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Self-generated randomness, defect wandering, and viscous flow in stripe glasses

Harry Westfahl, Jr, Jarg Schmaliart, and Peter G. Wolynés
IDepartment of Physics and Astronomy and Ames Laboratory, lowa State University, Ames, lowa 50011
’Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
(Received 15 February 2001; published 4 October 2001

We show that the competition between interactions on different length scales, as relevant for the formation
of stripes in doped Mott insulators, can cause a glass transition in a system with no explicitly quenched
disorder. We analytically determine a universal criterion for the emergence of an exponentially large number of
metastable configurations that leads to a finite configurational entropy and a landscape dominated viscous flow.
We demonstrate that glassiness is unambiguously tied to a new length scale which characterizes the typical
length over which defects and imperfections in the stripe pattern are allowed to wander over long times.
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I. INTRODUCTION in systems with rather different chemical composition. In
view of this striking universality of the anomalous long-time

The competition of interactions on different length scalesrelaxation in doped Mott insulators, we recently suggested
is one of the mechanisms able to stabilize mesoscale phagieat glassiness in these systemsea$f-generategd.e., it does
separations and create spatial inhomogeneities in a wide vaot rely on the presence of quenched disot&éfThe latter
riety of systems. The most typical situation is a competitionmay, in general, further stabilize a glassy state. This is sup-
between short-ranged forces that favors the formation of @orted by molecular dynamics calculations for charge order-
uniform condensed phase and the long-range forces whidng in transition metal oxides, which found an anomalous
can energetically frustrate this condensation. Classical eXong-time relaxation with a power spectrum similar td 1/
amples are the formation of domains in magnetic multilayemoise!® In addition, recently Markiewiczt al® analyzed
compounds? and mesoscopic structures built by assemblingneutron ~ diffractior?® nuclear guadrupole resonance
polymers in solution or amphiphiles in water-oil mixtur&. (NQR),X  muon spin resonance uSR)?? anelastic
Very often, these systems exhibit a long-time dynamics simirelaxation?! and susceptibility measuremeftspanning al-
lar to the relaxation seen in glasses. Conversely, many praogether more than ten orders of magnitude of frequency, and
posals have been made that the glassy behavior of moleculalso find a “universal” behavior of the activation energies in
liquids might arise from frustration of specific crystallinelike underdoped cuprates. They also find a good description of
orders incompatible with global packing, e.g., icosahedrathe relaxational dynamics using a Vogel-Fulcher law which
order in dense liquids. we predicted based on an entropic droplet argurifent.

The observation of complex orbital and charge patterns in  |n Refs. 16 and 17 we showed that the competition be-
colossal magnetoresistan@MR) manganites or of charge tween interactions on different length scales causes the emer-
stripes in doped nickelates and cuprifesuggests that a gence of an exponentially large number of metastable states
similar competition causes inhomogeneous structures ifwith the system size This is generally considered as a con-
these strongly correlated electron systénihis point of  dition for the anomalous dynamical features of glassiness,
view is supported by the observation of spatiallike aging, memory effects, and ergodicity breaking. It is also
inhomogeneities™ as well as slow, activated glassy the heart of theandom first-order transitiorscenari* for
dynamics;>** as seen in recent NMR experiments. Uponvitrification of molecular liquids, originally motivated by the
cooling, the Cu NMR signal in La ,Sr,CuO,-based sys- similarities between density functional theories of aperiodic
tems disappears “wiped out”). This has been interpreted crystal$® and the mean-field theories for random spin
in terms of an electronic relaxation slower than the Larmorglasses. This scenario is now believed to apply to a much
precession of the nuclear spitfs:* As a result, the NMR  more general class of systems. Our result was obtained using
signal decays so fast that it simply cannot be detected any replica approacf?’ and by solving the resulting many-
more. Thus the “wipe out effect” discussed in Refs. 9-15 ishody problem numerically within the self-consistent screen-
clear evidence for a dramatic increase of the relaxation timeihg approximation. In this paper we develop an analytical
of the electronic system. Similarly, La NMR was used toapproach which enables us to identify the underlying physi-
directly show that there is a glassy-activated dynamics with @al mechanism for glassiness in a uniformly frustrated sys-
maximum of T;*(T), separating relaxational dynamics tem. We furthermore discuss that our results can also be ob-
which is slower than the nuclear Lamor frequency at lowtained within a dynamical approach, where glassiness is
temperatures from faster processes at high€r* The typi-  associated with an unconventional long-time limit of the
cal activation energies of these dynamical processes hawharge correlation function.
been analyzed by Curret al}* who made the surprising In the next section we introduce the model we investigate
observation that they are rather independent of the specifiand summarize the main results of this paper. The details of
details of added impurities, etc. Also, the width of the distri- our approach are presented in Sec. IV, subsequent to our
bution of activation energies is comparable to its mean valusummary of the aspects of the stripe liquid state that will be
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important for our results in Sec. Ill. In Sec. V we conclude
and give a list of further open questions.

II. MODEL AND OVERVIEW

This paper develops an analytical approach to glassines
in a uniformly frustrated system. By uniformly frustrated we
mean that there is a competition of interactions on different:g
length scales and there are no explicitly quenched degrees (5

length scale

freedom, like the ones caused by additional defects or imperg| gyrjpe ~— /7 C(u%?mh (JHP f charges of size &
fections. We study a model with a local tendency towardsZ| Glass >~ and sc reeml‘mg‘ﬁén‘ h r

phase separation, frustrated by a long-range interaction = ‘

which, as we will show, has all necessary features to exhibit | Liquid— I ‘ H T—-~—» %

a glass transition and yet is simple enough to be treated anc - T

lytically. In the context of cuprate systems the model has A T

been proposed by Emery and KivelS@md is defined by the FIG. 1. The competition between different length scales accord-
Hamiltonian ing to the mean-field solution of Eq1).

1 g 5 , . u 4 glass phase discussed in this paper is qualitatively different
H= Ef d X[ Foe(X)*+[Ve(x) "+ 5 ¢(x) from the scenario of Ref. 29. A more detailed discussion of
these aspects is given in Appendix C.
Q o(X)@(X") As the temperature is lowereéincreases monotonically
d dy’ . - .
+ @f d Xf dx o (1) while I, decreases until it becomes of the ordegoAt this
[x=x| point, the Debye screening approximation breaks down and
Ithe system crosses over to a new regime characterized by
spatial charge modulations, called stripes, with perigd
d =27Q Y and coherence leng#f®. These modulations are
V\Barticularly relevant at low temperatures where the correla-
tion length¢ is larger than the interstripe distaniggand, as
we will show, where thestripe glassphase emerges.

Here, ¢(X) characterizes charge degrees of freedom, wit
¢(X)>0 in a hole-rich regiong(x)<0 in a hole-poor re-
gion, ande(x) =0, if the local density equals the average
one. Ifry<0, the system tends to phase separate since
have to guarantee charge neutrakiy)=0. The coupling
constantQ is a measure for the frustration between this

short-range coupling and the long-range Coulomb interac- T_hle chatge co_rrel_anon function ~ G(x,x’) .
tion. For Q=0 andr,<0 we expect at low temperatures _ {e(X) ¢(x")) of the liquid state at low temperatures is

long-range charge ordering. The ordering temperature can qgen chara_\ctenzed by two length scgllgsandlg. After trans-
estimated withirN— approximationfwhere(x is gener- ormation into momentum space, this function obeys the fol-

alized to anN-component field] as T0=22|ro|/uA., with lowing scaling behaviofneglecting effects due to anomalous

momentum cutoffA of the order of an inverse lattice con- powers:
stant. As shown in Ref. 28, within a largéapproach, for all
Q>0, the Coulomb interaction suppresses this ordered state

at finite T. Instead, as revealed by a mean-field analysis of Q(Q)=|2m9(q|m,|m/§), 2)
Eqg. (1) where N—ox, the system undergoes several cross-
overs.

As can be seen in Fig. 1, at high two characteristic with G(q) peaked at the modulation wave vectop,
length scales occur. One is the charge ordering correlatiorr 27/1,, with broadeningé™*. In thermodynamic equilib-
length &, and the othetp~ ¢ Q2 s the effective Debye rium, the model, Eq(1), undergoes a stripe-liquid—stripe-
screening length of charged regions of sizésee Appendix  solid transition at some temperatufg. Within a spherical
C). Here we can already recognize the effect of the compeapproximatioﬁ0 or a largeN approximatiorf® the transition
tition between the short-range ordering interaction and thdés of second order an@.—0 [unless one takes additional
long-range Coulomb interaction: the charge density is homolattice corrections into account which yield a finitg (Ref.
geneous within regions of sizg but behaves like a plasma 28). In the Ising limit (N=1), T.>0 and there are indica-
with screening lengthp> & on larger scales. In Ref. 29 it tions that the transition is driven first order by fluctuatidhs.
was argued that the emergence of the screening lelpgth ~ Our results indicate that this phase transition may not be
supports the formation of compact ordered domains of sizeéeached kinematically, in which case the system undergoes a
|, which then give rise to a slow motion and thus glassinessglass transition instead. In fact, according to our theory,
How such Debye screening should cause such compact dglassiness emerges if the interstripe correlations in the stripe
mains and glassiness has not been made explicit, howevdiquid phase are sufficiently strong, specifically if the ratio
Our replica approach gives no indication for glassiness in thé/l,, is larger than a critical value which we find to be close
temperature regime where the Debye screening theory ape 2. The temperaturd, where this happens, within the
plies. Thus, despite using the same Hamiltonian, the stripargeN approximation of Eq(1), is given by
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= ¢ 100 - .
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e @) 3 5
which decreases for increasing frustration param@ter §E 80 - ' @) -
Note that the criterior¥/l ;=2 for glassiness is likely to % F 2 (Mg
be much more general than the specific formula Taqr, T 60 - .

which depends on details of the model. Also, in a more re-« 4 ‘3«, e

alistic model, the stripe-liquid—stripe-solid transition, is ex- EE 40; 7
pected to be of first order due to an additional termp? in g
Eqg. (1) which exists if particle hole symmetry is broken. g I

Nevertheless, our results do not depend on an actual diver 20|

gence of¢ but solely that it is larger than a few interstripe r

separations. Therefore, our theory also applies if the transi: 0

tion is only moderately first order and the stripe solid does

not occur unlesg>2l,. In this case, the equilibrium tran-

sition is avoided and a glassy state results. _ FIG. 2. TheG and F correlation functions as given by Eq®)
Our theory yields that below, the system establishes an anq(4) for I,,/¢=#/10 andl,, /= 27/5.

exponentially large number of metastable states and long-

time correlations, characterized by the correlation function,q imperfections of the perfect stripe arrangement. There-
N _T1-1p ! H ) . .
Fxx)=Tlim_..((x,) $(x',0)). These long-time cor-  fqre \ has to be interpreted as the length scale over which
relations occur even though no state with actual long-rang@efects of the stripe pattern are allowed to wander after a
order exists. Even more interestingly, long-time correlauons,Ong time. The glassy state can only be supported if
with ]-"(x,x’_)#O are una_mb|guously. tied to a new Ieng_ﬁh <\,; it melts if defects are allowed to wander too far.
scale\, which characterizes the typical length over which  5|53ssiness including a viscous, energy-landscape-
defects and imperfections in the stripe pattern are allowed tgominated long-time relaxation, sets in due to the occurrence

wander over long times. This length can be associated withy exponentially many metastable stafes.<exp@).2* We
the allowed vibrational motions in a potential minima of the finq that the configurational entropy s

complex energy landscape of the system. In analogy with
structural glasses we therefore call it the Lindemann length
of the stripe glass.

Evidently, in the liquid state\ is infinite. In the glassy whereV is the volume of the system. The shorter the modu-

state we find thak jumps discontinuously to a finite value .. : .
. lation length, the larger is the number of possible metastable
Ma=E&(T,)/3 and continuously decreases at lower tempera-

ture. The discontinuous iumn k. unaccompanied by a la- states, which is plausible for simple geometrical reasons.
tent.heat indicates that !the F?rar;sition is ofpthe randyom ﬁrst:rhiS clearly demonstrates that locally the stripe correlations

o4 . . “stay intact in all these configurations. Furthermore, it is the
order type** i.e., has one-step replica symmetry breaking.

Thus. the alassy state is stable onlv if the slow motion ofpacking of stripes with different orientation and the arrange-
' glassy : y A ment of defects that distinguishes the many different meta-
glassy textures is confined to a range smaller tharjusti-

fying our term Lindemann lengih Due to this additional stable states,

; . : . In the laboratory, the system will freeze into a glass, at
length scale, the following scaling behavior of the long-time . .
. ) some temperaturd ;<T, which depends on the cooling
correlations results:

rate. While this glass transition is purely dynamical and dis-
tinct from a conventional phase transition, a key feature of
, (4)  the ideal glass transition scenario of Ref. 24 is that the slow-
ing arises from proximity to an underlying random first-order
with j(x,y,2) =g(x,y) — g(x,VZ>—y?) andg from Eq. (2). transition aflT c<Tg, where the configurational entropy van-
In Fig. 2 we show the momentum dependencertd) in  ishes likeS¢(T)=T—Ty. Our theory gives exactly this be-
comparison withg(q). Close toqn,=2/l,, (if ||g|—q,|  havior with
<¢ Y we have F(g)~§(q). Configurations which are
close to perfect stripe arrangements are solely characterized SC(T)=I;3‘I'()\/§,Im/§)V.
by a momentum-independent Debye-Waller factor, such that
We find W(s,t)=(1+s 1) (1—t)2+In[1—(1—t)?] which
vanishes linearly at a temperaturg . Below Ty the system
Fa)= mgw)- freezes into an amorphous solid state due to this “entropy
crisis,”? even for an infinitely slow cooling rate. Usually,
On the other hand, ifiq| — g, =\ "%, long-time correlations the reason for the system to prefer the liquid state over the
are much reduced compared to instantaneous correlatiosslid is entropic. IfS;—0, there is no entropic advantage
with F(q) =\ "2G(q)?. These “tails” of the correlation func- anymore to be in the liquid state and the amorphous solid
tions are obviously built up by configurations with defectsresults, even in equilibrium.

ql /2n

S(Ta)~Q¥WV~I3V, (5)

Im

|
_ 12 m m
f(q)—lmJ(qlm. £
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8 1 . . . . . I ' . an approximate formula for the doping dependence ofs
TK2T2/(47T3X+ 1) . The typical doping concentration on
which changes in the glass transition temperature occur is
7 Xo=1/473=0.008. Note that the experiments analyzed in
Ref. 19 are solely sensitive to the spin excitations of the
system. We argue that due to strong coupling between charge
and spin degrees of freedofwhich is evident from the for-

] mation of phase or antiphase domain waltgassiness of the

e charge density causes the observed anomalous long-time dy-
2r — 7 namics in the spin channel. Note that due to parameters like
% .La, ArCel, (Markevier etzal:(2000)) u or ry which are not known quantitatively without starting

2-x7 X

— theory ® . . -
| . | . | . | . from a more microscopic theory, we cannot determine the
%02 0.03 0.04 0.05 03 6 absolute magnitude of the freezing temperaflige On the
X (doping) other hand, the doping dependenceTgf should be fairly

robust since it only depends on the interstripe distance. Simi-

FIG. 3. Comparison of with the experimental data analyzed |5r to the number of metastable states, which is only deter-
by Markiewiczet al. (Ref. 19. mined by the way one can geometrically arrange different
L . . stripe pattern, is th€ dependence of the freezing tempera-

Freezing into a glassy state beld implies that within -6 dominated by these geometrical aspects. This should

our replica approach the barriers between different metas, e the doping dependence T for low doping concen-
stable states are infinite. This, however, is a consequenceag}ation independent of microscopic details.

the mean-field character of the replica technique. Following
Ref. 24 we argue that the formation of a mosaic pattern with
dynamically defined droplets of sizZ@ of different meta- Ill. STRIPE LIQUID
stable states will occur. Entropy-driven transitions between

different states lead to dynamical processes with relaxation _In th's section we summarize the main results fqr th‘?
time obeying a Vogel-Fulcher law stripe liquid state needed for our subsequent calculations in

the glass state. We will mostly use results obtained within the
p{ DTK) leading contribution of a N expansion. We calculate
Tocex ,

(6) higher-1N corrections and show that they are small in the

=Tk low-temperature regime discussed here. Note also that the

with fragility numerical solution presented in Ref. 16 did take high&r-1/
corrections systematically into account. The agreement be-
o3(Q) tween the results of this section with these numerical results

D(Q)“W (7)  also supports the neglect ofNL/corrections for the stripe

liquid state. The latter will become essential, however, in the
Tx glass state.
) _ _ The mean-field equations of the stripe liquid including
determined by the configurational entropy as well as the barg)\ corrections have been discussed in detail in Ref. 28.
surface tension of entropic droplets(Q). Finally, a simple  gome of these results have already been summarized above.
estimate_fora,, based on a variational argument, gives |y what follows we will mostly discuss the low-temperature
D(Q)=Q to a good approximation. This was recently regime where the correlation lengthexceeds the modula-
found in numerical simulations of the lattice version of Eq. tjon lengthl ., of the system. This means we will be concen-
(1) by Groussoret al** trated in the high temperature region of Fig. 1.

Recently, Markiewiczet al. analyzed. various experi- In the mean-field approximation the correlation function
ments performed on La,SrCuQ,, spanning altogether 13 s given by

orders of magnitude of frequency, and also found a “univer-

sal” behavior of the activation energies in underdoped cu-

prates. Interestingly, a good description of the relaxational

dynamics using a Vogel-Fulcher law, E§), is possible. The g(a)= ' (8)
analysis of Ref. 19 also yields thd@i decreases with in- r+g%+ -

creasing doping concentratior. Using the relation,l,

=a(2x) !> between interstripe distantg and the doping

concentration(with a being the lattice spacingas well as  where the parameter=r,+ u( ¢?) must be determined self-
|,=27Q Y4 enables us to determine the doping depenconsistently. At high temperatures>2Q and the system
dence ofT« and show that it is properly described within our is characterized by a correlation length-r Y2, similar to
theory. This is shown in Fig. 3 in comparison with the resultsthe unfrustrated system, as well as a Debye screening length
as deduced from experiment in Ref. 19. Indeed, our theoryp~ ¢ QY2 characterizing conventional screening of
gives the proper doping dependencélgf. If we neglect the charged objects with linear sizeand charge~ QY2 In the
differences betweeiy and T, (see inset of Fig. 5 below  limit |> ¢ the Fourier transform of is given by

dT
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y £\ | In Eg. (13) we ignored additional N corrections, character-
e X -] € XD ized by the self-energy at zero momentum. In the lighit
G(x)= 7 TX| (9) >, under consideration we finl5(0)= —8qﬁqs/7-r. Since
o

¢ is small, the one-loop self-energy correctionGocan be

: fely neglected, given thatg is an additive correction to
At lower temperatures, wher(T)<2\Q, simple Debye 3% . ;
screening breaks down and the system establishes modulated’. shegop]d te”‘? oln t(;l.e rlgh(jt—hanijlszzdél IS)EOf I(Elqd)(mzj
structures with modulation lengttinterstripe distancel which benaves, in léading order, as-. =rom Eqs: an

(14) we find at low temperatures
=4m/\2\JQ—r and correlation lengti=2/\'r +2/Q.28

However, unlesst becomes larger thah,, no actual T/T° 0
; ; ; ; T c T c
stripe correlations emerge. This happens only if, at even e=—QW—° ~_QWM_ = (15)
lower temperatures, the charge correlations are sufficiently 2 24Q T 2
strong to form a stripe liquid and different stripes are ro +1_ﬁ 10
C Cc

strongly correlated. We will focus on this temperature re-

gime. Here, G-r(T)>—2/Q and thusG(x) exhibits an 0s-  \here in the last stejp o|>2/Q was assumed. This relation-

cillatory behavior with&>1r,. - , ship will be useful for the determination of the temperature
It will be useful to introduce the positive dimensionless T,, where glassiness sets in.

parametek via

4Q IV. STRIPE GLASS
g?=——1. (10 . . . .
r2 A. Spontaneous ergodicity breaking and replica formalism
With few exceptions>—38 the analytical investigation of
glassiness due to the emergence of a large number of meta-
stable states has concentrated on systems with quenched ran-
P domness. A major step forward was made in Refs. 26 and 27,
G(q) = Zq"‘ . _ (12) where a new replica approach, equally applicable to
(i) Y . quenched random and nonrandom systems, was developed.
Om Within this approach, the configurational entropy for models
. of structural glasses was calculated, in good agreement with
In the last step we took only the leading term close to th&omputer simulationd. Here, we use this approach to inves-
peak aftg,, into account. By doing this approximation we are tigate the physics of self-generated stripe glasses.

We then find(defining g2=—r/2~QY? with | ,=2/q,)
that one can approximate the correlation function as

breaking the charge neutrality conditipti(q=0)=0], only The equilibrium’s free energy density is given &
by a factorG(q=0)/G(qm) =&*. Fore<1, the leading con-  _ (_T/\)InZ It is of relevance only if the system is kineti-
tribution of the Fourier transform of is given by cally able to explore the entire phase space. Alternatively,

one can introduce the averaged typical free energy of a sys-
(12 tem using the following recipe of an “ergodicity breaking
field.” 252/
Locally stable field configurations can be identified using
a test fieldy(r) and computing the partition sum

e Xésin(2mx/1 )
4me|X|

G(x)= :
which clearly shows the physical nature of the two length
scalesé=2/eq,, and |,,=2mx/q,,. In order to have well-
correlated stripes, the correlation lengtimust be much big-

ger than the modulation length,. This indeed translates - :J' D p(— T— gf d _ 2
into e<1 which can be used as a small parameter of the [¥] P ex Hlel 2 XY= eI,

theory. (16)
Within the largeN approximation, the temperature depen- _ )
dence ofr is determined by whereg>0 denotes the strength of the coupling. Evidently,

the free energy
3

p
r=ro+ uoTj ﬁg(p)- (13 Tlyl=—TInzZ[y] (17)

For the case without frustratio@= 0, the usual critical tem- Wil be small when the fields equals to a field configuration
perature T2=272|ro|//UA results from the requirement which locally minimizesH. Thus, samplirlg all configura-
r(T%) =0. However, for finiteQ no finite transition tempera- tions of they field, weighted with expt Sf[#]), is essen-
ture occurs within the larght approximation. Instead, one tially a procedure to scan all locally stable configurations.
finds from Eq.(11) that The quantity

T (7 O S N -
r(T)=ro+ %(zq—+A). (14) F=lim v_vf D yF[ wlexp— AT 4]) (18)

2 gm0
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is the weighted average of the free energy density of altoupling between replicas which might spontaneously lead
locally stable configurations. Her&y= Dy exp(—f[4])/T)  to order in replica space even gs-0. This order is then

is introduced for proper normalization. associated with a finit§; and thus glassiness.
It is physically appealing then to introduce the free energy Formally, Eq.(24) equals the partition function of system
differencesF via with quenched random field analyzed using the conventional
replica approach. The main difference is that, here, the limit
F=F— §F, (19 m—1 has to be taken. The resulting many-body problem in

_ ) _ replica space is characterized by the matrix correlation func-
where 6F gives the amount of energy lost if the system istjgn Gan(9) =(03(q)¢°(—)) in replica space with Dyson
trapped into locally stable states and hence not able to &X%qyation

plore the entire phase space of the ideal thermodynamic

equilibrium. If the limitg—0 on Eq.(18) behaves perturba-

tively, sF=0. This indicates that the number of locally G Yo
stable configurations stays finite in the thermodynamic limit
or at least grows less rapid than exponential within this
case all states are kinetically accessible. On the other hand,
the limit g— 0 does not behave perturbatively, it means thai'se
the number of locally stable stateA/,s, is exponentially
large inV. This allows us to identify the difference between
the equilibrium and typical free energy as an entropy:

=00 @+ Sa(@— = (29

Jere, Go(q) is the Hartree propagator of E@) which we
proximate at low temperatures by El). 2 ,,(q) is the
If-energy in replica space. If we find that, as a consequence
of the ergodicity breaking coupling constamt.,,(q) has
finite off-diagonal elements, we can conclude that there must
be an energy landscape sensitive to the infinitesimal pertur-
SF=TS, (20) bationg, supporting a glassy dynamics. On the other hand, if
' 3.a0(q) is diagonal, conventional ergodic dynamics results
The configurational entropy densi:=InN,sis @ measure and the system is in its liquid state or may build an ordered
of the number of metastable states and is an extensive quaselid. As pointed out above, this strategy is similar to the
tity if there are exponentially many of those states. Its emerinvestigation of symmetry breaking in conventional phase
gence renders the system incapable of exploring the entingansitions where the off-diagonal elements of an appropri-
phase spaceS; is then the amount of entropy which the ately defined matrix self-energy are associated with the order
system that freezes it into a glassy state loses due to ifsarameter of the transitiofsuperconducting gap function or

nonequilibrium dynamics. staggered magnetization in the case of a superconductor or
In order to find an explicit expression f@. one intro-  antiferromagnet, respectivelyHowever, it turns out that in
duces a replicated free eneffy the present case the off-diagonal element.gf(q) jump
discontinuously from zero to a finite value and a linearized
E(m)=— lim Ilnf D yZ[y]™, 21) theor.y. with Eab(q)(l—ﬁab) small (which (_jetermines the
90 transition temperature in the case of continuous phase tran-

sitiong will only give the trivial solution with vanishing off-
from whichF can be obtained &= dmF(m)/om|,,—, and  diagonal elements. A nonlinear theory ®g,,(q) needs to be
hence developed.
Since the attractive potential between different replicas is

~ 1 9F(m) 09 symmetric with respect to the replica index, we use the fol-
T Jm - (22) lowing ansatz for the Green’s function:
InsertingZ[ ] of Eq. (16) into Eq.(21) and integrating over Gan(@)=[G(9)— F(q) ]84+ F(Q), (26)
Y, one gets
i.e., with equal diagonal element§(q) and equal off-
T diagonal element$(q). Note that if one applies the present
F(m)=—InZ(m), (23 replica formalism to systems with quenched disorder, it turns
_ _ - ) ) out that the replica-symmetric ansatz, E26), is equivalent
with replicated partition function given by to one-step replica symmetry breaking in the conventional
m replica formalisn?® The physical interpretation af(r—r")
. =T Heo(r)e(r')) as thermodynamiéinstantaneoyscorre-
— m a
Z(m) ;ILT]O f D (pexp—(aEl HLe"UIT lation function is straightforward. On the other har#r
—r")=T Yim_.{(e(rt)e(r',0)) can be interpreted as
g - measuring long-time correlations. As shown in Appendix A,
_ 9 2 ddX a(x) b(X) (24) . . . . . ..
2m ., e (X)e ; mserltlng the ansatz, E6), into Eq.(25) gives in the limit
m—
which has a structure similar to a conventional equilibrium
partition function. Note that, in the limg— 0, contributions G H =G, D+24q) (27)

proportional tog which are diagonal in the replica space can
be safely neglected. The ergodicity breaking figldauses a for the diagonal elements and
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—GX(a)2 AQ)
TN !
1
=3(q)— mEQ(Q)—’C(Q) (28
for the off-diagonal elements, respectively. He¥g,and>. »
are the diagonal and off-diagonal elements of the self-energy 13

in replica space. In the last equatifidenotes the deviations
of the long-time and instantaneous correlations. Analyzing
the corresponding dynamical equations of the problem, it
turns out that is the static retarded response functfomn

the liquid state fluctuation dissipation theorem givés G
and no long-time correlations occur.

|
|

3 . . : : . FIG. 4. Pictorial description of the wandering of defects in the

The_ self energy in replica space was numerlc_ally mvesn.stripe pattern. The upper panel shows defects that can be healed by
gated in Ref. 16 within the self-consistent screening approxiz, deri he | | sh def hich

tion which we summarize in Appendix A. It was shownt e wandering process. The lower panel shows defects which are
ma . ’ . too far apart and cannot be healed.
that below a characteristic temperaturg, an off-diagonal
self-energy in replica space emerges, leading to finite long- 5
time correlations#(q), as well as a finite configurational Ha)=-2Hq)G(q). (39

entropy density

B. Defect wandering in stripe glasses

If a solution for F exists, it is going to be peaked @f,, but
Sc=S./V (290 smaller and narrower tha. Consequently, if a stripe glass
occurs, the long-time limit of the correlation function in not

in the thermodynamic limit/—c>. Here we present an ap- just a slightly rescaled version of the instantaneous correla-
proximate but analytical solution of the same set of equationg—‘ gntly

. - . .Tlon function, but it is multiplied by aj-dependent function
which has the appeal that the underlying physics of the strip at leads to a qualitativel;F/) differ)(la:tq beﬁavior for different

glass formation becomes much more transparent. It also r . X .
momenta. Once a glassy state is formed, configurations

veals more directly the emergence of a new length scale . . .
which characterizes the wandering of defects in the :stripé(vhICh contribute to the peaks 6{q) and7(q), i.e., almost

pattern after long times. In this context, we demonstrate th erfect SF”pe configurations, are almost unchanged even af-
the melting of the glass a§ becomes larger thafi, is a er long times. Close tqy,, /1) is solely reduced by some

consequence of the fact that the characteristic length for délwgrme?tum-mdoepetr;]dentth DeEye;jWallert _factor p eXDtO_
fect wandering becomes too large; the glass becomes too (9)/G(q). On the other hand, certain configurations

fluid, causing the devitrification into a stripe liquid. which form the tails of(q), i.e., defects and imperfections

The key assumption of the analytical approach to the self9f the stripe pattern,_ disappear after_a Ior_19 time since now
consistent screening approximation is that the of'f-diagona17'_(q><g(q)'dThe :jano of ?)Oth funct|ohns IS nr?W strgngly
self-energy? A(q) is weakly momentum dependent. Specifi- momentum depen ent(q) €COMES S f’”pe” @q) €
cally, we assume that due to the strong momentum deperf2USe certain defects got healed in time. Evidently, there

dence of the correlation function, the produ@tq)= q) must be a momentum scadc_a_r equivalently a length scal_e
varies withq predominantly due t@(q). This assumption which determines the transition between these two regimes.

will be justified a posteriori Also, our numerical results, In what fqllovv_s we W'l.l |Qent|fy and determine this !ength
which were obtained without any restriction on thelepen- scale. A pictorial description of the defects on the stripe con-

dence of /q), clearly show that this assumption is justi- figuration and the meaning af is presented in Fig. 4.

fied. We will then calculat& Aq,,) at the modulation wave Due to our assumption thaly is weakly _dependent on,
vectorq,,. we concentrate oX () at the modulation wave vector.

: - - One easily finds thab (qg,)<0. A dimensional analysis
ooy et e ety sy uemors shows & lngi . s uggests 0.
By inspection of the Dyson equati@®8), for F, one can see fine a new length scalk via
that for g~q,, and 2 Hq,,)G(gm)>1 (since G is peaked
aroundg=q,,)

2 2
2 AAm) = _(X) : (32
Fa)=4(q). (30

Moreover, G vanishes rapidly away from the pegiks does For the subsequent calculation it is convenient to introduce
2r(0m) G(gm)] and it follows from the same equatid@8)  in addition to the dimensionless parametewhich gives
that for large|q—q| & 1=¢q,/2 a new dimensionless parameigrdefined via
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(33

Obviously, in the liquid state, wher® —0, we find\ — oo
and it holdsk=¢. In a glassy stata>¢. This ansatz for
> r, inserted into Eq(28), yields

U’
2
ol
Um
for the correlation functioriC=G— F. Note thatXC has the

same structure a§ but with e — «. It immediately follows
that it is the length scala which determines whether long

K(a)= (34

2
+K2

time correlations are similar or different from instantaneous

ones. If |[q—gm/<\~1, Eq. (30) holds, whereas forq
—gm/>\"1 long-time correlations are strongly reduced
leading to Eq(31). Consequently we identify as the length

PHYSICAL REVIEW B64 174203
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1.02

FIG. 5. The Lindeman length as a function of temperature for
different values ofQ. Inset:Q dependence of ,— Ty , WhereTy is
obtained in Sec. IVD.

scale over which imperfections of the stripe pattern manage
to wander; i.e., defects can be healed, even in the froze@ondition for the existence of a solution asrt/~=2. This

glass state.
The next step is to determi2Aq,,) for a given value of

defines the critical value of as

N\ and to self-consistently determine this length scale. The

details of the calculation ok Aq,,) with G(q) as given in
Eqg. (1) andK(q) of Eq. (34) are summarized in Appendix
B. The result is

8qfn82 (1_

2f(qm) == - ( s )

1-{1--—

K

This has to be compared with our ansatz, ). Together
with Eqg. (33) this gives

S H0m) = — (k= e?)q5. (36)

Comparing Egs(35) and(36) we immediately find the non-
linear algebraic equation

&

2
E)l

i

&

1
—) . (35

K

37)

which determines the length scalgvia ), as a function of
the correlation length and the modulation length, i.e., prop

erties of the liquid state. One solution of this equation is

alwayse = « , which corresponds to the liquid state. Factor-
izing this trivial solution from Eq(37) we find that the other
solutions are given by

=)

8

me

£ —2. (39)

K

2 (39

ep=e(Ta)=

For N>1, it is straightforward to show that this result is
generalized ta ,=1/27N. Thus, if the ratio of the correla-
tion length and the modulation length exceeds the critical
value

3

T=Ty

2, (40)

Im

long-time glassy correlations emerge. As expected, besides
strong frustrations, glassiness also requires sufficiently
strong liquid correlations. Since it follows from E@®8) that
k=3g, it also follows that

A

(41)

Im T=Tx

This type of behavior is evident in Fig. 5 where, independent
of the value ofQ, all curves for\/l,, reach the same maxi-

mum value afl . If defects and imperfections of the stripe
pattern within the glassy state manage to flow over length
scales larger thas 21 ,,, the glass becomes unstable because
it is too fluid to support a frozen state. Thus, we identify the
length scale\ as the Lindemann length of the glass.

As can be seen in Fig. 3, is a monotonically increasing
function of temperature. At small temperatutegrows lin-
early, evolving to a cusp at the dynamical freezing tempera-

This is a cubic equation which can be solved exactly. Befordure To. Above T,, A becomes infinite and the devitrifica-
we discuss this equation in some detail we analyze the corion is complete.

dition for obtaining a nontrivial solution which corresponds
to the onset of glassiness. Fom@>1 the left-hand side of
Eqg. (38) has its maximum Xfe at xk=3e which gives the

Using theQ dependence of in the liquid statd see Eq.
(15)] the stripe-glass—stripe-liquid transition temperature is
then given by
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0 q
8A=i=z 1/4TA/TC (42) o(q) *
27 2 Ty ‘
1——=
T (7‘% q
y
which gives /
TO
To=———, 43
A 772Q1/4+ 1 ( )

whereTS is critical temperature of th©@=0 problem. More-
over, since the difference betwe&R and Ty is small com-
pared toT? (see the inset of Fig.)5the Q dependence 6
will be roughly the same as df, . As pointed out above, we
do not expecil, to be sensitively affected by an additional
(v/3)¢3 term in the Hamiltonian. This is less clear for the
Kautzmann temperaturgsee Sec. IV D and the difference
betweenT 5, and Tk might well depend on the coupling con-

stantv. Still we expectT to decrease for increasing. FIG. 6. Low-energy modes. Upper panel: in the continuum’s
limit, K=0, the phase space for low-energy excitations &l
C. Lattice corrections sphere. Lower panel: the anisotropy gives rise to a “direction-

dependent mass” and the phase space for low-energy excitations is
Until this point our theory has been performed in the con-requced to a set of arcs.
tinuum’s limit and effects due to lattice corrections have
been neglected. The particular form of the propagator, Eqgs. ueT
(8) and (11), however, gives rise to a specific sensibility of F(T)=ro+ — T Am 1]. (48
our results to lattice corrections which is worth mentioning. 272\ 2 \Je(K=0)2+ qun

Within the continuum’s limit, the larg& approach used in . )
this paper yields no ordinary phase transition to a stripe solid "® Systém now undergoes a phase transition for arbitrary

state, a result which has been pointed out esffidtThis ~ smallK at Tc=Tg/(wK ™ “?A +1). As expectedT; vanishes
can be most easily seen from the mean-field equafign A ~ @sK—0 . Moreover, as pointed out in Refs. 28 and 39,
solutione =0 is only allowed ifT=0. ForT>0 one always does not merge wit asQ—0. The origin of this phase
finds a large, but finite correlation lengtti=2/eq,,. The transition is that the d—1)-dimensional sphere of low-
absence of an ordered state is a consequence of the dispenergy degrees of freedom is reduced to arcs of sige

sion relationw,, with ~el(KY%q,,) (see lower panel of Fig.)6As ¢ decreases,
these arcs become indistinguishable from isolated points, a
q \?]? behavior similar to the case of an antiferromagnet or a charge
®q=0m [1— q_ +e2. (44) density wave occurs, leading to an ordinary phase transition.
m

The mean-field analysis of the lattice version of [E8). of
In contrast to an antiferromagnet or a conventional charg&ef. 30, which findsT, considerably smaller tham® sup-
density wave, where the low-energy modes are determineplorts K<qr;2.
by isolated points in momentum space, Et) gives rise to In analogy to the mean-field analysis of the liquid state
a (d—1)-dimensional sphere of low-energy modes in mo-one can also perform the theory of the glassy state for finite
mentum spacésee upper panel of Fig.)6lt is this large K. If lattice corrections are strong amd~q,.2, a transition
phase space of low-energy excitations which destroys longo a stripe solid occurs &, . The low-energy excitations are
range order. located at isolated points and the behavior is equivalent to
The most dramatic effect of corrections beyond the conthe one of an unfrustrated system. In this case, the glassy
tinuum’s limit is the appearance of an anisotropy on the low-state will only occur if the solidification is avoided by super-
energy states. It is reasonable to assume that the Hamiltoniggoling. On the other hand, iK<qr;2, the low-energy

(1) has a next-order correction of the typ&d:q; which  modes are unchanged and the lattice corrections become ir-

leads to a direction-dependent “mass” term in &), relevant. Since the glass transition does not requii@ van-
. 5 ish, but solely to reach a certain finite limit1/27, we con-
e?=e?(K=0)+Ka;sin'(2¢), (45 clude that fork <q, %27 the glass transition is essentially
unchanged.

with angle ¢ (in the x-y plane and a dimensionless anisot-
ropy parameterK. Of course this is only justified iK
<q,.2. If, however,K=q,.?, the physics strongly depends
on phenomena on the scale of the interatomic spacing. The main argument for the emergence of a glassy state is
The mean-field equation for finit€ is then given by the occurrence of an exponentially large number if meta-

D. Configurational entropy

174203-9



WESTFAHL, SCHMALIAN, AND WOLYNES PHYSICAL REVIEW B64 174203

stable states, characterized by the configurational ent&py.  0.002
is determined from Eq(22) from the replicated theory de-

fined in Eg. (24), which gives F(m)=(—T/m)InZ(m).

Within the self-consistent screening approximation it follows

that S13

e
e
—4
=2, 1x107°
- w
=

F(m)/(2mT)=trlogG *+trinD " 1—tr3G. 0001

Since all quantities are matrices in replica space with a struc:
ture given in Eq.(26), the evaluation of expressions like
trinG 1, etc., becomes straightforward. Performing the de-
rivative with respect to the number of replicas according to
Eq. (22) gives immediately for the entropy density

_ 1 2 : s I s s
se=s{"+s?, 0-0% 5 1 1.04 1.08 L2
with the two contributions T/T (Q

1 d3q Fq) F) FIG. 7. The configurational entropy for different values@f
sgl): — EJ —3[I ( - Tq)) TQ)] Inset: dependence otl§./dT)y, on Q.

8

configurations. It is more the packing and arrangement of
defects which distinguish different metastable states. Fewer
1 [ d%q voll {Q) voll {q) of those packings are possible per unit volume if the modu-
s(cz): f 3[I ( - ) ] lation length grows, for simple geometrical reasons. The re-
8 1tvollg(a)/ ~ 1+vollg(q) lation (48) was recently derived by us using the concept of

replica bound state's.The fact that we obtain the same result
fusing an entirely different approach to solve the problem
increases our confidence in the applicability of the self-
consistent screening approximation, which also allows us to

and

2

For the definition ofll £, 115, etc., see Appendix A. Using
the same approximations as for the evaluation of the sel
energy,2, , in Appendix B we find

F(q) w2— g2 calculate the constar@@. We can also compar§.(T,) with
~ 5 5 . the numerical results of Ref. 16, was calculated in Ref. 16

gta) (i —1| +42 for the valuesQ=0.01 andQ=0.001, where we founé;

Um =3.45x10 % and 6.4<10° %, respectively. From Eq(48)

. _5 _6 .
The evaluation of the integrals is straightforward and we findV€ find the values 310> and 6.6<10"°, which agrees
well with the numerical results.

2 Finally, the condition S(T=Tx)=0 determines the
' Kauzmann temperature below which no entropic advantage
of the liquid state, compared to the amorphous solid state
P 2
1-(1-2]
K

3 2
Om 2 €
@=_"M 11 Z] +
R 77((1 K) In

(the glas$ exists. Even if one manages to anneal the liquid
J_ (47) down to Tk without freezing into a glass, something which
might be achieved using an infinitely slow cooling rate, a
Obviously,s.#0 only if k>¢; i.e., the Lindemann length man_datory transition into an amorphous solid occur$,at
is finite. s, vanishes in the liquid state whese=¢. The [N Fig. 7 we show the temperature dependencesofor
results fors,(T) for different values of are given in Fig. 7. different values of the frustration parame€imas well as the
Using the results of the previous section where we found? dependence of the slope & /dT)r, .
that for T=T, the dimensionless quantities and « take

fixed values, we obtain at=T, E. Dynamics and flow via entropic droplet formation
STy =CVQ¥ (48) So far, we ha_ve shown that within the se_lf—consistent
_ screening approximation of E@l), an exponentially large
with number of metastable states occurs. The conclusion that

somewhere below 4 nonequilibrium dynamic sets in is ac-
tually obtained using a purely thermodynamic characteriza-
tion of the spectrum of metastable states. It is very plausible
that an exponentially large number of metastable states is
The configurational entropy decreases for decreasidg necessarily connected to glassy dynamics. In several random
Since the modulation length behavesl gs-Q*3, it follows  spin models as well as in the model of self-generated glassi-
thatScocI;f. The larger the modulation length, the smaller isness in frustrated Josephson junction arrays, this point of
the number of states one can form, which clearly demonview has been clearly supported by actual dynamical calcu-
strates that locally stripe correlations stay intact in all thesdations. For so-called infinite-range modeige., within

2 3
|

_+_
T 4

! + ! | > =1.1816¢10 3
% ﬁn§—. .
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mean-field approximation where the barriers between the 342
various metastable states diverge, freezing athas been D= TO. (51
found 2440 T2t as

Solving the Langevin equation for the time evolution of KdT -

the correlation and response function gfx,t), using the :

supersymmetric formulation of the Martin-Siggia-Rose Xia and Wolyne&* have shown that this scenario gives a
approach! within the self-consistent screening approxima-quantitative description of viscous flow in molecular liquids
tion, we find that the emergence of exponentially many metaA straightforward extension of Refs. 24 and 44 along the
stable states also leads to stripe glass state within a dynanlines of Ref. 45 also gives a width of the distributions of
cal approach® Interestingly, this mode-coupling-type different activation energies characterized by the mean-
approach gives exactly the same criterion for the emergencgguare width SR?) of the droplet size, which might be com-
of glassiness as the above replica approach only if one progared with the results of Ref. 14. This droplet picture implies
erly takes the aging behavior of the dynamical evolution intothat the glass breaks up into domains of different metastable
account, following Ref. 42. Thus, the replica approach emstates, separated by wetted surfa@emsisting of intermedi-
ployed here takes the effects of aging correctly into accountate states leading to a rather small surface tension. This
Within the mode coupling or replica integral equation ap-physical picture is very similar to what is usually called a
proaches a perfect freezing occurs at the temperafyre  “cluster spin glass,” motivated by the observations made in
However, more realistically] , is rather a crossover scale to Ref. 9 based on NMR experiments.
a regime with slow activated dynamics and not the actual For a quantitative analysis we have to develop a theory
freezing temperature. Depending on the history of the sysfor the bare surface tensiar, for the stripe glass. This dif-
tem, the laboratory glass transition where the time scale ofers from the theory of molecular liquids because of the
motions exceeds a certain limit occurs somewhere betwednong-range forces in the model. In what follows we give
Tk andT, . Akey question in this context is the nature of the simple estimates forry, based on a variational argument.
dynamical processes far <T<T,. There are two sources of the bare surface tension i(Eg.
This dynamics involves droplets or instantons, essentialhe gradient term and the long-range Coulomb term. Assum-
singularities from the point of view of perturbative ap- ing a droplet configuration with locally ordered charge con-
proaches. A complete formal treatment is therefore difficultfiguration
Nevertheless, a reasonable description of the dynamics in a
system with finiteS; is given in Ref. 24, where the nucle-
ation of droplets with siz® of a new state within an old one

was argued to be the main dynamical processes. The free- ) )
energy gain of a droplet formation is caused by the entropiVith droplet radiuR and wall thickness, . In order to make

gain due to the exploration of new states, i.e., bgR®, ~ Progress, we assume that the thin-wall limjt<R applies
whereas one has to take into account that such a dropléd find for the gradient term

implies a finite surface energy, characterized by a scale- Rel /2

dependen_t s.urface tensien(R). The energy landscape of Egl)=4w¢g|\;2J " r2dr=4mell;'R? (53
these excitations should therefore be similar to the one of the R—1,/2

random-field Ising model. The fundamental connection be- d for the | Coulomb
tween this model and the replica approach used in this pap&"¢ for the long-range Coulomb term
is also evident. from Eq24). Thus we use a renormalization EQ = 4702~ 1R? (54)
group calculation for the random-field Ising model, based on s Om %

Ref. 43, which leads to the S|Ze-dependent surface tenSionFor |arger values of the frustration parame@”w is esti-

mated by the largest length scale of the problexceptR of
course which should correspond to the lowest energy of the
droplet wall. This gived,=¢ . Alternatively, for smaller
values ofQ the surface tension is dominated by the contri-

Here 6= (d—2)/2 reflects the fact that the interface betweenbution of the Coulomb term and we find
two states is wetted by intermediate states. This analysis 21
leads to a characteristic energy barri&E«[Ts,(T)] ! oo=4mepln”.
which implies a characteristic relaxation time which follows
a Vogel-Fulcher law

r-R
go(r)=<p0cos(21-rrllm)tanl'(—), (52

lw

o(R)=0o(RA) . (49)

From the same variational argument we ﬁ<p§= (1) QY?,

which gives, together withl,,=27QY4 the result o

= (2/u)Q%¥* Thus, if the frustration parameter decreases, the
DT« barrier height between different metastable states disappears.

rocexr{T_T ) (50)  Even though the number of metastable states and thus

K dSC/dT|TK decreases for decreasilqy the surface tension

term dominates and it follows that

independent of the dimension. Here, fragility parameter of

the Vogel-Fulcher law is given by D(Q—0)—0. (55
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7 ‘ . - | - { Tk, as deduced from experiment in Ref. 19, and show that it
| ] is properly described within our theory.
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FIG. 8. Comparison oD with the results obtained in Monte

Carlo simulations of the lattice version of EG) by Groussoret al.
(Ref. 33. APPENDIX A: SELF-CONSISTENT SCREENING

APPROXIMATION

The fragility parameter does not vanish according t0 a power | i anpendix we summarize the self-consistent screen-

law, mostly becauseT,—Ty, which enterstC/dT|TK ing approximation which was the basis of the numerical in-
=Sc(Ta)/(Ta—Tk) has logarithmic behavior 83—0. Es-  yestigation of stripe glasses in Ref. 16 and which is the
sentially,D vanishes withQ similar to a square root. In Fig. framework in which we determined the diagonal and off-
8 we compareD(Q) with the results obtained in Monte diagonal element in replica space of the self-energy, leading
Carlo simulations of the lattice version of Ed) by Grous-  in particular to Eq(35). The details of the calculation of Eq.
sonet al3* Here we multiplied the result from E¢51) by an (35) are then given in Appendix B.
overall prefactor, leading to a very good agreement between Equation(24) has a formal similarity to the action of the
our analytical theory and the numerical results of Ref. 33random-field Ising model, obtained within the conventional
Since the calculations in Ref. 33 are performed for a latticaeplica approach, which allows us to use techniques, devel-
version of Eq(1), the actuall dependence of the correlation oped for this modet® Introducing anN-component version
length differs from ours. Correspondingly the absolute magof Eq. (1) with field ¢= (¢4, . . . ,¢x) and coupling constant
nitudes of Tk, which enters in Eq(51), are different. For y=u,/N with fixed u, we use a self-consistent screening
this reason we do not expect the absolute magnitud®,of approximatiorf;” which is exact up to order W, At the end
but solely itsQ dependence to agree in both approaches. e perform the limitN= 1. The applicability of this approxi-
mation is supported by the strong indications for a nonsin-

V. CONCLUSIONS gular largeN limit of Eq. (1), as discussed in Ref. 28.

) ) Before we discuss the self-consistent screening approxi-
_ Glasses are typical examples of systems of many interacaion, it is useful to summarize a few properties of matrices
ing particles that have a tendency to self-organize into mey, replica space with structure similar to E@6). Introduc-
soscopic structures. In this paper we studied the slow actg-ng a matrixE such thatE,,=1 and the unit matrix, it is

vated dynamics of charge inhomogeneities in doped Moth,qy 16 see that the product of any twok m matrices with
insulators. We developed an analytical approach which engi.cture

abled us to identify the underlying physical mechanism for

glassiness in a uniformly frustrated system. We showed that A=a;1+a,E, (A1)
when the charge correlations are sufficiently strong, specifi-

cally if &/1,,>2, the stripe-liquid—stripe-solid transition can 'S 9iven by

become kinematically inaccessible because the system un- _

dergoes a glass transition, driven by the emergence of an AB=(a;by) 1+ (a1by+ab; + maghy)E.
extensive configurational entropy. We demonstrated that at This |eads to

this point a Lindemann length emerges, which is a length

scale over which imperfections of the stripe pattern manage 1 a,
to wander. Finally, we apply our results to the scenario of Afl:a—l— mE
Ref. 24 to calculate the characteristic relaxation time of the ! per ez
nonequilibrium state. We concluded that the charge fluctuafor the inverse ofA. This property was used for the deriva-
tions in doped Mott insulators have a tendency to selftion of Eqgs.(27) and(28) and will be used below.

organize into droplets of metastable states, distinguished by The self-consistent screening approximation is described
the packing of stripes with different orientation and the ar-by the set of Feynman diagrams shown in Fig. 9. The self-
rangement of defects. These droplets relax according to energy, beyond the Hartree term which is diagonal in the
Vogel-Fulcher law, characteristic of structural glasses. Weeplica index and was already taken into account in the bare
further compare our results with the doping dependence gbropagatofEq. (12)], is given by

(A2)
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S=(34-3 H1+34E,

2\

where
SN 2 _ 2 d3p
g _ L d=| APt (AL
and
,"‘AMM,V‘NWU — = sssssmm +

3

i DHp)F(p+d).

B 2
Ef(q)—NJ (2

FIG. 9. Diagrams for the self-consistent screening approxima-

tion. The set of equations is closed by the Dyson equdi2ai
2 ( d® -1 | _
San(@) =1y f 2 D D aP ). (AD) G D] ap=[Go (@D +Zg-SAL+3E,  (AL2)
(2) which gives, according to EqA2), in the limit m—1 Egs.
where (27) and (28).
In Ref. 16 it was shown that this coupled set of equations
D(p)=[vy  +11(p)]* (A4)  gives S H{q)#0 below a characteristic temperature which

was related to the occurrence of glassiness. In the next ap-
pendix we present an approximate analytical solution of this
3 problem.

d°q
Hab(p)=fwgab(q+ P)Gba()- (A5)

is determined self-consistently by the polarization function

APPENDIX B: ANALYSIS OF THE SELF-ENERGY
In the above set of equations tphantegration has to be cut

off at [p|=A and the temperat_urié _and the coupling con- calculation of the off-diagonal self-energy in replica space,
stantug occur only in the combinationg=uyT. The ansatz > . The diagonal self-energy.;, which turns out to be

(26) for the Green’s function implies an analogous structure

. i ; . negligibly small compared to the leading mean-field terms,
for %a(0) angll'[ab(q) in replica space. Inserting this ansatz can be determined in a very similar fashion and was already
into IT,,(p) gives

analyzed in Refs. 28 and 4& - and %, were calculated
= (11— 1+]11,E, (A6) numerically within the self-consistent screening approxima-
tion in Ref. 16. The virtue of the analytical calculation pre-
where the diagonal and off-diagonal elements of the polarsented here is that it is much more transparent. In all steps of

In this appendix we give the main technical details for the

ization function are this calculation we did check the reliability of our approxi-
mate analytical treatment by comparing it with the numerical
— d3q results.
o(P)= (2m)3 g(a+p)Ga), We start by calculating the polarization functibh;(q):
& Mo(a)- | Ly
Hf(p)=f (277)37’(Q+|0)f(Q)- (A7) olQ)= | g s¥%ra
Using the rule(A2), it is now straightforward to deter- ={tan1 — |+ ltanl(qu—_q)
mine D,,(p) Which leads, in the limim—1, to m/ 2 &0m
D=(Dg—Dy) 1+ DsE, (A8) _ }tan1<2qm+ q)](squz)l
2 am
where
_ _ 1 2¢e
Dy(p)=[vg "+ Hg(p)]* (A9) - g,
8mqme ™
and =
) 0(29m,—q) q>28qm
I Ap)Dg(p) 2 T’
Dy(p)=— (A10) 16qe

1-TTApP)Dy(p) )
where we used the approximate expressiam) for the cor-
Analogously, inserting the above equations into &B)  relation functiong(x). An analogous calculation for the off-
we get for the self-energies diagonal polarization functiohl Aq) gives
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1 2KQ 2 p%dp
3 3 g< ) Ef(Qm):f tdt D}'(th)f Zf(p)
d°p 8mqmx ™ 0 A
f ——K(P)K(p+a)=
8w 0(29m—q) >2KQm p2dp
i =04 | ©2Ap). (®4)
as well as Using 7(p) = G(p) ~ K(p) and
1 Kk+e 2
pedp 1 (7O
L < 1 = —
f ds_pQ(D)IC(p+q)~ 8k’ A 873 9p) 2772( 2¢g +A)
g 0(20m—a) _Kte as well as
16keq ' 4= m-
2
For (e,x)0m<q<2g,, we can use the approximate expres- pdp p)= i(w_qm A),
sions g3 2m?\ 2k
we find
H = ’
¢(a) 16q¢2 L 2
8022 K 1 1
1 (1 1\2 2AOm) =~ — ozl (B9
Hf(Q)—E P 1_(1_;
which gives Thus, we have determined the off-diagonal self-energy at the
modulation wave vector as a function of the three essential
Dy(q) = 16qna length scales of the problenh,,=2=/q,,, é=2/eq,,, and
g - [}
U 2
1+ —— \N= —=—=—— Note the dependence on the momentum
q g2 (VK" —&°Om)

o ) ) cutoff, A, cancels, completely making this result robust
with dimensionless numbﬂzvo/lﬁqul. Herea vanishes against lattice corrections.

asT—0, but it always holds that?<a. Note that for the
numerical solution in Ref. 16 it holds that=0.4. Combin-
ing these results and using the fact thata<1, the product
Dg(q)I1Aq) becomes momentum independent,

APPENDIX C: COMPARISON WITH
THE FRUSTRATION-LIMITED DOMAIN SCENARIO

The possibility of glass formation of the model, Ea),
e\? has been pointed out in Ref. 29. As discussed in this appen-
Dg(qu(m:( 1- ;) ' dix, we disagree with the detailed argumentation of Ref. 29.
However, the recognition that a model of the kind of EL.
and, as a resultD /(q) becomes proportionagby a factor  can potentially describe glass formation was a very impor-

smaller than 1 in magnitudeso Dg(q): tant observation.
The aim of Ref. 29 was to present an alternative scenario
DAq)= —Dg(a)IIAq) Du(q) (g for glassiness in structural glasses formed of undercooled
1-Dg(o)IIAq) g molecular liquids. Though the microscopic justification of

Eq. (1) for the description of structural glasses is at the least

g\? unresolved, one can yet, in principle, imagine that such long-
- ( 1- ;) range interactions are caused by a scenario like that based on
=| ——3 | Dg(q). (B2) icosahedral order which is frustrated by the lack of Euclidean
1_(1_ i) curvature of the effective spacdn what follows we will
K solely consider Eq(1l) as a given model and leave aside

_ N whether it applies to stripe glasses in doped Mott insulators
We are now in the position to analyze the self-en€igy  (as we claim or to molecular liquidgas claimed in Ref. 29
" The main idea of Ref. 29 is that due to the frustrating
. p interaction of Eq.(1) the system is broken up into ordered
Ef(q)—Zf ﬁDf(qu P)F(p). B3 Gomains of sizRp~ ¢ QY2 with ¢ being the correlation
length that controls the fluctuations inside ordered domains.
SinceD £(q) is only weakly momentum dependent, the sameFurthermore §¢<Rp, is assumed. Within each domain the or-
holds for> #(q) and we can estimate it at the modulation dering essentially corresponds to the one of a fiQite 0
vector. It follows witht=/2(1+ cosf) system(not of a system with stripes as in our entropic drop-
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let picture. Since, forQ=0, ¢ diverges at the critical point Q
Tg, the avoided frustration scenario suggests that Qor qi= gfdsx¢(x)“@§5/z-
>0, &(T) still has a peak close tﬁg, only rounded due to ¢
the frustration. It is then argued that there is a relaxation ratén the last step we assumed that within the volumé the
7! due to the reorganization of domains which obeys arsystem is essentially ordered and usedé #'*, with the
Arrhenius form critical exponents8=3 and v=(d—2)" !, obtained within
o the largeN approximation, ford=3*°
7 torgm AR (RO, €y The usual analysis of EC2) within the Debye approxi-

WhereAF(RD)~Tg(RD/§)2 is the activation energy of the mation, i.e., _solvmg _the Poisson equation with induced
domain. Finally, it is asserted that the divergence in the vis€harges distributed with Boltzmann weight, gives the Debye
cosity of the system at low temperatures is determined byCr€ening length
7]°C T.

We disagree with this picture. As shown below, the scale |52: ,
Rp, which signals the relevance of the long-range interac- T
charged particles of siz¢ with the expected charge density. finally gives
Even when the Debye picture applies, we find it hard to
understand how conventional screening can lead to a dynam- lp~Q Y%~ 1,
ics which is dominated by the activated reorganization ofW
screening clouds and where the natural Langevin description In summary, it is unclear why Debye screening should

gives a fast rquxapon. Whefr<R,, there are many short- cause a breakup of the system into ordered domains of size
wavelength excitations of weakly coupled charges and th$2 1, (remembei<I,) and a slow activated dynamics of

system should rather pe_have as a _h|gh-temperat_ure plasrg ch domains, necessary to obtain large viscosities. Second,
than as a glass. In addl_tlon, fOr—cc it was shown in Ref. for the scenario of Ref. 29 to work, one also has to assume
28 Jhat Debye screening occurs only at temperatulfe§ that the correlation length decreases at low temperature and
>T¢. At low temperatures modulated structures result whichy, o, Debye theory still applies. The actual analysis of &j.
lead to the formation of_ v_veII—corre_Iated stripes &s ;. for N— does not show both assumptions to be justified.
Here £(T) does not exhibit a maximum at a temperaturey,yever, it is interesting that fal<c the emergence of a
compar_able tar? b_ut keeps growing until either a stripe solid Josephson length scale at low temperafinesght give rise
or a stripe glass is formed. _ to a competition of physics on two distinct length scales
We now show that the scaRp~ ¢ Q™ *?is the Debye \yhich then, in principle, could lead to a new long-time re-
screening length of charged particles of sfz&\Ve perform a  |axation along the lines of the frustration-limited domain
coarse graining of the system into regions of linear size approack? It is interesting to explore the relationship of this

2mq?

hich is precisely the lengtRp proposed in Ref. 28.

centered around position§ . Then Eq.(1) becomes new scenario to our replica-based theory.
Finally, it is worth pointing out that the entropic droplets
H=2 Hi+2 & (C2) discu§seq in this paper are qualitatively different from the
i =i IXi— Xl domains introduced in the approach of Ref. 29. Whereas the
latter correspond to thermodynamically stable configura-
where ) . L
tions, similar to domains in ferromagnets caused by the long-
1 u ranged dipole-dipole interaction, our entropic droplets are
Hi~35 f 3d3X roe(x)?+[Ve(x)]?+ §¢(X)4 (C3)  formed by the various metastable states. Transitions between
¢ different droplets are caused by a gain of entropy of a system
and charges in what would be an otherwise frozen nonequilibrium state.
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