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Conductance fluctuations and boundary conditions
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The conductance fluctuations for various types for two- and three-dimensional disordered systems with hard
wall and periodic boundary conditions are studied, all the way from the ballistetallio regime to the
localized regime. It is shown that the universal conductance fluctuatid@$) depend on the boundary
conditions. The same holds for the metal to insulator transition. The conditions for observing the UCF are also
given.
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The influence of the boundary conditioftsc) on critical [ —W/2;W/2] with a uniform probability distribution. The
phenomena in disordered mesoscopic systems has been dgparameteW serves thus as a measure of disorder strength.
onstrated by studies of the conductance distribdtidand  The conductance is calculated using the transfer matrix
energy level statisticsThe ensemble average of the loga- method and the Landauer form{la.
rithm of the conductancgn(g)), is smaller for hard wall We have used the analytical derivation of Leeal?® to
boundary conditions than for periodic boundary conditionscalculate theoretical values for the UCF for both types of
The variance(In%(g))—(In(g))?, on the other hand, is larger boundary conditions. In order to change the boundary condi-
for hard wall than for periodic boundary conditions. The dis-tions to periodic, one needs to make the following changes
tribution of nearest neighbor energy level separatiBgs) [references to equations are from the Appendix of &eal.
becomes more Wigner-Dyson-like for periodic boundary(1987°]: in the eigenfunction§, to the diffusion equations,
conditions. Thus, systems with periodic boundary conditionghe cosines in the transverse directidis). (A9)] must be
exhibit a “more metallic” behavior than those with hard wall replaced by exponentials with a factor ofranstead ofr in
boundary conditions. Different boundary conditions also leadhe argument; this will lead in effect to a factor 4 in thg
to different values for the universal conductance fluctuations,,q m2 terms in the modified eigenvaluas, [Eq. (A13)]

. e . . v ,
(UCP) in the diffusive metallic regime where the mean free 5nq to a summation over all integefimcluding negative
pathl is much smaller and the localization lengthmuch ones for m, andm, in Eqs.(A15), (A16), (A24), and(A25).
bigger than the system size. The variation of ensemble flucrpe yesyits are pryesented in Table 1. The values are only half
tuations of the conductance as the disorder increasgfge given by Leet al.due to a factor 2 in the definition of
throughout the metallic regime has been studiédut the 4 A5, our result for the three-dimensional case is slightly
influence of the boundary con_dltlons in the ballistic regimepigher, probably due to our calculating the involved sums to
wherel exceeds the system size, and close to the localizeq higher precision. The boundary conditions have of course
regime where; becomes comparable with the system sizey,q effect for the quasi-one-dimensional case. The values
has not been studied in detail. Also, the role of the correla—given here are those for the standard deviatignfor the

tion length in samples with a true metal-insulator-transitiong thogonal universality class of random matrix theory. The
(MIT)—i.e., in systems where the localization length is “in-

finite” in the metallic regime—has not been discussed. We 0.7 :
present here numerical studies of cubic systems and squares ——L=32
with spin-orbit scattering—all of which have a true MIT— 06t Hﬁ; 64
for both hard wall and periodic boundary conditions in the om0 [ =32
direction(s) perpendicular to transport. 0.5 - o---0 [ =64 1
We are using the tight-binding model with the Hamil- o o--= L=128
tonian 04 F S
H=Z |n7'>8n<n7'|+ 2 |nT>Vn,n’<n,7,|- D 031
nr nrn’ 7
02 5

10°

wheren,n’ are nearest neighbor lattice sites on a square or
cubic lattice. For systems with spin-orbit interactionsind

7' take on values oft-1 or —1 and the hopping integrals  Fig. 1. Standard deviatiom, of the conductance for squares of
Vo are 2<2 matrices; without spin-orbit interactions, the | x| lattice sites. Full symbols: hard wall bc; open symbols: peri-
hopping integrals are scalar and the spin “variables” havepdic bc. Note that the bc seem to have little effect outside the
only one value. We take the site energigs(independent of  plateau region.The two horizontal lines indicate the theoretical val-
7) to be random variables, chosen from an intervalues for the UCF for hard waltop) and periodic(botton) bc.
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10° . . . 0.8 TABLE I. The universal conductance fluctuation values for dif-
+—— Jocalization length &, ferent bc and dimensionality of the system.
10 L =——a mean free path /
A — L=64 10.6 bc Q1D 2D 3D
Y o=e-o G, at L = 64
SRR R W . uf hard wall 0.365 0.431 0.559
T S N 104 periodic 0.365 0.393 0.471
10 i
101 I \\‘\\\N; 02
W method, while the mean free path was obtained by the co-
. ] herent potential approximatidfCPA). Notice thaté, is al-
10 : ; r o1 00 . ) U
0 2 4 6 8 10 ways larger that. So for a given system sizé & 64 in this
w case, there is a finite region where<L<¢,. Only in this

o ] ] region there is a plateau visible at the correct UCF value. For

FIG. 2. _Standard deviation of a square 0_f>6&_4 lattice sites W=1, | is larger tharL, and we are in the ballistic regime
together with the mean free palttand the localization lengt, . where one observes a monotonic increasepfollowed by

the characteristic maximum as the system enters the cross-
values for the other universality clas§&sre obtained by over between the ballistic regime and the regime character-
dividing the variance, i.e.(;ré, by the universality class pa- ized by UCF.
rameterB, where 3=1,2,4 for the orthogonal, unitary, and Figure 3 shows that the same overall behavior is observed
symplectic universality classes respectively. also for three-dimensional systems. As there is a Niifli-

In Fig. 1 we show the standard deviation of the conduc-cated by vertical lines in Fig.)3vhere the conductance dis-
tance in ensembles of 10000 samples for different systertribution and therefore also its standard deviation become
sizes(squares withL X L lattice site$ and boundary condi- universal, i.e., independent of system sigeough still de-
tions (open symbols: periodic boundary conditions; filled pending on the boundary conditidnd, this value is ap-
symbols: hard wall boundary conditionass a function of the proached after leaving the region of UCF. A direct compari-
inverse of the average conductance. It is well known that irson of the results shows again that the boundary conditions
a two-dimensional disordered tight-binding model all thehave only minimal effect outside that region. The additional
states are exponentially localize@he typical structur®’ of ~ peak noticeable in some of the periodic boundary conditions
the fluctuations with increasing disorder strength can belata are due to a near degeneracy of eigenenergies for very
seen: after an initial strong increase in the ballistic regimesmall disorder.

(large (g)) it reaches a peak value which becomes more In Fig. 4 we plot the data for one of the systems again as
pronounced for larger systems; then the fluctuations droj function of W, together with the mean free paltfand the
back to the universal value and finally decrease again in theorrelation lengthé.. In the three-dimensional disordered
strongly localized regime. The boundary conditions have apease, the mean free path and the correlation leggtivere
parently no influence on the behavior outside the region ofgain obtainett by the CPA and the transfer matrix method.
UCF in this case. Notice that for the case of periodic bound-The size of the cube is=16 and periodic boundary condi-
ary conditions for the large system size lof 128, o4 ap-  tions were used. In the three-dimensional caseops as the
proaches the theoretical value of 0.393 given by the lowedisorder strengtiWv increases, whil&, increases a®V in-
horizontal line. creases. The plateau iy is seen only whe<L and &;

In Fig. 2 the same data is plotted for a two-dimensional<L, so that we expect wider plateau for larger systems.
disordered system of size= 64 with periodic boundary con- The fluctuations begin to approach the critical value as soon
ditions. In the same plot the mean free path and the localizaasL~ ¢, . In the three-dimensional case too, whéh=2, |
tion length as a function of disorder strengthhare given. s larger tharl and the ballistic regime is observed, followed
Both the mean free path and the localization length werdy the maximum in the crossover regime.
obtained from the numerical results of Econoneal® The Finally, Fig. 5 shows data for square systems with spin-
localization length was obtaingcby the transfer matrix orbit interactions. We have chosen the Evangelou-Ziman
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FIG. 5. The standard deviation for square systemkL lat-

tice sites with spin-orbit interactiofEvangelou-Ziman modgfor
hard wall(solid symbol$ and periodiqopen symbolsbc. The two
horizontal dashed lines indicate the theoretical values for the UCF

for hard wall(top) and periodic(bottom bc.

FIG. 4. The standard deviation of a cube withx186X 16 lat-
tice sites together with the mean free pathnd the correlation

length&..

12 : - :
model_, where even in the ?‘bsence_ of dlagonal dISOrderrelevant influence on the conductance fluctuation only in the
there is disorder in the hopping matrices, ., which ac-  re4ion of UCF and at the critical point of the MIT. In true
counts for the fact that the fluctuations do not vanish forpeajiic systems, the fluctuations begin to deviate from the
small diagonal disorder. Apparently, boundary conditionsycr value and approach the critical value as soon as the
have a noticeable influence on the fluctuations even outsidgprrelation length approaches the system size.

the region of UCF, but this is likely due to the peculiar over-
all structure in this case, most significantly the fact that the Ames Laboratory is operated for the U.S. Department
UCF value is much smaller than the critical value, causingf Energy by lowa State University under Contract No.
another increase in the standard deviation as one approach®s7405-Eng-82. This work was supported by the Director
the MIT. for Energy Research, Office of Basic Science. The authors
In conclusion, we have investigated the conductance flucthank Professor E. N. Economou for helpful discussion.
tuations for various types of systems with both hard wall and®.M. would like to thank Ames Laboratory for their hospital-
periodic boundary conditions from the ballistic regime to theity and support and the Slovak Grant Agency for financial

localized regime. The boundary conditions seem to have aupport.
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