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Nonperturbative real-space renormalization group scheme for the spirk-XXX Heisenberg model
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In this paper we apply an analytical real-space renormalization group formulation which is based on nu-
merical concepts of the density-matrix renormalization group. Within a rigorous mathematical framework we
construct nonperturbative renormalization group transformations for the%s}émx Heisenberg model in the
finite-temperature regime. The developed renormalization group scheme allows for calculating the renormal-
ization group flow behavior in the temperature-dependent coupling constant. The constructed renormalization
group transformations are applied within the ferromagnetic and the antiferromagnetic regime of the Heisenberg
chain. The ferromagnetic fixed point is computed and compared to results derived by other techniques.
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[. INTRODUCTION subsystem called a block, analogous to the Kadanoff block
spin formulation. The auxiliary space describes the quantum
In 1966 L. P. Kadanoff presented arguments which correlations resulting from the different boundary conditions
would allow one to calculate critical exponents without everbetween separated adjacent blocks within the local GRRGT.
working out the partition function explicitly. Later in 1971 If the defined auxiliary space allows for a decomposition of
K. G. Wilsor? transformed Kadanoff's qualitative block spin the quantum system into blocks keeping all possible bound-
explanations into a quantitative formulation in the context ofary conditions the local RGT is callezkact In this work we
critical phenomena which has become known as the Wilsogonstruct gerfectiocal GRRGT based on an auxiliary space
renormalization grougRG) technique. providing an approximate description of the boundary con-
The core physical concept of the RG is the scale invariditions. The local GRRGT is formulated as a composition of
ance at the critical point. As the physical system moves totwo linear maps, thembeddingnap G and thetruncation
wards a phase transition, it becomes increasingly dominate@ap G *. Both maps depend on the choice of the auxiliary
by large-scale fluctuations. At the critical point the correla-space and are constructed according to an imposed physical
tion length, i.e., the length scale of the fluctuations, becomegonstraint, thénvariance relation’ Originally the conserva-
infinite and the system exhibits scale invariance. Within arfion of the free energy or the partition function was used to
application of the RG a RG transformatioRGT) needs to formulate the physical constraifit.
be defined which eliminates nonrelevant degrees of freedom In this work we use the notation of the original wdrk.
of the system. If the system becomes invariant by carryingdlock quantities are indexed by capital letters, corresponding
out successive RG transformations, a RG fixed point igo sites in the blocked chain. The indexing set for the blocks
reached. A statistical system exhibits two trivial fixed points,is denoted asJ. Neighboring blocks are indexed by a se-
belonging to zero and infinite temperature, where the systerguencel, | — 1, -2, ... J whereas independent blocks are
possesses inherent scale invariance according to completedexed by different letterd,J, ... eJ. A block Hilbert
order or complete disorder, respectively. A nontrivial fixedspaceH, contains at minimum two single site Hilbert spaces
point, if present, corresponds to a critical point of the physi-H; andH;_,. Single site Hilbert spaces are indexed by let-
cal system. The behavior of physical quantities at the criticatersi,j,k, . ... If asingle site spac®{; is contained within a
point of the system is described by scaling laws using criticablock Hilbert spaceH, we write H;CH, or iel if it is
exponents. obvious thatl refers to the block Hilbert space. We further
Although RG methods have been successfully applied to ase the abbreviatiofi,i—1,...}C{l,1—1,...} instead of
variety of physical problems, the construction of RGT's ap-H;;—1,.. }CH;®Hy -1y, - - - - Using this notation it is not
plicable to strong-coupling regimes is, apart from a few ex-apparent which single-site space is contained in a particular
ceptions, an unsolved and challenging problem. Examples dilock Hilbert space. If this is important it needs to be pointed
current research are the strong-coupling quantum spiout explicitly.
chains, including the Heisenberg modéfsand nonlinear In the next section we begin by revisiting the classical
partial differential equationé*DE’s).>® Standard approaches case. No quantum correlations occur in the classical analog
like perturbation theory in combination with Fourier spaceof the Heisenberg chain and the concept of an auxiliary space
RG methods cannot be applied. is therefore unnecessary. However, we construct a local RGT
In this paper we explore the critical behavior of the iso-and by direct comparison with the GRRG method we pro-
tropic spins Heisenberg model at finite temperature usingvide the reader with a feel for the abstract mathematical for-
the generalized real-space renormalization gr@BRRG. mulation of the GRRG method. We proceed in Sec. Ill by
The method was introduced in an earlier work as the generalonstructing a perfect local RGT for the sginX X X Heisen-
(real spackRG.” The GRRG requires the definition of an berg model following the concepts in the original wdrka
auxiliary spaceH,, prior to the construction of the desired Sec. IV we discuss analytical results of the flow behavior
local GRRG transformatiofGRRGT), i.e., the RGT for a calculated by the perfect GRRGT. Critical exponents are cal-
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culated from the nontrivial ferromagnetic RG flow behavior Using the definition6) we derive the classical analog of the
for the three-dimensional Heisenberg chain and comparedlobal GRRGT as
with results calculated by other methods. In Sec. V we derive

the flow behavior for the antiferromagnetic regime of the N/2
one-dimensional Heisenberg model. In the final section we E H exXg K(ogi_ 109t 0202 11)]
conclude with some perspectives on the GRRG method. {oj.)ever i
N/4
Il. MIGDAL-KADANOFF RGT :H exd K’ (o, _ 105+ 05i0i1) +4F IN].
I

We consider the one-dimensional Ising model without an 7
external magnetic field and with nearest-neight{diN)

interaction? All thermodynamic quantities can be calculated The GRRG method requires a decomposition of the spin

from the modef's partition function, chain into commuting blocks, which can always be per-

N formed in the classical case. We therefore write the local

leing=2 e~ YtkeDHising with Hlsing=2 Joioiyg, GRRGT as
{0’1} i=1
(1)
> exdK(og_ 105+ 05i02i11)]
where{o;} denotes that the sum should be extended over all o2i=*1
possible assignments af1 to each lattice sitecorrespond- = exg K’ oy 10941+ 4F'IN] ®
I— I

ing to an array of elementary spifis;} placed on the lattice
_sites{i}. In Eq. (1} k_B is Boltzmann’s constant and we are gnd the effective coupling is calculated aK’
interested in the limitN— oo , =(1/2)- In cosh(X) which yields to the trivial RG flow be-
Introducing a temperature-dependent coupling constant payior as it is expected for one-dimensional strongly corre-
lated system$® Relation (8) is the classical analog of an
K= __‘] ®) exactlocal GRRGT since the invariance relatif) can be
kgT’ derived from the local GRRGT.
The previous calculations are a reinterpretation of the
Migdal-Kadanoff transformation for classical spin systems.
N2 The calculation was done by A. A. Migdéf** and reformu-
lemg:{E} H XK (s 105+ 0noaes)]. (3 lated using bond moving techniques by L. P. Kadandff.
7]

we write the partition function in the form

Ill. CONSTRUCTION OF THE LOCAL RGT

Decomposing the sum over all possible configurations into
FOR THE ISOTROPIC HEISENBERG CHAIN

odd and even sites the sum over the even sites is calculated
by successive application of In this section we derive a perfect local RGT for the iso-
tropic spins Heisenberg chain by applying the GRRG

7 -
2 exd K (g 105+ 0205 +1)] method’ To the best knowledge of the author no other con

oo=t1 trollable approximation is currently available to analytically
calculate the critical properties for the quantum spin chain at
= exgK(ogi-1102i11)] finite temperature.
+exg —K(oy 1+ 0. 1)] 4) The Hamiltonian of the model is defined by
for every even site 2 The application of the GRRG method N
requires a physical constraint to construct a local GRRGT HxxszEl (olof Tolol, Tolol,y), 9
=

imposed by arinvariance relation” We define the classical
analog of the invariance relation by keeping the partitio

function unchanged, Mwhich is totally isotropic in the spin components and known

as theX X X spin+ model***>The spin variables™, ¢V, and
' _ g o’ define the Lie algebral(2). In this paper we choose the
Z[Hising( 1= Z Hising I, 1)]- ®) smallest nontrivial representati@®f = (%/2)o by the Pauli
In Eq. (5) f' denotes a change in the ground-state energy omatrices
the energy functiorH ,o(J). By inserting Eqgs(1) and (4)
into Eq. (5) we define the effective functional dependence as . (0 1) y (O —i
o = y g’ =

10

O({o},K',f")
N/4
:H exg K’ (0 105+ 0001 1) +4F'IN].  (6) The partition function for the one-dimensional Heisenberg
i A AT model is defined by

(10
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N
-J Zyxx Onen, (K]
Zxxx:tr{o-j}eXF{_kBT ; (oioistalol  +ofof,y) :

1 N

=Uo, j oddio; ever}eXF{ Kzl T Ojy1

®1y

N
=tr{gj}exp{K2 G- Oivls (11
=1
where we used the vector notation and introduced a :tr{oj N oddlﬂl trever{eXF[KHHJ®1Haux®cﬁ|®H|+1(K)}
temperature-dependent coupling consté&nt —J/KgT. In
Eq. (1) tr,, denotes the trace over all lattice sites in the
i system (K)

_ +
guantum chain. Analogous to the classical case reported in —tr{oj i odctlﬂl GH|®(HaUX).{OHI®(HaUX),
Sec. Il the partition function is used for defining the invari-

ance relation ® oggfg;;‘f;‘@(ﬁaux)l (K} (16)

N/2

N/2

Zxox [0}, K)] containing only local operators for block Hilbert spaces. In
N (16) we identifiedH, = o1+ 05+ 05 011 1O Separate
= j odd o, i ever}eXF{KiZl Ti"0i+1 the dependence on the paramefterThe block decomposi-
tion of the functional dependencin Eq. (16) contains two

N2 ) parts defined as
=g, j 0dg €X f’(K)+K’(K)Zl O2i-1"02i+1
. OEm | (K)=exg KHy, ] (17)
=Zyxx[ O({0o},] odd;,K',f")], (12 a
where we used the factorization property of the tra@e}_}tr and

:Hitro._.
According to the construction of the local GRRGT we

proceed by changing our notation and equip every operator . o
with an abstract auxiliary spatehich is currently not fur- ollowing the nomenclature for the block decomposition in

ther specified. The action of each of the operators on thgqe original _work7. Ignoring th_e_correlation block part(1_8)_
auxiliary space is defined as the identity map until further” Eq. (16) yields a decomposition of the quantum chain into

e : - ) commuting system block operator§l7) analogous to the
specifications are given. The embedding nﬁﬂ?/@ﬁaux and classical situation. This approximation is valid in the high-

. + . . . R . }
the truncation maG,,,, are defined according to the in- temperature limif— o where higher-order terms of the cou-

correlation

OH|®H|+1®(Hau>?|,|+1(K):CH|®H|+1(K) (18)

variance relation pling K, included in the correlation block part, vanish.
The correlation block par{18) is calculated using the
Zyoxx | Onan, (K] Baker-Campbell-Hausdorf formufafor blocks
= + o] o
_ZXXX[G‘H@W{&IUx OH@HaUX(K) GH@Haux] exd K(HH,+ HH|+1)]
=Z ’ ’ K, . l
oL O (K] (13 = expKH )exiKHyy ) Cry o, (K)
The embedding mapBH/®H;ux together with the truncation K2
map Gy, define the GRRGT. By choosing with Cyy o, ,(K)= eX[{?[HﬁlaHHHJ—’_ e

Relation (16) is an example for aproduct block
decompositiod The separated correlation block part
(14  Cyen,,,(K) of the functional dependence describes the

quantum correlations between adjacent blocks in the decom-
position. To eliminate the correlation block p&t8) in rela-
=ty i even® Lo joda® Ly tion (16) an auxiliary space needs to be defined to describe
. ! A the boundary conditions between adjacent blocks. Dependent
and (15 on the choice of the auxiliary spacetf,,), the action of the
block operators on the auxiliary space is determined.
. To describe the quantum correlations between the block
aux and the neighboring blocks—1 and|+1 the correlation
Analogous to the classical case the local operators are délock operator (18) includes the coupling between the
rived from their global counterparts by decomposing thenearest-neighbo(NN) single-site spins of adjacent blocks.
guantum chain into blocks. Taking the trace over one eveifo include this NN coupling into the description of the
site in each block we arrive at the relation boundary conditions we construct an auxiliary space includ-

with K=(K,f)

aux

N
Onen. (K)= eXF{KiZl 0 01

the embedding and truncation maps are defined as

+
GH®H

aux

G =1
H @HL,~ AH & H
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T superblock ----------------+ ; block Hilbert spaceH, would have been enlarged and the
5 description of the boundary conditions will fail. Since the
: ! single site Hilbert spaces and their copies are formally indis-
: . . . . . : tinguishable the identification as auxiliary sites in the super-
1 <ni-2> [ni-1 ni ni+l| <ni+2> ! . . .

- ; s | block H,® (Hay is accomplished by the embedding and

. + .
N R S truncatllon .operatorsSle?(H;qu and _GH|®(Ha.ux)| as illus-

FIG. 1. A system block enlarged by copies of the two nearest{rated in Fig. 2. On the right-hand side of Fig. 2 the system
neighbor sites. The additional sites represent the auxiliary spac®lOCK is visualized as the effective Hilbert spalkie and the
and all single-site Hilbert spaces together define the superblock. l1ghtly Sha.ded point denotes an even site which has been

truncated in the GRRGT.

ing the NN spin sites of the block Hilbert space by choosing After the necessary definitions within the GRRG ap-
copies of the NN sites of the system block as visualized ifProach have been performed the local RGT is given by the
Fig. 1. commuting diagrarh

According to the nomenclature in the original wbnke

call the constructed space shown in Fig. uperblock To , Gy
distinguish between the original system block sites and the Hy ———  H®(Hawr
copies of the NN sites in the superblock we mark the site (20)
indices of the copies with bracketg ).” Using the con- OHI'(K’)i J/OHI®(Haux)I(K) '
structed auxiliary space together with relatid®) results in
the approximation H; N H® (Hauwd;
G118 ()
Zyxx Onen, (K] .

aux

Due to the active auxiliary space no auxiliary sites are left
N system after applying the GRRGT. Within a successive application
=~y Od@lﬂl Gyt O 0t (K1 (19 of the GRRGT new copies of the changed NN sites for a
system block need to be generated.
Unlike in the classical case of Sec. Il the block decomposi- We summarize the local operators as
tion in relation(19) does not allow for an exact conservation
of the partition function. Furthermore, according to relation
(19), both auxiliary sites need to be truncated within the
GRRGT and by the choice 6f,,, we define an example for
anactive auxiliary spacé
Here we give two remarks on the foregoing calculation:
The choice of the particular auxiliary space allows for de-
scribing the boundary conditions between the blocks which , . ,
determine the quantum correlations. The auxiliary space con- OH,’(K )= expg K HH,’ +1']
tains copies of the NN sites and neglects the effect of next- . R
nearest neighbor and further higher-order couplings. Second, = exgdK'(ozi-1-02i+1) +1']
we need to ensure that the auxiliary sites are treated as copies I _
of the original sites during the GRRGT. Otherwise only the with ie{1, ... N2} and Gy =1y,

N/2

O 0(1,,),(K) = exd KHy o (3,1
= EXF[K(f;'(zi—z)' Tai—1t Oai_1- 0y

T 05 02411 02141 T4 2) ]

embedding

truncation

FIG. 2. The local embeddin(j;H,®H;ux and truncatior(3;;®ﬁaux procedure within the superblock. The lightly shaded dot is truncated
within the spin decimation of the system block.
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Gy o (ryy), = Mo, i eved ® Lo, i 0ag @, With ie{1,... N}. (21)

By using Eq.(21) and calculating

I];[j OH{®(%éu>)|(K ,) - |];[j {[G;r‘l®(Haux)l]ooitylsée(r;]{aux)l(K)O[GHI’®(HAU>)I]}

= treverll_[:i tr<2i —2),(2i+ 2>eXF[ KH H @ (Hay I] = trevern?ever)tr?ever) Il_[j eXF[ KH H® (Haqu] (22)

we proved that the GRRGT is perfdcin the final equation

of Eq. (22) we have to trace over two copies of the even sites

denoted aslfrand tF. . =a(K)ly 1311+ b(K)oy 1-05:1. (25
The choice of the auxiliary space does not allow for an ’

exact treatment of the quantum correlations during the local, o Appendix we prove that this relation is well defined.

RG procedure. Our approach therefore yields a perfect inl’nsertin ;
; g Egs(23) and(25) into the local GRRGT20) and
stead of an exact GRRGT. Although the product decomp05|é()|\/ing the resulting set of equations yields

tion (16) allows for further improvement in the description of
guantum correlations by increasing the number of copied

neighboring sites it is not possible to construct an exact a(K)=a'(K’,f") and b(K)=b'(K',f"). (26
GRRGT. The definition of an exact GRRGT is possible but

requires a different and more abstract auxiliary space. ReFo solve the coupled Eq$26) the parametera andb need
sults on the exact GRRGT will therefore be reportedto be calculated. Taking the trace over all the odd sites in Eq.
elsewheré?® (25) results in

G;-rtl®(Haux)l(l)Hl ®(Haux)l( K)

IV. GRRG FLOW BEHAVISEGI::A-IE—HE FERROMAGNETIC a(K)= ‘l‘tr{OHl‘g’(Hauxh(K)}' 27

From Eqg. (21) we conclude the diagonalizability of
Oy, 0(1,,), USING & unitary transformatioB =UTHU with
D a diagonal matrix. By identifying {O}=tr{exdD]} we
explicitly calculateb(K) as

To calculate the RG flow behavior of the constructed
GRRGT for the ferromagnetic isotropic spjnHeisenberg
chain we have to solve E@20) for the effective coupling
K'. It is convenient to rewrite the local operators in matrix
form and solve the resulting set of equations. Using (E6)

the matrix representation @, (K’) is given by b(K)=5t{U Ty _1- 05+, UUTOUY
> - _ 1 1~ -
Oy (K')=a'lpi_1541+b" 051 -1- 02141 (23 = t{U" 621 021U XKDy (11, 0, 1}
ici | = tr{U] Hopo@e ) U

and the coefficients are determined as 12 Hy® (Haud) ' VH ©(Hy 1= Hy® (Hay)

a’(K',f")=[costi(K") — sinff(K")Je" X XKD 0 14y, ]} 8
and Whereas the computation of the effective paramedérand

o ) ) ) L g b’ in Eq. (24) results from a reformulation of Eq21) the
b’(K’,f")=[sin(K")costf(K') — cosiK')sintF(K")]e" . cajculation ofa andb involves the truncation procedure of
(24 the GRRGT. The matrix eXBDy (1,1 Used in the cal-

Here we made use of the relation culation ofa and b is a diagonal matrix and the nonzero

) ) elements are the Boltzmann weights
eK' (021702 )+’

=K 010541, gK 0% _10% 1. oK 051051, of KD - _1 E
exfl H|®(Hau)|]_ex keT )

(29

together with a trigonometric  expansion  using

(052105 11)*= 13+ 1,@=Xy,Z, ando*, ¥, ando” as  of the superblockH,® (H,,,), whereE; denotes the corre-
defined in Eq.(10). According to Eq.(21) the functional sponding energy eigenvalue.

dependenc® is invariant under an application of the GR-  The core concepts of the GRRG follow the fundamental
RGT and we define ideas of the density-matrix renormalization grolipMRG)
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0.4 K ture and contains correction terms with increasing relevance
i in the low temperature regime.
s Figure 3 shows a plot of the RG flow for the local RGT
0.3 — (20) using Eq.(21) in the ferromagnetic regime, i.e{>0
v and K'>0. In Fig. 3 we also plotted the RG flow of the
/ original system block with no auxiliary space. This flow be-
k' 0.2 L, havior is equivalent to the one calculated by M. Suzuki
iy et al}’ valid in the high-temperature limit. The different RG
/ flows deviate from each other except in the high-temperature
7z limit, i.e., K—0, where the correlation block pait8) van-
/ ishes. From the curves shown in Fig. 3 we conclude that the

0.1

high-temperature fixed-point regime can be explored without
0 M/ ) defining an auxiliary space describing the quantum correla-
5 0.2 o o6 0.8 1 tions within the block decomposition. However, Fig. 3 also
original coupling k illustrates the necessity of including correlation block terms
for computing the RG flow towards lower temperatures.
According to the observed importance of the correlation
block part by approaching lower temperatures, we like to
'improve the local GRRGT including higher-order correction
terms. The special choice of the auxiliary space does not
allow us to describe quantum correlations beyond the

as explained in the original GRRG wofkRelation(29) de- - : i
fines the density matrix, introduced by R. P. Feynriaaf nearest-neighbor sites of the system block. HowevEer, enlar?;
ing the auxiliary space by including the next-nearest

the superblock. The density matrix contains the information_ = . . .
P . . ; neighbor (NNN) sites results in the construction of an en-
about the “statistical importance” of each eigenstate of

0 at temperaturel. Compared to the numerical larged system block. According to the local embedding and
Hy @ (Haud gl_ . P truncation map$21) the additional single site spaces cannot

DMRG procedur€”#!in which only the ground stat@target e marked as copies within the enlarged superblock.

state is used for the calculation of the flow behavior the |nstead of changing the embedding and truncation maps

GRRG uses all eigenstates weighted by their importance tQnich in turn demands for choosing a different invariance

define the local RGT. Within a finite temperature RG ap-yg|ation (13), we vary the size of the original system

proach we expect that all the eigenstates of the superblogkjock j.e., thescaling or reduction factorn in the GRRGT
will contribute to the RG flow behavior. The conventional yefined as

strategy of using selected eigenvectors for constructing pro-

jection operatorss;; andGyy ¢ (5, ), . Used to project on a number of lattice sites in the original spin chain
subspace of the total Hilbert spatés therefore not suffi- N = umber of lattice sites in the truncated spin chain
cient in a finite-temperature approach. (31)
For an explicit calculation of the RG flow, we have to
solve Eq.(26) for the effective parametét’(K). By means The previous calculations were based on a one site decima-

FIG. 3. The calculated GRRG flow for the superblock in the
ferromagnetic regimésolid curvg. The dashed curve displays a
RG flow using fixed boundary conditions for the system blocks
only valid in the high-temperature limit.

of Eq. (24) we obtain tion procedure equivalent to a local GRRGT with a reduction
factorA=2.

) 1 a(K)+b(K) Figure 4 displays two constructions of a superblock for a

K'(K)= 1 In a(K)—3b(K) (30) system block containing four single-site Hilbert spaces with

a reduction factom=3. In Fig. 4 a superblock is defined
and a similar expression is obtained for the energy shifivith an auxiliary space including copies of the NN spin sites
f’(K). Converting Eq.30) into an explicit function of the of the system block and aenlarged superblockontaining
flow parameteliK requires the computation of the traces in also copies of the NNN spin sites. According to the geometry
Egs. (27) and (28) involving large matrix expressions. The of the system block the NN spin sites and the NNN spin sites
resulting flow equatiorK’ (K) displays a complicated struc- must be truncated within the local GRRGT which is consis-

superblock FIG. 4. A superblock and an
enlarged superblock construction
for a GRRGT with a reduction
factor A=3. The lightly shaded
dots are decimated in the local

GRRGT.

D
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0.35 < /

0.7 - 7

0.3
/ ‘ /
0.25 / / 0.6 A

0 0.25 0.5 0.75 1
original. coupling k

2 2.5 3 3.5 4 45 5
1.25 1.5 original coupling k

FIG. 5. The superblock RG flow and the enlarged superblock FIG. 6. The RG flow of the enlarged superblock GRR@®t-
RG flow in the ferromagnetic regime. The dotted curve shows thded curve in a lower temperature regime compared to the GRRG
flow behavior using the enlarged superblock as compared to thBow behavior of the superblodsolid curve.
usual superblock constructidsolid curveg. The dashed curve dis-
plays a RG flow using fixed boundary conditions for the systemvented by S. R. Whit@ which provided the core concepts
blocks, only valid in the high-temperature limit. for our work! The DMRG algorithm is designed for the
numerical calculation of ground-state properties of the physi-
tent with our definition of the embedding and truncationcal system and is restricted 16=0, i.e., no RG flow behav-
maps for an active auxiliary space. The enlarged superblocir can be examinett?? Increasing the size of the system
contains four original system block sites and four furtherblock in the DMRG method improves the numerical accu-
auxiliary sites. racy, but does not allow for studying the system at finite
We define agoodnessj of the local GRRGT as the ratio temperature. Within a DMRG calculation it is not possible to
of the number of copies of spin sites contained in the auxil-compute thermodynamic quantities and examine a phase
iary space divided by the number of spin sites within thetransition at finite temperature. According to the concepts of
original system block statistical physics a phase transition at finite temperature
occurs as a nontrivial fixed point in the RG flow whereas the
_ number of copies of spin sites in the auxiliary space  high- and low-temperature limits represent trivial fixed-point
- number of spin sites in the system block regimes. The RG flow behavior in a nontrivial fixed-point
(32 regime is characterized by a set of critical exponents defining
the type of the phase transitiéhFrom the GRRG method

If no auxiliary space IS def'”eg=9’ Where_a§_>1 if the ._we calculate the thermal critical exponentepresenting the
auxiliary space contains more copies of spin sites than Or'g'r"nagnetic phase transition usfig

nal spin sites are contained in the system block. A sequence

of improved local GRRGT’s is generated by enlarging the IK’
auxiliary space as visualized for a four site system block in In| ——
Fig. 4. IK | s

(33

In Fig. 5 the RG flow for the superblock and the enlarged r=

superblock structures depicted in Fig. 4 are plotted. Again
the dashed curve denotes the RG flow of the original fouwwhere K* denotes the value of the fixed-point coupling in
site block without any auxiliary space. All different RG flows the RG flow Eq.(30).
plotted in Fig. 5 show the correct high-temperature flow be- Strongly correlated systems do not exhibit a nontrivial
havior by converging to the trivial high-temperature fixed fixed point in one dimensiott Solving the RG flow equa-
point. Apart from small corrections the superblock GRRGTtions plotted in the foregoing figures therefore leads to the
and the enlarged superblock GRRGT display the same flowame trivial flow behavior as in the classical analog exam-
behavior, indicating that the auxiliary space constructed byned in Sec. Il without exhibiting a nontrivial fixed point.
copies of NN sites provides a sufficient description of theNontrivial fixed points occur in guantum spin chains of
guantum correlations in the plotted regime. However, we exhigher dimensions. In 1975 A. A. Migdal proposed a method
pect different flow behavior for both superblock GRRGT's atfor analytical continuation to higher dimensions of RG recur-
lower temperatures. Figure 6 shows the flow behavior of thaion formulas for strong-coupled systems exhibiting global
local GRRGT constructed from the superblock and the ensymmetrie>2% The result of A. A. Migdal, applicable to a
larged superblock displayed in Fig. 4 away from the high-variety of decimation and truncation procedutésyas red-
temperature limit. erived and rigorously analyzed by L. P. Kadanoff by invent-
Here we give a comment on the comparison between thing the Kadanoff bond moving proceddt®oth authors as-
GRRG method and the numerical DMRG procedure in-sumed a model Hamiltonian with NN interactions. Although

In(\) 7’
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TABLE I. The numerical fixed-point values and the corresponding critical exponenfsthe isotropic

PHYSICAL REVIEW B64 174408

quantum spin% Heisenberg model in dimensiah= 3 calculated by different methods.

Method RG flow fixed-poinK*  Critical exponentv  Goodnessy

X =3 reduction and no auxiliary space 0.5221.0x10° %)  0.645(*1.0x10 %) 0

\ =3 reduction superblock 0.648(1.0x10 %)  0.470(=1.0x10 %) 0.5

N =3 reduction enlarged superblock 0.6271.0X10°%)  0.489(+x1.0x10 %) 1.0
A=4 reduction and no auxiliary space 0.783(.0x10°%)  0.595(=1.0x10 %) 0

A =4 reduction superblock 0.854(1.0x10° %)  0.469(+1.0x10™%) 0.4

A =4 reduction enlarged superblock 0.8371.0x10™ 4 0.475(+1.0x 10 %) 0.8
Approximate decimation metho@Ref. 17 0.344 0.714 0

MFRG combined with decimatiofRef. 4

0.312
0.275

0.758
0.450

Mean-field RG(MFRG) (Ref. 4

L. P. Kadanoff has generalized and corrected the results of Aanalytic approximation. The approximation is controlled by a
A. Migdal, the resulting formula for isotropic quantum spin goodness parameter calculated in E8p) yielding consis-
models was exactly the same as the equation proposed by fent results.

A. Migdal given by

K()\L)=)\d_lR)‘[K(L)]. (34) V. ANTIFERROMAGNETL:CHIASﬁTROPIC HEISENBERG
In relation (34) L denotes the lattice constant, i.e., the dis-

tance between two NN spin sites and the functidRlde- In this section we examine the antiferromagnetic regime,

. X : ; i.e., K<0. By using a reduction factotr=2 or A=4 in the
notedsbthi RPG-IE 'g tgeﬁcf udp“:l%‘ Actﬁorldltr}[ig to thne tncr)1ttaitrll0trr]1 local GRRGT the antiferromagnetic part of the RG flow ex-
used by L. . hadano enotes the fatlice consta € hibits an unphysical behavior, i.e., applying the local

decimated spin chain. The calculations presented in th'%RRGT once yields a ferromagnetic couplig=0. The
work include no explicit dependence on a lattice constant situation is different for a system block structure with a re-

and we identifyK"’ =K(AL). We applied the Kadanoff bond duction factorh =3. According to the geometry of the en-

. ; N
mO\d/mlg' prgpedurg :gih?f |sotropxé§t>)(_tspm 2 Hf!nglJfgrgd larged superblock the GRRG flow shows the correct antifer-
model in dimensiond=3 case exhibits a nontrivial fixe romagnetic behavior.

ptomti dV\lle deltgrlgnérg_lq,the r&ontrl\f/_lal f')éet?] pto!nt(;pr all;?i())n- Due to the inherent global symmetry of the isotropic
structed loca S and confirmed that in dimenston quantum spin; Heisenberg model the eigenstates of the

<3 all GRRG flows exhibit only the trivial fixed points model Hamiltonian can be represented by the siompo-
* — * —
K* =0 andK*=c. nent for each lattice spin site. Using this representation the

IntTathﬁ I Wetﬂ"’:\ée summarlz%c_i com_;z_uteld flxed—pomlt Val'ground state for the quantum spjnHeisenberg model is
ues together wi e corresponding critical exponental- represented by an alternating sequencemh upand spin

culated by _equatiofBS) _for dimensiond=3. We app_lied the down zcomponents. Figure 7 visualizes a RG step, i.e., ap-
GRRGT with a reduction factok=3 and\A=4 using the plying the RGT once, using a reduction factor2. The
superblock and the enlarged superblock structure. The calcu-

lated critical exponents vary between 0.47 and 0.49 ordered o, - —

by the goodnes§ of the approximation used for describing

the boundary conditions. For both reduction factors we fur- /\\//\\//\
thermore calculated the critical exponents if no auxiliary nn. o onno, noo oo, o mn
space is provided corresponding to an approximation only * \ + \ + J +
valid in the high-temperature limit. The calculated values of | ;
the critical exponent deviate significantly from the results oo
obtained by using the superblock or the enlarged superblock
structure. In Table | we further compared the results of the
GRRG method with the outcome of other methods from the
literature. The values of the critical exponent for Hpproxi- A _ e
mate decimatiomethod and thenean-field RGnethod de-
viate significantly from each other. Combining both methods i :
resulted in an even higher value for the critical exponent as * ! + + | +
compared to the approximate decimation method, difficult to : :

validate. For strong-coupled quantum spin lattices at finite
temperaturel no exact approach is available in dimension FIG. 7. An application of the RGT for a reduction factor 2.
d=3 to calculate thermodynamic behavior. The GRRGThe nearest-neighbdNN) coupling K<O0 is transformed into an
method with the proposed auxiliary space is a rigorous anéffective NN coupling of ferromagnetic tyg€’'>0.
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n.n.n.n. n.n.n.n. n.n.n.n.

correlations are taken into account which is valid in the high-
temperature limiff—co. In Fig. 9 two further GRRG flows
were plotted using a superblock structure with a reduction
factor \=2 and A=3. The lighted solid curve shows the
expected unphysical behavior for the reduction faeter2

as depicted in Fig. 7. The black solid curve displays the
GRRG flow according to the superblock with a reduction
factor A=3 depicted in Fig. 4. Although the system block,
containing four original spin sites, respects the antiferromag-
netic geometry, the auxiliary space does not. However, in the
high-temperature regime the GRRG flow for the superblock
and the enlarged superblock structure using a reduction fac-
tor A=3 display equal behavior. In the finite-temperature
regime ground-state properties become increasingly impor-
FIG. 8. An application of the RGT for a reduction facto=3.  tant and the auxiliary space for the superblock with a reduc-

The antiferromagnetic nearest-neigho®N) coupling is trans-  tion factorA =3 does not provide the correct antiferromag-
formed into an effective NN coupling of antiferromagnetic type netic boundary conditions.
K’<0.

original NN coupling of antiferromagnetic type is trans- VI. CONCLUSIONS
formed into a NN coupling of ferromagnetic type according |, this paper we applied the generalized real-space renor-

to the structure of the system blogk. By using a reductionyajization group(GRRG method to the isotropic spif-
factor A =2 the geometry of the spin lattice does not allow eisenberg model. The analytic method is nonperturbative
for calculating an antiferromagnetic GRRG flow behavior. 5,44 yields an approximate RG flow behavior in the finite-

By choosing a reduction factar=3 the geometry of the  (emperature regime controlled by a quality measure, i.e., the
system block changes. In Fig. 8 we depict a RG step for g50dness parameter.

system block composed of four sites. By applying the RGT" |, sec. 11l we constructed a local GRRG transformation

the original antiferromagnetic NN coupling<0 is trans-  pased on a chosen auxiliary space. The spin site decimation

formed into an effective antiferromagnetic NN couplig \yas formulated in terms of an embedding and truncation
<0. According to the structure of the system block it is map.

possible to construct an entire antiferromagnetic GRRG flow |5 sec. [V we examined the ferromagnetic RG flow be-

using the enlarged superblock structure. _ havior for the superblock and the enlarged superblock struc-
In Fig. 9 the antiferromagnetic GRRG flow using the en-yre ysing different reduction factors for the spin site deci-
larged superblock structure depicted in Fig. 8 is plotted bymation. We explored the RG flow behavior in three
the dotted curve. The dashed curve displays the flow behayimensions using the Kadanoff bond moving procedure in-
ior using a system block containing four spin sites without anyoduced by A. A. Migdal as a method for analytical continu-
aUX”ia.ry space. Although the RGT respects the geometry oftion to higher dimensions in RG recursion formulas. The
an antiferromagnetic quantum spin chain no quantum bloclontrivial finite-temperature fixed point of the different RG
flows was calculated and the related critical exponent was
unphysicdl flow behaviour examined according to the goodness of the auxiliary space
approximation. The critical exponents computed by the
/ GRRG method were compared to other results from the lit-
erature, mostly calculated by numerical techniques without
: 1 _ providing a quality measure of the approximation.
K’ e ' P In Sec. V the antiferromagnetic part of the flow behavior
-1.5 L/ was explored. Only system block structures with an odd re-
’ e s duction factor allowed for a local GRRG transformation re-
_g fe specting the antiferromagnetic geometry of the quantum spin
_ chain. The enlarged superblock GRRG flow for a two site
—— ] decimation in the quantum spin chain exhibited the correct
-2 -1.5 =1 . -0.5 0 physical flow behavior and was proved as a valid approxi-
BELGIERL GORLIRG & mation in the finite-temperature regime. The auxiliary space
FIG. 9. The lighted and the black solid curve display the un-Of the superblock for the two site decimation did not provide
physical GRRG flow behavior using a superblock structure with ah€ correct description of the antiferromagnetic boundary
reduction factoi =2 and\ =3, respectively. The dotted curve de- conditions resulted in an unphysical flow behavior in the
picts the antiferromagnetic GRRG flow behavior for the enlargedOWer temperature regime.
superblock with a reduction factar=3. The dashed curve displays ~ Applications of the GRRG method to other quantum sys-
the flow behavior for the system block with a reduction factor tems such as the Hubbard model will be reported in the fu-
=3 using no auxiliary space. ture, although further development of auxiliary spaces is the
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core concept of the GRRG approach. In this work we APPENDIX
showed that away from the high-temperature fixed-point re-
gime boundary conditions become increasingly important in
the calculation of the RG flow behavior. An exact GRRG
method provides all possible boundary conditions at an arbi-
trary temperature. We therefore have constructed an exact - -
local GRRG transformation for the spinHeisenberg model =x(02i-1,02i+1)

using a passive auxiliary space providing all necessarynde andy are functions of the Pauli spin matrices defined
boundary conditions between adjacent system bldtks. in Eg. (10). Using the rotation symmetry we derive an
Although the GRRG method is designed as an a”a|yti‘équivalent representatic{ra;i’} by
RG approach we are working on a numerical implementation
of a GRRG algorithm applicable to nonlinear partial differ- qo({(;i}):q?({l;"})
ential equations. A detailed description of the mathematical '
formulation and the numerical implementation of the algo-with the rotation magR™" defined as
rithm will be presented in the near future. We compute criti-
cal exponents to determine the universality class of the non-
linear partial differential equation with a reduced number ofg, .,
degrees of freedom.

In order to derive Eq(25) we introduce the abbreviations

trever{eXF[KHH,@@(Haux)J}:trever{(P({(;'i}i )}

(o) =R ().

X(02i-1,0511)= trever{‘P({Ui})} = treverf{‘P({O'i})}
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X(02i 1,091 11) = X(02i -1 T 11)-

Using Eq.(23) we derive Eq(25).

* Email address: andreasd@icr.ac.uk
L. P. Kadanoff, PhysicéLong Island City, N.Y) 2, 263 (1966.
%K. G. Wilson, Phys. Rev. B, 3174(1971); 4, 3184(1971; Phys.  15F. Bloch, Z. Phys61, 206 (1930.
Rev. Lett.28, 548 (1972. 18M. Suzuki, Commun. Math. Phy&1, 183(1976.
3J. Gonzalez, M. A. Martin-Delgado, G. Sierra, and A. H. Vozme- 17, Suzuki and H. Takano, Phys. LeG9A, 426 (1979.
diano, inQuantum Electron Liquids and HighsTSuperconduc- 18z pegenhardunpublished

tivity, Lecture Notes in Physic&Springer, Berlin, 1996 Vol.  19g p FeynmanStatistical Mechanics: A Set of LecturéBen-

, m38. jamin, Reading, MA, 1972
J. R. de Sousa, Phys. Lett. 246 321(1996. 205 R, White, Phys. Rev. B8, 10 345(1993.

°N. D. Goldenfeld, A. McKane, and Q. Hou, J. Stat. PH§8.699 214 pryeifiski and J. M. J. van Leeuwen, Phys. Revd 403

13N. Mermin and H. Wagner, Phys. Rev. LetfZ, 1133(1966.
14W. Heisenberg, Z. Phy€9, 619 (1928.

_ (1998, (1999,
C3;5C£S(tfg§;0' M. Marsili, and L. Pietronero, Phys. Rev. L&. 22, o vinski and R. Dekeyser, Phys. Rev.s, 15 218(1995.

7A. Degenhard, J. Phys. 83, 6173(2000. 23D. J. Amit, Field Theory, the_ Renormalization Group, and Criti-

8. P. Kadanoff, Ann. Phys(\.Y.) 100, 359 (1976. y cal PhenomenaMcGraw-Hill, Nfavx_/ York., 1978.

SN Houghton and L. P. Kadanoff, in Proceedings of 1973 Temple M. le Bellac, Quantum and Statistical Field TheofZlarendon
University Conference on Critical Phenomena and Quantum_ Fress. Oxford, 1991

Field Theory, Department of Physics, Temple Universimy-
published.

10A, A. Migdal, Sov. Phys. JETR2, 413(1976.

A, A. Migdal, Sov. Phys. JETB2, 743(1976.

2. Houghton and L. P. Kadanoff, Phys. Rev.1B, 377 (1975.

SA. A. Migdal, Zh. Eksp. Teor. Fiz69, 810 (1975.

2A. A. Migdal, Zh. Eksp. Teor. Fiz69, 1457 (1975.

21T, W. Burkhardt and J. M. J. van LeeuweReal-Space Renor-
malization Topics in Current Physics Vol. 3Bpringer, Berlin,
1982.

174408-10



