8 cos D)2’ (20)

excitations or the solitons can only be created in pairs, the _ _ o
excitation spectrum is a two-particle continum. To study theand the spectrum of the spinonlike excitation is
scattering soliton states, we consider the spin tube wih 2

+1 spin triangles and with open boundary conditions along (2. B}, 2 2 . 8tlrcosd
the chain direction. The soliton state at sitecan be de- (P) 8jL 6 * 3’80052p+ 3(1 2’8)17+8 cosdp’
scribed as (22
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FIG. 1. The spinonlike excitation spectra of
three-leg spin ladders @8=3 (full line), B=%
(dashed ling and ,8=% (dot-dashed ling re-
spectively. The excitation gap(7/2) decreases
with decreasing3.

£(p)

pm

When =1, the spinonlike excitation spectrum igp) with
=2+ 1 cosd ande(w/2)=32. When 8 deviates from3,
®, and®,, are no longer the eigenstates of Hamilton{ahn
However, as shown by Kawano and Takahdshie model is
still in the spontaneously dimerized phase. Approximately,

the spinonlike excitation and its spectrum can also be de\Nhere,[Zn—l,Zn]s(c) denotes a bond with changes of spin

scribed by Eqs(16), (17), and(18). In Fig. 1, we show the  anqor chirality. The variational energies of the magnonlike
spinonlike excitation spectra ¢f=3, 7 andg. The spin gap  excitations are

at p=m/2 decreases with decreasig Around 3= 3, the
decrease is linear. This behavior is similar to that of the 5
single antiferromagnetic spih-chain®? At g=4, the gap ws)(K) =(e|H|@)sc) T N (29
e(m/2) goes to zero and we cannot give the resultg3at
=0. In the view of perturbation, whef deviates frong, the
ground state is the mixture of segmentsinf and®,,. This
mixture will decrease the energy of the spinonlike excitation . : _ 1,1t Ot +
and make the multi-spinon-like excitation effects becomedlseersmr]rless.T[2n Tl’m]s‘:l_Z(u'Z”*ler” drznfl_u'zn
more significant. Cabraetal?® gave a spectrum of the . 2”;1d'2“:d'2”;1uf2”){ [2n=1,2]se=(1/
spinonlike excitation for3=0 by extrapolating their exact \/E)(ulgn—lutgn_utan—lquZn) and  [2n—-1.2n]ss=(1/
diagonalization results. Our analytical results nege 3 \/_E)(dIZH*lerr_l_FernjldIZn) denote the bonds with spin
agree well with it. triplet and chirality singlet, the corresponding magnonlike
The continum of the soliton-antisoliton pair is given by €xcitations have energies ef,=1.
[2n—1,20]c1= (1V2) Uz 1d{on = dl5n_1u5,) and[2n
+8(k—<1) (22~ L2eo=(WN2)(Urzn 10izn—dizn 1Urz), TeprEsent the
2 ) bond with spin singlet and chirality triplets with,= +1.

. Thei i =1.

where, k and g are the total and relative momentum. The ([a|2rne_nirg¥]|56c:1aT al with a=u . u.. di and d
lowest boundary of the continum can be obtained by makin%zn_1 2n’] ioillﬁ)_(tﬁn i I uir’) land [2rn
w(k,q) minimal with respect tog. At 8=3, w(k)=% ' ese v tens1Ei2n o Eizn1t2n

2 ; ; ; ; ; 1121]506_(1/\/5)(ur2n—1dr2n+dr2n—1ur2n)1 represent the
_§|.C05k|' In_ comparison, a smgle_ Sp@annferromggnetlc .bond with spin triplet and chirality triplets with,=*+1
chain at Majumdar and Ghosh point has a two spinon conti=_, . . A z =

5 Their energy iseso=73.

num of e(k) =2 —|cosk|.> sz~ 3, N N N . .
Other possible elementary excitations are magnonlike. 2"~ 1:21]s1=2(Uizn—10ran  dron—1Uian + Urzn—10ian

They describe the changes of the bond: from spin singlet to" dITanl”:an)' [2n—l,2n]32=(1/\/§)(u,12n,1u12n
spin triplet, from one kind of chirality triplet to another one +Uizn—1Ulz)  and  [2n—1,2n]=(1/y2)(d /5y 1d/2,
with different r,, and/or from chirality triplet to chirality ~+di2n_10/>,) are bonds with spin triplet witts,=0, +1
singlet. A traveling magnonlike excitation can be expressednd chirality triplet with7,=0, the corresponding excitation
as energy ise;=3.

N [2n—1,20]cs = 5(Ufon- 1012 + dlon_1Uly = Ufon—1dy
—d/5,_1Ul5,), denotes a bond with spin singlet and chirality
singlet. The energy ig.,=2. For all of the fifteen kinds of

|€Dn>s(c):[1-2][3v4]' ~-[2n— 1-2n]s(c)' --[2N—1,2N],

(24)

In the view of bond change, there are totally 15 kinds

f magnonlike excitations and aB=3 they are all

J’_
w(k,q>=s( 5

1 A
|€0>s(c>:\/—ﬁ n; k@120 ) o) (23)
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FIG. 2. The threshold of the two spinonlike

= 08 4 excitation continum for three-leg spin ladders.
-1 The dashed line and the dot-dashed line are de-
06 | J termined by the magnonlike excitation energies

of esu=1, €,;=1, and e;, =13, indicating the

0a L presence of the possible bound states.

02 | b

0 0.2 0.4 0.6 0.8 1
km
excitations, some of them may have lower energies than the 3); 1 28
two soliton continum boundary in the vicinity of the zone e(p)= (1 tav) 5+ 1—5(4 cosp+1)
centersr/2 indicating the possible presence of bound state of
soliton-antisoliton pair. In Fig. 2, we show the threshold of 8 8+17cosd
the continum of two spinonlike excitation spectra. The + E(l_zﬂ)m : (27)

dashed and dot-dashed lines denote the dispersionless ener-
gies of magnonlike excitations @ =1, e;;=1, andego _ _ o
= % Kawano and Takahasc?ﬁtudied the low energy spectra At B= %, the threshold of the two splnonllke excitation con-
of spin-singlet with7{,,,,=0 and 7{,;,,=1 and spin-triplet tinum is w(k)=(J1/M)(1+ ay)(5—£|cosK)). In Fig. 3,
with 7{,,,=0 and 75, =1 for B=0.5, 0.25, and 0 by we show the spectra of the spinonlike excitations Kér
DMRG, Cabraet al?® studied the spectra fo=0 at the =3, M=5, M=7 and the limit result oM —o. For com-
sectors of2,=0, S,=1 andX,=0, S,=0, by the exact parison, we also show the spinon spectrum of a single spin-
diagonalizations. Compared with these numerical results, i} antiferromagnetic chain. The spectra of the magnonlike
is found that near the momenta k&0 andk= 7, the mag- excitations can also be calculated. These excitation energies
nonlike excitaitons are well consistent with the two particleare e;;=(1+ 3 ay)(J, /M) for the bond of spin triplet and
continum boundary, while near the momentum zone centeghjrality singlet; e.;=(3ay)(J;/M) for the bond of
of k=m/2, the magnonlike excitations are bound states okpin singlet and chirality triplet withr,= +1; esm=(1
two spinonlike excitations, and their energies are largely af-; 2, y(3, /M) for the bond of spin triplet and chirality trip-
fected by the interactions between the spinonlike excitation§et with ,= +1; ;= (1+ ay)(J,/M) for the bond of spin

For those spin ladders with 5 legs, 7 legs, and in generatl

. R o _ 3
M (M is an odd numberegs and periodical boundary con- I\;:pl?t a?]d Eh'rzmﬂ triplet .W'tIhTZ_ % e;?del.cz .(ZCTM)(AH/
ditions in the rung directions, an effective Hamiltonian can h) or the onh of spin sing Zt an 'b(': |rar|]ty Elngdet.f mong
be obtained in the strong intrarung interaction limit: these states, the excitations describing the bond of spin trip-

let and chirality singlet always have the lowest energies, this
excitation and those denoting the bonds of spin singlet/triplet
3, and chirglity triplet with7,=+1, have lower energies than
Heﬁzm 2 S-Siiall+tay(r m+r 7hy)] the contl_num b_oundary near the momentl_Jm zone center of
I k= /2, indicating that there may be possible bound states.
3, As we have_pointed out before,_although the bond opera-
+ " 2 S-Sl ltay(r m+ 7 7o), tor repregentatlon is obtalngd starting from'the three—leg spin
' ladders, it can also be applied to other spin-orbit models. A
(26) more general spin-orbit model with the orbit pa¢i-like
has been studied by Pati and Sirfgtwe rewrite the model
as
where,as=%', a;=10.483,a9=14.005 and in the larg®!
limit, ay~1.76M.°%° For generakyy, , at 3=J,/J;=%, the
effective Hamiltonian has the same ground states to those of
M=3. The spinonlike excitation is still described by Egs.
(16) and(17). After a similar calculations, we get the spectra
of the spinonlike excitations as X(riri i)l (28)

H=Z [3S- S+ 3o(7) 7)1+ 7V 7Y ) +K(S- Sty

174410-5
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FIG. 3. The spinonlike excitation spectra of
3-leg (solid line), 5-leg (dashed ling and 7-leg
(dotted ling spin ladders atﬂ:%. The dot-
dashed line denotes the larlyelimit result with
ay=1.76Ml. For  comparison, &(p)=32
+ 2cos 2, the spinon spectrum of a single spin-
antiferromagnetic chain is also showhbroken
dashed ling

pm

Compared with the effective Hamiltonian of the spin ladderstain a bond operator representation for thi®e spins
with odd number of legs and periodical boundary conditionsalong the same line to that of tw®=3 spins. With the spin

in the rung direction, a nonzero pure orbital pytis added.

and the chirality operators expressed by these bond opera-

Because of this term, there is no exact solution even when agrs, we studied the elementary excitations of the spin-tube
additional next-nearest neighbor il’lteraCtion iS inCIUded. Th%nd Spin_orbit models. For the Spin ladders with 3' and in

phase diagram of the above model has been given by Pajeneral, with any odd number of legs, when periodical

and Singh through DMR&’ and for suitable parameters, the

boundary conditions in the rung direction are imposed and

system is still in a phase with spontaneous dimerizationg,itaple next-nearest-neighbor interactions are included, their

Therefore, with the ground state and the excited states d
scribed by Eqs(13), (16), and(17), respectively, we can also
study the spinonlike excitations by the variational ansatz

The variational ground state energy per bond is 3(Jg
+1J,— £K), and the spinonlike excitation spectrum is

_(3, 13 3K 1 8 8+17cos?d
e(P)=| 737 33 5K | 3T 51778 cos -

IV. SUMMARY

%’round states are spontaneously dimerized with each bound a

spin singlet and chirality triplet. The spinonlike excitations,
which carry3 spin and chirality freedoms are calculated by a
variational ansatz. The magnonlike excitations, which denote
the changes of the bond from spin singlet to spin triplet
and/or from chirality triplet to chirality singlet or from one
kind of triplet to another one with different,, are also stud-

ied. Near the vicinity of the momentum zone centef2,
bound states of paired spinonlike excitations exist. More
general spin-orbit models with spontaneously dimerized
ground states are also studied. It should be pointed out that
the obtained bond operator representations can also be ap-

In summary, starting from the three-leg spin ladders withplied to other systems such as kagolatice and triangular-
periodical boundary conditions in the rung direction, we ob-lattice Heisenberg antiferromagnets.
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