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Self-generated randomness, defect wandering, and viscous flow in stripe glasses
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We show that the competition between interactions on different length scales, as relevant for the formation
of stripes in doped Mott insulators, can cause a glass transition in a system with no explicitly quenched
disorder. We analytically determine a universal criterion for the emergence of an exponentially large number of
metastable configurations that leads to a finite configurational entropy and a landscape dominated viscous flow.
We demonstrate that glassiness is unambiguously tied to a new length scale which characterizes the typical
length over which defects and imperfections in the stripe pattern are allowed to wander over long times.
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I. INTRODUCTION

The competition of interactions on different length sca
is one of the mechanisms able to stabilize mesoscale p
separations and create spatial inhomogeneities in a wide
riety of systems. The most typical situation is a competit
between short-ranged forces that favors the formation o
uniform condensed phase and the long-range forces w
can energetically frustrate this condensation. Classical
amples are the formation of domains in magnetic multila
compounds1,2 and mesoscopic structures built by assembl
polymers in solution or amphiphiles in water-oil mixtures.3,4

Very often, these systems exhibit a long-time dynamics si
lar to the relaxation seen in glasses. Conversely, many
posals have been made that the glassy behavior of mole
liquids might arise from frustration of specific crystallinelik
orders incompatible with global packing, e.g., icosahed
order in dense liquids.5

The observation of complex orbital and charge pattern
colossal magnetoresistance~CMR! manganites or of charg
stripes in doped nickelates and cuprates6,7 suggests that a
similar competition causes inhomogeneous structures
these strongly correlated electron systems.8 This point of
view is supported by the observation of spat
inhomogeneities9–15 as well as slow, activated glass
dynamics,12,14 as seen in recent NMR experiments. Up
cooling, the Cu NMR signal in La22xSrxCuO4-based sys-
tems disappears~is ‘‘wiped out’’ !. This has been interprete
in terms of an electronic relaxation slower than the Larm
precession of the nuclear spins.12,14 As a result, the NMR
signal decays so fast that it simply cannot be detected a
more. Thus the ‘‘wipe out effect’’ discussed in Refs. 9–15
clear evidence for a dramatic increase of the relaxation tim
of the electronic system. Similarly, La NMR was used
directly show that there is a glassy-activated dynamics wi
maximum of T1

21(T), separating relaxational dynamic
which is slower than the nuclear Lamor frequency at l
temperatures from faster processes at higherT.12,14The typi-
cal activation energies of these dynamical processes h
been analyzed by Curroet al.14 who made the surprising
observation that they are rather independent of the spe
details of added impurities, etc. Also, the width of the dist
bution of activation energies is comparable to its mean va
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in systems with rather different chemical composition.
view of this striking universality of the anomalous long-tim
relaxation in doped Mott insulators, we recently sugges
that glassiness in these systems isself-generated; i.e., it does
not rely on the presence of quenched disorder.16,17The latter
may, in general, further stabilize a glassy state. This is s
ported by molecular dynamics calculations for charge ord
ing in transition metal oxides, which found an anomalo
long-time relaxation with a power spectrum similar to 1f
noise.18 In addition, recently Markiewiczet al.19 analyzed
neutron diffraction,20 nuclear quadrupole resonanc
~NQR!,21 muon spin resonance (mSR),22 anelastic
relaxation,21 and susceptibility measurements,23 spanning al-
together more than ten orders of magnitude of frequency,
also find a ‘‘universal’’ behavior of the activation energies
underdoped cuprates. They also find a good description
the relaxational dynamics using a Vogel-Fulcher law wh
we predicted based on an entropic droplet argument.16

In Refs. 16 and 17 we showed that the competition
tween interactions on different length scales causes the e
gence of an exponentially large number of metastable st
~with the system size!. This is generally considered as a co
dition for the anomalous dynamical features of glassine
like aging, memory effects, and ergodicity breaking. It is a
the heart of therandom first-order transitionscenario24 for
vitrification of molecular liquids, originally motivated by th
similarities between density functional theories of aperio
crystals25 and the mean-field theories for random sp
glasses. This scenario is now believed to apply to a m
more general class of systems. Our result was obtained u
a replica approach26,27 and by solving the resulting many
body problem numerically within the self-consistent scree
ing approximation. In this paper we develop an analyti
approach which enables us to identify the underlying phy
cal mechanism for glassiness in a uniformly frustrated s
tem. We furthermore discuss that our results can also be
tained within a dynamical approach, where glassiness
associated with an unconventional long-time limit of t
charge correlation function.

In the next section we introduce the model we investig
and summarize the main results of this paper. The detail
our approach are presented in Sec. IV, subsequent to
summary of the aspects of the stripe liquid state that will
©2001 The American Physical Society03-1
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important for our results in Sec. III. In Sec. V we conclu
and give a list of further open questions.

II. MODEL AND OVERVIEW

This paper develops an analytical approach to glassin
in a uniformly frustrated system. By uniformly frustrated w
mean that there is a competition of interactions on differ
length scales and there are no explicitly quenched degree
freedom, like the ones caused by additional defects or im
fections. We study a model with a local tendency towa
phase separation, frustrated by a long-range interac
which, as we will show, has all necessary features to exh
a glass transition and yet is simple enough to be treated
lytically. In the context of cuprate systems the model h
been proposed by Emery and Kivelson8 and is defined by the
Hamiltonian

H5
1

2 E ddxH r 0w~x!21@¹w~x!#21
u

2
w~x!4J

1
Q

8p E ddxE ddx8
w~x!w~x8!

ux2x8u
. ~1!

Here, w(x) characterizes charge degrees of freedom, w
w(x).0 in a hole-rich region,w(x),0 in a hole-poor re-
gion, andw(x)50, if the local density equals the averag
one. If r 0,0, the system tends to phase separate since
have to guarantee charge neutrality^w&50. The coupling
constantQ is a measure for the frustration between th
short-range coupling and the long-range Coulomb inter
tion. For Q50 and r 0,0 we expect at low temperature
long-range charge ordering. The ordering temperature ca
estimated withinN→` approximation@wherew(x is gener-
alized to anN-component field!# as Tc

052p2ur 0u/uL, with
momentum cutoffL of the order of an inverse lattice con
stant. As shown in Ref. 28, within a large-N approach, for all
Q.0, the Coulomb interaction suppresses this ordered s
at finite T. Instead, as revealed by a mean-field analysis
Eq. ~1! where N→`, the system undergoes several cro
overs.

As can be seen in Fig. 1, at highT two characteristic
length scales occur. One is the charge ordering correla
lengthj, and the otherl D;j21Q21/2 is the effective Debye
screening length of charged regions of sizej ~see Appendix
C!. Here we can already recognize the effect of the com
tition between the short-range ordering interaction and
long-range Coulomb interaction: the charge density is hom
geneous within regions of sizej, but behaves like a plasm
with screening lengthl D@j on larger scales. In Ref. 29
was argued that the emergence of the screening lengtl D
supports the formation of compact ordered domains of s
l D which then give rise to a slow motion and thus glassine
How such Debye screening should cause such compac
mains and glassiness has not been made explicit, how
Our replica approach gives no indication for glassiness in
temperature regime where the Debye screening theory
plies. Thus, despite using the same Hamiltonian, the st
17420
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glass phase discussed in this paper is qualitatively diffe
from the scenario of Ref. 29. A more detailed discussion
these aspects is given in Appendix C.

As the temperature is lowered,j increases monotonically
while l D decreases until it becomes of the order ofj. At this
point, the Debye screening approximation breaks down
the system crosses over to a new regime characterize
spatial charge modulations, called stripes, with periodl m
.2pQ21/4 and coherence lengthj28. These modulations are
particularly relevant at low temperatures where the corre
tion lengthj is larger than the interstripe distancel m and, as
we will show, where thestripe glassphase emerges.

The charge correlation function G(x,x8)
5T21^w(x)w(x8)& of the liquid state at low temperatures
then characterized by two length scalesl m andj. After trans-
formation into momentum space, this function obeys the f
lowing scaling behavior~neglecting effects due to anomalou
powers!:

G~q!5 l m
2 g~qlm ,l m /j!, ~2!

with G(q) peaked at the modulation wave vectorqm
52p/ l m with broadeningj21. In thermodynamic equilib-
rium, the model, Eq.~1!, undergoes a stripe-liquid–stripe
solid transition at some temperatureTc . Within a spherical
approximation30 or a large-N approximation,28 the transition
is of second order andTc→0 @unless one takes additiona
lattice corrections into account which yield a finiteTc ~Ref.
28!. In the Ising limit (N51), Tc.0 and there are indica
tions that the transition is driven first order by fluctuations31

Our results indicate that this phase transition may not
reached kinematically, in which case the system undergo
glass transition instead. In fact, according to our theo
glassiness emerges if the interstripe correlations in the st
liquid phase are sufficiently strong, specifically if the rat
j/ l m is larger than a critical value which we find to be clo
to 2. The temperatureTA where this happens, within th
large-N approximation of Eq.~1!, is given by

FIG. 1. The competition between different length scales acco
ing to the mean-field solution of Eq.~1!.
3-2
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SELF-GENERATED RANDOMNESS, DEFECT . . . PHYSICAL REVIEW B64 174203
TA5
Tc

0

p2Q1/411
, ~3!

which decreases for increasing frustration parameterQ.
Note that the criterionj/ l m.2 for glassiness is likely to

be much more general than the specific formula forTA ,
which depends on details of the model. Also, in a more
alistic model, the stripe-liquid–stripe-solid transition, is e
pected to be of first order due to an additional term;w3 in
Eq. ~1! which exists if particle hole symmetry is broke
Nevertheless, our results do not depend on an actual d
gence ofj but solely that it is larger than a few interstrip
separations. Therefore, our theory also applies if the tra
tion is only moderately first order and the stripe solid do
not occur unlessj.2l m . In this case, the equilibrium tran
sition is avoided and a glassy state results.

Our theory yields that belowTA the system establishes a
exponentially large number of metastable states and lo
time correlations, characterized by the correlation funct
F(x,x8)5T21limt→`^f(x,t)f(x8,0)&. These long-time cor-
relations occur even though no state with actual long-ra
order exists. Even more interestingly, long-time correlatio
with F(x,x8)Þ0 are unambiguously tied to a new leng
scalel, which characterizes the typical length over whi
defects and imperfections in the stripe pattern are allowe
wander over long times. This length can be associated w
the allowed vibrational motions in a potential minima of t
complex energy landscape of the system. In analogy w
structural glasses we therefore call it the Lindemann len
of the stripe glass.

Evidently, in the liquid statel is infinite. In the glassy
state we find thatl jumps discontinuously to a finite valu
lA.j(TA)/3 and continuously decreases at lower tempe
ture. The discontinuous jump inl, unaccompanied by a la
tent heat, indicates that the transition is of the random fi
order type,24 i.e., has one-step replica symmetry breakin
Thus, the glassy state is stable only if the slow motion
glassy textures is confined to a range smaller thanlA ~justi-
fying our term Lindemann length!. Due to this additional
length scale, the following scaling behavior of the long-tim
correlations results:

F~q!5 l m
2 j S qlm ,

l m

j
,
l m

l D , ~4!

with j (x,y,z)5g(x,y)2g(x,Az22y2) andg from Eq. ~2!.
In Fig. 2 we show the momentum dependence ofF(q) in

comparison withG(q). Close toqm[2p/ l m ~if uuqu2qmu
<j21) we have F(q);G(q). Configurations which are
close to perfect stripe arrangements are solely characte
by a momentum-independent Debye-Waller factor, such

F~q!.
1

11~l/j!2
G~q!.

On the other hand, ifuuqu2qmu*l21, long-time correlations
are much reduced compared to instantaneous correla
with F(q).l22G(q)2. These ‘‘tails’’ of the correlation func-
tions are obviously built up by configurations with defec
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and imperfections of the perfect stripe arrangement. The
fore, l has to be interpreted as the length scale over wh
defects of the stripe pattern are allowed to wander afte
long time. The glassy state can only be supported ifl
,lA ; it melts if defects are allowed to wander too far.

Glassiness, including a viscous, energy-landsca
dominated long-time relaxation, sets in due to the occurre
of exponentially many metastable statesNms}exp(Sc).

24 We
find that the configurational entropy

Sc~TA!;Q3/4V; l m
23V, ~5!

whereV is the volume of the system. The shorter the mod
lation length, the larger is the number of possible metasta
states, which is plausible for simple geometrical reaso
This clearly demonstrates that locally the stripe correlatio
stay intact in all these configurations. Furthermore, it is
packing of stripes with different orientation and the arrang
ment of defects that distinguishes the many different me
stable states.

In the laboratory, the system will freeze into a glass,
some temperatureTG,TA which depends on the coolin
rate. While this glass transition is purely dynamical and d
tinct from a conventional phase transition, a key feature
the ideal glass transition scenario of Ref. 24 is that the slo
ing arises from proximity to an underlying random first-ord
transition atTK,TG , where the configurational entropy van
ishes likeSc(T)}T2TK . Our theory gives exactly this be
havior with

Sc~T!5 l m
23C~l/j,l m /j!V.

We find C(s,t)5(11s21)(12t)21 ln@12(12t)2# which
vanishes linearly at a temperatureTK . Below TK the system
freezes into an amorphous solid state due to this ‘‘entro
crisis,’’32 even for an infinitely slow cooling rate. Usually
the reason for the system to prefer the liquid state over
solid is entropic. IfSc→0, there is no entropic advantag
anymore to be in the liquid state and the amorphous s
results, even in equilibrium.

FIG. 2. TheG andF correlation functions as given by Eqs.~2!
and ~4! for l m /j5p/10 andl m /l52p/5.
3-3
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WESTFAHL, SCHMALIAN, AND WOLYNES PHYSICAL REVIEW B64 174203
Freezing into a glassy state belowTA implies that within
our replica approach the barriers between different m
stable states are infinite. This, however, is a consequenc
the mean-field character of the replica technique. Follow
Ref. 24 we argue that the formation of a mosaic pattern w
dynamically defined droplets of sizeR of different meta-
stable states will occur. Entropy-driven transitions betwe
different states lead to dynamical processes with relaxa
time obeying a Vogel-Fulcher law

t}expS DTK

T2TK
D , ~6!

with fragility

D~Q!}
s0

2~Q!

dSc~Q,T!

dT U
TK

~7!

determined by the configurational entropy as well as the b
surface tension of entropic dropletss0(Q). Finally, a simple
estimate fors0, based on a variational argument, giv
D(Q)}AQ to a good approximation. This was recent
found in numerical simulations of the lattice version of E
~1! by Groussonet al.33

Recently, Markiewiczet al.19 analyzed various experi
ments performed on La22xSrxCuO4, spanning altogether 13
orders of magnitude of frequency, and also found a ‘‘univ
sal’’ behavior of the activation energies in underdoped
prates. Interestingly, a good description of the relaxatio
dynamics using a Vogel-Fulcher law, Eq.~6!, is possible. The
analysis of Ref. 19 also yields thatTK decreases with in-
creasing doping concentrationx. Using the relation,l m
.a(2x)21,34 between interstripe distancel m and the doping
concentration~with a being the lattice spacing!, as well as
l m.2pQ21/4, enables us to determine the doping dep
dence ofTK and show that it is properly described within o
theory. This is shown in Fig. 3 in comparison with the resu
as deduced from experiment in Ref. 19. Indeed, our the
gives the proper doping dependence ofTK . If we neglect the
differences betweenTK and TA ~see inset of Fig. 5 below!,

FIG. 3. Comparison ofTK with the experimental data analyze
by Markiewiczet al. ~Ref. 19!.
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an approximate formula for the doping dependence ofTK is
TK.Tc

0/(4p3x11) . The typical doping concentration o
which changes in the glass transition temperature occu
x051/4p3.0.008. Note that the experiments analyzed
Ref. 19 are solely sensitive to the spin excitations of
system. We argue that due to strong coupling between ch
and spin degrees of freedom~which is evident from the for-
mation of phase or antiphase domain walls!, glassiness of the
charge density causes the observed anomalous long-time
namics in the spin channel. Note that due to parameters
u or r 0 which are not known quantitatively without startin
from a more microscopic theory, we cannot determine
absolute magnitude of the freezing temperatureTK . On the
other hand, the doping dependence ofTK should be fairly
robust since it only depends on the interstripe distance. S
lar to the number of metastable states, which is only de
mined by the way one can geometrically arrange differ
stripe pattern, is theQ dependence of the freezing temper
ture dominated by these geometrical aspects. This sh
make the doping dependence ofTK for low doping concen-
tration independent of microscopic details.

III. STRIPE LIQUID

In this section we summarize the main results for t
stripe liquid state needed for our subsequent calculation
the glass state. We will mostly use results obtained within
leading contribution of a 1/N expansion. We calculate
higher-1/N corrections and show that they are small in t
low-temperature regime discussed here. Note also that
numerical solution presented in Ref. 16 did take higher-1N
corrections systematically into account. The agreement
tween the results of this section with these numerical res
also supports the neglect of 1/N corrections for the stripe
liquid state. The latter will become essential, however, in
glass state.

The mean-field equations of the stripe liquid includin
1/N corrections have been discussed in detail in Ref.
Some of these results have already been summarized ab
In what follows we will mostly discuss the low-temperatu
regime where the correlation lengthj exceeds the modula
tion lengthl m of the system. This means we will be conce
trated in the high temperature region of Fig. 1.

In the mean-field approximation the correlation functi
is given by

G~q!5
1

r 1q21
Q

q2

, ~8!

where the parameterr 5r 01u^f2& must be determined self
consistently. At high temperatures,r .2AQ and the system
is characterized by a correlation lengthj;r 21/2, similar to
the unfrustrated system, as well as a Debye screening le
l D;j21Q21/2 characterizing conventional screening
charged objects with linear sizej and charge;Q1/2. In the
limit l D@j the Fourier transform ofG is given by
3-4
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G~x!5

e2x/j2S j

l D
D 2

e2x/ l D

4puxu
. ~9!

At lower temperatures, whenr (T),2AQ, simple Debye
screening breaks down and the system establishes modu
structures with modulation length~interstripe distance! l m

54p/A2AQ2r and correlation lengthj52/Ar 12AQ.28

However, unlessj becomes larger thanl m , no actual
stripe correlations emerge. This happens only if, at e
lower temperatures, the charge correlations are sufficie
strong to form a stripe liquid and different stripes a
strongly correlated. We will focus on this temperature
gime. Here, 0.r (T).22AQ and thusG(x) exhibits an os-
cillatory behavior withj. l m .

It will be useful to introduce the positive dimensionle
parameter« via

«25
4Q

r 2
21. ~10!

We then find~defining qm
2 52r /2;Q1/2 with l m52p/qm)

that one can approximate the correlation function as

G~q!.
qm

22

F S q

qm
D 2

21G2

1«2

. ~11!

In the last step we took only the leading term close to
peak atqm into account. By doing this approximation we a
breaking the charge neutrality condition@G(q50)50#, only
by a factorG(q50)/G(qm)5«2. For «!1, the leading con-
tribution of the Fourier transform ofG is given by

G~x!5
e2x/jsin~2px/ l m!

4p«uxu
, ~12!

which clearly shows the physical nature of the two leng
scalesj52/«qm and l m52p/qm . In order to have well-
correlated stripes, the correlation lengthj must be much big-
ger than the modulation lengthl m . This indeed translate
into «!1 which can be used as a small parameter of
theory.

Within the large-N approximation, the temperature depe
dence ofr is determined by

r 5r 01u0TE d3p

8p3
G~p!. ~13!

For the case without frustration,Q50, the usual critical tem-
perature Tc

052p2ur 0u/uL results from the requiremen
r (Tc

0)50. However, for finiteQ no finite transition tempera
ture occurs within the large-N approximation. Instead, on
finds from Eq.~11! that

r ~T!5r 01
u0T

2p2 S p

2

qm

«
1L D . ~14!
17420
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In Eq. ~13! we ignored additional 1/N corrections, character
ized by the self-energy at zero momentum. In the limitj
. l m under consideration we findSG(0).28qm

2 «/p. Since
« is small, the one-loop self-energy correction toG can be
safely neglected, given thatSG is an additive correction to
the second term on the right-hand side~RHS! of Eq. ~14!
which behaves, in leading order, as«21. From Eqs.~10! and
~14! we find at low temperatures

«5
p

2
Q1/4

T/Tc
0

2AQ

r 0
112

T

Tc
0

.
p

2
Q1/4

T/Tc
0

12
T

Tc
0

, ~15!

where in the last stepur 0u@2AQ was assumed. This relation
ship will be useful for the determination of the temperatu
TA , where glassiness sets in.

IV. STRIPE GLASS

A. Spontaneous ergodicity breaking and replica formalism

With few exceptions,35–38 the analytical investigation o
glassiness due to the emergence of a large number of m
stable states has concentrated on systems with quenched
domness. A major step forward was made in Refs. 26 and
where a new replica approach, equally applicable
quenched random and nonrandom systems, was develo
Within this approach, the configurational entropy for mod
of structural glasses was calculated, in good agreement
computer simulations.27 Here, we use this approach to inve
tigate the physics of self-generated stripe glasses.

The equilibrium’s free energy density is given asF
5(2T/V)ln Z. It is of relevance only if the system is kinet
cally able to explore the entire phase space. Alternativ
one can introduce the averaged typical free energy of a
tem using the following recipe of an ‘‘ergodicity breakin
field.’’ 26,27

Locally stable field configurations can be identified usi
a test fieldc(r ) and computing the partition sum

Z@c#5E Dw expS 2H@w#/T2
g

2E ddx@c~x!2w~x!#2D ,

~16!

whereg.0 denotes the strength of the coupling. Evident
the free energy

f̃ @c#52T ln Z@c# ~17!

will be small when the fieldc equals to a field configuration
which locally minimizesH. Thus, sampling all configura
tions of thec field, weighted with exp(2b f̃@c#), is essen-
tially a procedure to scan all locally stable configuration
The quantity

F̃5 lim
g→0

1

WE Dc f̃ @c#exp~2b f̃ @c#! ~18!
3-5
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is the weighted average of the free energy density of
locally stable configurations. Here,W5*Dc exp(2 f̃@c#/T)
is introduced for proper normalization.

It is physically appealing then to introduce the free ene
differencedF via

F5F̃2dF, ~19!

wheredF gives the amount of energy lost if the system
trapped into locally stable states and hence not able to
plore the entire phase space of the ideal thermodyna
equilibrium. If the limit g→0 on Eq.~18! behaves perturba
tively, dF50. This indicates that the number of local
stable configurations stays finite in the thermodynamic li
or at least grows less rapid than exponential withV. In this
case all states are kinetically accessible. On the other han
the limit g→0 does not behave perturbatively, it means t
the number of locally stable states,Nms, is exponentially
large inV. This allows us to identify the difference betwee
the equilibrium and typical free energy as an entropy:

dF5TSc . ~20!

The configurational entropy densitySc5 ln Nms is a measure
of the number of metastable states and is an extensive q
tity if there are exponentially many of those states. Its em
gence renders the system incapable of exploring the e
phase space.Sc is then the amount of entropy which th
system that freezes it into a glassy state loses due to
nonequilibrium dynamics.

In order to find an explicit expression forSc one intro-
duces a replicated free energy26

F~m!52 lim
g→0

T

m
ln E D cZ@c#m, ~21!

from which F̃ can be obtained asF̃5]mF(m)/]mum51 and
hence

Sc5
1

T

]F~m!

]m U
m51

. ~22!

InsertingZ@c# of Eq. ~16! into Eq.~21! and integrating over
c, one gets

F~m!52
T

m
ln Z~m!, ~23!

with replicated partition function given by

Z~m!5 lim
g→0

E Dmw exp2S (
a51

m

H@wa#/T

2
g

2m (
a,b51

m E ddxwa~x!wb~x!D , ~24!

which has a structure similar to a conventional equilibriu
partition function. Note that, in the limitg→0, contributions
proportional tog which are diagonal in the replica space c
be safely neglected. The ergodicity breaking fieldc causes a
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coupling between replicas which might spontaneously le
to order in replica space even asg→0. This order is then
associated with a finiteSc and thus glassiness.

Formally, Eq.~24! equals the partition function of system
with quenched random field analyzed using the conventio
replica approach. The main difference is that, here, the li
m→1 has to be taken. The resulting many-body problem
replica space is characterized by the matrix correlation fu
tion Gab(q)5^wa(q…wb(2q…& in replica space with Dyson
equation

G 21~q!Uab5G 0
21~q!dab1Sab~q!2

g

m
. ~25!

Here,G0(q) is the Hartree propagator of Eq.~8! which we
approximate at low temperatures by Eq.~11!. Sab(q) is the
self-energy in replica space. If we find that, as a conseque
of the ergodicity breaking coupling constantg, Sab(q) has
finite off-diagonal elements, we can conclude that there m
be an energy landscape sensitive to the infinitesimal per
bationg, supporting a glassy dynamics. On the other hand
Sab(q) is diagonal, conventional ergodic dynamics resu
and the system is in its liquid state or may build an orde
solid. As pointed out above, this strategy is similar to t
investigation of symmetry breaking in conventional pha
transitions where the off-diagonal elements of an appro
ately defined matrix self-energy are associated with the o
parameter of the transition~superconducting gap function o
staggered magnetization in the case of a superconducto
antiferromagnet, respectively!. However, it turns out that in
the present case the off-diagonal elements ofSab(q) jump
discontinuously from zero to a finite value and a lineariz
theory with Sab(q)(12dab) small ~which determines the
transition temperature in the case of continuous phase t
sitions! will only give the trivial solution with vanishing off-
diagonal elements. A nonlinear theory forSab(q) needs to be
developed.

Since the attractive potential between different replicas
symmetric with respect to the replica index, we use the f
lowing ansatz for the Green’s function:

Gab~q!5@G~q!2F~q!#dab1F~q!, ~26!

i.e., with equal diagonal elementsG(q) and equal off-
diagonal elementsF(q). Note that if one applies the prese
replica formalism to systems with quenched disorder, it tu
out that the replica-symmetric ansatz, Eq.~26!, is equivalent
to one-step replica symmetry breaking in the conventio
replica formalism.26 The physical interpretation ofG(r2r 8)
5T21^w(r …w(r 8…& as thermodynamic~instantaneous! corre-
lation function is straightforward. On the other hand,F(r
2r 8)5T21limt→`^w(r,t…w(r 8,0…& can be interpreted a
measuring long-time correlations. As shown in Appendix
inserting the ansatz, Eq.~26!, into Eq.~25! gives in the limit
m→1

G 21~q!5G 0
21~q!1SG~q! ~27!

for the diagonal elements and
3-6
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F~q!5
2G 2~q!SF~q!

12G~q!SF~q!

5G~q!2
1

G 21~q!2SF~q!
[G~q!2K~q! ~28!

for the off-diagonal elements, respectively. Here,SG andSF
are the diagonal and off-diagonal elements of the self-ene
in replica space. In the last equationK denotes the deviation
of the long-time and instantaneous correlations. Analyz
the corresponding dynamical equations of the problem
turns out thatK is the static retarded response function.39 In
the liquid state fluctuation dissipation theorem givesK5G
and no long-time correlations occur.

B. Defect wandering in stripe glasses

The self-energy in replica space was numerically inve
gated in Ref. 16 within the self-consistent screening appro
mation which we summarize in Appendix A. It was show
that below a characteristic temperatureTA , an off-diagonal
self-energy in replica space emerges, leading to finite lo
time correlationsF(q), as well as a finite configurationa
entropy density

sc5Sc /V ~29!

in the thermodynamic limitV→`. Here we present an ap
proximate but analytical solution of the same set of equati
which has the appeal that the underlying physics of the st
glass formation becomes much more transparent. It also
veals more directly the emergence of a new length sc
which characterizes the wandering of defects in the st
pattern after long times. In this context, we demonstrate
the melting of the glass asT becomes larger thanTA is a
consequence of the fact that the characteristic length for
fect wandering becomes too large; the glass becomes
fluid, causing the devitrification into a stripe liquid.

The key assumption of the analytical approach to the s
consistent screening approximation is that the off-diago
self-energySF(q) is weakly momentum dependent. Speci
cally, we assume that due to the strong momentum dep
dence of the correlation function, the productG(q)SF(q)
varies withq predominantly due toG(q). This assumption
will be justified a posteriori. Also, our numerical results
which were obtained without any restriction on theq depen-
dence ofSF(q), clearly show that this assumption is jus
fied. We will then calculateSF(qm) at the modulation wave
vectorqm .

From the analysis of the liquid state we know thatG(q) is
strongly peaked at the modulation vectorqm with width j21.
By inspection of the Dyson equation~28!, for F, one can see
that for q;qm and SF(qm)G(qm)@1 ~since G is peaked
aroundq5qm)

F~q!&G~q!. ~30!

Moreover,G vanishes rapidly away from the peak@as does
SF(qm)G(qm)] and it follows from the same equation~28!
that for largeuq2qmu
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F~q!.2SF~q!G 2~q!. ~31!

If a solution forF exists, it is going to be peaked atqm , but
smaller and narrower thanG. Consequently, if a stripe glas
occurs, the long-time limit of the correlation function in n
just a slightly rescaled version of the instantaneous corr
tion function, but it is multiplied by aq-dependent function
that leads to a qualitatively different behavior for differe
momenta. Once a glassy state is formed, configurati
which contribute to the peaks ofG(q) andF(q), i.e., almost
perfect stripe configurations, are almost unchanged even
ter long times. Close toqm , F(q) is solely reduced by some
momentum-independent Debye-Waller factor exp(2D)
5F(q)/G(q). On the other hand, certain configuratio
which form the tails ofG(q), i.e., defects and imperfection
of the stripe pattern, disappear after a long time since n
F(q)!G(q). The ratio of both functions is now strongl
momentum dependent.F(q) becomes sharper thanG(q) be-
cause certain defects got healed in time. Evidently, th
must be a momentum scale~or equivalently a length scale!
which determines the transition between these two regim
In what follows we will identify and determine this lengt
scale. A pictorial description of the defects on the stripe c
figuration and the meaning ofl is presented in Fig. 4.

Due to our assumption thatSF is weakly dependent onq,
we concentrate onSF(qm) at the modulation wave vector
One easily finds thatSF(qm)<0. A dimensional analysis
furthermore shows thatSF is length22. This suggests to de
fine a new length scalel via

SF~qm!52S 2

l D 2

. ~32!

For the subsequent calculation it is convenient to introd
in addition to the dimensionless parameter« which gives
j215«qm/2 a new dimensionless parameterk, defined via

FIG. 4. Pictorial description of the wandering of defects in t
stripe pattern. The upper panel shows defects that can be heale
the wandering process. The lower panel shows defects which
too far apart and cannot be healed.
3-7
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l215
Ak22«2qm

2
. ~33!

Obviously, in the liquid state, whereSF→0, we findl→`
and it holdsk5«. In a glassy statek.«. This ansatz for
SF , inserted into Eq.~28!, yields

K~q!5
qm

22

F S q

qm
D 2

21G2

1k2

~34!

for the correlation functionK5G2F. Note thatK has the
same structure asG but with «→k. It immediately follows
that it is the length scalel which determines whether lon
time correlations are similar or different from instantaneo
ones. If uq2qmu,l21, Eq. ~30! holds, whereas foruq
2qmu.l21 long-time correlations are strongly reduce
leading to Eq.~31!. Consequently we identifyl as the length
scale over which imperfections of the stripe pattern man
to wander; i.e., defects can be healed, even in the fro
glass state.

The next step is to determineSF(qm) for a given value of
l and to self-consistently determine this length scale. T
details of the calculation ofSF(qm) with G(q) as given in
Eq. ~11! andK(q) of Eq. ~34! are summarized in Appendi
B. The result is

SF~qm!52
8qm

2 «2

p

S 12
«

k D 2

12S 12
«

k D 2 S 1

«
2

1

k D . ~35!

This has to be compared with our ansatz, Eq.~32!. Together
with Eq. ~33! this gives

SF~qm!52~k22«2!qm
2 . ~36!

Comparing Eqs.~35! and~36! we immediately find the non
linear algebraic equation

k22«25
8«2

p

S 12
«

k D 2

12S 12
«

k D 2 S 1

«
2

1

k D , ~37!

which determines the length scalel ~via k), as a function of
the correlation length and the modulation length, i.e., pr
erties of the liquid state. One solution of this equation
always«5k , which corresponds to the liquid state. Facto
izing this trivial solution from Eq.~37! we find that the other
solutions are given by

«

k F 8

p« S 12
«

k D 2

2S 12
«

k D G52. ~38!

This is a cubic equation which can be solved exactly. Bef
we discuss this equation in some detail we analyze the c
dition for obtaining a nontrivial solution which correspon
to the onset of glassiness. For 8/p«@1 the left-hand side of
Eq. ~38! has its maximum 1/p« at k.3« which gives the
17420
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condition for the existence of a solution as 1/p«>2. This
defines the critical value of« as

«A5«~TA!.
1

2p
. ~39!

For N.1, it is straightforward to show that this result
generalized to«A.1/2pN. Thus, if the ratio of the correla
tion length and the modulation length exceeds the criti
value

j

l m
U

T5TA

.2, ~40!

long-time glassy correlations emerge. As expected, bes
strong frustrations, glassiness also requires sufficie
strong liquid correlations. Since it follows from Eq.~38! that
k.3«, it also follows that

l

l m
U

T5TA

.
2

3
. ~41!

This type of behavior is evident in Fig. 5 where, independ
of the value ofQ, all curves forl/ l m reach the same maxi
mum value atTA . If defects and imperfections of the strip
pattern within the glassy state manage to flow over len
scales larger than. 2

3 l m , the glass becomes unstable becau
it is too fluid to support a frozen state. Thus, we identify t
length scalel as the Lindemann length of the glass.

As can be seen in Fig. 5,l is a monotonically increasing
function of temperature. At small temperaturesl grows lin-
early, evolving to a cusp at the dynamical freezing tempe
ture TA . Above TA , l becomes infinite and the devitrifica
tion is complete.

Using theQ dependence of« in the liquid state@see Eq.
~15!# the stripe-glass–stripe-liquid transition temperature
then given by

FIG. 5. The Lindeman lengthl as a function of temperature fo
different values ofQ. Inset:Q dependence ofTA2TK , whereTK is
obtained in Sec. IV D.
3-8
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«A5
1

2p
5

p

2
Q1/4

TA /Tc
0

12
TA

Tc
0

, ~42!

which gives

TA5
Tc

0

p2Q1/411
, ~43!

whereTc
0 is critical temperature of theQ50 problem. More-

over, since the difference betweenTA andTK is small com-
pared toTc

0 ~see the inset of Fig. 5!, theQ dependence ofTK

will be roughly the same as ofTA . As pointed out above, we
do not expectTA to be sensitively affected by an addition
(v/3)w3 term in the Hamiltonian. This is less clear for th
Kautzmann temperature~see Sec. IV D! and the difference
betweenTA andTK might well depend on the coupling con
stantv. Still we expectTK to decrease for increasingQ.

C. Lattice corrections

Until this point our theory has been performed in the co
tinuum’s limit and effects due to lattice corrections ha
been neglected. The particular form of the propagator, E
~8! and ~11!, however, gives rise to a specific sensibility
our results to lattice corrections which is worth mentionin
Within the continuum’s limit, the large-N approach used in
this paper yields no ordinary phase transition to a stripe s
state, a result which has been pointed out earlier.28,30 This
can be most easily seen from the mean-field equation~14!. A
solution«50 is only allowed ifT50. ForT.0 one always
finds a large, but finite correlation length,j52/«qm . The
absence of an ordered state is a consequence of the di
sion relationvq , with

vq5qmAF12S q

qm
D 2G2

1«2. ~44!

In contrast to an antiferromagnet or a conventional cha
density wave, where the low-energy modes are determ
by isolated points in momentum space, Eq.~44! gives rise to
a (d21)-dimensional sphere of low-energy modes in m
mentum space~see upper panel of Fig. 6!. It is this large
phase space of low-energy excitations which destroys lo
range order.

The most dramatic effect of corrections beyond the c
tinuum’s limit is the appearance of an anisotropy on the lo
energy states. It is reasonable to assume that the Hamilto
~1! has a next-order correction of the type 4Kqx

2qy
2 which

leads to a direction-dependent ‘‘mass’’ term in Eq.~44!,

«25«2~K50!1Kqm
2 sin2~2f!, ~45!

with anglef ~in the x-y plane! and a dimensionless aniso
ropy parameterK. Of course this is only justified ifK
!qm

22 . If, however,K.qm
22 , the physics strongly depend

on phenomena on the scale of the interatomic spacing.
The mean-field equation for finiteK is then given by
17420
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r ~T!5r 01
u0T

2p2 S p

2

qm

A«~K50!21Kqm
2

11D . ~46!

The system now undergoes a phase transition for arbit
smallK at Tc5Tc

0/(pK21/2L11). As expected,Tc vanishes
asK→0 . Moreover, as pointed out in Refs. 28 and 30,Tc

does not merge withTc
0 as Q→0. The origin of this phase

transition is that the (d21)-dimensional sphere of low
energy degrees of freedom is reduced to arcs of sizedw
;«/(K1/2qm) ~see lower panel of Fig. 6!. As « decreases,
these arcs become indistinguishable from isolated point
behavior similar to the case of an antiferromagnet or a cha
density wave occurs, leading to an ordinary phase transit
The mean-field analysis of the lattice version of Eq.~3! of
Ref. 30, which findsTc considerably smaller thanTc

0 sup-
portsK!qm

22 .
In analogy to the mean-field analysis of the liquid sta

one can also perform the theory of the glassy state for fi
K. If lattice corrections are strong andK;qm

22 , a transition
to a stripe solid occurs atTc . The low-energy excitations ar
located at isolated points and the behavior is equivalen
the one of an unfrustrated system. In this case, the gla
state will only occur if the solidification is avoided by supe
cooling. On the other hand, ifK!qm

22 , the low-energy
modes are unchanged and the lattice corrections becom
relevant. Since the glass transition does not require« to van-
ish, but solely to reach a certain finite limit;1/2p, we con-
clude that forK&qm

22/2p the glass transition is essential
unchanged.

D. Configurational entropy

The main argument for the emergence of a glassy sta
the occurrence of an exponentially large number if me

FIG. 6. Low-energy modes. Upper panel: in the continuum
limit, K50, the phase space for low-energy excitations is ad21
sphere. Lower panel: the anisotropy gives rise to a ‘‘directio
dependent mass’’ and the phase space for low-energy excitatio
reduced to a set of arcs.
3-9
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stable states, characterized by the configurational entropSc
is determined from Eq.~22! from the replicated theory de
fined in Eq. ~24!, which gives F(m)5(2T/m)ln Z(m).
Within the self-consistent screening approximation it follo
that

F~m!/~2mT!5tr logG 211tr lnD 212tr SG.

Since all quantities are matrices in replica space with a st
ture given in Eq.~26!, the evaluation of expressions lik
tr ln G21, etc., becomes straightforward. Performing the
rivative with respect to the number of replicas according
Eq. ~22! gives immediately for the entropy density

sc5sc
(1)1sc

(2) ,

with the two contributions

sc
(1)52

1

2 E d3q

8p3 H lnS 12
F~q!

G~q! D1
F~q!

G~q! J
and

sc
(2)5

1

2 E d3q

8p3 H lnS 12
v0PF~q!

11v0PG~q! D1
v0PF~q!

11v0PG~q!J .

For the definition ofPF , PG , etc., see Appendix A. Using
the same approximations as for the evaluation of the s
energy,SF , in Appendix B we find

F~q!

G~q!
'

k22«2

F S q

qm
D 2

21G2

1k2

.

The evaluation of the integrals is straightforward and we fi

sc
(1)5

qm
3

4p

k

2 S 12
«

k D 2

,

sc
(2)5

qm
3

4p

2

p H S 12
«

k D 2

1 lnF12S 12
«

k D 2G J . ~47!

Obviously,scÞ0 only if k.«; i.e., the Lindemann lengthl
is finite. sc vanishes in the liquid state wherek5«. The
results forsc(T) for different values ofQ are given in Fig. 7.

Using the results of the previous section where we fou
that for T5TA the dimensionless quantities« and k take
fixed values, we obtain atT5TA

Sc~TA!5CVQ3/4, ~48!

with

C5S 2

p
1

3

4p D 1

9p
1

1

2p2
lnS 5

9D51.181631023.

The configurational entropy decreases for decreasingQ.
Since the modulation length behaves asl m;Q1/3, it follows
thatSc} l m

23 . The larger the modulation length, the smaller
the number of states one can form, which clearly dem
strates that locally stripe correlations stay intact in all th
17420
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o
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d

d

-
e

configurations. It is more the packing and arrangement
defects which distinguish different metastable states. Fe
of those packings are possible per unit volume if the mo
lation length grows, for simple geometrical reasons. The
lation ~48! was recently derived by us using the concept
replica bound states.17 The fact that we obtain the same resu
using an entirely different approach to solve the probl
increases our confidence in the applicability of the se
consistent screening approximation, which also allows us
calculate the constantC. We can also compareSc(TA) with
the numerical results of Ref. 16.Sc was calculated in Ref. 16
for the valuesQ50.01 andQ50.001, where we foundSc
53.4531025 and 6.431026, respectively. From Eq.~48!
we find the values 3.731025 and 6.631026, which agrees
well with the numerical results.

Finally, the condition Sc(T5TK)50 determines the
Kauzmann temperature below which no entropic advant
of the liquid state, compared to the amorphous solid s
~the glass! exists. Even if one manages to anneal the liqu
down toTK without freezing into a glass, something whic
might be achieved using an infinitely slow cooling rate,
mandatory transition into an amorphous solid occurs atTK .
In Fig. 7 we show the temperature dependence ofSc for
different values of the frustration parameterQ as well as the
Q dependence of the slope (dSc /dT)TK

.

E. Dynamics and flow via entropic droplet formation

So far, we have shown that within the self-consiste
screening approximation of Eq.~1!, an exponentially large
number of metastable states occurs. The conclusion
somewhere belowTA nonequilibrium dynamic sets in is ac
tually obtained using a purely thermodynamic characteri
tion of the spectrum of metastable states. It is very plaus
that an exponentially large number of metastable state
necessarily connected to glassy dynamics. In several ran
spin models as well as in the model of self-generated gla
ness in frustrated Josephson junction arrays, this poin
view has been clearly supported by actual dynamical ca
lations. For so-called infinite-range models~i.e., within

FIG. 7. The configurational entropy for different values ofQ.
Inset: dependence of (dSc /dT)Tk

on Q.
3-10
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SELF-GENERATED RANDOMNESS, DEFECT . . . PHYSICAL REVIEW B64 174203
mean-field approximation!, where the barriers between th
various metastable states diverge, freezing atTA has been
found.24,40

Solving the Langevin equation for the time evolution
the correlation and response function ofw(x,t), using the
supersymmetric formulation of the Martin-Siggia-Ro
approach41 within the self-consistent screening approxim
tion, we find that the emergence of exponentially many me
stable states also leads to stripe glass state within a dyn
cal approach.39 Interestingly, this mode-coupling-typ
approach gives exactly the same criterion for the emerge
of glassiness as the above replica approach only if one p
erly takes the aging behavior of the dynamical evolution i
account, following Ref. 42. Thus, the replica approach e
ployed here takes the effects of aging correctly into acco

Within the mode coupling or replica integral equation a
proaches a perfect freezing occurs at the temperatureTA .
However, more realistically,TA is rather a crossover scale
a regime with slow activated dynamics and not the act
freezing temperature. Depending on the history of the s
tem, the laboratory glass transition where the time scale
motions exceeds a certain limit occurs somewhere betw
TK andTA . A key question in this context is the nature of th
dynamical processes forTK,T,TA .

This dynamics involves droplets or instantons, essen
singularities from the point of view of perturbative a
proaches. A complete formal treatment is therefore diffic
Nevertheless, a reasonable description of the dynamics
system with finiteSc is given in Ref. 24, where the nucle
ation of droplets with sizeR of a new state within an old on
was argued to be the main dynamical processes. The
energy gain of a droplet formation is caused by the entro
gain due to the exploration of new states, i.e., byTscR

3,
whereas one has to take into account that such a dro
implies a finite surface energy, characterized by a sc
dependent surface tensions(R). The energy landscape o
these excitations should therefore be similar to the one of
random-field Ising model. The fundamental connection
tween this model and the replica approach used in this p
is also evident from Eq.~24!. Thus we use a renormalizatio
group calculation for the random-field Ising model, based
Ref. 43, which leads to the size-dependent surface tensi

s~R!5s0~RL!2u. ~49!

Hereu5(d22)/2 reflects the fact that the interface betwe
two states is wetted by intermediate states. This anal
leads to a characteristic energy barrierDE}@Tsc(T)#21

which implies a characteristic relaxation time which follow
a Vogel-Fulcher law

t}expS DTK

T2TK
D , ~50!

independent of the dimension. Here, fragility parameter
the Vogel-Fulcher law is given by
17420
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D5
3s0

2

T2TK

dSc

dT U
TK

. ~51!

Xia and Wolynes44 have shown that this scenario gives
quantitative description of viscous flow in molecular liquid
A straightforward extension of Refs. 24 and 44 along t
lines of Ref. 45 also gives a width of the distributions
different activation energies characterized by the me
square widtĥ dR2& of the droplet size, which might be com
pared with the results of Ref. 14. This droplet picture impl
that the glass breaks up into domains of different metasta
states, separated by wetted surfaces~consisting of intermedi-
ate states!, leading to a rather small surface tension. Th
physical picture is very similar to what is usually called
‘‘cluster spin glass,’’ motivated by the observations made
Ref. 9 based on NMR experiments.

For a quantitative analysis we have to develop a the
for the bare surface tensions0 for the stripe glass. This dif-
fers from the theory of molecular liquids because of t
long-range forces in the model. In what follows we giv
simple estimates fors0, based on a variational argumen
There are two sources of the bare surface tension in Eq.~1!,
the gradient term and the long-range Coulomb term. Assu
ing a droplet configuration with locally ordered charge co
figuration

w~r !5w0cos~2pr / l m!tanhS r 2R

l w
D , ~52!

with droplet radiusR and wall thicknessl w . In order to make
progress, we assume that the thin-wall limitl w!R applies
and find for the gradient term

Es
(1)54pw0

2l w
22E

R2 l w/2

R1 l w/2

r 2dr.4pw0
2l w

21R2 ~53!

and for the long-range Coulomb term

Es
(2).4pw0

2l m
21R2. ~54!

For larger values of the frustration parameterQ, l w is esti-
mated by the largest length scale of the problem~exceptR of
course! which should correspond to the lowest energy of t
droplet wall. This givesl w5j . Alternatively, for smaller
values ofQ the surface tension is dominated by the con
bution of the Coulomb term and we find

s054pw0
2l m

21 .

From the same variational argument we findw0
25(1/u)Q1/2,

which gives, together withl m.2pQ1/4, the result s0
.(2/u)Q3/4. Thus, if the frustration parameter decreases,
barrier height between different metastable states disapp
Even though the number of metastable states and
dSc /dTuTK

decreases for decreasingQ, the surface tension
term dominates and it follows that

D~Q→0!→0. ~55!
3-11
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The fragility parameter does not vanish according to a po
law, mostly becauseTA2TK , which enters dSc /dTuTK

.Sc(TA)/(TA2TK) has logarithmic behavior asQ→0. Es-
sentially,D vanishes withQ similar to a square root. In Fig
8 we compareD(Q) with the results obtained in Mont
Carlo simulations of the lattice version of Eq.~1! by Grous-
sonet al.33 Here we multiplied the result from Eq.~51! by an
overall prefactor, leading to a very good agreement betw
our analytical theory and the numerical results of Ref.
Since the calculations in Ref. 33 are performed for a latt
version of Eq.~1!, the actualT dependence of the correlatio
length differs from ours. Correspondingly the absolute m
nitudes ofTK , which enters in Eq.~51!, are different. For
this reason we do not expect the absolute magnitude oD,
but solely itsQ dependence to agree in both approaches

V. CONCLUSIONS

Glasses are typical examples of systems of many inter
ing particles that have a tendency to self-organize into m
soscopic structures. In this paper we studied the slow a
vated dynamics of charge inhomogeneities in doped M
insulators. We developed an analytical approach which
abled us to identify the underlying physical mechanism
glassiness in a uniformly frustrated system. We showed
when the charge correlations are sufficiently strong, spe
cally if j/ l m.2, the stripe-liquid–stripe-solid transition ca
become kinematically inaccessible because the system
dergoes a glass transition, driven by the emergence o
extensive configurational entropy. We demonstrated tha
this point a Lindemann lengthl emerges, which is a lengt
scale over which imperfections of the stripe pattern man
to wander. Finally, we apply our results to the scenario
Ref. 24 to calculate the characteristic relaxation time of
nonequilibrium state. We concluded that the charge fluct
tions in doped Mott insulators have a tendency to s
organize into droplets of metastable states, distinguished
the packing of stripes with different orientation and the
rangement of defects. These droplets relax according
Vogel-Fulcher law, characteristic of structural glasses.
further compare our results with the doping dependence

FIG. 8. Comparison ofD with the results obtained in Monte
Carlo simulations of the lattice version of Eq.~1! by Groussonet al.
~Ref. 33!.
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TK , as deduced from experiment in Ref. 19, and show tha
is properly described within our theory.
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APPENDIX A: SELF-CONSISTENT SCREENING
APPROXIMATION

In this appendix we summarize the self-consistent scre
ing approximation which was the basis of the numerical
vestigation of stripe glasses in Ref. 16 and which is
framework in which we determined the diagonal and o
diagonal element in replica space of the self-energy, lead
in particular to Eq.~35!. The details of the calculation of Eq
~35! are then given in Appendix B.

Equation~24! has a formal similarity to the action of th
random-field Ising model, obtained within the convention
replica approach, which allows us to use techniques, de
oped for this model.46 Introducing anN-component version
of Eq. ~1! with field w5(w1 , . . . ,wN) and coupling constan
u5u0 /N with fixed u0 we use a self-consistent screenin
approximation,47 which is exact up to order 1/N. At the end
we perform the limitN51. The applicability of this approxi-
mation is supported by the strong indications for a nons
gular large-N limit of Eq. ~1!, as discussed in Ref. 28.

Before we discuss the self-consistent screening appr
mation, it is useful to summarize a few properties of matric
in replica space with structure similar to Eq.~26!. Introduc-
ing a matrixE such thatEab51 and the unit matrix1, it is
easy to see that the product of any twom3m matrices with
structure

A5a111a2E, ~A1!

is given by

AB5~a1b1!11~a1b21a2b11ma2b2!E.

This leads to

A215
1

a1
12

a2

a1~a11ma2!
E ~A2!

for the inverse ofA. This property was used for the deriva
tion of Eqs.~27! and ~28! and will be used below.

The self-consistent screening approximation is descri
by the set of Feynman diagrams shown in Fig. 9. The s
energy, beyond the Hartree term which is diagonal in
replica index and was already taken into account in the b
propagator@Eq. ~12!#, is given by
3-12
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Sab~q!5
2

NE d3p

~2p!3
Dab~p!Gab~p1q!, ~A3!

where

D~p!5@v0
211P~p!#21 ~A4!

is determined self-consistently by the polarization functio

Pab~p!5E d3q

~2p!3
Gab~q1p!Gba~q!. ~A5!

In the above set of equations thep integration has to be cu
off at upu5L and the temperatureT and the coupling con-
stantu0 occur only in the combinationv05u0T. The ansatz
~26! for the Green’s function implies an analogous struct
for Sab(q) andPab(q) in replica space. Inserting this ansa
into Pab(p) gives

P5~PG2PF!11PFE, ~A6!

where the diagonal and off-diagonal elements of the po
ization function are

PG~p!5E d3q

~2p!3
G~q1p!G~q!,

PF~p!5E d3q

~2p!3
F~q1p!F~q!. ~A7!

Using the rule~A2!, it is now straightforward to deter
mine Dab(p) which leads, in the limitm→1, to

D5~DG2DF!11DFE, ~A8!

where

DG~p!5@v0
211PG~p!#21 ~A9!

and

DF~p!52
PF~p!DG

2~p!

12PF~p!DG~p!
. ~A10!

Analogously, inserting the above equations into Eq.~A3!
we get for the self-energies

FIG. 9. Diagrams for the self-consistent screening approxim
tion.
17420
e

r-

S5~SG2SF!11SFE,

where

SG~q!5
2

NE d3p

~2p!3
DG~p!G~p1q! ~A11!

and

SF~q!5
2

N E d3p

~2p!3
DF~p!F~p1q!.

The set of equations is closed by the Dyson equation~25!,

G 21~q!uab5@G0
21~q!1SG2SF#11SFE, ~A12!

which gives, according to Eq.~A2!, in the limit m→1 Eqs.
~27! and ~28!.

In Ref. 16 it was shown that this coupled set of equatio
gives SF(q)Þ0 below a characteristic temperature whi
was related to the occurrence of glassiness. In the next
pendix we present an approximate analytical solution of t
problem.

APPENDIX B: ANALYSIS OF THE SELF-ENERGY

In this appendix we give the main technical details for t
calculation of the off-diagonal self-energy in replica spa
SF . The diagonal self-energySG , which turns out to be
negligibly small compared to the leading mean-field term
can be determined in a very similar fashion and was alre
analyzed in Refs. 28 and 48,SF and SG were calculated
numerically within the self-consistent screening approxim
tion in Ref. 16. The virtue of the analytical calculation pr
sented here is that it is much more transparent. In all step
this calculation we did check the reliability of our approx
mate analytical treatment by comparing it with the numeri
results.

We start by calculating the polarization functionPG(q):

PG~q!5E d3p

8p3
GpGp1q

5H tan21S q

«qm
D1

1

2
tan21S 2qm2q

«qm
D

2
1

2
tan21S 2qm1q

«qm
D J ~8pq«2!21

.5
1

8pqm«3
, q,

2«qm

p
,

Q~2qm2q!

16q«2
, q.

2«qm

p
,

where we used the approximate expression,~11! for the cor-
relation functionG(x). An analogous calculation for the off
diagonal polarization functionPF(q) gives

-

3-13
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E d3p

8p3
K~p!K~p1q!.5

1

8pqmk3
, q,

2kqm

p
,

Q~2qm2q!

16k2q
, q.

2kqm

p
,

as well as

E d3p

8p3
G~p!K~p1q!.5

1

8pqmk3
, q,

k1«

p
qm ,

Q~2qm2q!

16k«q
, q.

k1«

p
qm .

For («,k)qm,q,2qm , we can use the approximate expre
sions

PG~q!5
1

16q«2
,

PF~q!5
1

16q S 1

«
2

1

k D 2

,

which gives

DG~q!5
16qma

11
qm

q

a

«2

,

with dimensionless numbera5v0/16qm&1. Herea vanishes
as T→0, but it always holds that«2!a. Note that for the
numerical solution in Ref. 16 it holds thata.0.4. Combin-
ing these results and using the fact that«2/a!1, the product
DG(q)PF(q) becomes momentum independent,

DG~q!PF~q!.S 12
«

k D 2

,

and, as a result,DF(q) becomes proportional~by a factor
smaller than 1 in magnitudes! to DG(q):

DF~q!5F 2DG~q!PF~q!

12DG~q!PF~q!GDG~q! ~B1!

.F 2S 12
«

k D 2

12S 12
«

k D 2GDG~q!. ~B2!

We are now in the position to analyze the self-energySF :

SF~q!52E d3p

8p3
DF~q1p!F~p!. ~B3!

SinceDF(q) is only weakly momentum dependent, the sa
holds for SF(q) and we can estimate it at the modulatio
vector. It follows witht5A2(11cosu)
17420
-

e

SF~qm!.E
0

2

tdt DF~qmt !E p2dp

4p2
F~p!

.DF~qm!E p2dp

4p2
F~p!. ~B4!

Using F(p)5G(p)2K(p) and

E p2dp

8p3
G~p!5

1

2p2 S pqm

2«
1L D

as well as

E p2dp

8p3
K~p!5

1

2p2 S pqm

2k
1L D ,

we find

SF~qm!52
8qm

2 «2

p

S 12
«

k D 2

12S 12
«

k D 2 S 1

«
2

1

k D . ~B5!

Thus, we have determined the off-diagonal self-energy at
modulation wave vector as a function of the three essen
length scales of the problem:l m52p/qm , j52/«qm , and

l5
2

(Ak22«2qm)
. Note the dependence on the momentu

cutoff, L, cancels, completely making this result robu
against lattice corrections.

APPENDIX C: COMPARISON WITH
THE FRUSTRATION-LIMITED DOMAIN SCENARIO

The possibility of glass formation of the model, Eq.~1!,
has been pointed out in Ref. 29. As discussed in this app
dix, we disagree with the detailed argumentation of Ref.
However, the recognition that a model of the kind of Eq.~1!
can potentially describe glass formation was a very imp
tant observation.

The aim of Ref. 29 was to present an alternative scen
for glassiness in structural glasses formed of undercoo
molecular liquids. Though the microscopic justification
Eq. ~1! for the description of structural glasses is at the le
unresolved, one can yet, in principle, imagine that such lo
range interactions are caused by a scenario like that base
icosahedral order which is frustrated by the lack of Euclide
curvature of the effective space.5 In what follows we will
solely consider Eq.~1! as a given model and leave asid
whether it applies to stripe glasses in doped Mott insulat
~as we claim! or to molecular liquids~as claimed in Ref. 29!.

The main idea of Ref. 29 is that due to the frustrati
interaction of Eq.~1! the system is broken up into ordere
domains of sizeRD;j21Q21/2 with j being the correlation
length that controls the fluctuations inside ordered doma
Furthermore,j!RD is assumed. Within each domain the o
dering essentially corresponds to the one of a finiteQ50
system~not of a system with stripes as in our entropic dro
3-14
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let picture!. Since, forQ50, j diverges at the critical poin
Tc

0 , the avoided frustration scenario suggests that forQ
.0, j(T) still has a peak close toTc

0 , only rounded due to
the frustration. It is then argued that there is a relaxation
t21 due to the reorganization of domains which obeys
Arrhenius form

t21}e2DF(RD)/T, ~C1!

whereDF(RD);Tc
0(RD /j)2 is the activation energy of the

domain. Finally, it is asserted that the divergence in the
cosity of the system at low temperatures is determined
h}t.

We disagree with this picture. As shown below, the sc
RD , which signals the relevance of the long-range inter
tion, can easily be identified as the Debye screening lengt
charged particles of sizej with the expected charge densit
Even when the Debye picture applies, we find it hard
understand how conventional screening can lead to a dyn
ics which is dominated by the activated reorganization
screening clouds and where the natural Langevin descrip
gives a fast relaxation. Whenj!RD there are many short
wavelength excitations of weakly coupled charges and
system should rather behave as a high-temperature pla
than as a glass. In addition, forN→` it was shown in Ref.
28 that Debye screening occurs only at temperatureT
.Tc

0 . At low temperatures modulated structures result wh
lead to the formation of well-correlated stripes asj. l m .
Here j(T) does not exhibit a maximum at a temperatu
comparable toTc

0 but keeps growing until either a stripe sol
or a stripe glass is formed.

We now show that the scaleRD;j21Q21/2 is the Debye
screening length of charged particles of sizej. We perform a
coarse graining of the system into regions of linear sizj
centered around positionsX i . Then Eq.~1! becomes

H5(
i

Hi1(
i . j

qiqj

uX i2X j u
, ~C2!

where

Hi;
1

2 Ej3
d3xH r 0w~x!21@¹w~x!#21

u

2
w~x!4J ~C3!

and charges
S
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qi.A Q

8p E
j
d3xw~x!}AQj5/2.

In the last step we assumed that within the volume}j3 the
system is essentially ordered and usedw}j2b/n, with the
critical exponentsb5 1

2 and n5(d22)21, obtained within
the largeN approximation, ford53.49

The usual analysis of Eq.~C2! within the Debye approxi-
mation, i.e., solving the Poisson equation with induc
charges distributed with Boltzmann weight, gives the Deb
screening length

l D
225

2pqi
2

T
n,

wheren is the density of charges, here given byn.j23. This
finally gives

l D;Q21/2j21,

which is precisely the lengthRD proposed in Ref. 28.
In summary, it is unclear why Debye screening shou

cause a breakup of the system into ordered domains of
RD5 l D ~rememberj! l D) and a slow activated dynamics o
such domains, necessary to obtain large viscosities. Sec
for the scenario of Ref. 29 to work, one also has to assu
that the correlation length decreases at low temperature
that Debye theory still applies. The actual analysis of Eq.~1!
for N→` does not show both assumptions to be justified28

However, it is interesting that forN,` the emergence of a
Josephson length scale at low temperatures28 might give rise
to a competition of physics on two distinct length sca
which then, in principle, could lead to a new long-time r
laxation along the lines of the frustration-limited doma
approach.50 It is interesting to explore the relationship of th
new scenario to our replica-based theory.

Finally, it is worth pointing out that the entropic drople
discussed in this paper are qualitatively different from t
domains introduced in the approach of Ref. 29. Whereas
latter correspond to thermodynamically stable configu
tions, similar to domains in ferromagnets caused by the lo
ranged dipole-dipole interaction, our entropic droplets
formed by the various metastable states. Transitions betw
different droplets are caused by a gain of entropy of a sys
in what would be an otherwise frozen nonequilibrium sta
hys.
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