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Some remarks on pseudogap behavior of nearly antiferromagnetic metals
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In the antiferromagnetically ordered phase of a metal, gaps open on parts of the Fermi surface if the Fermi
volume is sufficiently large. We discuss simple qualitative and heuristic arguments under what conditions
precursor effects, i.e., pseudogaps, are expected ipah@magnetiqpphase of a metal close to an antiferro-
magnetic quantum phase transition. At least for weak interactions, we do not expect the formation of
pseudogaps in a three-dimensional material. According to our arguments, the upper critical dirdgrision
the formation of pseudogapsds=2. However, at the present stage we cannot rule out a higher upper critical
dimension, 2d.<3. We also discuss briefly the role of statistical interactions in pseudogap phases.
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Experiments on metals close to an antiferromagnetienight have less relevance for the high-superconductors
quantum critical pointQCP show clearly that these systems where the undoped antiferromagnet igMott) insulator.
cannot be described by standard Fermi-liquid theory. This is To define the concept of a pseudogap more precisely, we
not very surprising, as at the QCP magnetic fluctuationgirst analyze the ordered phase where in mean-field theory
dominate and electronic quasiparticles scatter from spin flucthe Hamilton of the electrons is of the form
tuations characterized by a diverging correlation length. In-
deed, a theory of quantum critical fluctuations interacting B ot € oA Cok
weakly with Fermi-liquid quasiparticlé$ can explain a sub- HA—EK (Cok:CoktQ) oA € c - @

. . . . a, +Q a,k+Q
stantial part of the experiments, at least if effects like weak
impurity scattering are properly taken into accotifow- A is proportional to the staggered order paraméissumed
ever, a number of experiments seems to contradict the state point in z direction and thek sum extends over a mag-
dard spin-fluctuation scenario, presently the best studied exetic Brillouin zone. Close to the “hot lines” on the Fermi
ample for this is probably CeGu,Au,.*"® It has been surface(“hot points” in two dimension$ with €, = e -q
speculated that this might be due to anomalous two=0Q, a gap openssee Fig. 1 and the band structure &t
dimensional spin fluctuaticror a partial breakdown of the =kp+ 5k is approximately given by
Kondo effect®

In this paper we discuss a different route which can lead en~ L ((Vy+Vy) Sk = J[(Vi—v,) 0k[Z+4A2), (2
to a breakdown of the theory of weakly interacting spin fluc-
tuations, proposed by HertZ The general id€ais the fol- wherev; =v, andv,=v, . are the Fermi velocities close
lowing: close to the QCP, the behavior of the system isg the hot points. The gap is, e.g., visible if one integrates the
dominated by large antiferromagnetic domains of size . LA

spectral functiom,(w) for k vectors along a direction in

slowly fluctuating on the time scalg~ &%r wherez,, is the . .
dynamical critical exponent of the order parameter.éAis j[he (vi,v2) plane perpendicular to, +v, (dash-dotted line

diverging when the QCP is approached, it is suggestive td" Fig- D A(@)=JdkA ;i(@). In mean-field theorA(w)
assume that the electrons will adjust their wave functionglisplays a well-defined gap of sizeA2 This gap is a conse-
adiabatically to the local antiferromagnetic background andjuence of the reduced translational symmetry and is ex-
will therefore show a similar behavior as in the antiferromag-pected to be present in the ordered phase of the antiferromag-
netically ordered phase. If the Fermi surface is sufficientlynet, even in a regime, where the predictions of mean-field
large, the(staggerep order parameter of the antiferromag- theory are quantitatively wrong. Interactions of quasiparti-
netic phase induces gaps in parts of the Fermi surface withles far away fromk, with each other and with the spin
ey~ €+ o~=0, wheree, is the dispersion of the quasiparticles
measured from the Fermi energy a@dthe ordering wave
vector of the antiferromagnet. Will precursors of this effect
show up and induce pseudogaps in the paramagnetic phase
for sufficiently large¢? Pseudogaps play an important role in
the physics of underdoped cuprdt@s and it has been
speculated that they are indeed precursors of gaps in either
superconducting, antiferromagnetic, flux, or striped phases.
In this paper we want to investigate qualitatively on the basis
of simple physical arguments under what generic conditions
such pseudogaps are expected to occur close to an antiferro- FIG. 1. Schematic plot of the Fermi surface. In the ordered
magnetic QCP. We will consider only systems where the orphase of a metallic antiferromagnet gaps open at the boundaries of
dered antiferromagnet is metallic, therefore our discussiofhe magnetic Brillouin zone.
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fluctuations will actually induce some small weight within a) 1
these(renormalizedl gaps but this does not invalidate the ’bf’h + O +Q +Q + Q + ..
mean-field picture'ﬁ(w) vanishes rapidly in the limitw

—0 in the ordered phase as it is obvious from the usual b) 1 % 5 @
Fermi-liquid phase space arguments. From general scaling 7"V + v ""(5\"' "'"é)“ + * o
arguments one expects in tiparamagneticphase close to

the QCP, that aT =0 FIG. 2. (a) Effective action S[®] according to Hertz (Ref. 1) for
- , the model defined in Eq. (4) after the electrons have been integrated
A(w)~ o f(Lw&)) ©)) out. The lines denote free Green’s functions Gy(x—x',7—7') of

. - e . . the electrons, the wiggles are the fields D(x,7). (b) Quadratic part
with f(x— 0)~ const and (x—e) ~x* wherezis a dynami of the effective action ®—(P)+ 5P in the ordered phase (@ de-

cal critical exponentsee below Within mean-field theory notes the order parameter (®)). Combinatorial prefactors are omit-
no precursor of the gaps show up ame-0. However, one 41 4 in (a) and (b).

would expeciwz>0 if the wave function of the quasiparticles

adjusts adiabatically to the local antiferromagnetic order oryetail in the original paper by Herzthe actionS describes
length scales smaller than only the leading terms in an expansion which is derived by
This paper focuses on thE=0 behavior directly at the jntegrating out the Fermions in E¢4). The expansion is
QCP as we are mainly interested in the question of whetheshown schematically in Fig.(8) (due to time-reversal sym-
pseudogaps affect the quantum critical behavior and theremetry, cubic terms vanish in the limib,—0). A simple
fore Eq.(3) with >0 serves as a defintion for a pseudogap.sca"ng analysis with k~1/L, w~1/L%s, P(x,7)
Note that pseudogap physics can be considerably more pra=| 1-(d+z,)/2 \yith Z,,=2 shows that the interaction term
nounced in other regimes, e.g., for nearly magnetic metals, vanishes-1/L9*%» 4, i.e.,U is (dangerouslyirrelevant
with Heisenberg oxy symmetry ind=2 for low, but finitt in dimensionsd>4— z,,=2. Furthermore, higher-order in-
temperatures in a parameter regime, where the system {gractions and frequency and momentum dependencies of the
deep in the ordered phase™t0. This regime has, for ex- effective vertices are even more irrelevant. A pseudogap as it
ample, been investigated in detail by Vlik and co-workers. is defined in Eq(3) would certainly change the critical ex-
For def|n|t.eness, we will Co.n5|der a mopiel of_Ferm|onsponemzop, as it would strongly reduce the damping of the
fx, coupled linearly to a collective bosonic fielel, with the  gpin fluctuations. As the scaling analysis sketched above

following action in imaginary time: gives no indications for such a phenomenonder4—z,,,
it strongly suggests that a strong-coupling effect like a
S= J'qu_ 2 £ (9.4 et k+2 q,*iq, pseudogap should never occur_in dimensidns4 —z,, at
0 ok 7T . T Jq a least as long as th@are interactions are not too strong.
This line of argumentéwhich would be completely valid
igt i close to a classical phase transitipiis not reliable in the
+kqiEaB Pl aicra@apf prtHCl, @ case of a quantum phase transition in a metal. This can be

h i h i : he i seen, for example, by considering theleredphase. An ex-
whereo' are the Pauli matrices an=1/T the inverse tem-  hangjon of the Hertz actiof6) around the mean fiele

perature. Integrating out the collective field induces a spin-:<(b>+5(b suggests that the transverse spin-fluctuations

spin interaction] of the Fermions. For realistic models Onevgassuming Heisenberg ory symmetry are damped. How-

should also add charge-charge interactions, which are, ho ver, the Goldstone theorem guarantees that the spin waves
% not damped in the limib,k—0. The physical origin of
this is essentially the same as in the previous discussion of
pseudogap formation: the wave function of the electrons ad-
just to the slowly varying antiferromagnetic background. A
imple random-phase approximatiéRPA) based upon the
mean-field Hamiltoniari1) correctly describes this effect on
S=5+S (5) a qualitative level. It is therefore instructive to investigate
nt: how the RPA contribution arise in the effective actignb].
1 In Fig. 2b) it is shown that spin-spin interactiond" of
So=— E Oh [r+(k*Q)%+ y|wy| 1Pky.» (6) arbitrarily high ordern are needed to recover the trivial
B Ko n " RPA+ mean-field result.
5 Two scenarios seem to be possible to resolve the apparent
_ d 4 conflict that contributions which are irrelevant by power
S"“_Ufo de dr|@(x, D)% ™ counting are important in the ordered phase. The first possi-
) ) bility is that all the higher interactions are indeiegklevant
where w,=27n/B are bosonic Matsubara frequencies andin the sense that the physics of the formation of undamped
Py, is the Fourier transform oP(x, 7). The term linear in  gpin fluctuations does not influence the quantum critical be-
w, is due to the scattering from quasiparticles which inducehavior on the paramagnetic side of the phase diagram in any
the Landau damping of the spin fluctuations. As discussed iqualitative manner—in technical terms, they are “danger-

ever, not expected to change the physics close to a magne
QCP qualitatively.

Many years ago, Hertzhas proposed to describe the QC
metallic antiferromagnet in the spirit of a Ginzburg-Landau-
Wilson approach in terms of a fluctuating order paramete
d(x,7) with an effective action
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ously irrelevant” and important only in the ordered phase.(d— 2-dimensional stripe in momentum space of widkf

The analysis given below suggests that this situation is actu= A/vg. Below, we will discuss the effect of interactions
ally realized in three dimensions. The second possibility isvhich can change this relation w* ~ (k*)*~ A% where

that pseudogap formation is important and that spin-spin inz.=1 is the mean-field exponent. Heisenberg’s uncertainty
teractions of arbitrarily high order have to be kept whichrelation dictates that the electrons have to see a quasistatic
implies that Eq.(5) does not describe the physics properly antiferromagnetic background for a timef =1/w* on a

and the “true” critical theory cannot be formulated in terms length scale of orde* = 1/k* perpendicular to the direction

of the order parameter alone but has to include Fermioniof the hot lines to develop the pseudogap. What is the effec-
modes. For example, the spin-fluctuation theory of the cutive size of the quasistatic antiferromagnetic ord@r)zf T*
prates as it is worked out by Abanov and Chubukaug- ¢ these length and time scales? The following estimate

gests such a scenario th=2. What can go wrong with the - shoyid at least give an upper bound at the QCP:
simple scaling arguments given above? Belitz and

co-workerd® have recently shown in their analysis of the off 2 o* 5 ® 42
dirty nearly ferromagnetic metal that scaling is indeed not ((®)gr )= o do . <k*d a | d™ %qyIm xqz=q( @)
reliable due to a very simple physical reason: The Hertz ac- *

tion implies that a domain of siz&fluctuates very slowly on ~ (k* )9 Zop™ 2+ (k* ) 2(w* ) (@ FZop~ Dlzop ()
the time scaler,x¢%p with z,,=2. However, in a clean
metal there is a much faster and more efficient way to propa- ~ A(@F20p= ) (Zr I20p +2, (10)

gate informgtion from one side of a fluctuating dF’”?a‘” 0 Fhewhere the anisotropic integration gftakes into account that
other: ballistic electrons can traverse the domain in the tlm(?he momentum of the electromrallel to the hot line can

Lo - . . . o
e e e rueogyan on 1 slky. I Eq. (10 e aSsmed = For
from spin FfluctuationS' see belgwPower counting is not our scaling argument, i.t does not matte_r wh(_ether we use
reliable becauséwo dif%erent dynamical exponentg,, and !m X(a{) or, €.9.x( w)_m Eq.(9), the version given apove
Zg exist simultaneously—while there is only one Iarpe len thIs motivated by the estimate of the quasielastic weight ob-
F > ; y g 9Miained in aT=0 neutron-scattering experiment with limited
scale¢, two rather different time scales exist. The quesnonresolutionw* andk*
which of these scales is relevant for a given process gener- If ‘ . .
. . . . X ; we assume furthermore thad is proportional to
ally requires a detailed analysis and is not at all obvious. Thi off . L
physics should therefore be investigated in a carefu?q)>§*,f* as §uggested by the me.a.n-ﬁek_j ana_l)(%lch
renormalization-group calculation which includes both fer-Should be vahd.abozve the upper crltjlcal /dlmfgﬁ;o@e ob-
mionic and bosonic degrees of freedom. We will not try suchf@in the inequalityA =<const A4 %p~ D %002, This im-
an analysis here but instead use a properly modified scalinglies that, at least in a weak-coupling situation, pseudogaps
argument to investigate the possibility of pseudogap formashould appear only if
tion.
For our scaling analysi¥,we assume that the susceptibil- d+zop=4 (1)
ity at the QCP is of the form suggested by E@). (d=2), which is the central result of this paper. We believe, that it is
accidental that Eq11) coincides with the condition for the
relevance of theb* interaction(6) in the Hertz model as is
®  evident from the fact thaz: enters the inequality(10).
Within the approach of Hertz,,=2 and the critical dimen-
We are mainly interested in the cagg=2, smaller values sion for pseudogap formation is therefatg=2. From our
for zij might be relevant if pseudogap formation takesscaling arguments we cannot say much about what will hap-
place’ larger values have, e.g., been used to fit experifientpen ind=d,=2 (or for d<d.). Based on the observation,
in CeCy_,Au, and have been claim&t®to be relevant in  that the ordered phase is not well described by By. we
d=2. Itis not difficult to generalize the following arguments suspect that the Hertz description of a quantum critical anti-
for susceptibilities with otheq and w dependencie¥ ferromagnet isot valid in d=2—this point of view agrees
The strategy of the following scaling analysis is to esti-with the results of Abanov and Chubukéwho have ana-
mate the effective amplitude of the quasistatic collective fieldyzed the spin-fermion problem id=2 in a certain largeN
seen by the electrons. Obviously the answer will depend oexpansion. In the pseudogap phase we expect by comparison
which time and length scale the electrons probe the backio the ordered phase thatlk,,<2. Therefore it seems to be
ground magnetization. The main idea is that a lower boungbossible that the critical dimension is not two but somewhere
for the relevant time and length scales can be derived fronbetween 2 and 8Abanov and Chubukov claiff, however,
Heisenberg’s uncertainty relation and the effective size of theéhatz,, is larger than 2 ird=2 depending on the number of
gap. The main assumptions of the following arguments aréot spot$. In three dimensions, pseudogap formation will
discussed in detail in the second half of the paper: we assunprobably not invalidate the Hertz approach, at least for weak
that above the upper critical dimension for pseudogap formaeoupling.
tion, the nature of the electrons is not changed completely by The derivation of Eq(11) is far from being rigorous and
the quantum critical fluctuations. According to the mean-based on a number of assumptions. In the following two of
field result (2) a gap of size w*=A opens in a them, which are probably the most important ones, are dis-

Xq:Q(w)"‘ —q2+(iw)2/20p.
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cussed in more detail. First we consider non-Fermi-liquidthe direction of the staggered magnetization than to fluctua-
effects due to the scattering from singular spin fluctuationstions of its size, because a rotation of the spin-quantization
the second aspect concerns strong-coupling effect and thaxis does not cost any energy in the long-wavelength limit
respective role of amplitude and angular fluctuations of th€assuming weak spin-orbit coupling and/or a sufficient high
staggered magnetization. symmetry of the underlying crysjalThis adiabatic adjust-
The scattering from spin fluctuations strongly modifiesment is not included in our estimates. Numerical results of
the quasiparticles close to the hot lines. In leading-order peBartosch and KopietZ: and Millis and Monie? show that
turbation theory, the self-energy of those electrong-ad is  in d=1 amplitude and phase fluctuations have a drastically
given by different effect on pseudogap formation. Nevertheless, our
0 approach to focus on amplitude fluctuations in our previous
2 0, discussion was valid as within the theory of HdEx. (5)],
ImEk(Q)~gS§ 0 de 1M i (@)Im g (0 =), the interactions of spin fluctuations are irrelevant and ampli-
(12)  tude fluctuations exist fod>2. If they are present they
should be the dominating mechanism to destroy pseudogap
. behavior. Below the upper critical dimensions, one expects
fluct-uat|ons(here, we ass.um.e .the abse”g’e of pseudogap fo’Ehat amplitude fluctuations are frozen out and only angular
mation and thereforgs is finite) and g, (0)~1/(w—€c  flyctuations dominate the critical regime. Even in dimensions
+i07) is the Green's function of théfree) fermions. Using  |arger than 2 such a picture might be appropriate in a strong-

wheregs is the vertex of the coupling of electrons to spin

Egs.(8) and(12) we obtain at the QCP coupling regime, e.g., if one considers a Heisenberg model
) with a large antiferromagnetic couplinge coupled to a
ms (Q)~ Q1@ Dy ¢ (0k) 13 metal. Unfortunately, the behavior of electrons in such a situ-
kn+ ok 02z0p)’ ation is much less understood. To investigate the pseudogap

phase in this case, probably the most obvious theoretical
where sk~ K- vy .. q is @ measure for the distance from the rout¢*” to describe the adiabatic adjustment of the wave
hot line andf is some scaling function withf(x—0)  function of the electrons is to rotate the quantization axis of
~const andf (x— o)~ 15972 For Zsp=2 and far away the electrons into thibcal direction of the slowly fluctuating
from the hot lines, Fermi-liquid behavior is recovered. Ourorder parameter. This approach has been used by a number
previous arguments suggest that typical frequencies and m@f authors interested in the pseudogap phase of the
menta for the pseudogap formation ae~A andQ~AZ,  cuprates” ™' A natural model to discuss this type of physics
therefore the typical argument?(*~2F/Zp) of f is small and ~ consists of a nonlineas- model coupled to the spif(r)
the momentum dependence of3ntan be neglected far: I%f;ﬂ(r)aaﬁ f4(r) of Fermionsf. The nonlinearc model
<Zyp and will not induce new effects far-=z,, (this is the S, describes the directional fluctuations of the staggered or-
reason that we useki* ~A in our scaling analysjs From  der parameten in the absence of amplitude fluctuations. The
this we obtainS (Qypica) ~ Q@32 Below three di-  action in terms ofi with n*=1 and the Grassmann fielfi&s
mensions, the quasiparticle picture breaks down close to thgiven by
hot lines and therefore some of our perturbative arguments

might fail. }* Ignoring this possibility, we conclude that typi- S=5+S,+ S, (15
cal energie€, of the (incoherent Fermionic excitations are
. 1+(d=3)/zgp B 8
determined fromE,+cE, P~ve(k—kg) (because Sf:f drz £ (0 + @) o,
we can neglect th& dependence at) and therefore 0 ok

Ze=ma 1L (14 S :E Bdr d(a.n)%+ (vd,n)>?
'd+Zop—3 a g 0 T r '

which is the value which should be used in our previous p

arguments fod+z,,>4, i.e., in the absence of pseudogap ZAJ’ d J d% cog Or)n(r r

formation. An effect which we have not taken into account in Sto o LQnn(r, HIr. 7).

our discussion is that generically, close to the antiferromag- ) . .
netic QCP, a superconducting phase is stabili2dtwever, We have not written down the proper spin Berry phase which
at least ind=3 the ordering temperature of the supercon-is essential to describe the Kondo lattice correctly. For sim-
ductor T, is usually much smaller than the typical scaie  Plicity, we focus in the following on a model with an(®)
below which the quantum critical behavior of the antiferro- Symmetryn=[0,siné(r,t),cos¢(r,t)] and comment below
magnet dominates. Ind=2 the situation might be ©N .the more difficult S|tuat|0n.W|th (€)] s_,ymmetry. To dg—
differenf®?with T.~cT*, wherec is a constant of order 1. scribe the pseudogap, we define new fiatdsith a quanti-

It is important to emphasize that our estim@bof<q)>eff zation axis rotated in the local direction of the order
4,7
and therefore our main resiltl) is based on the assumption parametef;
that amplitudefluctuations of the staggered order parameter X1/
are present and can be described by By.Electrons adjust (CT(r‘T)) =ex+<l>(r T)U_ ( T(r'T)> (16)
their wave functions much better to angular fluctuations of cy(r,7) 2 f(r,7) '
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The new fieldsc, which we call “pseudofermions” in the continuous along the path*“(u) and therefore the pseudo-

following, do not transform under a global rotation aroundfermions, defined by replacing by é in Eq. (16), will vary
the x axis, this implies a separation of spin and charge de'smoothly without sudden sign changes alarft{u). But

a1 -
grees_;ergedoFﬁ k')f }he I(_)r\;]v-engrgy EXCItathO?IS are V‘;e" along some other paths, abrupt sign changes are unavoidable.
escribed by (see below. The advantage of the transfor- This is obvious by considering the line integral

mation is t_hatSf,, now d.escnbes the scattenr_lg.of the F{0(5. d)dr#=2an along someelosedpath in space-time.
pseudofermions from atatic order parameter pointing al- (7Y #7777 . . .
ways in thez direction which can be treated nonperturba- By definition it has to b_e a m_ult|ple ofZ andnis obwously
tively. The pseudofermions are the natural degrees of fred€ NUMber of magnetic vortices of thy model enclosed in
dom in a situation, where the single-particle wave functionth® 100p. From this we conclude that the pseudofermions
adjusts to the(collective magnetic background. If one ne- acquire a phaser, i.e., a minus sign, whenever they circle
glects the residual interactions with gaps open along the around a magnetic vertex: this is nothing but the well-known
hot lines and the action of the pseudofermions is given by Berry phase of a spin forced to move on a circle. A possible
interpretation of this result is, that easly vortex has at-

B tached to its core a magnetic flux with half a flux quantum.
— * *
Se= JO ;,; Cokd:Cok+HA(CT,C) |, 17) The pseudoelectrons are strongly interacting with the fluctu-
P ] o ating magnetic vortices of the antiferromagnet and it is not
whereH,(c’,c) is the mean-field Hamiltoniaft). obvious whether the gap will survive. A likely possibility is

The residual interaction af andc arises from the Berry nat the interactions are so strong that they are leading to
phasef* . f and kinetic energy of the electrons. The semi-¢onfinement at least in some parameter regime as it has been
classical Contributionﬁf, is given by the minimal substitu- Suggested in the context of t@_gauge theory of fluctuat-
tion which corresponds to the gauge transformati®). Us-  ing superconductor¥. One possible way of confinement is
ing (9,¢)(0™)/2)=[(d,n)xn]-&/2, we obtain the binding of the pseudofermions to the magnetic excita-

tions in such a way that the resulting degree of freedom is
= —j dewa dr{[9.+ (VeV)n]xn}-S. (18 nothing but the original electrofy, . In this case, we do not
0 —w expect any pseudogaps. As we are not aware of methods
) ) L which can describe such a confinement transition, it is diffi-
In the notation used here, the Fermi veloaflyis actually a ¢t {5 give an estimate under which conditions a pseudogaps
function g’fk: —1V which acts orc,(r) hiddeninS(r). The iy occur in the model(5). We can only speculate that the
action Sg; describes an interaction of spin currents. formation of pseudogaps might be controlled by the area

As the vertex in Eq(18) vanishes in the limitw,k—0,  gensity of vortices, i.e., the number of vortices per anga
Schrieffef has argued that the effect 8f;, is small close to piercing through a given area in space time at the QCP, to be
the QCP and that therefore pseudogaps and the associat@ginpared to £/vg)?. Bothn, andA are noncritical at the
decoupling of spin fluctuations from the fermions are a getransition. If these are the relevant parameters, then
neric property of an antiferromagnetic QCP. This argumenpseudogap behavior is expected only if the density of vorti-
is, however, misleading. One reason is that amplitude flucces at the QCP is small.
tuations will destroy the pseudogap in many relevant situa- |f the magnet has @) instead ofxy symmetry, one can
tions as discussed above. But even in the absence of ampip|low the same steps which have been discussed before and
tude fluctuations, the pseudofermions interact strongly witthne faces again the problem that statistical interactions are
the magnetic fluctuations by a pure quantum effect which isnduced as soon as pseudofermions are introducéteitu
not included in the semiclassicg}; . Formally, the origin of  and Muramatslihave proposed in the context of a theory of
the effect is that the rotation of a Fermion byrZhanges its  a slightly doped-J model a convenient way to keep track of
sign! If ¢(r,7) in Eq.(16) jumps from 27 to 0, the pseudo-  this statistical interaction with the help of a ERpresenta-
fermion c abruptly flips its sign, giving rise to a huge contri- tion of n using two complex fieldsz; and z, with |21|2
bution to the effective action. There are many +|z,|2=1 andn=z}o,425. In this language the pseudof-
possibilities™'°to keep track of these sign changes in a pathermions interact strongly with the GRelds via a local 1)
integral, one of them is to rewrite the problem as a localgauge theory.Again, confinement seems possible.

Z,-gauge theory where the arbitrary sigril is the origin of In this paper, we have investigated the possibility of
the Z,-symmetry. Here we follow a slightly different route pseudogap behavior close to the QCP of a nearly antiferro-
by replacinge in Eq. (16) by ¢ with magnetic metal. Based on heuristic scaling arguments we

suggest that generically, amplitude fluctuations destroy

pseudogaps in dimensiods>2. In three dimensions we ex-

pect that the Hertz theory is valid at least for not too strong
(19 coupling while ind=2 it is probably modified due to
o . ] . pseudogap formation and the strong interaction of spin fluc-
The line integral is along some path in space-time, e.9.yyations and Fermionic modes. These questions should be
r#(u)=(ur,ur), whereu varies in the interval0,1] and  studied in a renormalization-group treatment of both Fermi-
=0,1,... d denotes the temporal and spatial dll’eEtIEﬁ’lS. onic and bosonic modes. We were not able to derive any
The integem in Eq. (19) is defined in such a way that is  criteria for pseudogap formation in a situation where ampli-

(7

~ )
¢(7,r)=¢(0,0+ f(o ) (d,0)dr#=¢(1,r)+2mn.
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