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Self-organization of (001) cubic crystal surfaces
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Self-organization on crystal surface is studied as a two-dimensional spinodal decomposition in presence of
a surface stress. The elastic Green function is calculated for a (001) cubic crystal surface taking into account
the crystal anisotropy. Numerical calculations show that the phase separation is driven by the interplay between
domain boundary energy and long range elastic interactions. At late stage of the phase separation process, a
steady state appears with different nanometric patterns according to the surface coverage and the crystal elastic
constants.
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I. INTRODUCTION main physical ingredients which drive SO, i.e., the interplay
between domain boundary energy and elastic interaction en-
Self-organization(SO) on solid surface is an efficient ergy.
mean for growing nanostructures with regular sizes and spac- Recent analysis of chemisorbed monolayers (6Q2)
ings. The models proposed by Marchehlkand Vanderbilt Copper surfaces, via scanning tunneling micros€opy
et al?® are the basis of the theoretical framework to under{STM) and spot profile analyzing low energy electron
stand the SO phenomenon. They enhanced the interplay beiffraction’ (SPA-LEED show mesoscopic morphologies
tween the long range elastic interaction yielded by the undemifferent from droplet or stripe structures. For the N{(QQ.)
lying crystal and the domain boundary energy. Indeed, thease, the nitrogen is chemically adsorbed on a (001) Copper
former is minimum when two surface defaults are separatedrystal surface, and aggregates within square-shaped islands
by a distance as large as possible while the latter is minimurthat may arrange either in one-dimensional rafts at low ni-
when only one compact domain appears onto the surface. Smgen coverage or in a two-dimensional array at intermedi-
when these two ingredients are pres@ee below for experi- ate coverages. The experimental works mentioned dBove
mental descriptions the surface ground state structure motivated the present study.
should be a compromise between the aforementioned inter- Here we propose to describe the SO kinetics on solid
actions. The purpose of Refs. 1-3 was to evaluate this strusurface as a two-dimensional spinodal decomposition. In this
ture in different cases. standard theory, we include the stress energy due to the un-
Assuming that two phases, called A and B, coexistingderlying crystal and therefore the surface elastic Green func-
onto a crystal surface, have different intrinsic stresses, thgon is calculated. The 2D Cahn-Hilliard equation which
authors of Refs. 1,2 showed that a state which consists afrives the surface diffusion, is integrated with computer
stripes domains occupied alternatively by A and B lowers theneans. Our method allows us to capture the SO kinetics
energy with a period selection. This period depends on théogether with the elastic anisotropy due to the crystal sym-
crystal stress energy compared with the domain boundarsnetries. The latter feature is proved to play a role in the
energy and it varies exponentially with the ratio of those twonanometric arrangements. For simplicity, our study is fo-
guantities. In order to perform an analytical surface elasticused on 4001) cubic crystal surface.
Green function calculation, Marchenko and Vanderbilt both In the last decade, a similar theory has been developed
assumed either a crystal anisotropy along one direction of thender the name of “phase field” by Khachaturyenhal. for
surface or the anisotropy of the intrinsic stresses. Thosthe kinetics of phase transition in alloysThe phase field
works specially addressed the cases of corrugated crystal surame is also used for models of solidification; see Ref. 11 for
faces and crystal surface reconstruction with broken symmerecent developments. We choose not to use this ambiguous
try (see Refs. 4,5 for recent relevant experimental analysisterminology. In the framework of the SO spinodal theory, the
Comparing the stability of different periodic domains in implied coexistent phases may represent either two types of
an isotropic two-dimensional dipolar model, Vanderbilt crystal facet, noted A and B or a chemical adsorbed layer A
et al® proved that at intermediate coveragk,>0.28, the over a clean crystal surface B. In the latter case, we neglect
stripe structure is the optimal candidate for the two-the possible layer thickness.
dimensional system ground state while at low coverage, Our results exhibit a steady state at late stage of the sepa-
<0.28, the droplets structure is more stable. As the dipoleration process which shows different mesoscopic patterns ac-
dipole interaction is similar to the elastic interaction, i.e., itcording to the coverage and to the elastic constants of the
decreases as the inverse of the distance to the power threeaterials. Because of the crystal cubic symmetry, the nano-
these Vanderbilt's results hold for the solid surface SO. Itmetric morphologies of the final state may differ from the
shows that the anisotropy of the intrinsic stress surface, asne predicted in Refs. 1-3. At low coverage, rafts of either
sumed in Refs. 1,2 is not essential in the SO process sinadisk or square shaped islands appear while at intermediate
the patterning occurs even if the surface is isotropic with nacoverage a branched stripe structure occurs. The elastic con-
symmetry breaking. The studies of Refs. 1-3 emphasize thgtants of the material are shown to determine the preferential
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orientations of the rafts and of the stripes. If the surfaceadjust subsequentlyr,, eventually changing the domain
square symmetry is broken, the kinetics final state is similaboundary energy if necessary.
to those predicted in Refs. 1,2, i.e., an assembly of regular For simplicity, we choose to neglect the possiplearia-

spaced stripes. tions with respect to the crystal surface direction. Such a
feature may be yielded from a crystal step anisotropy but
Il. DOMAIN BOUNDARY ENERGY here our study is focused on the elastic anisotropy due to the

crystal symmetries.

The covering parametefl describes the A-B coexistent
phases at the solid surface. These phases may differ by their IIl. SURFACE GREEN FUNCTION
composition or their geometry. Let us say thtat 0 for B
and =1 for A. If one assumes that the spatial surface varia- An important stage of this work consists in the calculation
tions of # are smooth with respect to the atomic scale, a0f the cubic crystal surface elastic Green function. Let us
two-dimensional coarse-graining procedure is thus relevaritote thatP(r) is a surface external force at position In
to represent the mesoscopic system state. i#f the size of ~Cartesian coordinates, the (001) surface is definedxgy (
the elementary coarse-grained surfaces, we introduce the me-0) andr=(xy,x,). The semi-infinite crystal occupies the
soscopic quantityd(r) which is the § average, performed half spacex;=0. The surface normal is the unit vector.
over a whole elementary surface, centered at positidfne ~ The mechanic equilibrium condition at the surface is given
6(r) variable is the mesoscopic local coverage of the surfacgy
sinpe_: i.t is the A quantity per unit area which is present in the 11 xs=0)  n;=Py(r), (3.1
r vicinity. The 6 average over the entire surface is writ&n ’
and it is assumed to be conserved during the system timeheren; is an component and the summation over subscript
evolution. j is implicit. The crystal bulk stressr; j(r,X3) is due to the

An inhomogeneous mixing of A and B phases involves ancrystal displacements and these quantities are related to each
energy increasing because of atomic bond breaking at dwther by the Hooke lawr; j=\; ; « jdu,/dx, . The forth or-
main boundaries. This energy together with the entropic ternder tenson; ; ,; gives the crystal elastic constants and for a
due to the surface inhomogeneity are captured in the twoeubic crystal symmetry, this tensor is composed with three

dimensional free Ginzburg-LanddGL) functional energy nonzero coefficients! namely, \; ;;;=Cy, Nisiji=Ciz,
) 5 andX\; ;=\ ;i=Cas. Inthe case of copper, those coef-
S f f Y| 90 N ('9_9 Lo ldr ficients areC,,=1.683 18" J/n?, C;,=1.221 18 J/n?, and
chem™ 70 ) Js| 2[ | ox, Xy ' C44=0.757 16" J/n.

(2.2 At mechanic equilibrium, the bulk displacements fulfill
the Lameequation

We introduce here the adimensional free energy derfsity 22u
=16.0%(1—6)* which is a double well potential with Nijil 5o =0. (3.2
minima for =0 and#=1. The hat notation points out the T OX;9x,

adimensional quantities. THeform has no direct influence Except constants, the displacement functions are fully deter-
on the mesoscopic structure providing GL functional is in-mined by the set of equatiorn(8.1), (3.2. As proposed in
variant with respect to th@01) surface space group. Let us Ref. 15 for the isotropic case, these equations may be solved
noteg( ), the continuous Hamiltonian including both the 2D by writing the displacements as two-dimensional Fourier

gradient term and the free energy dendity transforms
The Fy and y scalars are respectively the free energy 5
density constant and the amplitude of the gradient term that ui(r,x3)=J f expiQ-r)u;(Q,x3)dQ. 3.3

both must be adjusted to set the model domain boundary

energyl to a realistic value, i.e., around 10 meVA8ee Ref.  Note that the Eourier componenigQ,xs) depend on both
2). At phase equilibrium, thel quantity is given byl  the wave vectoQ=(q;,q,) andx,. Once the set of Egs.
=Fola9(0)dl where the integration is performed along a (3.1), (3.2) is expressed using E¢3.3), the subsequent dif-
line path that goes from instda B phase domain to inside an ferential equations involvingi; and their derivatives with
A domain’? It is easy to see that the previous path integral is

; . . respect tax, turn out to be linear, so that(Q+0x;) have
ove[valueq by the prod.uctAof the A-B |nte'rf§ce width times an exponential dependence on the bulk penetration leqgth
the f maximum value, i.e.f(#=0.5)=1. Fixing y=20d?,

which insure thef(r) space variation smoothness, the A-B ~

interface width is then aroundd5 at equilibrium. Therefore, uj(Q#0x3)= 2| BieXp(— aiXs), 34

to obtainl ~10 meV/A, F,d must be fixed to 2 meV/Xor

3.210'2J/m). As our investigations are focused over theWhere bothg;; anda, depend on the wave vect@. As the
nanometer scale, we choose to setl nm and thugzo whole Sample is at rest, th%average is assumed to be zero
=3.2 mJ/n. To study larger space scales as it would bewhich impIiesTJj(O,x3)=O. The EQq.(3.2) is then reduced to
suitable for silicon which may exhibit a 100 nm vicinal a linear equatiotM(Q,)(8;,)=0, whereM(Q, «) is the
period? then it is sufficient to increase tligparameter and to 3 3 matrix
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C1105+ Caa05— Caserl (C12tCya) 102 (Crot Ca)ig1
M(Q,q))= (C12+Cua)d102 C1105+Cai0s—Casrf  (CiptCuidoa; |, (3.5
—(C12+Cua)iquey —(Cip+Canitpa  Cpiaf —Cyydi+05)
|
As usual, the nontrivial solutions are such as F|3=—C11a|—C12(Q§F|1+Q§F|2)/01|- (3.10

defM(Q,«)]=0. This yields a third degree polynomial
equation for thea? parameters that we solve numerically. We rewrite Eq.3.7) as a linear equatiohlj,,/i',,?,:ﬁj where
The only threeqa, values with positive real parts are physi- the 3x 3 matrix N is defined as follows:

cally acceptable. At least one of thg is real, the two other

roots may be either real or complex conjugated depending on i9:(1-Ty19) 109:(1-Typ i10:(1-T3y)
the sign of they parameter: N(Q)=| 102(1-T12) igs(1-T5) iga(1-T5))
X=C11—C1p—2Cy4. (3.6 I'y3 I'zs3 I'ss
(3.1)

This combination of the elastic constants is related to the
elastic anisotropy of the cubic crystedee Ref. 14 When  Providedq; #q,, this matrix (3.11) can be inverted which

x =0, the crystal is isotropic and the threg are degenerate. gives theg, 3's as linear functions of th@;(r) Fourier trans-
This case was addressed in Refs. 14,15. One retains as §%rms B|,3=N[jlpj . One must distinguish the casg=q,
amples that the copper and gojds are negative Xcu=  for which details are not presented but are simple to deal
—1.0xa,=—0.5) and the chromium and niobiuis are  ith, Using Eqs.(3.8), one gets the whole set ¢f ;'s and

positive (yc= + 1.8, ynp= 1 0.5). ~ M (D i
To eacha; corresponds a unique set of three coefficientsthusuk(Q’X3 0)=Cy(Q)P;(Q) whereGy, is the surface

. ) i T elastic Green function that we write as follows:
(Bj,) that are determined by inverting E€.1). Noting P;
the Fourier transform of the force compondt, we write . .
the Fourier counterpart of E¢3.1): Gl,j(Q)=|CI1§|: Ny Tialey,

) —a 1B 1+1d18) 3= Py, . -1
1=(T2.3) Gz,j(Q)—lqu Ny T2/,

|—;2 — a2 +id281 5=Pa,
~(T2.3) csgd.(Q)=2I N (3.12

C1ig1B 11102812~ CriBi5=P3. (3.7)  The latest function varies as|@. The total elastic energy of
the system is given at mechanical equilibrium according to
Combining the first and second rows with the third rowsEds. (3.1, (3.2 by
of the matrixM(Q, «|) [see Eq.(3.5], one easily gets both

1={T,2.3)

equations E.=—1/2 j P.u.dS (3.13
. X3=0
Bia=ia1B 3l 1/ ey, ’
_ which gives an analytical expression Bf, in the Fourier
B12=1d2B81 31 2/ ey, (3.9  space:
where we write
) . Ee|=—1/2f Pr[G; 1P, dQ. (3.19
_(Cll_ C1,—Cug)af —Cyy(qi+0q3) X3=0
1,1~ 1
(C11~C12~ Ca))qi+ Caq(d5— af) The total energy is in fact given by the sUf=F genit Eq
[Egs.(2.1) and (3.2)].
(C11— C1o~ Cas)af — Cuy 03 +3) The P force is induced by the phases intrinsic stress mis-

2= > > (39 it Let us notes and ¢ the intrinsic stress tensor of the A
(Cr1~Caam Cag 82+ CaslQi— o) and B phases, respectively. At positionthe intrinsic stress
provided the denominators df; ; andT'; , are nonzero. If is thus given bya’(r)= a3+ 85°6(r) where we introduce
not, which occurs for eithey; =0 orq,=0 thenitis easy to the tensor500=ag—crg. The induced force is simply ob-
show thatg, ;=0 and the calculation can be performed astained by derivings° with respect to the surface coordinates,

well. In addition let us note it gives
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0 90 given chemical species the paramddet,, strongly depends
Pi 212212 dajj X (3.19 on both temperature and coveragee Ref. 15 For simplic-
’ : ity, we assum here thaDg~10 ¢ cn?/s (see Ref. 1§
Here we propose to distinguish whether there is a strondleglecting the elastic terr, a linear expansion of Eq.
directional anisotropy such as for vicinal surface or no bro{4.1) around a uniform coveragé(r)=0.5 shows that Eq.
ken surface symmetry. In the former case, if a negligible(4.1) is equivalent to a diffusion equation for short wave-
stress variation is induced along a direction which angle witdength perturbations(see Ref. 1R Then, we establish
respect tq100] is noteda, the P vector must be zero il MF,(d?f/d 6?) = D Which fixes approximately the mobil-
gradient points this direction. Thév° tensor coefficients are ity since (dzf/daz)(60=0.5)= 16, in the present case. As

developed to satisfy this condition and one may wHt@s both D and d%f/d6? strongly decrease with a decreasing

follows: 6, the mobility variations with respect to the average cov-
EY) EY erage cannot be estimated in the general context of our work.
Pi=Aj sin(a) —— —coga) —|, (3.16  For simplicity, we choose to keep it constant, i.e., it is equal
9%, Xy o .
to the mobility estimated at half coverage.
where we introduce three constar{ts;}. We restrict our Regarding the kinetics of the coarse-grained surface, it is

study to a uniaxial stress with only one nonzérpwhich is  simply derived from t_he space and time discretiza_tion _of Eq.
As=A. According to our tests, nonzerb, and A, involve  (4.1). The previous linear development of Eg.1) is still
no qualitative change in our results. valid and it comes that the diffusion constedt;. is re-

If the surface square symmetry is preserved,dbé ten-  scaled aPrie/d? due to the discretized Laplacian operator.
sor is invariant under the square symmetry group operatordt corresponds to the intuitive idea according to which the
S0 60%,=609,, d0%=503,, and Soo,=859,. Again we larger the coarse graining is, i.e., the larged;ghe slower
introduce theA parameter setting thaagglz &ngz A.The each unit cell of the coarse graining evolves and thus the
surface is assumed to be a perfect plane s®theomponent ~ Slower is the global kinetics. One guesses that the larger is a
is negligible, i.e.,803;,=80%,=0. Nonzero coefficientg: Bhd?maln, the 'K”?]er is the tm}l'eh needed to :)rlarlsform Its

C : whole area in a ase region. Thus we are able to propose
-250(1)22 5021 implies a shear_ that may be mduc_ed by the rough estimatioﬁ of the gsurface kinetics time scalr()a F())ur
internal structures of the coexistent phases. To a first step, . , . X S .
choose to ignore such a possibility, i.e.<A. Thus the computer calculations work with a time unit which is equiva-
o , L lent to t=d?/Dgiy=10 8 s. To perform the time integra-
force P is simply proportional to the gradient.

The parameteA is a constant that fixes the amplitude of tion of Eq. (4.1, we use a time increment of (IQX ‘St).' .
the surface force and it may vary from an experimental case Equatlon(_4.1) is integrated starting from a_unlform |n|t|_al
to another. In our model, for each different set of crystal.State for whiché(r) = 6,. Spontaneous formation of domains

elastic coefficientsA is adjusted, i.e., our numerical calcu- IS observe_d for a _cc_)veragéo lying betwe_en 0'2.5 %o
lations are performed with A=40 mJ/nd (or A <0.75. This range is imposed by the classical spinodal re-

=0.25 eV/A?) for the copper, gold, and niobium crystal gion defined bys?f/5926<0 (see Ref. 12 These limits are

cases and\ =57 mJ/n¥ (or A=0.35 eV/A?) for the chro- indeed slightly modified in presence of elastic interactions.
mium case. The temperature dependency may be activated in the func-

tional Fhem In the diffusion coefficienDg, and in the
amplitude of the Langevin noise. The external parameters are
the material elastic constants that fixthe average coverage
To modelize the phase separation kinetics, we use a stamy, the surface stres4, and thea angle for both isotropic
dard spinodal decomposition theory which is precisely de-and anisotropic stress cases.
scribed in Ref. 12 for the three-dimensional case. Extension Our numerical findings confirm the analytical results of
to the two-dimensional systems is straighfoward. The timeRefs. 1-3. The phase separation is frustrated by long range
evolution of the conserved quantiy(r) is then driven by interaction due to the crystal surface stress, i.e., the kinetics
the Cahn-Hilliard equatioffalso known as model B yields a final steady state. As model input parameters, one
may retain that the domain boundary energy is of order
=10 meV/A and the stress amplitude is eithex
=40 mJ/nt (or A=0.25 eV/A?) for the copper, gold, and
niobium crystal cases or A=57mJn¥ (or A
=0.35 eV/A?) for the chromium case.
In the case of a broken surface symmetry with uniaxial

IV. KINETICS OF PHASE SEPARATION

a6(r,t) B
a M 56(r 1)

+€(r,t), (4.1

wheree is a Langevin stochastic term which simulates ther-
mal fluctuations as proposed by Cook in Ref. 13:

(e(r,1))=0 (4.2 stress, the kinetics yields nonbranched stripes structures with
’ ’ spacial periodicity along a given direction as shown in Fig. 1
(e(r,t)e(r’ t'))=—2kgTMAS(r—r")5(t—t). (for a=m/4). The selected period strongly decreases when

(4.3 A increases but the formula proposed in Refs. 1,2 which

gives the period versus the model parameters, has not been
In Eq. (4.1), M is a mobility constant which value may be confirmed by our computations because it required many
related to the Fick diffusion constabig . As known, for a  long time computer runs. It is the purpose of a forthcoming
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FIG. 1. Phase separation kinetics af0@1) cubic crystal surface X=-1.
(x=xau~—0.5) with a stress directional anisotropy= /4 (de- 04 .
fined in the text Pictures occurrence time is indicated at the low o 100 200
left hand corners: time unit is around 10 ns. Kinetics is started at time
initial time t=0 with a uniform surface state. The directidi0] is ) ) -
indicated. FIG. 3. Time evolution of the total free energyfor negligible

stress, i.e.A =0, and for a stressed surface, i&540 mJ/n? for
different coveragesf,=0.25 (dashed linesand 6,=0.5 (solid
paper. For a coveragi =0.3 (see second row in Fig)lthe  lines). Time unit is 10 ns and the free energy is divided by the
time needed to reach the final stripe structure is longer thasonstantF,S (defined in the te3t

for #,=0.5. As soon as the nucleation occurs, it appears ) o

some distorted stripes length of which increases with coverhen the size of the domains is of the order of the whole
age. During the coalescence regime dat 0.5, the stripes Sample. Fo\#0, the kinetics is radically different since the
branch to each other before their connections move along th#/stem is driven to a “self-organized” final state. Beyong an
stripe sides such that it eliminates the domain which sepa€volving stage which duration decreases\agicreases, the
rates the primary stripe couple. The mecanism is very differsurface reaches a steady structure as shown by the two last
ent at low Coveragésee second row of Fig.),lsince the pictures of the second and the third rows in Flg 2. The

evi ]

short domains move to align themselves with longer stripessPecific size and the distance between the neighboring do-
For a preserved surface symmetry, the kinetics computeiains are determined by the value/of The larger isA, the
calculations results are presented in Fig. 2. In Fig. 2, the timémaller are the domain sizes. According to our calculations,
evolution of a half covered surface with and without inducedthe final state is composed of branched stripes with tips as
stress is shown. One notes that for a negligible elastic inteshown by the six last pictures in Fig. 2. As in Fig. 1, the SO
action, i.e.,A=0, the domains never stop growing because2PP€ars as soon as the nucleation occurs. At this stage, the
of the Ostwald’s ripening®*®We had to stop the simulation domains already arrange along preferential orientations. The
structure evolves such that the thinnest branches disappear to
the benefit of the thick stripes by first consuming the tips.
ﬁf};’;":.“': The stripe orientations depend clearly on the sign¢ofor
15, .‘é_‘.‘.’l ' ® x>0 as for chromium, stripes are along eitHer0] or
&&\ [110] while for <0 as for copper, stripes are along either
m A - [100] or [010]. According to the few experimental results
B LT D about SO of chemisorbed monolayer, the adsorption of nitro-
| ' | gen on a(001) chromium surface has been analyzed with
STM by Pinczolitset al. in Ref. 19. Unfortunately, none of
‘ ® ® their results allows one to conclude about the possible ar-
rangement of nitrogen atoms alof@10] or [110] direc-
aon 0 — ) g — tions. The experimental results obtained in Refs. 6,7 about
'. '. (001) copper surface are in a good agreement with our cal-
‘ z ‘ ‘ t ‘ culations.
In Fig. 3, the plot of the rati&/(F,S) whereSis the total
3 surface size, shows how the free energy galh=F —F4
g " ”‘ = evolves with time. The constaii is the free energy of a
totally phase separated surface with only two compact do-
mains. The stressed surface decomposition kinetics generates
FIG. 2. Phase separation kinetics ori081) cubic crystal sur- a steady state with lower energy because of a negative elastic
face with negligible stress, i.eA =0 (defined in the tejtfirst row,  energyEg,. After a nucleation regime where the total energy
and with A=40 mJd/infy=xc,=—1, second row andA decreases strongly as time increases, the energy reaches an
=57 mJ/int and y=xc,=1 third rows. asymptotic value. The asymptotic state free energy clearly
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FIG. 4. First row: steady states of(801) cubic crystal surface

with A=40 md/nt, x=xc,=—1, 6,=0.21 (on the lef}, and 6, _ _ o
=0.35 (on the right. Second row: steady state of(@01) cubic FIG. 5. Profile of the displacement field inside the bulk, for
crystal surface withA =57 mJ/inf, x=xe—=1, 6,=0.21 (on the =40 mI/nt, x=xc,= —1 andy=0.21. The arrows’ length is pro-
left), and 6,=0.35 (on the righy. portional to the displacemerimultiplied by one hundred A dis-

tanced=1 nm separates neighboring sites of the coarse-grained
depends on the coveragly and the differencd-(6,=0.5) lattice. The direction§010] and[001] are indicated.
—F(6,=0.25) increases in absolute value with The same

plot with no surface stress shows that the surface evolves in g 4 coverage lying betweeiy=0.25 and half coverage,
order to reduce its positive domain boundary energy. In suclye fing that the nanostructure of the final stage is composed
a case, the asymptot.ic energy difference of two surfaces witgs 5 mixing between short length stripes and d@tse Fig.
different coverages, i.e5(6=0.5)—F(fo=0.25) becomes 4y 5o we deduce that the surface SO shows a crossover with
negligible. , . _ respect to the coverag®, i.e., going from droplet structure

At low coverage, as it was predicted in Ref. 3, an assemy; o\ coverage to a stripe structure at half coverage, passing
bly of dots appear in the final stage. As for stripes, the Althrough mixed structures.
rangement of the dots also depends on the sigy.ofhe Figure 5 shows the displacement field involved by the
dots are arranged in an assembly of one-dimensional raft$yesence of the adsorbate. Nearby the surface, vortices are
the raft orientation is either alond10] or [110] for x>0  induced inside the bulk and extend over a depth of few ten
(first row of Fig. 4, and either along100] or [010] for x ~ nanometers. The maximum amplitude of the displacements is
<0 (second row of Fig. % In Fig. 4, the dots may be square of few 0.1 A. With both a molecular dynamics study and a
shaped because of the relaxation of their elastic energy arlthear elasticity analysis of the specific N/G001) case,
the underlying crystal symmetry. Comparison of the totalthose structures are also found by Croseall’ who first
free energy of a single A phase dot a B surface, imposing pointed them out to us. Moreover they showed that the bulk
different shapes to this dot, shows that the square shape displacements due to vortices contribute to x-ray diffraction
optimal, provided the area covered by the dot is larger than and they deduce a surface force amplitude measurement
critical size. For smaller sizes, the droplets are disk shape@.2x10°° N at ~1 (or 0.3 eV/A?). In our model, theA
This critical size depends on both the elastic constants angimplitude has the same order of magnitude.
A. As a consequence, in the first stage of the growth, when For the (001) copper surface case, an induced shear is
the domains have small area, all of them are disk shaped. ligsted, i.e., a nonzegp= sob,= 509, (defined above Both
the case of copper, before the surface reaches its steady stat@ island shape and the arrangement directions are tilted
most of the islands undergo a shape tranformation passingith an angle that depends on the ratidA (see Fig. 6.
from a disk shape to a square shagee the first row of Fig. The previous computations are performed with no thermal
4). In such a case, the domain size is clearly larger than thgyctuations. Putting on the Langevin noise in E4;1), with
critical shape transformation size. In the left picture of thegn amplitude which is related to a temperature by @),
first row of Fig. 4, performed with chromium elastic coeffi- we performed the same simulations and obtained similar fi-
cients, it is the opposite case, since the disk shape domaing| states with the same structures. This demonstrates the
never transform. In the right picture of the same row, increasstability of both the kinetics and the final state. At half cov-
ing the surface coverag#, yields larger domains. Some of erage and for the copper elastic coefficients, the amplitude of
them overpass the critical size to becomes square[ditd]  the thermal noise may be increased up to the melting point of
and[110] oriented sides. the copper metal. Our method does not simulate the desorp-
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this study should be extended to other surface symmetries
which exibits interesting properties such as tié1) gold
surface, e.g., the gold herringbone reconstructgee, e.g.,
Refs. 4,20, and as th€110) copper surface, e.g., the oxide
adsorption(see Ref. 2L Then, in the framework of the spin-
odal theory for SO, only the elastic Green function should be
modified.

In some specific cases, the crystal surface SO displays
experimental features that are not included in the present
model. The STM analysis of N/Q@01) performed by ElI-

mer et al.” demonstrates that the surface morphologies are

not equivalent for coveragé,=(0.5+x) and for 8,=(0.5
FIG. 6. Steady state of €01) cubic crystal surface with\ —X), as one would expect from the spinodal decomposition
=40 mJ/M, x=xc.=—1, §,=0.3, and a shear componest),  theory we proposed. In addition, attractive interactions be-
=809,=AI2. tween nitrogen islands seems to be dominant at very low

coverage. We also note a remarkable result of Fishének 2
tion process which could be activated at lower temperaturen Br/Cu001) where STM analysis shows bromine islands
than the crystal melting point. Moreover the white noise am-organized in a chessboard at half coverage while we would
plitude is calculated to satisfy the fluctuation dissipationexpect branched stripes. We believe that our simple method
theorem which is strictly valid around the thermodynamicalcan be improved in order to investigate those specific cases
equilibrium. Nevertheless the use of the Langevin noise aleven if it is clear that a continuous approach is limited to the
lows us to estimate qualitatively the surface structure abilitymesoscopic scale analysis, e.g., it seems hopeless to include
to stand up to thermal fluctuations. Here the nanometric selfcertain atomic scale features as surface dislocations, or ada-
organized surface structure are proved to be very strong. tom missing row.

Similar results have been obtained with elastic constants |n the present work, the chemisorbed layers thickness is
of gold (x<<0) and with niobium elastic constantg0)  neglected. As shown in Ref. 22 for the silicon quantum dots,
with a smaller amplitude\, indeed(see above for detajls this thickness plays a role in the arrangement of dots but for

the moment no idea emerges to tackle this problem on the
V. CONCLUSION AND PERSPECTIVES basis of our approach.
For simplicity, we ignored the possible internal structures

In the present paper, we investigated the patterns that agf each phases. If not it may involve both anisotropy and
yielded from the (001) cubic crystal surface SO. If the sur-shear that are expected to modify the mesoscopic patterns.
face square symmetry is preserved, the nanometric moWloreover, some translational and orientational variants may
phologies are proved to depend on both the coverage and ti yielded from the different way the adatoms arrange on the
elastic coefficients of the crystal. One-dimensional rafts Ofunder|ying surface Crysta| lattice. Those variants can be
dots(with disk shape or square shaecur at low coverage treated in the present model by developing the free energy
and branched stripes appear at half coverage. Rafts anfknsity with respect to the so-called long range order param-
stripes are aligned with eith¢f00] or [010] for a negative  eters. This extension is well known within the phase field
anisotropy factor and with eith¢f10] or [110] for a posi- method for alloy physict® As a consequence of the coexist-
tive anisotropy factor. Our computations have been perent variants, some antiphase boundaries should appear be-
formed with different cubic metal elastic coefficients, e.g.,tween domains and play a role in the pattern growth. In
gold, copper, chromium, and niobium. Obviously, it is pos-summary, the model we present here is a promising start to
sible to extend our calculations to the surfaces of either aldescribe and also to predict the nanostructures induced by
loys or ionic crystal with cubic symmetry. In case of metal, self-organization of a crystal surface.
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