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Self-organization of „001… cubic crystal surfaces
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Self-organization on crystal surface is studied as a two-dimensional spinodal decomposition in presence of
a surface stress. The elastic Green function is calculated for a (001) cubic crystal surface taking into account
the crystal anisotropy. Numerical calculations show that the phase separation is driven by the interplay between
domain boundary energy and long range elastic interactions. At late stage of the phase separation process, a
steady state appears with different nanometric patterns according to the surface coverage and the crystal elastic
constants.
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I. INTRODUCTION

Self-organization~SO! on solid surface is an efficien
mean for growing nanostructures with regular sizes and s
ings. The models proposed by Marchenko1 and Vanderbilt
et al.2,3 are the basis of the theoretical framework to und
stand the SO phenomenon. They enhanced the interplay
tween the long range elastic interaction yielded by the und
lying crystal and the domain boundary energy. Indeed,
former is minimum when two surface defaults are separa
by a distance as large as possible while the latter is minim
when only one compact domain appears onto the surface
when these two ingredients are present~see below for experi-
mental descriptions!, the surface ground state structu
should be a compromise between the aforementioned in
actions. The purpose of Refs. 1–3 was to evaluate this st
ture in different cases.

Assuming that two phases, called A and B, coexist
onto a crystal surface, have different intrinsic stresses,
authors of Refs. 1,2 showed that a state which consist
stripes domains occupied alternatively by A and B lowers
energy with a period selection. This period depends on
crystal stress energy compared with the domain bound
energy and it varies exponentially with the ratio of those t
quantities. In order to perform an analytical surface ela
Green function calculation, Marchenko and Vanderbilt bo
assumed either a crystal anisotropy along one direction of
surface or the anisotropy of the intrinsic stresses. Th
works specially addressed the cases of corrugated crysta
faces and crystal surface reconstruction with broken sym
try ~see Refs. 4,5 for recent relevant experimental analys!.

Comparing the stability of different periodic domains
an isotropic two-dimensional dipolar model, Vanderb
et al.3 proved that at intermediate coverage,u0.0.28, the
stripe structure is the optimal candidate for the tw
dimensional system ground state while at low coverageu0
,0.28, the droplets structure is more stable. As the dipo
dipole interaction is similar to the elastic interaction, i.e.,
decreases as the inverse of the distance to the power t
these Vanderbilt’s results hold for the solid surface SO
shows that the anisotropy of the intrinsic stress surface,
sumed in Refs. 1,2 is not essential in the SO process s
the patterning occurs even if the surface is isotropic with
symmetry breaking. The studies of Refs. 1–3 emphasize
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main physical ingredients which drive SO, i.e., the interp
between domain boundary energy and elastic interaction
ergy.

Recent analysis of chemisorbed monolayers on~001!
Copper surfaces, via scanning tunneling microscopy6–8

~STM! and spot profile analyzing low energy electro
diffraction9 ~SPA-LEED! show mesoscopic morphologie
different from droplet or stripe structures. For the N/Cu~001!
case, the nitrogen is chemically adsorbed on a (001) Cop
crystal surface, and aggregates within square-shaped isl
that may arrange either in one-dimensional rafts at low
trogen coverage or in a two-dimensional array at interme
ate coverages. The experimental works mentioned abo7,9

motivated the present study.
Here we propose to describe the SO kinetics on so

surface as a two-dimensional spinodal decomposition. In
standard theory, we include the stress energy due to the
derlying crystal and therefore the surface elastic Green fu
tion is calculated. The 2D Cahn-Hilliard equation whic
drives the surface diffusion, is integrated with compu
means. Our method allows us to capture the SO kine
together with the elastic anisotropy due to the crystal sy
metries. The latter feature is proved to play a role in t
nanometric arrangements. For simplicity, our study is
cused on a~001! cubic crystal surface.

In the last decade, a similar theory has been develo
under the name of ‘‘phase field’’ by Khachaturyanet al. for
the kinetics of phase transition in alloys.10 The phase field
name is also used for models of solidification; see Ref. 11
recent developments. We choose not to use this ambigu
terminology. In the framework of the SO spinodal theory, t
implied coexistent phases may represent either two type
crystal facet, noted A and B or a chemical adsorbed laye
over a clean crystal surface B. In the latter case, we neg
the possible layer thickness.

Our results exhibit a steady state at late stage of the s
ration process which shows different mesoscopic patterns
cording to the coverage and to the elastic constants of
materials. Because of the crystal cubic symmetry, the na
metric morphologies of the final state may differ from th
one predicted in Refs. 1–3. At low coverage, rafts of eith
disk or square shaped islands appear while at intermed
coverage a branched stripe structure occurs. The elastic
stants of the material are shown to determine the prefere
©2001 The American Physical Society06-1



c
ila
ul

t
th

ria
,
a

m

ac
th

tim

a
d
r

w

ty

e

in
s
D

gy
th
a

a
n
l i
es

-B

he

b
al

n

a
but
the

on
us

(
e

en

ipt

each

r a
ree

f-

ll

ter-

lved
ier

.

ro

LAURENT PROVILLE PHYSICAL REVIEW B 64 165406
orientations of the rafts and of the stripes. If the surfa
square symmetry is broken, the kinetics final state is sim
to those predicted in Refs. 1,2, i.e., an assembly of reg
spaced stripes.

II. DOMAIN BOUNDARY ENERGY

The covering parameteru describes the A-B coexisten
phases at the solid surface. These phases may differ by
composition or their geometry. Let us say thatu50 for B
andu51 for A. If one assumes that the spatial surface va
tions of u are smooth with respect to the atomic scale
two-dimensional coarse-graining procedure is thus relev
to represent the mesoscopic system state. Ifd is the size of
the elementary coarse-grained surfaces, we introduce the
soscopic quantityu(r ) which is theu average, performed
over a whole elementary surface, centered at positionr . The
u(r ) variable is the mesoscopic local coverage of the surf
since it is the A quantity per unit area which is present in
r vicinity. Theu average over the entire surface is writtenu0
and it is assumed to be conserved during the system
evolution.

An inhomogeneous mixing of A and B phases involves
energy increasing because of atomic bond breaking at
main boundaries. This energy together with the entropic te
due to the surface inhomogeneity are captured in the t
dimensional free Ginzburg-Landau~GL! functional energy

Fchem5F0E E
S
H g

2 F S ]u

]x1
D 2

1S ]u

]x2
D 2G1 f̂ ~u!J dr .

~2.1!

We introduce here the adimensional free energy densif̂
516.u2(12u)2 which is a double well potential with
minima for u50 andu51. The hat notation points out th
adimensional quantities. Thef̂ form has no direct influence
on the mesoscopic structure providing GL functional is
variant with respect to the~001! surface space group. Let u
noteĝ(u), the continuous Hamiltonian including both the 2
gradient term and the free energy densityf̂ .

The F0 and g scalars are respectively the free ener
density constant and the amplitude of the gradient term
both must be adjusted to set the model domain bound
energyI to a realistic value, i.e., around 10 meV/Å~see Ref.
2!. At phase equilibrium, theI quantity is given by I

5F0*B
Aĝ(u)d lW where the integration is performed along

line path that goes from inside a B phase domain to inside a
A domain.12 It is easy to see that the previous path integra
overvalued by the product of the A-B interface width tim
the f̂ maximum value, i.e.,f̂ (u50.5)51. Fixing g520d2,
which insure theu(r ) space variation smoothness, the A
interface width is then around 5d, at equilibrium. Therefore,
to obtainI'10 meV/Å, F0d must be fixed to 2 meV/Å~or
3.2 10212 J/m). As our investigations are focused over t
nanometer scale, we choose to setd51 nm and thusF0
53.2 mJ/m2. To study larger space scales as it would
suitable for silicon which may exhibit a 100 nm vicin
period,2 then it is sufficient to increase thed parameter and to
16540
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adjust subsequentlyF0, eventually changing the domai
boundary energyI if necessary.

For simplicity, we choose to neglect the possibleg varia-
tions with respect to the crystal surface direction. Such
feature may be yielded from a crystal step anisotropy
here our study is focused on the elastic anisotropy due to
crystal symmetries.

III. SURFACE GREEN FUNCTION

An important stage of this work consists in the calculati
of the cubic crystal surface elastic Green function. Let
note thatP(r ) is a surface external force at positionr . In
Cartesian coordinates, the (001) surface is defined byx3
50) andr5(x1 ,x2). The semi-infinite crystal occupies th
half spacex3>0. The surface normal is then unit vector.
The mechanic equilibrium condition at the surface is giv
by

s i , j~r ,x350! nj5Pi~r !, ~3.1!

wherenj is an component and the summation over subscr
j is implicit. The crystal bulk stress,s i , j (r ,x3) is due to the
crystal displacements and these quantities are related to
other by the Hooke laws i , j5l i , j ,k,l]uk /]xl . The forth or-
der tensorl i , j ,k,l gives the crystal elastic constants and fo
cubic crystal symmetry, this tensor is composed with th
nonzero coefficients,14 namely, l i ,i ,i ,i5C11, l i ,i , j , j5C12,
andl i , j ,i , j5l i , j , j ,i5C44. In the case of copper, those coe
ficients areC1151.683 1011 J/m3, C1251.221 1011 J/m3, and
C4450.757 1011 J/m3.

At mechanic equilibrium, the bulk displacements fulfi
the Laméequation

l i , j ,k,l

]2uk

]xj]xl
50. ~3.2!

Except constants, the displacement functions are fully de
mined by the set of equations~3.1!, ~3.2!. As proposed in
Ref. 15 for the isotropic case, these equations may be so
by writing the displacements as two-dimensional Four
transforms

ui~r ,x3!5E E exp~ iQ•r !ũi~Q,x3!dQ. ~3.3!

Note that the Fourier componentsũi(Q,x3) depend on both
the wave vectorQ5(q1 ,q2) and x3. Once the set of Eqs
~3.1!, ~3.2! is expressed using Eq.~3.3!, the subsequent dif-
ferential equations involvingũi and their derivatives with
respect tox3 turn out to be linear, so thatũi(QÞ0,x3) have
an exponential dependence on the bulk penetration lengthx3:

ũ j~QÞ0,x3!5(
l

b j ,lexp~2a lx3!, ~3.4!

where bothb j ,l anda l depend on the wave vectorQ. As the
whole sample is at rest, theP average is assumed to be ze
which impliesũ j (0,x3)50. The Eq.~3.2! is then reduced to
a linear equationM (Q,a l)(b j ,l)50, whereM (Q,a l) is the
333 matrix
6-2



M ~Q,a !5

C11q1
21C44q2

22C44a l
2 ~C121C44!q1q2 ~C121C44!iq1a l

~C121C44!q1q2 C11q
21C44q

22C44a
2 ~C121C44!iq2a l . ~3.5!
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l S 2 1 l

2~C121C44!iq1a l 2~C121C44!iq2a l C11a l
22C44~q1
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As usual, the nontrivial solutions are such
det@M (Q,a l)#50. This yields a third degree polynomia
equation for thea l

2 parameters that we solve numerical
The only threea l values with positive real parts are phys
cally acceptable. At least one of thea l is real, the two other
roots may be either real or complex conjugated depending
the sign of thex parameter:

x5C112C1222C44. ~3.6!

This combination of the elastic constants is related to
elastic anisotropy of the cubic crystal~see Ref. 14!. When
x50, the crystal is isotropic and the threea j are degenerate
This case was addressed in Refs. 14,15. One retains a
amples that the copper and goldx ’s are negative (xCu5
21.0,xAu520.5) and the chromium and niobiumx ’s are
positive (xCr511.8,xNb510.5).

To eacha j corresponds a unique set of three coefficie
(b j ,l) that are determined by inverting Eq.~3.1!. Noting P̃j
the Fourier transform of the force componentPj , we write
the Fourier counterpart of Eq.~3.1!:

(
l 5(1,2,3)

2a lb l ,11 iq1b l ,35 P̃1 ,

(
l 5(1,2,3)

2a lb l ,21 iq2b l ,35 P̃2 ,

(
l 5(1,2,3)

C12~ iq1b l ,11 iq2b l ,2!2C11a lb l ,35 P̃3 . ~3.7!

Combining the first and second rows with the third ro
of the matrixM (Q,a l) @see Eq.~3.5!#, one easily gets both
equations

b l ,15 iq1b l ,3G l ,1 /a l ,

b l ,25 iq2b l ,3G l ,2 /a l , ~3.8!

where we write

G l ,15
~C112C122C44!a l

22C44~q1
21q2

2!

~C112C122C44!q1
21C44~q2

22a l
2!

,

G l ,25
~C112C122C44!a l

22C44~q1
21q2

2!

~C112C122C44!q2
21C44~q1

22a l
2!

, ~3.9!

provided the denominators ofG i ,1 and G i ,2 are nonzero. If
not, which occurs for eitherq150 or q250 then it is easy to
show thatb l ,350 and the calculation can be performed
well. In addition let us note
16540
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G l ,352C11a l2C12~q1
2G l ,11q2

2G l ,2!/a l . ~3.10!

We rewrite Eq.~3.7! as a linear equationNj ,lb l ,35 P̃j where
the 333 matrix N is defined as follows:

N~Q!5S iq1~12G1,1! iq1~12G2,1! iq1~12G3,1!

iq2~12G1,2! iq2~12G2,2! iq2~12G3,2!

G1,3 G2,3 G3,3

D .

~3.11!

Providedq1Þq2, this matrix ~3.11! can be inverted which
gives theb l ,3’s as linear functions of thePj (r ) Fourier trans-
forms b l ,35Nl , j

21P̃j . One must distinguish the caseq15q2

for which details are not presented but are simple to d
with. Using Eqs.~3.8!, one gets the whole set ofb l , j ’s and
thus ũk(Q,x350)5Gk, j (Q) P̃j (Q) whereGk, j is the surface
elastic Green function that we write as follows:

G1,j~Q!5 iq1(
l

Nl , j
21G l ,1 /a l ,

G2,j~Q!5 iq2(
l

Nl , j
21G l ,2 /a l ,

G3,j~Q!5(
l

Nl , j
21 . ~3.12!

The latest function varies as 1/uQu. The total elastic energy o
the system is given at mechanical equilibrium according
Eqs.~3.1!, ~3.2! by

Eel521/2E
x350

PiuidS ~3.13!

which gives an analytical expression ofEel in the Fourier
space:

Eel521/2E
x350

P̃i* @Gi ,l # P̃ldQ. ~3.14!

The total energy is in fact given by the sumF5Fchem1Eel
@Eqs.~2.1! and ~3.2!#.

The P force is induced by the phases intrinsic stress m
fit. Let us notesA

0 andsB
0 the intrinsic stress tensor of the

and B phases, respectively. At positionr , the intrinsic stress
is thus given bys0(r )5sB

01ds0u(r ) where we introduce
the tensords05sA

02sB
0 . The induced force is simply ob

tained by derivings0 with respect to the surface coordinate
it gives
6-3
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Pi5 (
j 51,2

ds i j
0 ]u

]xj
. ~3.15!

Here we propose to distinguish whether there is a str
directional anisotropy such as for vicinal surface or no b
ken surface symmetry. In the former case, if a negligi
stress variation is induced along a direction which angle w
respect to@100# is noteda, the P vector must be zero ifu
gradient points this direction. Theds0 tensor coefficients are
developed to satisfy this condition and one may writeP as
follows:

Pi5L iFsin~a!
]u

]x1
2cos~a!

]u

]x2
G , ~3.16!

where we introduce three constants$L i%. We restrict our
study to a uniaxial stress with only one nonzeroL i which is
L35L. According to our tests, nonzeroL1 andL2 involve
no qualitative change in our results.

If the surface square symmetry is preserved, theds0 ten-
sor is invariant under the square symmetry group operat
So ds12

0 5ds21
0 , ds31

0 5ds32
0 , and ds11

0 5ds22
0 . Again we

introduce theL parameter setting thatds11
0 5ds22

0 5L. The
surface is assumed to be a perfect plane so theP3 component
is negligible, i.e.,ds31

0 5ds32
0 50. Nonzero coefficientsm

5ds12
0 5ds21

0 implies a shear that may be induced by t
internal structures of the coexistent phases. To a first step
choose to ignore such a possibility, i.e.,m!L. Thus the
force P is simply proportional to theu gradient.

The parameterL is a constant that fixes the amplitude
the surface force and it may vary from an experimental c
to another. In our model, for each different set of crys
elastic coefficients,L is adjusted, i.e., our numerical calcu
lations are performed with L540 mJ/m2 ~or L
50.25 eV/Å2) for the copper, gold, and niobium cryst
cases andL557 mJ/m2 ~or L50.35 eV/Å2) for the chro-
mium case.

IV. KINETICS OF PHASE SEPARATION

To modelize the phase separation kinetics, we use a s
dard spinodal decomposition theory which is precisely
scribed in Ref. 12 for the three-dimensional case. Extens
to the two-dimensional systems is straighfoward. The ti
evolution of the conserved quantityu(r ) is then driven by
the Cahn-Hilliard equation~also known as model B!:

]u~r ,t !

]t
5Mn

dF

du~r ,t !
1e~r ,t !, ~4.1!

wheree is a Langevin stochastic term which simulates th
mal fluctuations as proposed by Cook in Ref. 13:

^e~r ,t !&50, ~4.2!

^e~r ,t !e~r 8,t8!&522kBTMDd~r2r 8!d~ t2t8!.
~4.3!

In Eq. ~4.1!, M is a mobility constant which value may b
related to the Fick diffusion constantDFick . As known, for a
16540
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given chemical species the parameterDFick strongly depends
on both temperature and coverage~see Ref. 16!. For simplic-
ity, we assum here thatDFick'1026 cm2/s ~see Ref. 16!.
Neglecting the elastic termEel , a linear expansion of Eq
~4.1! around a uniform coverageu(r )50.5 shows that Eq.
~4.1! is equivalent to a diffusion equation for short wav
length perturbations~see Ref. 12!. Then, we establish
MF0(d2 f̂ /du2)5DFick which fixes approximately the mobil
ity since (d2 f̂ /du2)(u050.5)516, in the present case. A
both DFick andd2 f̂ /du2 strongly decrease with a decreasin
u0, the mobility variations with respect to the average co
erage cannot be estimated in the general context of our w
For simplicity, we choose to keep it constant, i.e., it is eq
to the mobility estimated at half coverage.

Regarding the kinetics of the coarse-grained surface,
simply derived from the space and time discretization of E
~4.1!. The previous linear development of Eq.~4.1! is still
valid and it comes that the diffusion constantDFick is re-
scaled asDFick /d2 due to the discretized Laplacian operato
It corresponds to the intuitive idea according to which t
larger the coarse graining is, i.e., the larger isd, the slower
each unit cell of the coarse graining evolves and thus
slower is the global kinetics. One guesses that the larger
B domain, the longer is the time needed to transform
whole area in a A phase region. Thus we are able to prop
a rough estimation of the surface kinetics time scale. O
computer calculations work with a time unit which is equiv
lent to dt5d2/DFick'1028 s. To perform the time integra
tion of Eq. ~4.1!, we use a time increment of (10233dt).

Equation~4.1! is integrated starting from a uniform initia
state for whichu(r)5u0. Spontaneous formation of domain
is observed for a coverageu0 lying between 0.25,u0
,0.75. This range is imposed by the classical spinodal
gion defined by]2 f̂ /]2u,0 ~see Ref. 12!. These limits are
indeed slightly modified in presence of elastic interactio
The temperature dependency may be activated in the fu
tional Fchem, in the diffusion coefficientDFick , and in the
amplitude of the Langevin noise. The external parameters
the material elastic constants that fixx, the average coverag
u0, the surface stressL, and thea angle for both isotropic
and anisotropic stress cases.

Our numerical findings confirm the analytical results
Refs. 1–3. The phase separation is frustrated by long ra
interaction due to the crystal surface stress, i.e., the kine
yields a final steady state. As model input parameters,
may retain that the domain boundary energy is of ordeI
510 meV/Å and the stress amplitude is eitherL
540 mJ/m2 ~or L50.25 eV/Å2) for the copper, gold, and
niobium crystal cases or L557 mJ/m2 ~or L
50.35 eV/Å2) for the chromium case.

In the case of a broken surface symmetry with uniax
stress, the kinetics yields nonbranched stripes structures
spacial periodicity along a given direction as shown in Fig
~for a5p/4). The selected period strongly decreases wh
L increases but the formula proposed in Refs. 1,2 wh
gives the period versus the model parameters, has not
confirmed by our computations because it required m
long time computer runs. It is the purpose of a forthcomi
6-4
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paper. For a coverageu050.3 ~see second row in Fig. 1!, the
time needed to reach the final stripe structure is longer t
for u050.5. As soon as the nucleation occurs, it appe
some distorted stripes length of which increases with cov
age. During the coalescence regime, atu050.5, the stripes
branch to each other before their connections move along
stripe sides such that it eliminates the domain which se
rates the primary stripe couple. The mecanism is very dif
ent at low coverage~see second row of Fig. 1!, since the
short domains move to align themselves with longer strip

For a preserved surface symmetry, the kinetics comp
calculations results are presented in Fig. 2. In Fig. 2, the t
evolution of a half covered surface with and without induc
stress is shown. One notes that for a negligible elastic in
action, i.e.,L50, the domains never stop growing becau
of the Ostwald’s ripening.12,18We had to stop the simulatio

FIG. 1. Phase separation kinetics of a~001! cubic crystal surface
(x5xAu'20.5) with a stress directional anisotropya5p/4 ~de-
fined in the text!. Pictures occurrence time is indicated at the lo
left hand corners: time unit is around 10 ns. Kinetics is started
initial time t50 with a uniform surface state. The direction@010# is
indicated.

FIG. 2. Phase separation kinetics on a~001! cubic crystal sur-
face with negligible stress, i.e.,L50 ~defined in the text! first row,
and with L540 mJ/m2x5xCu521, second row and L
557 mJ/m2 andx5xCr51 third rows.
16540
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when the size of the domains is of the order of the wh
sample. ForLÞ0, the kinetics is radically different since th
system is driven to a ‘‘self-organized’’ final state. Beyong
evolving stage which duration decreases asL increases, the
surface reaches a steady structure as shown by the two
pictures of the second and the third rows in Fig. 2. T
specific size and the distance between the neighboring
mains are determined by the value ofL. The larger isL, the
smaller are the domain sizes. According to our calculatio
the final state is composed of branched stripes with tips
shown by the six last pictures in Fig. 2. As in Fig. 1, the S
appears as soon as the nucleation occurs. At this stage
domains already arrange along preferential orientations.
structure evolves such that the thinnest branches disappe
the benefit of the thick stripes by first consuming the tip
The stripe orientations depend clearly on the sign ofx: for
x.0 as for chromium, stripes are along either@110# or

@11̄0# while for x,0 as for copper, stripes are along eith
@100# or @010#. According to the few experimental resul
about SO of chemisorbed monolayer, the adsorption of ni
gen on a~001! chromium surface has been analyzed w
STM by Pinczolitset al. in Ref. 19. Unfortunately, none o
their results allows one to conclude about the possible
rangement of nitrogen atoms along@110# or @11̄0# direc-
tions. The experimental results obtained in Refs. 6,7 ab
~001! copper surface are in a good agreement with our c
culations.

In Fig. 3, the plot of the ratioF/(F0S) whereS is the total
surface size, shows how the free energy gainDF5F2Fs
evolves with time. The constantFs is the free energy of a
totally phase separated surface with only two compact
mains. The stressed surface decomposition kinetics gene
a steady state with lower energy because of a negative el
energyEel . After a nucleation regime where the total ener
decreases strongly as time increases, the energy reach
asymptotic value. The asymptotic state free energy cle

t

FIG. 3. Time evolution of the total free energyF for negligible
stress, i.e.,L50, and for a stressed surface, i.e.,L540 mJ/m2 for
different coverages:u050.25 ~dashed lines! and u050.5 ~solid
lines!. Time unit is 10 ns and the free energy is divided by t
constantF0S ~defined in the text!.
6-5
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depends on the coverageu0 and the differenceF(u050.5)
2F(u050.25) increases in absolute value withL. The same
plot with no surface stress shows that the surface evolve
order to reduce its positive domain boundary energy. In s
a case, the asymptotic energy difference of two surfaces
different coverages, i.e.,F(u050.5)2F(u050.25) becomes
negligible.

At low coverage, as it was predicted in Ref. 3, an asse
bly of dots appear in the final stage. As for stripes, the
rangement of the dots also depends on the sign ofx. The
dots are arranged in an assembly of one-dimensional r
the raft orientation is either along@110# or @11̄0# for x.0
~first row of Fig. 4!, and either along@100# or @010# for x
,0 ~second row of Fig. 4!. In Fig. 4, the dots may be squar
shaped because of the relaxation of their elastic energy
the underlying crystal symmetry. Comparison of the to
free energy of a single A phase dot on a B surface, imposing
different shapes to this dot, shows that the square shap
optimal, provided the area covered by the dot is larger tha
critical size. For smaller sizes, the droplets are disk shap
This critical size depends on both the elastic constants
L. As a consequence, in the first stage of the growth, w
the domains have small area, all of them are disk shaped
the case of copper, before the surface reaches its steady
most of the islands undergo a shape tranformation pas
from a disk shape to a square shape~see the first row of Fig.
4!. In such a case, the domain size is clearly larger than
critical shape transformation size. In the left picture of t
first row of Fig. 4, performed with chromium elastic coef
cients, it is the opposite case, since the disk shape dom
never transform. In the right picture of the same row, incre
ing the surface coverageu0 yields larger domains. Some o
them overpass the critical size to becomes square with@110#
and @11̄0# oriented sides.

FIG. 4. First row: steady states of a~001! cubic crystal surface
with L540 mJ/m2, x5xCu521, u050.21 ~on the left!, and u0

50.35 ~on the right!. Second row: steady state of a~001! cubic
crystal surface withL557 mJ/m2, x5xCr51, u050.21 ~on the
left!, andu050.35 ~on the right!.
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For a coverage lying betweenu050.25 and half coverage
we find that the nanostructure of the final stage is compo
of a mixing between short length stripes and dots~see Fig.
4!. So, we deduce that the surface SO shows a crossover
respect to the coverageu0, i.e., going from droplet structure
at low coverage to a stripe structure at half coverage, pas
through mixed structures.

Figure 5 shows the displacement field involved by t
presence of the adsorbate. Nearby the surface, vortices
induced inside the bulk and extend over a depth of few
nanometers. The maximum amplitude of the displacemen
of few 0.1 Å. With both a molecular dynamics study and
linear elasticity analysis of the specific N/Cu~001! case,
those structures are also found by Crosetet al.17 who first
pointed them out to us. Moreover they showed that the b
displacements due to vortices contribute to x-ray diffract
and they deduce a surface force amplitude measurem
2.231029 N at 21 ~or 0.3 eV/Å2). In our model, theL
amplitude has the same order of magnitude.

For the ~001! copper surface case, an induced shea
tested, i.e., a nonzerom5ds12

0 5ds21
0 ~defined above!. Both

the island shape and the arrangement directions are t
with an angle that depends on the ratiom/L ~see Fig. 6!.

The previous computations are performed with no therm
fluctuations. Putting on the Langevin noise in Eq.~4.1!, with
an amplitude which is related to a temperature by Eq.~4.3!,
we performed the same simulations and obtained simila
nal states with the same structures. This demonstrates
stability of both the kinetics and the final state. At half co
erage and for the copper elastic coefficients, the amplitud
the thermal noise may be increased up to the melting poin
the copper metal. Our method does not simulate the des

FIG. 5. Profile of the displacement field inside the bulk, forL
540 mJ/m2, x5xCu521 andu050.21. The arrows’ length is pro
portional to the displacement~multiplied by one hundred!. A dis-
tanced51 nm separates neighboring sites of the coarse-gra
lattice. The directions@010# and @001# are indicated.
6-6
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tion process which could be activated at lower tempera
than the crystal melting point. Moreover the white noise a
plitude is calculated to satisfy the fluctuation dissipati
theorem which is strictly valid around the thermodynami
equilibrium. Nevertheless the use of the Langevin noise
lows us to estimate qualitatively the surface structure ab
to stand up to thermal fluctuations. Here the nanometric s
organized surface structure are proved to be very strong

Similar results have been obtained with elastic consta
of gold (x,0) and with niobium elastic constants (x.0)
with a smaller amplitudeL, indeed~see above for details!.

V. CONCLUSION AND PERSPECTIVES

In the present paper, we investigated the patterns tha
yielded from the (001) cubic crystal surface SO. If the s
face square symmetry is preserved, the nanometric m
phologies are proved to depend on both the coverage an
elastic coefficients of the crystal. One-dimensional rafts
dots~with disk shape or square shape! occur at low coverage
and branched stripes appear at half coverage. Rafts
stripes are aligned with either@100# or @010# for a negative
anisotropy factor and with either@110# or @11̄0# for a posi-
tive anisotropy factor. Our computations have been p
formed with different cubic metal elastic coefficients, e.
gold, copper, chromium, and niobium. Obviously, it is po
sible to extend our calculations to the surfaces of either
loys or ionic crystal with cubic symmetry. In case of met

FIG. 6. Steady state of a~001! cubic crystal surface withL
540 mJ/m2, x5xCu521, u050.3, and a shear componentds12

0

5ds12
0 5L/2.
n

e

S.
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this study should be extended to other surface symme
which exibits interesting properties such as the~111! gold
surface, e.g., the gold herringbone reconstruction~see, e.g.,
Refs. 4,20!, and as the~110! copper surface, e.g., the oxid
adsorption~see Ref. 21!. Then, in the framework of the spin
odal theory for SO, only the elastic Green function should
modified.

In some specific cases, the crystal surface SO disp
experimental features that are not included in the pres
model. The STM analysis of N/Cu~001! performed by Ell-
mer et al.7 demonstrates that the surface morphologies
not equivalent for coverageu05(0.51x) and for u05(0.5
2x), as one would expect from the spinodal decomposit
theory we proposed. In addition, attractive interactions
tween nitrogen islands seems to be dominant at very
coverage. We also note a remarkable result of Fishlocket al.8

on Br/Cu~001! where STM analysis shows bromine islan
organized in a chessboard at half coverage while we wo
expect branched stripes. We believe that our simple met
can be improved in order to investigate those specific ca
even if it is clear that a continuous approach is limited to
mesoscopic scale analysis, e.g., it seems hopeless to inc
certain atomic scale features as surface dislocations, or
tom missing row.

In the present work, the chemisorbed layers thicknes
neglected. As shown in Ref. 22 for the silicon quantum do
this thickness plays a role in the arrangement of dots but
the moment no idea emerges to tackle this problem on
basis of our approach.

For simplicity, we ignored the possible internal structur
of each phases. If not it may involve both anisotropy a
shear that are expected to modify the mesoscopic patte
Moreover, some translational and orientational variants m
be yielded from the different way the adatoms arrange on
underlying surface crystal lattice. Those variants can
treated in the present model by developing the free ene
density with respect to the so-called long range order par
eters. This extension is well known within the phase fie
method for alloy physics.10 As a consequence of the coexis
ent variants, some antiphase boundaries should appea
tween domains and play a role in the pattern growth.
summary, the model we present here is a promising sta
describe and also to predict the nanostructures induced
self-organization of a crystal surface.
eter
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