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Nonperturbative real-space renormalization group scheme for the spin-12 XXX Heisenberg model
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In this paper we apply an analytical real-space renormalization group formulation which is based on nu-
merical concepts of the density-matrix renormalization group. Within a rigorous mathematical framework we
construct nonperturbative renormalization group transformations for the spin-1

2 XXX Heisenberg model in the
finite-temperature regime. The developed renormalization group scheme allows for calculating the renormal-
ization group flow behavior in the temperature-dependent coupling constant. The constructed renormalization
group transformations are applied within the ferromagnetic and the antiferromagnetic regime of the Heisenberg
chain. The ferromagnetic fixed point is computed and compared to results derived by other techniques.
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I. INTRODUCTION

In 1966 L. P. Kadanoff1 presented arguments whic
would allow one to calculate critical exponents without ev
working out the partition function explicitly. Later in 197
K. G. Wilson2 transformed Kadanoff’s qualitative block sp
explanations into a quantitative formulation in the context
critical phenomena which has become known as the Wil
renormalization group~RG! technique.

The core physical concept of the RG is the scale inv
ance at the critical point. As the physical system moves
wards a phase transition, it becomes increasingly domin
by large-scale fluctuations. At the critical point the corre
tion length, i.e., the length scale of the fluctuations, becom
infinite and the system exhibits scale invariance. Within
application of the RG a RG transformation~RGT! needs to
be defined which eliminates nonrelevant degrees of freed
of the system. If the system becomes invariant by carry
out successive RG transformations, a RG fixed point
reached. A statistical system exhibits two trivial fixed poin
belonging to zero and infinite temperature, where the sys
possesses inherent scale invariance according to com
order or complete disorder, respectively. A nontrivial fix
point, if present, corresponds to a critical point of the phy
cal system. The behavior of physical quantities at the crit
point of the system is described by scaling laws using crit
exponents.

Although RG methods have been successfully applied
variety of physical problems, the construction of RGT’s a
plicable to strong-coupling regimes is, apart from a few e
ceptions, an unsolved and challenging problem. Example
current research are the strong-coupling quantum s
chains, including the Heisenberg models,3,4 and nonlinear
partial differential equations~PDE’s!.5,6 Standard approache
like perturbation theory in combination with Fourier spa
RG methods cannot be applied.

In this paper we explore the critical behavior of the is
tropic spin-12 Heisenberg model at finite temperature usi
the generalized real-space renormalization group~GRRG!.
The method was introduced in an earlier work as the gen
~real space! RG.7 The GRRG requires the definition of a
auxiliary spaceHaux prior to the construction of the desire
local GRRG transformation~GRRGT!, i.e., the RGT for a
0163-1829/2001/64~17!/174408~10!/$20.00 64 1744
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subsystem called a block, analogous to the Kadanoff bl
spin formulation. The auxiliary space describes the quan
correlations resulting from the different boundary conditio
between separated adjacent blocks within the local GRR
If the defined auxiliary space allows for a decomposition
the quantum system into blocks keeping all possible bou
ary conditions the local RGT is calledexact. In this work we
construct aperfectlocal GRRGT based on an auxiliary spa
providing an approximate description of the boundary co
ditions. The local GRRGT is formulated as a composition
two linear maps, theembeddingmap G and thetruncation
map G1. Both maps depend on the choice of the auxilia
space and are constructed according to an imposed phy
constraint, theinvariance relation.7 Originally the conserva-
tion of the free energy or the partition function was used
formulate the physical constraint.8

In this work we use the notation of the original work7

Block quantities are indexed by capital letters, correspond
to sites in the blocked chain. The indexing set for the bloc
is denoted asI. Neighboring blocks are indexed by a s
quenceI ,I 21,I 22, . . .PI whereas independent blocks a
indexed by different lettersI ,J, . . . PI. A block Hilbert
spaceHI contains at minimum two single site Hilbert spac
Hi andHi 21. Single site Hilbert spaces are indexed by le
tersi , j ,k, . . . . If a single site spaceHi is contained within a
block Hilbert spaceHI we write Hi,HI or i PI if it is
obvious thatI refers to the block Hilbert space. We furthe
use the abbreviation$ i ,i 21, . . .%,$I ,I 21, . . .% instead of
H$ i ,i 21, . . .%,H$I % ^ H$I 21% , . . . . Using this notation it is not
apparent which single-site space is contained in a partic
block Hilbert space. If this is important it needs to be point
out explicitly.

In the next section we begin by revisiting the classic
case. No quantum correlations occur in the classical ana
of the Heisenberg chain and the concept of an auxiliary sp
is therefore unnecessary. However, we construct a local R
and by direct comparison with the GRRG method we p
vide the reader with a feel for the abstract mathematical
mulation of the GRRG method. We proceed in Sec. III
constructing a perfect local RGT for the spin-1

2 XXX Heisen-
berg model following the concepts in the original work.7 In
Sec. IV we discuss analytical results of the flow behav
calculated by the perfect GRRGT. Critical exponents are c
©2001 The American Physical Society08-1
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ANDREAS DEGENHARD PHYSICAL REVIEW B64 174408
culated from the nontrivial ferromagnetic RG flow behav
for the three-dimensional Heisenberg chain and compa
with results calculated by other methods. In Sec. V we de
the flow behavior for the antiferromagnetic regime of t
one-dimensional Heisenberg model. In the final section
conclude with some perspectives on the GRRG method.

II. MIGDAL-KADANOFF RGT

We consider the one-dimensional Ising model without
external magnetic field and with nearest-neighbor~NN!
interaction.9 All thermodynamic quantities can be calculat
from the model’s partition function,

ZIsing5(
$s j %

e21/(kBT)H Ising with H Ising5(
i 51

N

Js is i 11 ,

~1!

where$s i% denotes that the sum should be extended ove
possible assignments of61 to each lattice sitei correspond-
ing to an array of elementary spins$s i% placed on the lattice
sites$ i %. In Eq. ~1! kB is Boltzmann’s constant and we a
interested in the limitN→`.

Introducing a temperature-dependent coupling consta

K5
2J

kBT
, ~2!

we write the partition function in the form

ZIsing5(
$s j %

)
i

N/2

exp@K~s2i 21s2i1s2is2i 11!#. ~3!

Decomposing the sum over all possible configurations i
odd and even sites the sum over the even sites is calcu
by successive application of

(
s2i561

exp@K~s2i 21s2i1s2is2i 11!#

5 exp@K~s2i 211s2i 11!#

1 exp@2K~s2i 211s2i 11!# ~4!

for every even site 2i . The application of the GRRG metho
requires a physical constraint to construct a local GRR
imposed by aninvariance relation.7 We define the classica
analog of the invariance relation by keeping the partit
function unchanged,

Z@H Ising~J!#5Z@H Ising~J8, f 8!#. ~5!

In Eq. ~5! f 8 denotes a change in the ground-state energ
the energy functionH Ising(J). By inserting Eqs.~1! and ~4!
into Eq.~5! we define the effective functional dependence

O~$s j%,K8, f 8!

5)
i

N/4

exp@K8~s2i 21s2i1s2is2i 11!14 f 8/N#. ~6!
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Using the definition~6! we derive the classical analog of th
global GRRGT as

(
$s j , j even%

)
i

N/2

exp@K~s2i 21s2i1s2is2i 11!#

5)
i

N/4

exp@K8~s2i 21s2i1s2is2i 11!14 f 8/N#.

~7!

The GRRG method requires a decomposition of the s
chain into commuting blocks, which can always be p
formed in the classical case. We therefore write the lo
GRRGT as

(
s2i561

exp@K~s2i 21s2i1s2is2i 11!#

5 exp@K8s2i 21s2i 1114 f 8/N# ~8!

and the effective coupling is calculated asK8
5(1/2)• ln cosh(2K) which yields to the trivial RG flow be-
havior as it is expected for one-dimensional strongly cor
lated systems.13 Relation ~8! is the classical analog of a
exact local GRRGT since the invariance relation~5! can be
derived from the local GRRGT.

The previous calculations are a reinterpretation of
Migdal-Kadanoff transformation for classical spin system
The calculation was done by A. A. Migdal10,11 and reformu-
lated using bond moving techniques by L. P. Kadanoff.12,8

III. CONSTRUCTION OF THE LOCAL RGT
FOR THE ISOTROPIC HEISENBERG CHAIN

In this section we derive a perfect local RGT for the is
tropic spin-12 Heisenberg chain by applying the GRR
method.7 To the best knowledge of the author no other co
trollable approximation is currently available to analytica
calculate the critical properties for the quantum spin chain
finite temperature.

The Hamiltonian of the model is defined by

HXXX5J(
i 51

N

~s i
xs i 11

x 1s i
ys i 11

y 1s i
zs i 11

z !, ~9!

which is totally isotropic in the spin components and know
as theXXX spin-12 model.14,15The spin variablessx, sy, and
sz define the Lie algebrasl(2). In this paper we choose th
smallest nontrivial representationSi

a5(\/2)s i
a by the Pauli

matrices

sx5S 0 1

1 0D , sy5S 0 2 i

i 0 D , and sz5S 1 0

0 21D .

~10!

The partition function for the one-dimensional Heisenbe
model is defined by
8-2
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NONPERTURBATIVE REAL-SPACE RENORMALIZATION . . . PHYSICAL REVIEW B64 174408
ZXXX 5tr$s j %
expF 2J

kBT (
i 51

N

~s i
xs i 11

x 1s i
ys i 11

y 1s i
zs i 11

z !G
5tr$s j %

expFK(
i 51

N

sW i•sW i 11G , ~11!

where we used the vector notation and introduced
temperature-dependent coupling constantK52J/kBT. In
Eq. ~11! tr$s j %

denotes the trace over all lattice sites in t
quantum chain. Analogous to the classical case reporte
Sec. II the partition function is used for defining the inva
ance relation

ZXXX @O~$s j%,K !#

5tr$s j , j odd%tr$s j , j even%expFK(
i 51

N

sW i•sW i 11G
ªtr$s j , j odd%expF f 8~K !1K8~K !(

i 51

N/2

sW 2i 21•sW 2i 11G
5ZXXX @O~$s j , j odd%,K8, f 8!#, ~12!

where we used the factorization property of the trace tr$s j %

5) i trs i
.

According to the construction of the local GRRGT w
proceed by changing our notation and equip every oper
with an abstract auxiliary space7 which is currently not fur-
ther specified. The action of each of the operators on
auxiliary space is defined as the identity map until furth
specifications are given. The embedding mapGH8^ H

aux8 and

the truncation mapGH^ Haux

1 are defined according to the in

variance relation

ZXXX @OH^ Haux
~K !#

5ZXXX @GH^ Haux

1 +OH^ Haux
~K !+GH^ Haux

#

5ZXXX @OH8^ H
aux8 ~K 8!#. ~13!

The embedding mapGH8^ H
aux8 together with the truncation

mapGH^ Haux

1 define the GRRGT. By choosing

OH^ Haux
~K !5 expFK(

i 51

N

sW i•sW i 11G with K5~K, f !

~14!

the embedding and truncation maps are defined as

GH^ Haux

1 5tr$s j , j even% ^ 1$s j , j odd% ^ 1Haux

and ~15!

GH8^ H
aux8 51H8^ H

aux8 .

Analogous to the classical case the local operators are
rived from their global counterparts by decomposing
quantum chain into blocks. Taking the trace over one e
site in each block we arrive at the relation
17440
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ZXXX @OH^ Haux
~K !#

5tr$s j , j odd%tr$s j , j even%expFK(
i 51

N

sW i•sW i 11G ^ 1Haux

5tr$s j , j odd%)
I 51

N/2

treven$exp@KHHI
# ^ 1Haux

^ CHI ^ HI 11
~K !%

5tr$s j , j odd%)
I 51

N/2

GHI ^ (Haux) I

1 $O HI ^ (Haux) I

system ~K !

^ O HI ^ HI 11^ (Haux) I ,I 11

correlation ~K !% ~16!

containing only local operators for block Hilbert spaces.
~16! we identifiedHHI

5sW 2i 21•sW 2i1sW 2i•sW 2i 11 to separate
the dependence on the parameterK. The block decomposi-
tion of the functional dependenceO in Eq. ~16! contains two
parts defined as

O HI ^ (Haux) I

system ~K !5 exp@KHHI
# ~17!

and

O HI ^ HI 11^ (Haux) I ,I 11

correlation ~K !5CHI ^ HI 11
~K ! ~18!

following the nomenclature for the block decomposition
the original work.7 Ignoring thecorrelation block part~18!
in Eq. ~16! yields a decomposition of the quantum chain in
commuting system block operators~17! analogous to the
classical situation. This approximation is valid in the hig
temperature limitT→` where higher-order terms of the cou
pling K, included in the correlation block part, vanish.

The correlation block part~18! is calculated using the
Baker-Campbell-Hausdorf formula16 for blocks

exp@K~HHI
1HHI 11

!#

5 exp~KHHI
!exp~KHHI 11

!•CHI ^ HI 11
~K !

with CHI ^ HI 11
~K !5 expS K2

2
@HHI

,HHI 11
#1••• D .

Relation ~16! is an example for a product block
decomposition.7 The separated correlation block pa
CHI ^ HI 11

(K ) of the functional dependence describes t
quantum correlations between adjacent blocks in the dec
position. To eliminate the correlation block part~18! in rela-
tion ~16! an auxiliary space needs to be defined to desc
the boundary conditions between adjacent blocks. Depen
on the choice of the auxiliary space (Haux) I the action of the
block operators on the auxiliary space is determined.

To describe the quantum correlations between the bloI
and the neighboring blocksI 21 and I 11 the correlation
block operator ~18! includes the coupling between th
nearest-neighbor~NN! single-site spins of adjacent block
To include this NN coupling into the description of th
boundary conditions we construct an auxiliary space incl
8-3
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ANDREAS DEGENHARD PHYSICAL REVIEW B64 174408
ing the NN spin sites of the block Hilbert space by choos
copies of the NN sites of the system block as visualized
Fig. 1.

According to the nomenclature in the original work7 we
call the constructed space shown in Fig. 1 asuperblock. To
distinguish between the original system block sites and
copies of the NN sites in the superblock we mark the s
indices of the copies with brackets ‘‘^•&.’’ Using the con-
structed auxiliary space together with relation~16! results in
the approximation

ZXXX @OH^ Haux
~K !#

'tr$s j , j odd%)
I 51

N/2

GHI ^ (Haux) I

1 $O HI ^ (Haux) I

system ~K !%. ~19!

Unlike in the classical case of Sec. II the block decompo
tion in relation~19! does not allow for an exact conservatio
of the partition function. Furthermore, according to relati
~19!, both auxiliary sites need to be truncated within t
GRRGT and by the choice ofHaux we define an example fo
an active auxiliary space.7

Here we give two remarks on the foregoing calculatio
The choice of the particular auxiliary space allows for d
scribing the boundary conditions between the blocks wh
determine the quantum correlations. The auxiliary space c
tains copies of the NN sites and neglects the effect of n
nearest neighbor and further higher-order couplings. Sec
we need to ensure that the auxiliary sites are treated as co
of the original sites during the GRRGT. Otherwise only t

FIG. 1. A system block enlarged by copies of the two neare
neighbor sites. The additional sites represent the auxiliary sp
and all single-site Hilbert spaces together define the superbloc
17440
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block Hilbert spaceHI would have been enlarged and th
description of the boundary conditions will fail. Since th
single site Hilbert spaces and their copies are formally ind
tinguishable the identification as auxiliary sites in the sup
block HI ^ (Haux) I is accomplished by the embedding an
truncation operatorsGH

I8^ (H
aux8 ) I

and GHI ^ (Haux) I

1 as illus-

trated in Fig. 2. On the right-hand side of Fig. 2 the syst
block is visualized as the effective Hilbert spaceH8 and the
lightly shaded point denotes an even site which has b
truncated in the GRRGT.

After the necessary definitions within the GRRG a
proach have been performed the local RGT is given by
commuting diagram7

~20!

Due to the active auxiliary space no auxiliary sites are
after applying the GRRGT. Within a successive applicat
of the GRRGT new copies of the changed NN sites fo
system block need to be generated.

We summarize the local operators as

OHI ^ (Haux) I
~K !5 exp@KHHI ^ (Haux) I

#

5 exp@K~sW ^2i 22&•sW 2i 211sW 2i 21•sW 2i

1sW 2i•sW 2i 111sW 2i 11•sW ^2i 12&!#,

OH
I8
~K 8!5 exp@K8HH

I8
1 f 8#

5 exp@K8~sW 2i 21•sW 2i 11!1 f 8#

with i P$1, . . . ,N/2% and GH
I8
51H

I8
,

t-
e,
ted
FIG. 2. The local embeddingGH8^ H
aux8 and truncationGH^ Haux

1 procedure within the superblock. The lightly shaded dot is trunca

within the spin decimation of the system block.
8-4
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GHI ^ (Haux) I

1 5tr$s i ,i even% ^ 1$s i ,i odd% ^ trHaux
with i P$1, . . . ,N%. ~21!

By using Eq.~21! and calculating

)
I PI

OH
I8^ (H

aux8 ) I
~K 8!5)

I PI
$@GHI ^ (Haux) I

1 #+O HI ^ (Haux) I

system ~K !+@GH
I8^ (H

aux8 ) I
#%

5treven)
I PI

tr^2i 22&,^2i 12&exp@KHHI ^ (Haux) I
#5treventr^even&

a tr^even&
b )

I PI
exp@KHHI ^ (Haux) I

# ~22!
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we proved that the GRRGT is perfect.7 In the final equation
of Eq. ~22! we have to trace over two copies of the even si
denoted as tra and trb.

The choice of the auxiliary space does not allow for
exact treatment of the quantum correlations during the lo
RG procedure. Our approach therefore yields a perfect
stead of an exact GRRGT. Although the product decomp
tion ~16! allows for further improvement in the description
quantum correlations by increasing the number of cop
neighboring sites it is not possible to construct an ex
GRRGT. The definition of an exact GRRGT is possible b
requires a different and more abstract auxiliary space.
sults on the exact GRRGT will therefore be report
elsewhere.18

IV. GRRG FLOW BEHAVIOR IN THE FERROMAGNETIC
REGIME

To calculate the RG flow behavior of the construct
GRRGT for the ferromagnetic isotropic spin-1

2 Heisenberg
chain we have to solve Eq.~20! for the effective coupling
K8. It is convenient to rewrite the local operators in mat
form and solve the resulting set of equations. Using Eq.~10!
the matrix representation ofOH

I8
(K 8) is given by

OH
I8
~K 8!5a812i 21,2i 111b8sW 2i 21•sW 2i 11 ~23!

and the coefficients are determined as

a8~K8, f 8!5@cosh3~K8!2 sinh3~K8!#ef 8

and

b8~K8, f 8!5@sinh~K8!cosh2~K8!2 cosh~K8!sinh2~K8!#ef 8.
~24!

Here we made use of the relation

eK8(sW 2i 21•sW 2i 11)1 f 8

5eK8s2i 21
x s2i 11

x
•eK8s2i 21

y s2i 11
y

•eK8s2i 21
z s2i 11

z
•ef 8

together with a trigonometric expansion usin
(s2i 21

a s2i 11
a )2512i 21,2i 11 ,a5x,y,z, andsx, sy, andsz as

defined in Eq.~10!. According to Eq.~21! the functional
dependenceO is invariant under an application of the GR
RGT and we define
17440
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GHI ^ (Haux) I

1 OHI ^ (Haux) I
~K !

5a~K !12i 21,2i 111b~K !sW 2i 21•sW 2i 11 . ~25!

In the Appendix we prove that this relation is well define
Inserting Eqs.~23! and ~25! into the local GRRGT~20! and
solving the resulting set of equations yields

a~K !5a8~K8, f 8! and b~K !5b8~K8, f 8!. ~26!

To solve the coupled Eqs.~26! the parametersa andb need
to be calculated. Taking the trace over all the odd sites in
~25! results in

a~K !5 1
4 tr$OHI ^ (Haux) I

~K !%. ~27!

From Eq. ~21! we conclude the diagonalizability o
OHI ^ (Haux) I

using a unitary transformationD5U†HU with

D a diagonal matrix. By identifying tr$O%5tr$exp@D#% we
explicitly calculateb(K) as

b~K !5 1
12 tr$U†sW 2i 21•sW 2i 11UU†OU%

5 1
12 tr$U†sW 2i 21•sW 2i 11U exp@KDHI ^ (Haux) I

#%.

5 1
12 tr$UHI ^ (Haux) I

† HH
I8^ (H

aux8 ) I
UHI ^ (Haux) I

3exp@KDHI ^ (Haux) I
#%. ~28!

Whereas the computation of the effective parametersa8 and
b8 in Eq. ~24! results from a reformulation of Eq.~21! the
calculation ofa and b involves the truncation procedure o
the GRRGT. The matrix exp@KDHI ^ (Haux) I

# used in the cal-
culation of a and b is a diagonal matrix and the nonzer
elements are the Boltzmann weights

exp@KDHI ^ (Haux) I
#5 expF 1

kBT
Ej G ~29!

of the superblockHI ^ (Haux) I whereEj denotes the corre
sponding energy eigenvalue.

The core concepts of the GRRG follow the fundamen
ideas of the density-matrix renormalization group~DMRG!
8-5
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ANDREAS DEGENHARD PHYSICAL REVIEW B64 174408
as explained in the original GRRG work.7 Relation~29! de-
fines the density matrix, introduced by R. P. Feynman,19 of
the superblock. The density matrix contains the informat
about the ‘‘statistical importance’’ of each eigenstate
OHI ^ (Haux) I

at temperatureT. Compared to the numerica
DMRG procedure20,21 in which only the ground state~target
state! is used for the calculation of the flow behavior th
GRRG uses all eigenstates weighted by their importanc
define the local RGT. Within a finite temperature RG a
proach we expect that all the eigenstates of the superb
will contribute to the RG flow behavior. The convention
strategy of using selected eigenvectors for constructing
jection operatorsGH

I8
andGHI ^ (Haux) I

1 , used to project on a

subspace of the total Hilbert space,3 is therefore not suffi-
cient in a finite-temperature approach.

For an explicit calculation of the RG flow, we have
solve Eq.~26! for the effective parameterK8(K). By means
of Eq. ~24! we obtain

K8~K !5
1

4
• lnF a~K !1b~K !

a~K !23b~K !G ~30!

and a similar expression is obtained for the energy s
f 8(K). Converting Eq.~30! into an explicit function of the
flow parameterK requires the computation of the traces
Eqs. ~27! and ~28! involving large matrix expressions. Th
resulting flow equationK8(K) displays a complicated struc

FIG. 3. The calculated GRRG flow for the superblock in t
ferromagnetic regime~solid curve!. The dashed curve displays
RG flow using fixed boundary conditions for the system bloc
only valid in the high-temperature limit.
17440
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ture and contains correction terms with increasing releva
in the low temperature regime.

Figure 3 shows a plot of the RG flow for the local RG
~20! using Eq.~21! in the ferromagnetic regime, i.e.,K.0
and K8.0. In Fig. 3 we also plotted the RG flow of th
original system block with no auxiliary space. This flow b
havior is equivalent to the one calculated by M. Suzu
et al.17 valid in the high-temperature limit. The different RG
flows deviate from each other except in the high-tempera
limit, i.e., K→0, where the correlation block part~18! van-
ishes. From the curves shown in Fig. 3 we conclude that
high-temperature fixed-point regime can be explored with
defining an auxiliary space describing the quantum corre
tions within the block decomposition. However, Fig. 3 al
illustrates the necessity of including correlation block ter
for computing the RG flow towards lower temperatures.

According to the observed importance of the correlat
block part by approaching lower temperatures, we like
improve the local GRRGT including higher-order correcti
terms. The special choice of the auxiliary space does
allow us to describe quantum correlations beyond
nearest-neighbor sites of the system block. However, enl
ing the auxiliary space by including the next-neare
neighbor~NNN! sites results in the construction of an e
larged system block. According to the local embedding a
truncation maps~21! the additional single site spaces cann
be marked as copies within the enlarged superblock.

Instead of changing the embedding and truncation m
which in turn demands for choosing a different invarian
relation ~13!, we vary the size of the original system
block, i.e., thescalingor reduction factorl in the GRRGT
defined as

l5
number of lattice sites in the original spin chain

number of lattice sites in the truncated spin chain
.

~31!

The previous calculations were based on a one site dec
tion procedure equivalent to a local GRRGT with a reduct
factor l52.

Figure 4 displays two constructions of a superblock fo
system block containing four single-site Hilbert spaces w
a reduction factorl53. In Fig. 4 a superblock is define
with an auxiliary space including copies of the NN spin sit
of the system block and anenlarged superblockcontaining
also copies of the NNN spin sites. According to the geome
of the system block the NN spin sites and the NNN spin s
must be truncated within the local GRRGT which is cons

,

n

l

FIG. 4. A superblock and an
enlarged superblock constructio
for a GRRGT with a reduction
factor l53. The lightly shaded
dots are decimated in the loca
GRRGT.
8-6
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NONPERTURBATIVE REAL-SPACE RENORMALIZATION . . . PHYSICAL REVIEW B64 174408
tent with our definition of the embedding and truncati
maps for an active auxiliary space. The enlarged superb
contains four original system block sites and four furth
auxiliary sites.

We define agoodnessG of the local GRRGT as the ratio
of the number of copies of spin sites contained in the au
iary space divided by the number of spin sites within t
original system block

G5
number of copies of spin sites in the auxiliary space

number of spin sites in the system block
.

~32!

If no auxiliary space is definedG50, whereasG.1 if the
auxiliary space contains more copies of spin sites than o
nal spin sites are contained in the system block. A seque
of improved local GRRGT’s is generated by enlarging t
auxiliary space as visualized for a four site system block
Fig. 4.

In Fig. 5 the RG flow for the superblock and the enlarg
superblock structures depicted in Fig. 4 are plotted. Ag
the dashed curve denotes the RG flow of the original f
site block without any auxiliary space. All different RG flow
plotted in Fig. 5 show the correct high-temperature flow b
havior by converging to the trivial high-temperature fix
point. Apart from small corrections the superblock GRRG
and the enlarged superblock GRRGT display the same
behavior, indicating that the auxiliary space constructed
copies of NN sites provides a sufficient description of t
quantum correlations in the plotted regime. However, we
pect different flow behavior for both superblock GRRGT’s
lower temperatures. Figure 6 shows the flow behavior of
local GRRGT constructed from the superblock and the
larged superblock displayed in Fig. 4 away from the hig
temperature limit.

Here we give a comment on the comparison between
GRRG method and the numerical DMRG procedure

FIG. 5. The superblock RG flow and the enlarged superbl
RG flow in the ferromagnetic regime. The dotted curve shows
flow behavior using the enlarged superblock as compared to
usual superblock construction~solid curve!. The dashed curve dis
plays a RG flow using fixed boundary conditions for the syst
blocks, only valid in the high-temperature limit.
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vented by S. R. White20 which provided the core concept
for our work.7 The DMRG algorithm is designed for th
numerical calculation of ground-state properties of the phy
cal system and is restricted toT50, i.e., no RG flow behav-
ior can be examined.21,22 Increasing the size of the syste
block in the DMRG method improves the numerical acc
racy, but does not allow for studying the system at fin
temperature. Within a DMRG calculation it is not possible
compute thermodynamic quantities and examine a ph
transition at finite temperature. According to the concepts
statistical physics23 a phase transition at finite temperatu
occurs as a nontrivial fixed point in the RG flow whereas
high- and low-temperature limits represent trivial fixed-po
regimes. The RG flow behavior in a nontrivial fixed-poi
regime is characterized by a set of critical exponents defin
the type of the phase transition.23 From the GRRG method
we calculate the thermal critical exponentn representing the
magnetic phase transition using24

n5

lnS ]K8

]K U
K*

D
ln~l!

, ~33!

whereK* denotes the value of the fixed-point coupling
the RG flow Eq.~30!.

Strongly correlated systems do not exhibit a nontriv
fixed point in one dimension.13 Solving the RG flow equa-
tions plotted in the foregoing figures therefore leads to
same trivial flow behavior as in the classical analog exa
ined in Sec. II without exhibiting a nontrivial fixed poin
Nontrivial fixed points occur in quantum spin chains
higher dimensions. In 1975 A. A. Migdal proposed a meth
for analytical continuation to higher dimensions of RG rec
sion formulas for strong-coupled systems exhibiting glo
symmetries.25,26 The result of A. A. Migdal, applicable to a
variety of decimation and truncation procedures,27 was red-
erived and rigorously analyzed by L. P. Kadanoff by inve
ing the Kadanoff bond moving procedure.8 Both authors as-
sumed a model Hamiltonian with NN interactions. Althoug

k
e
he

FIG. 6. The RG flow of the enlarged superblock GRRGT~dot-
ted curve! in a lower temperature regime compared to the GRR
flow behavior of the superblock~solid curve!.
8-7
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TABLE I. The numerical fixed-point values and the corresponding critical exponentsn of the isotropic
quantum spin-12 Heisenberg model in dimensiond53 calculated by different methods.

Method RG flow fixed-pointK* Critical exponentn GoodnessG
l53 reduction and no auxiliary space 0.522(61.031024) 0.645(61.031024) 0
l53 reduction superblock 0.640(61.031024) 0.470(61.031024) 0.5
l53 reduction enlarged superblock 0.627(61.031024) 0.489(61.031024) 1.0
l54 reduction and no auxiliary space 0.703(61.031024) 0.595(61.031024) 0
l54 reduction superblock 0.851(61.031024) 0.469(61.031024) 0.4
l54 reduction enlarged superblock 0.837(61.031024) 0.475(61.031024) 0.8
Approximate decimation method~Ref. 17! 0.344 0.714 0
MFRG combined with decimation~Ref. 4! 0.312 0.758
Mean-field RG~MFRG! ~Ref. 4! 0.275 0.450
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L. P. Kadanoff has generalized and corrected the results o
A. Migdal, the resulting formula for isotropic quantum sp
models was exactly the same as the equation proposed b
A. Migdal given by

K~lL !5ld21Rl@K~L !#. ~34!

In relation ~34! L denotes the lattice constant, i.e., the d
tance between two NN spin sites and the functionalRl de-
notes the RGT in the couplingK. According to the notation
used by L. P. KadanofflL denotes the lattice constant in th
decimated spin chain. The calculations presented in
work include no explicit dependence on a lattice constanL
and we identifyK85K(lL). We applied the Kadanoff bond
moving procedure to the isotropicXXX spin-12 Heisenberg
model in dimensiond53 case exhibits a nontrivial fixed
point.17 We determined the nontrivial fixed point for all con
structed local GRRGT’s and confirmed that in dimensiond
,3 all GRRG flows exhibit only the trivial fixed point
K* 50 andK* 5`.

In Table I we have summarized computed fixed-point v
ues together with the corresponding critical exponentsn cal-
culated by equation~33! for dimensiond53. We applied the
GRRGT with a reduction factorl53 and l54 using the
superblock and the enlarged superblock structure. The ca
lated critical exponents vary between 0.47 and 0.49 orde
by the goodnessG of the approximation used for describin
the boundary conditions. For both reduction factors we f
thermore calculated the critical exponents if no auxilia
space is provided corresponding to an approximation o
valid in the high-temperature limit. The calculated values
the critical exponent deviate significantly from the resu
obtained by using the superblock or the enlarged superb
structure. In Table I we further compared the results of
GRRG method with the outcome of other methods from
literature. The values of the critical exponent for theapproxi-
mate decimationmethod and themean-field RGmethod de-
viate significantly from each other. Combining both metho
resulted in an even higher value for the critical exponen
compared to the approximate decimation method, difficul
validate. For strong-coupled quantum spin lattices at fin
temperatureT no exact approach is available in dimensi
d53 to calculate thermodynamic behavior. The GRR
method with the proposed auxiliary space is a rigorous
17440
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analytic approximation. The approximation is controlled by
goodness parameter calculated in Eq.~32! yielding consis-
tent results.

V. ANTIFERROMAGNETIC ISOTROPIC HEISENBERG
CHAIN

In this section we examine the antiferromagnetic regim
i.e., K,0. By using a reduction factorl52 or l54 in the
local GRRGT the antiferromagnetic part of the RG flow e
hibits an unphysical behavior, i.e., applying the loc
GRRGT once yields a ferromagnetic couplingK.0. The
situation is different for a system block structure with a r
duction factorl53. According to the geometry of the en
larged superblock the GRRG flow shows the correct anti
romagnetic behavior.

Due to the inherent global symmetry of the isotrop
quantum spin-12 Heisenberg model the eigenstates of t
model Hamiltonian can be represented by the spinz compo-
nent for each lattice spin site. Using this representation
ground state for the quantum spin-1

2 Heisenberg model is
represented by an alternating sequence ofspin upand spin
down zcomponents. Figure 7 visualizes a RG step, i.e.,
plying the RGT once, using a reduction factorl52. The

FIG. 7. An application of the RGT for a reduction factorl52.
The nearest-neighbor~NN! coupling K,0 is transformed into an
effective NN coupling of ferromagnetic typeK8.0.
8-8
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NONPERTURBATIVE REAL-SPACE RENORMALIZATION . . . PHYSICAL REVIEW B64 174408
original NN coupling of antiferromagnetic type is tran
formed into a NN coupling of ferromagnetic type accordi
to the structure of the system block. By using a reduct
factor l52 the geometry of the spin lattice does not allo
for calculating an antiferromagnetic GRRG flow behavior

By choosing a reduction factorl53 the geometry of the
system block changes. In Fig. 8 we depict a RG step fo
system block composed of four sites. By applying the R
the original antiferromagnetic NN couplingK,0 is trans-
formed into an effective antiferromagnetic NN couplingK8
,0. According to the structure of the system block it
possible to construct an entire antiferromagnetic GRRG fl
using the enlarged superblock structure.

In Fig. 9 the antiferromagnetic GRRG flow using the e
larged superblock structure depicted in Fig. 8 is plotted
the dotted curve. The dashed curve displays the flow beh
ior using a system block containing four spin sites without
auxiliary space. Although the RGT respects the geometry
an antiferromagnetic quantum spin chain no quantum bl

FIG. 8. An application of the RGT for a reduction factorl53.
The antiferromagnetic nearest-neighbor~NN! coupling is trans-
formed into an effective NN coupling of antiferromagnetic ty
K8,0.

FIG. 9. The lighted and the black solid curve display the u
physical GRRG flow behavior using a superblock structure wit
reduction factorl52 andl53, respectively. The dotted curve de
picts the antiferromagnetic GRRG flow behavior for the enlarg
superblock with a reduction factorl53. The dashed curve display
the flow behavior for the system block with a reduction factorl
53 using no auxiliary space.
17440
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correlations are taken into account which is valid in the hig
temperature limitT→`. In Fig. 9 two further GRRG flows
were plotted using a superblock structure with a reduct
factor l52 and l53. The lighted solid curve shows th
expected unphysical behavior for the reduction factorl52
as depicted in Fig. 7. The black solid curve displays
GRRG flow according to the superblock with a reducti
factor l53 depicted in Fig. 4. Although the system bloc
containing four original spin sites, respects the antiferrom
netic geometry, the auxiliary space does not. However, in
high-temperature regime the GRRG flow for the superblo
and the enlarged superblock structure using a reduction
tor l53 display equal behavior. In the finite-temperatu
regime ground-state properties become increasingly imp
tant and the auxiliary space for the superblock with a red
tion factor l53 does not provide the correct antiferroma
netic boundary conditions.

VI. CONCLUSIONS

In this paper we applied the generalized real-space re
malization group~GRRG! method to the isotropic spin-1

2

Heisenberg model. The analytic method is nonperturba
and yields an approximate RG flow behavior in the fini
temperature regime controlled by a quality measure, i.e.,
goodness parameter.

In Sec. III we constructed a local GRRG transformati
based on a chosen auxiliary space. The spin site decima
was formulated in terms of an embedding and truncat
map.

In Sec. IV we examined the ferromagnetic RG flow b
havior for the superblock and the enlarged superblock st
ture using different reduction factors for the spin site de
mation. We explored the RG flow behavior in thre
dimensions using the Kadanoff bond moving procedure
troduced by A. A. Migdal as a method for analytical contin
ation to higher dimensions in RG recursion formulas. T
nontrivial finite-temperature fixed point of the different R
flows was calculated and the related critical exponent w
examined according to the goodness of the auxiliary sp
approximation. The critical exponents computed by t
GRRG method were compared to other results from the
erature, mostly calculated by numerical techniques with
providing a quality measure of the approximation.

In Sec. V the antiferromagnetic part of the flow behav
was explored. Only system block structures with an odd
duction factor allowed for a local GRRG transformation r
specting the antiferromagnetic geometry of the quantum s
chain. The enlarged superblock GRRG flow for a two s
decimation in the quantum spin chain exhibited the corr
physical flow behavior and was proved as a valid appro
mation in the finite-temperature regime. The auxiliary spa
of the superblock for the two site decimation did not provi
the correct description of the antiferromagnetic bound
conditions resulted in an unphysical flow behavior in t
lower temperature regime.

Applications of the GRRG method to other quantum s
tems such as the Hubbard model will be reported in the
ture, although further development of auxiliary spaces is

-
a

d
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ANDREAS DEGENHARD PHYSICAL REVIEW B64 174408
core concept of the GRRG approach. In this work w
showed that away from the high-temperature fixed-point
gime boundary conditions become increasingly importan
the calculation of the RG flow behavior. An exact GRR
method provides all possible boundary conditions at an a
trary temperature. We therefore have constructed an e
local GRRG transformation for the spin-1

2 Heisenberg mode
using a passive auxiliary space providing all necess
boundary conditions between adjacent system blocks.18

Although the GRRG method is designed as an anal
RG approach we are working on a numerical implementat
of a GRRG algorithm applicable to nonlinear partial diffe
ential equations. A detailed description of the mathemat
formulation and the numerical implementation of the alg
rithm will be presented in the near future. We compute cr
cal exponents to determine the universality class of the n
linear partial differential equation with a reduced number
degrees of freedom.
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APPENDIX

In order to derive Eq.~25! we introduce the abbreviation

treven$exp@KHHI ^ (Haux) I
#%5treven$w~$sW i% i PI !%

5x~sW 2i 21 ,sW 2i 11!

andw andx are functions of the Pauli spin matrices defin
in Eq. ~10!. Using the rotation symmetry we derive a
equivalent representation$sW i8% by

w~$sW i%!5w~$sW i8%!

with the rotation mapRrot defined as

~s i ! j85Rjk
rot~s i !k .

From

x~sW 2i 21 ,sW 2i 11!5treven$w~$sW i%!%5treven8$w~$sW i%!%

5treven8$w~$sW i8%!%5x~sW 2i 218 ,sW 2i 118 !

~A1!

we deduce

x~sW 2i 21 ,sW 2i 11!5x~sW 2i 21•sW 2i 11!.

Using Eq.~23! we derive Eq.~25!.
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