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Conductance fluctuations and boundary conditions
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The conductance fluctuations for various types for two- and three-dimensional disordered systems with hard
wall and periodic boundary conditions are studied, all the way from the ballistic~metallic! regime to the
localized regime. It is shown that the universal conductance fluctuations~UCF! depend on the boundary
conditions. The same holds for the metal to insulator transition. The conditions for observing the UCF are also
given.
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The influence of the boundary conditions~bc! on critical
phenomena in disordered mesoscopic systems has been
onstrated by studies of the conductance distribution1–3 and
energy level statistics.4 The ensemble average of the log
rithm of the conductance,̂ln(g)&, is smaller for hard wall
boundary conditions than for periodic boundary conditio
The variancê ln2(g)&2^ln(g)&2, on the other hand, is large
for hard wall than for periodic boundary conditions. The d
tribution of nearest neighbor energy level separationsP(s)
becomes more Wigner-Dyson-like for periodic bounda
conditions. Thus, systems with periodic boundary conditio
exhibit a ‘‘more metallic’’ behavior than those with hard wa
boundary conditions. Different boundary conditions also le
to different values for the universal conductance fluctuati
~UCF! in the diffusive metallic regime where the mean fr
path l is much smaller and the localization lengthj l much
bigger than the system size. The variation of ensemble fl
tuations of the conductance as the disorder increa
throughout the metallic regime has been studied,6,7 but the
influence of the boundary conditions in the ballistic regim
where l exceeds the system size, and close to the local
regime wherej l becomes comparable with the system si
has not been studied in detail. Also, the role of the corre
tion length in samples with a true metal-insulator-transit
~MIT !—i.e., in systems where the localization length is ‘‘i
finite’’ in the metallic regime—has not been discussed.
present here numerical studies of cubic systems and squ
with spin-orbit scattering—all of which have a true MIT—
for both hard wall and periodic boundary conditions in t
direction~s! perpendicular to transport.

We are using the tight-binding model with the Ham
tonian

H5(
n,t

unt&«n^ntu1 (
n,t,n8,t8

unt&Vn,n8^n8t8u, ~1!

wheren,n8 are nearest neighbor lattice sites on a square
cubic lattice. For systems with spin-orbit interactionst and
t8 take on values of11 or 21 and the hopping integral
Vn,n8 are 232 matrices; without spin-orbit interactions, th
hopping integrals are scalar and the spin ‘‘variables’’ ha
only one value. We take the site energies«n ~independent of
t) to be random variables, chosen from an inter
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@2W/2;W/2# with a uniform probability distribution. The
parameterW serves thus as a measure of disorder stren
The conductance is calculated using the transfer ma
method and the Landauer formula.8

We have used the analytical derivation of Leeet al.9 to
calculate theoretical values for the UCF for both types
boundary conditions. In order to change the boundary con
tions to periodic, one needs to make the following chan
@references to equations are from the Appendix of Leeet al.
~1987!9#: in the eigenfunctionsQm to the diffusion equations
the cosines in the transverse directions@Eq. ~A9!# must be
replaced by exponentials with a factor of 2p instead ofp in
the argument; this will lead in effect to a factor 4 in themx

2

and my
2 terms in the modified eigenvaluesl̃m @Eq. ~A13!#,

and to a summation over all integers~including negative
ones! for mx andmy in Eqs.~A15!, ~A16!, ~A24!, and~A25!.
The results are presented in Table I. The values are only
those given by Leeet al.due to a factor 2 in the definition o
g. Also, our result for the three-dimensional case is sligh
higher, probably due to our calculating the involved sums
a higher precision. The boundary conditions have of cou
no effect for the quasi-one-dimensional case. The val
given here are those for the standard deviationsg for the
orthogonal universality class of random matrix theory. T

FIG. 1. Standard deviationsg of the conductance for squares o
L3L lattice sites. Full symbols: hard wall bc; open symbols: pe
odic bc. Note that the bc seem to have little effect outside
plateau region.The two horizontal lines indicate the theoretical v
ues for the UCF for hard wall~top! and periodic~bottom! bc.
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values for the other universality classes10 are obtained by
dividing the variance, i.e.,sg

2 , by the universality class pa
rameterb, whereb51,2,4 for the orthogonal, unitary, an
symplectic universality classes respectively.

In Fig. 1 we show the standard deviation of the cond
tance in ensembles of 10 000 samples for different sys
sizes~squares withL3L lattice sites! and boundary condi-
tions ~open symbols: periodic boundary conditions; fille
symbols: hard wall boundary conditions! as a function of the
inverse of the average conductance. It is well known tha
a two-dimensional disordered tight-binding model all t
states are exponentially localized.5 The typical structure6,7 of
the fluctuations with increasing disorder strength can
seen: after an initial strong increase in the ballistic regi
~large ^g&) it reaches a peak value which becomes m
pronounced for larger systems; then the fluctuations d
back to the universal value and finally decrease again in
strongly localized regime. The boundary conditions have
parently no influence on the behavior outside the region
UCF in this case. Notice that for the case of periodic bou
ary conditions for the large system size ofL5128, sg ap-
proaches the theoretical value of 0.393 given by the low
horizontal line.

In Fig. 2 the same data is plotted for a two-dimensio
disordered system of sizeL564 with periodic boundary con
ditions. In the same plot the mean free path and the local
tion length as a function of disorder strengthW are given.
Both the mean free path and the localization length w
obtained from the numerical results of Economouet al.5 The
localization length was obtained5 by the transfer matrix

FIG. 2. Standard deviation of a square of 64364 lattice sites
together with the mean free pathl and the localization lengthj l .
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method, while the mean free path was obtained by the
herent potential approximation5 ~CPA!. Notice thatj l is al-
ways larger thanl. So for a given system size (L564 in this
case!, there is a finite region wherel !L!j l . Only in this
region there is a plateau visible at the correct UCF value.
W<1, l is larger thanL, and we are in the ballistic regim
where one observes a monotonic increase ofsg followed by
the characteristic maximum as the system enters the cr
over between the ballistic regime and the regime charac
ized by UCF.

Figure 3 shows that the same overall behavior is obser
also for three-dimensional systems. As there is a MIT~indi-
cated by vertical lines in Fig. 3! where the conductance dis
tribution and therefore also its standard deviation beco
universal, i.e., independent of system size~though still de-
pending on the boundary conditions1–3!, this value is ap-
proached after leaving the region of UCF. A direct compa
son of the results shows again that the boundary condit
have only minimal effect outside that region. The addition
peak noticeable in some of the periodic boundary conditi
data are due to a near degeneracy of eigenenergies for
small disorder.

In Fig. 4 we plot the data for one of the systems again
a function ofW, together with the mean free pathl and the
correlation lengthjc . In the three-dimensional disordere
case, the mean free path and the correlation lengthjc were
again obtained11 by the CPA and the transfer matrix metho
The size of the cube isL516 and periodic boundary cond
tions were used. In the three-dimensional case,l drops as the
disorder strengthW increases, whilejc increases asW in-
creases. The plateau insg is seen only whenl !L and jc
<L, so that we expect awider plateau for larger systems
The fluctuations begin to approach the critical value as s
asL'jc . In the three-dimensional case too, whenW<2, l
is larger thanL and the ballistic regime is observed, followe
by the maximum in the crossover regime.

Finally, Fig. 5 shows data for square systems with sp
orbit interactions. We have chosen the Evangelou-Zim

TABLE I. The universal conductance fluctuation values for d
ferent bc and dimensionality of the system.

bc Q1D 2D 3D

hard wall 0.365 0.431 0.559
periodic 0.365 0.393 0.471
of

F

FIG. 3. The standard deviation for systems
L3L3L lattice sites:~a! hard wall bc;~b! peri-
odic bc. The horizontal lines indicate the UC
values; the vertical lines indicate the MIT.
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model,12 where even in the absence of diagonal disor
there is disorder in the hopping matricesVn,n8 , which ac-
counts for the fact that the fluctuations do not vanish
small diagonal disorder. Apparently, boundary conditio
have a noticeable influence on the fluctuations even out
the region of UCF, but this is likely due to the peculiar ove
all structure in this case, most significantly the fact that
UCF value is much smaller than the critical value, caus
another increase in the standard deviation as one approa
the MIT.

In conclusion, we have investigated the conductance fl
tuations for various types of systems with both hard wall a
periodic boundary conditions from the ballistic regime to t
localized regime. The boundary conditions seem to hav

FIG. 4. The standard deviation of a cube with 16316316 lat-
tice sites together with the mean free pathl and the correlation
lengthjc .
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relevant influence on the conductance fluctuation only in
region of UCF and at the critical point of the MIT. In tru
metallic systems, the fluctuations begin to deviate from
UCF value and approach the critical value as soon as
correlation length approaches the system size.
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FIG. 5. The standard deviation for square systems ofL3L lat-
tice sites with spin-orbit interaction~Evangelou-Ziman model! for
hard wall~solid symbols! and periodic~open symbols! bc. The two
horizontal dashed lines indicate the theoretical values for the U
for hard wall ~top! and periodic~bottom! bc.
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