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Inhomogeneous broadening of polaritons in high-quality microcavities and weak localization
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We theoretically study the elastic scattering of lower cavity polaritons on the static disorder in high quality
semiconductor microcavities in the strong coupling regime. We consider the dominant contribution of the
resonant scattering on localized exciton levels and calculate for a model density of states the corresponding
elastic mean free path. Our analytical results compare well with available linewidth data and substantiate the
possibility of weak localization.
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[. INTRODUCTION whereW andl are, respectively, the variance and the corre-
lation length of the disorder potential, is the cavity photon
Semiconductor microcavities have attracted much attenmass x=10"°m, , m, being the bare exciton mas# w,
tion as they permit to control the interaction between lightis the bottom of the bare exciton bandi2® is the Rabi
and quantum wellQW) exciton modes.In the strong cou-  splitting (typically several meY, and#w is the LP energy.

pling regime, when the exciton-photon coupling is largerysing typical disorder parameters suchVis-0.5 meV and
than the QW exciton and the cavity photon linewidths, the|Cz 300 A 12 one obtainsyg.na~ 10~° meV, while the ex-
gqndam.entall exIC|t§t|ons of the s?j/slgemhare a doublst Sf twry- erimentally observed typical values ayg,~0.1 meV for
limensional po aritons separate 'yt € vacuum Rabi sp I'gtate of the art high quality samples angl,~1 meV for
ting. In general, such cavity polaritons are broadened bot ood samples. Thus, the motional narrowing model alone
homogeneously and inhomogeneously, and it can be exper?— ’ :

mentally determined which kind of broadening prevails. Thecira'lic;gﬁ:pla'n the inhomogeneous broadening of the cavity

homogeneous broadening stems mainly from the cavity phc;D . . . .
ton damping due to the finite transmission of the Bragg mir- A Satisfactory theoretical description of the inhomoge-
rors as well as from the QW exciton inelastic scattering by €0US broadening of cavity polaritons due to the static disor-
phonons. Both contributions may, respectively, be controlledler Scattering has only been given in terms of large scale
by increasing the quality factor of the cavity and by decreashumerical simulations in one-dimensidrand later also in
ing the temperature. The inhomogeneous part of the cavit{’€ more relevant case of two-dimensidAghe absorption
polariton broadening is mainly due to the elastic scattering ofinewidths of both polaritons were numerically calculated by
QW excitons on the static structural disorder caused by QVgxamining the photon Green function for normal incidence
width and alloy fluctuations, which can be much reduced ingeometry for various detunings. The LP inhomogeneous
high-quality sample€s® and is responsible for Rayleigh linewidth y;,,~1 meV was explained in terms of the scat-
scatterind’. While the theoretical description of the homoge- tering of the LP to large wave vector bare exciton states.
neous broadening of cavity polaritons is well understbdd, When the disorder strength becomes small compared to the
the microscopic mechanism responsible for the inhomogeRabi splitting W< A#) such scattering is suppressed and for
neous broadening has been controversial. - ~ very weak disorder \{<A#) the regime of motional nar-
The motional narrowing model proposed in Ref. 9 impliesyowing described by Eq(l) is reached and the inhomoge-
that a cavity polariton, being partly a cavity photon and thusheous broadening becomes negligible. The numerical results
having a very small mass, experiences a much reduced efzye also been interpret@dn terms of a phenomenological
fectlv'e dlsorder_ potential. However, th.e corresponding lowelygdel which simply assumes that the wave vector is
polariton (LP) inhomogeneous linewidth, calculated both conserved®—1°put the exciton energy is distributed with an
from a}lgcahng argumetft and by means of perturbation asymmetric line shap@?! corresponding to the bare QW
theory,™ is found to be exciton density of states. The predictions of this model relat-
ing the cavity polariton linewidths to the bare QW exciton
Wzlg,u A4 absorption ;ige shape are in good. agre_ement_ with
, (1) experiment£2? However, from the theoretical point of view,
202 (wo— @) A%+ (wg— w)?] the wave vector conserving approximation has only been jus-

Ymot-nar—
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tified by the comparison with the numerical simulations of ~10 ®a, for w# w, , the resonant contribution integrated
the actual disorder scatterifg. over the peak width being a facton, /u larger than the

In high-quality samples W<#%A), the inhomogeneous nonresonant one. This allows us to single out the resonant
broadening of cavity polaritonsy,,~0.1 meV) is small scattering of a LP by the localized exciton levels from the
compared to their kinetic enerdg fraction of the Rabi split- nonresonant scattering which can be taken into account per-
ting), which allows one to examine the problem analytically turbatively. In terms of the corresponding mean free paths,
as done here. The QW disorder potential gives rise to theve havel <! ones Thus, we can model the actual smooth
low-energy tail of bare exciton states which are spatially lo-and continuous disorder potential acting on the LP center of
calized at defects corresponding to potential wells for theanass motion by a set of separated scattering centers associ-
exciton center of mass motidAln a recent paper we have  ated to the negative fluctuations of the potential having a
shown that such a defect scatters strongly a LP only when thieound state close to the LP energy. The scattering process
LP energy is resonant with its bare exciton bound state; othean be treated as due to a succession of independent colli-
erwise, the defect is nearly “transparent.” We therefore con-sions only if the corresponding mean free phth exceeds
sider a microscopic kinetic modé¢Sec. 1) of the disorder the size of a typical scatteremg: |,.&2a,. In addition,| ¢
induced elastic scattering which describes a LP of a givemust exceed the de Broglie wavelength in order to have
energy as a wave moving in a statistical distribution of dis-propagating wave packetb,s>\; otherwise, strong local-
crete resonant defects. All the other details of the continuization of the LP would occur according to the loffe-Regel
ously varying QW disorder potential only contribute to the criterion?*
nonresonanpart of the elastic scattering, which is compara- We have then to introduce a model distribution of local-
bly negligible and determine just the motional narrowingized exciton states. Generally speaking, there are families of
linewidth of Eq.(1). Based on model statistical distributions defects with different depths and extensions which have the
of bare exciton localized levelSec. Ill), we calculate the same bound levab, . However, for a model cylindrical well
resonantmean free path of a LP. It allows us to find analyti- defect, the LP cross section depends mostly on the position
cally the dominating contribution to the LP inhomogeneousof the resonance, and not on the parameters of the parent
broadening related to the resonant scattering of a LP by lowell: o, {0o=w0,)=4/k_, being k. =2m/\ the LP wave
calized exciton levels. Within the limits of validity of the vector given by Eq(A1) of the Appendix, and the radius and
present approach, the calculated broaderiec. IV) is in  the depth of the well only weakly influence the width of the
agreement with what is measured in high-quality samplegsesonance. For the sake of simplicity, we therefore model the
and its functional form provides an alternative theoreticaldisorder potential as a set of randomly distributed cylindrical
justification of the wave vector conserving model. Further-wells of equal radiusa, and a statistical distribution of
more, the analytical expression for the mean free path as depths. It is natural to associate the size of the well with the
function of the disorder strength enables us to substantiat€orrelation length of the disorder,=1,/2. This approxima-
the possibility of weak localization in high-quality micro- tion is appropriate if the energy of the LP is in the low-
cavities, as suggested by recent experinferasd numerical  energy tail of localized exciton levels, since then the prob-
simulations'® A few technical details are relegated to the ability that different resonant negative fluctuations may
Appendix. cluster is negligibly small. Consequently, we restrict the LP

energy to the range

Il. STATISTICAL KINETIC MODEL AND RESONANT

MEAN FREE PATH hao—fiA<ho<fiwg—W. )

An exciton in a nonideal QW can be treated as a particle In the following, we measure the energy down from the
moving in an effective potentiaf(r|), which represents the bottom of_the excitoric band in an ideal QW, introducing the
microscopic structural disorder averaged by the relativeotationsw = wy— 0,0, = wy— w, . The usual formuld *
electron-hole motiof? The effective potential is character- =3;n;o; for the mean free pathin a mixture of scatterers
ized by its correlation length, of the order of the exciton with different scattering cross sectioas and concentrations
Bohr radius and its variancw2=<V(r||)V(rH)> (here, we n; can be written in the form
only consider the cas@&/<7A). In a microcavity, the inho-
mogeneously broadened exciton couples to the cavity photon = - — -
and two polariton branches appear. The polaritons move in 1= ):f d(fiw,)p(wy)o(w;w,), 3
the continuous disorder potential and interact with it through
their excitonic component. In addition to the perturbativewherep(g*) is the density of state€DOS) of a bare QW
scattering" the most important feature of disorder is that it exciton and the detailed expression for the cross section
introduces localized exciton states. In a previous p&pee U(;;g*) can be obtained from EqA4) of the Appendix.

have calculated the LP elastic scattering cross section by a' 1,4 important thing is that if the depth of a well is such
single model defect of radiug, and depthV, which has a — . —
that w,, is far from w, then

bare exciton bound state at a definite enefigy, as given
by Eq. (A2) of the Appendix. We found thatr(w) has a
strong and narrow peak ab=w, , and almost vanishes U(;;;*)N_(
away from resonanceo(w=w,)~100a,, while o ke

2
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Such nonresonant scattering would contributeas, )? to
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DOS p(a). Then in Sec. IV, we use E@9) to calculate the

|1, Even though the approximation of separated defects ifahomogeneous broadening of LP induced by the resonant
unjustified for the nonresonant scattering, it is natural to asscattering and draw our conclusions.

sociate such a contribution to the motional narrowing broad-

ening of Eq.(1). As a matter of fact, we can estimate the

nonresonant mean free pathlas,es=7 vy/ Ymotnam Where
the group velocity of the LP is given by

hk, 2
9T AP ©
from which we have
- m* 2 ﬁZ 274
InonresF_VZkL(w)<7) (m*ICW) Pa (6)

exactly of the order of i, /u)2. If, on the contrary,;*
~w, we have for the cross section

4re
ke

wherea~1 ande~(u/m,)A, as given by Eq(A1l) of the

el

0'(;* ~w)=

: )

e+ [0, —w+as)?

Appendix. We then expand the expression in the brackets in

Eq. (7) in powers of the small parameter The leading term

is 5(w—w, ). The next term is linear im, contains no sin-
gularities, contributes asu{m, )? to | ~, and again is to be

IIl. BARE EXCITON DENSITY OF STATES

To make use of Eq9) a model for the bare exciton DOS
is to be specified. Unfortunately, no analytical computation is
possible in the general case, as discussed in the following.
We recalf’ that there exist two asymptotics for the DOS
p(E) of a particle of massn (in our casem=m, ) in the
deep tail of a disorder potential. These asymptotics were
found by the method of optimal fluctuations, which consists
in the minimization of the functionalX[V], being
exp(—=2[V]) the functional of the probability density of the
realizationV. The value ofp(E) is mainly determined by the
“optimal fluctuation,” i.e., the one having a ground state of
energy E and minimizing%[V]. In order to solve such a
constrained minimization problem, one proceeds for each
given energ)E through the self-consistent evaluation of the
wave function of the ground staig(r) in the optimal fluc-
tuation; for Gaussian statistics the wave functifis found
to obey the following integrodifferential equatiéh?®

ﬁZ
— =AU [ A VOV ) =B,

(10

a_lssociated with the very small nonresonanF scaFtering. Th&hereE is known andg is a Lagrange multiplier to be found
first term corresponding to resonant scattering gives a CONugether withy, from which the asymptotic fop(E) is

tribution tol ~* aboutm,, /u~ 10° times larger than the non-

eventually obtained. The four relevant length scales in this

resonant one, confirming t_he assump_tion that the latter May oblem are(i) the correlation length of the potential, (ii)
bg treated as a perturbative correction. We stress that thee spatial size ,(E) of the ground state wave functignof
width of the resonant cross section is very narrow; premselyénergya (iii) the scale related to the energy of the particle

this fact allows one to separate out such a dominant contri:
bution to the elastic scattering from the negligible motional
narrowing background and, as shown below, prove analyti

cally the validity of the wave vector conserving “absorption
model.”'® Then, the resonant mean free path reduces to

kL(Z)E o V,(0)—fho 1
(2m)? # (hA)? V(o) plo)

where we denote by, the depth of the well which sustains
a bare exciton localized level of energy, =# w. In order
to estimateV, , we note that the energy, —% w is of the

|res(w):

8

re=\/(#%/2m[E]), (iv) the scale related to the strength of the
disorderr = \(A%2mW). In the deep tail £ E>W), p(E)

is expected to be exponentially small; to find the form of
such asymptotic behavior is possible in the two limiting
cases of disorder potential of either small or large correlation
length compared ta,,. To begin with, depending on the
relation betweenr, and |., two regimes can be distin-
guished:(i) the classical limit, which corresponds tg<I
and(ii) the quantum limit, which corresponds tg> 1 (the
latter is the case of white noise potential, when the potential
correlation function may be reduced tosafunction. The
limitations of validity of these two regimes follow, first, from

order of the kinetic energy of an exciton confined in a well Ofthe relation betweemc and rl/I(E)’ and, Second, from the

width a,, so thatV, —fw~#%%/(m,a). Finally, Eq. (8)
takes the form

k(o) ho (hipajd)
(22 (hA)?p(0) o+ (him,ad)’

lred @) (9)

requirement to be in the tail of the DOS.
In the classical limitr7,=2r ¢l in two dimensions; and
the asymptotical form of the DOS is

2

(2m)¥2 W32

p(E) exp( — E2/2W?), (11

Equation(9) determines the elastic mean free path, domi-
nated by the resonant scattering on localized exciton stateghere the prefactor of the exponent for two dimensions can
as a function of the statistical characteristics of the disordebe calculated following the method of Ref. 28 and agrees
potential, such as its variance and correlation length andyith the appropriate limit of the recent results of Ref. 29.
most importantly, its bare exciton DOS. In the following sec- The restrictions imposed on the energy of the particle are in
tion, we discuss the relevant choice of a model bare excitothis case
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52 5x10%0 | (states/em’meV)
|[E[>max W; —. (12
mig 4x10*°
The quantum limit for two dimensions is considered in Ref.
30. Though Eq(10) greatly simplifies for the case of white- 3x10%°
noise potential, it can be solved only numerically. The result-
ing expression fop(E) is 2x10*°
p(E)x|E|¥%exp(11.812E/W?IZm), (13 1x10%
and the restrictions imposed on the energy are then
2
mWA|2 h?
ﬁ; <|E|< 2 (14) @o- @ (MeV)
10 ¢ FIG. 1. Comparison of different models for the DOS. Solid line:

On the basis of Eqs(12) and (14), one can make the Gaus_sian DOS; dqshed line: exponential DOS; dot-and-dash line:
following classification for the disorder potentialsThe first C|a3081:)03| asymptotE: of qul); ’Bt\he Ehosen parameters ae=2
class represents the potentials with small correlation Iengtl%<l states/crfi| ;= 220=300 A W=0.4 meV.

(I.<ry). For these potentials the classical asymptotic of Eq. , ,

(11) is valid for |E| large enough so that (&E]|%/%2)>1. wave v_ectorkL the |n_equal|tylres>_2a0 follpws from the

For smaller|E|, such that Kc/rw)4/10<(2m|E|I§/ﬁ2)<lr mequahtyl,g)\. In Fig. 2, the ratiol ¢/\ is plotted as a
the quantum asymptotic of E(L3) is valid. On the contrary, function of w for both exponential and Gaussian DOS for
for the potentials with large correlation lengthr,,) only  realistic disorder parameters at zero detuning. Our theory is
the classical asymptotic of E@L) is valid for energies sat- only valid in the frequency intervals whetgs/A>1, which
isfying — E>W. In the case of a QW excitol andr,, are  are wide enough and correspond to energies of experimental
of the same order for a typical disorder strength Wf interest. As soon as the inequalltys>\ is satisfied, and as
~0.1-1 meV. Moreover, even the classical asymptotic ofong as the inelastic mean free pagh, is also larger than,

Eq. (11) which is always valid for energies very deep in the we may apply the kinetic model of Sec. Il to a well defined
tail cannot always be reached since the energy of a LP isP wave packet. Then, the inhomogeneous broadening domi-
restricted from below byi(wo—A). That is why, in general, nated by the resonant scattering can be foundyas

one must resort to the use of some simple model expressiorsfivy/les, Wherevq is given by Eq.(5). We have

for the bare exciton DOS, or to large scale numerical o -

simulation®® We approximate here the true DOS Ifi) _(2m)? w? )Zﬁzp(w) V,

Gaussian of(ii) exponential distribution functions with en- Yres™ (27 A2+32( m, ha(v*—ha)

ergy independent prefactors
A%p(w)aj R
~ 2~ 77
=(21) NPy? ho| Ao+

-] (16)
m, aO

—_ \/EN 2 2.
pe(w)= ;V—Vexd—(ﬁw) 12W«];

_ N . In Fig. 3, y,esiS plotted as a function ob at zero detuning
Pexd @) =V—Vexp(—ﬁw/W), (15 for the same disorder parameters as were used in Fig. 2. Each
line is plotted in that frequency interval for which, for the
whereN is the total number of excitonic levels per unit area,given disorder parameters, the conditior:l s is satisfied.
typical values given in the literature being=10° The predicted linewidths of the order of 1@V are in
— 10" states/cra®? Though such a choice is not analytically reasonable agreement with those reported for high quality
justified, the model DOS15) are able to reproduce both sample$~“ It is also clear that, for suitable choices of their
qualitatively and quantitatively the line shape of bare excitorParameters, both Gaussian and exponential DOS give satis-
luminescencé® In Fig. 1, the two DOS forms of Eq15) are  factory results; in the following, the Gaussian DOS is em-
compared with the classical asymptotic of Efyl) for suit-  ployed as it is commonly assumed to be the more realistic

ably chosen parameters. one.
In Fig. 4, we plot the dependence ¢f,s on detuning for
— —1 : . .
IV. INHOMOGENEOUS BROADENING AND WEAK k = 104_cm for a Gaussian DQS with various parameters
LOCALIZATION of the disorder for those frequencies for which the inequality

N <l,esis satisfied. Qualitatively, the dependence is the same
To understand how realistic are the present results, was obtained for the case of stronger disor@ee Fig. 2 of
calculate the inhomogeneous broadening related to the resRef. 15. As a matter of fact, the expression fgggiven in
nant scattering. First, we compare the mean free path Eq. (16) can be cast in the same form as the respective term
given by Eq.(9) with a de Broglie wavelength of a LR in Eq. (4) of Ref. 15, i.e., the “absorption model” broaden-
=2m/k_. We notice that due to the smallness of the LPing given by
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Gaussian DOS

Gaussian DOS
500 7 0.25 — : : -
1 I
I
400 /i !
Il | 0.2
|
<300 3 S
o % 0.5}
200 [ E
0 ! | 3
0 1 2/ | = 0.1
100 @ (meV) / i
-
e e 0.05 |
0 0.5 1 1.5 2 -
-0 (meV) ~—
m Exponential DOS ° 1 1'.2 1‘.4 1.6 1.8 2
1 . n o - © (meV)
! ! \ .
i A Exponential DOS
30 / | 0.25 —
< 3 / | / 1 \
- —~ 7 1 k \‘ |
20 | 02 (b) \
0 ! \
10 0 ! '
‘1
0
wg-o (meV)
FIG. 2. Relation betweel andl . for model DOS for various
parameters of the disorder. Inset shows the frequency intervals at
which loffe-Regel criterion is violated and the kinetic model is not 0 0I8 1 1“2 1'4 16 18 2
applicable. (8) Gaussian DOS. Solid linea=100 A W=0.5 ) ’ ) ’ )
meV,N=10'° states/crfy dashed line:a=150 A W=0.4 meVN Wp = @ (meV)
=10 states/crfy dot-and-dash linea=200 A, W=0.4 meVN
=10" states/crh (b) Exponential DOS. Solid linea=100 AW FIG. 3. Inhomogeneous broadening at zero detuning. The pa-
=0.3 meVN=10" states/criy dashed line:a=150 AW=0.2

rameters of disorder are the same as in Fig. 2.
meV, N=10"states/crt dot-and-dash line: a=200 AW

=0.2 meVN= 10" states/cri tailed values of the potential well parameteeg{|./2 and

V., ), but only depends on the energy of the localized exciton
_ 2 2 — level. An important merit of the present treatment is that it
Yabs= 2|01 5(A )T~ Im Geyke @), 17 allows one to relate analytically the inhomogeneous broad-
where the photon fraction of the LR,|? is ;2/(A2+52) ening t.o the phenomenoltagical characteristics of the disorder
and the imaginary part of the exciton Green function, agPotential, such ak andp(w). _ N
shown in the Appendix, is given within our model by Finally, our results also allow us to discuss the conditions
under which it is possible to achieve the regime of LP weak
o B2 vV localization in a high quality samplé.lt is clearly seen from
—Im Gk ,w)=(2m)? p(w)— . Fig. 2 that there exist a rather large energy range where the
2m, ho(V,—ho) condition\ <l is satisfied for realistic values of the disor-
(18 der parameters. However, the homogeneous dephasing due to
s0 that v, (16) is exactly equal toy.p (17). Therefore, inelastic processes may wash out the m_terfgarence effects
within the limits of validity of Eq.(16), i.e., for high quality ChﬁraCte”st'Ck‘)f the .rh%g'zrgeﬁlf W‘;;‘ak ";Ca"za“f‘lg-' f.he
samples where the resonant scattering is still dominant oveicro erent bac f]ca.tterl i ‘ lere ore, orl Wes oc.afl.zz(ij-
the nonresonant one, we can provide analytically a theoretpio" fo oceur, the inequa Wres<inel must also e satisfied,
cal justification, alternative to the numerical simulations, forWh.ereli”e' is the LP mean free path related to inelastic scat-
the widely used wave vector conserving phenomenologicatlerlng processes which can be evaluated as
model. We notice that the simplified shape of defect potential o
we use here does not restrict the validity of our approach as 9

liner= ) (19
the resonant scattering cross section is insensitive to the de- lced?vex(T) +ci|?m
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GaussianDOS the weak localization regime may well be achieved in high
quality samples, it puts rather stringent limits to the usable
frequency rangéto satisfy the inequalitp <I,.9 and to the
/ | allowed homogeneous broadeniftg satisfy the inequality
/ line™1ed - We remark that in Ref. 4 the LP enhanced back-
scattering in an appropriate frequency range has been ob-
// 72 served in a high quality sample with inhomogeneous broad-
/ 7 ening of the order of 10@eV. Also, in Ref. 5 the LP in-
s plane propagation in a high quality sample has been studied,
7 the cavity quality factor, the inhomogeneous broadening and
o the LP energy being again amenable to the possibility of
T , weak localization. The authors report the detection of two
2 A 0 1 traces, the stronger one in the same direction as the incident
u (meV) beam, and the other one in the opposite direction: the latter

_ ) ) might be a manifestation of coherent back scattering.
FIG. 4. Inhomogeneous broadening as a function of detuning for

Gaussian model DON= 10" states/cri k, = 10000 cm *. Solid
line: a=100 AW=0.4 meV; dashed line: a=150 AW ACKNOWLEDGMENTS
=0.3 meV; dot-and-dash linet=200 A:W=0.2 meV.

Itis a pleasure to thank Franco Bassani for his continuous
interest in this work and many fruitful discussions.
where|cgJ? and|c|? are, respectively, the bare exciton and

the photon fractions of the LPy.(T) and y, are, respec-
tively, the homogeneous broadenings of the microcavity em-
bedded QW exciton, which is temperature dependent, and of (1) We consider the problem of the scattering of a LP by
the empty cavity photon. Since in high quality samples thea single cylindrical potential well of radius, and of depth
homogeneous broadening is of the same ordefoasven  V,, generalizing the results of Ref. 23 to the case of a finite
prevails ovey the inhomogeneous broadening, one has taletuning. Letu be the detuning between the cavity mode and
apply special efforts to increasge by reducingyexandy,.  the exciton resonanae= w.(k;=0)— wo. Then for the fre-
The value ofy; may be reduced by increasing the reflectivity quency range of interef$ee Eq(2)] the wave vectors of the
of the DBR mirrors and, thus, the quality factor of the cavity; lower (subscript ‘L") and the uppefsubscript ‘U”) polar-

a value as low asy;=120ueV has been reportdti(the  iton inside (subscript “v*) and outside a single cylindrical
sample of Ref. 4 might also have such a low value turn,  well are

vVex Originates mainly from the scattering of the QW exciton

APPENDIX

by acoustic phonons which, h_oweve(, can pe strongly sup- , 2p A2— 2 , Zm*z u A2
pressed at low temperatures in a microcavity with a suffi-  kif=—| —=—-u|, «{= — =,
ciently large Rabi splittind:*® In Fig. 5, the three length h w h My @
scales\, | andlj,e are compared: fot,s the Gaussian
DOS was used withag=150 A N= 10 states/cri, W _ , 2m, (Vo—fiw) u (h2A2)
=0.5 meV, the inelastic mean free path was calculated with k\,Lz—2 o =2
=120 neV and y.,=20 ueV. We conclude that, though h « (Vo— o)
21 A2 —
2
Kyy=——| ———=+w+u]. (A1)
Wk |Vl — e

_ We denote aﬂg* the energy of the bare exciton bound state

< in the well, measured down from the bottom of the exciton

£ bandz wg in an ideal QW. For a givelN,, w, can be found

'g as a solution of the equation

ri

£ Jo(agky) ~ —

—————=0(w,;V
aokyds(agky) 2(“x VO
- — _ Ko(aox)
=f(w, ;Vo)=— 20rK(3gn) " (A2)

FIG. 5. The three length scalds.{w) (solid line), \(w) whereldg, Ji, Kg, andK, are Bessel functions, aig and«
(dashed ling and l;o(w) (dot-and-dash line a,=150 AN are bare exciton wave vectors inside and outside the potential
=10 states/criW=0.5 meV,y; =120 eV, ye, =20 ueV. well
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— 2m, o
sz, k2= ﬁ* . (A3)

The scattering cross section of ¥#s determined byg-wave
scattering only and is

72 1+ x(w; Vo)

O'((l) Vo)— k 7T y
- - — +R2(w;Vy)
- - OkL
R(w;Vo)=F(w;Vg)— |n7 (A4)

wherey(w;Vo) is negligible ifo~w, and is of the order of
unit if o is far fromw, , and

—a1|f+a2|g—asgf

F(w;Vo)= : (A5)

alg - a’zf + CY3|
Jo(@gkyi)

agky )=—————— ~
9(aokv) aokyJi(agkyy)

Ko(agky)

f(@oru) == apkyKq(agky) -

lo(@okyu) _ o1

aoryul 1(@gkyuy)

[(agkyy) = (A6)

uaiA Ba’

ay(w;Vo)=aq

1+ mi*ﬂl@ ,

ay(w;Vo)=ao| 1+ mi*ﬂz(;) ,

Ba(w) (A7)

ag(w;Vo) = ag

(o) (AR)2  A?
BN hw)? | w2
2(A%)2 wh+ufh LU

— = — +
wh(Vo—hw) V

—wh w

— 2(A%)2  2A%  wh+uk u

Ba(w;Vo) (Vo—hw)2+ =

—wh w

AV02

on hw

Ba(w@;Vo)= (A8)

A2+ (w+u)(Volli—w)

o Y
puloVo) A(Volh— o)

We rewriteF (w;V,) in the form
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ik —f)+ —B,f
M(g [B29— Bif]

2
m, agA
,83+ *hO

F(w;Vo)= : (A9)

(g—"1)

and we see that, since the argumeagk, andagx of the
functionsg andf differ from the argumentagky, andagxy
of the functionsg and f only by terms of the order of
,u,/m*~10 5 the magnltude of has a pecuhanty exactly

nearw=w, [see Eq(A2)]. If w is far fromw, , thenF is of

the order ofm, /u, and Eq.(4) follows. If, on the contrary,
w~w, , thenF~1, and it results in a strong and narrow
peak ino(w;Vg). Now let us fix the energy of LR w and
vary the depth of the weN/, (g, is always fixed. The en-
ergy of the localized excitonic state also becomes a variable,
related toV, by Eq.(A2). We denote by, the depth of the
well which possess the bare exciton level of the _energy

ho, —hw We expand the functloR(w Vo) nearw* =w:
R(w;Vo=~V,)

R(@Ve=V. )+ (@ — ) dR dV,

=~ w -, T

o dVO dw* ; :;

m, w,—o oV, (0)-oh —

=— — — +r1(w), A10
W28 A vg @ (A10)

wherer(w)=R(w;Vo=V,)~1. Then the scattering cross
section is given by Eq.7), where

(A1)

(2) To compare the present results with the “absorption
model” of Ref. 15, we have to calculate

—ImGex<l<L,w>=§<2i ik w—froy)

=7 (k) |?p(w), (A12)

where S is the normalization area, (k)
=fdrHe*'kL‘fH¢(r”), and (r)) is the wave function of the

bare exciton having the energy levab. The last equality in

Eqg. (A12) holds since in our model potential all the wells
which have the same energy level are identical, and thus
|(k.)|? can be taken out from the averaging. The wave
function of a bare exciton in a cylindrical well of the radius
ag is

P(rp)=~Aodo(kyry), rj<ao,

Aol Jo(aoky)/Ko(agr) IKo(kry), rj>ag, (Al3)

whereky and x are determined in EqA3), and A, is the
normalization coefficient found as
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1 K2(agk) where the functiond and’g are defined in Eq(A2). We
|Ao|2=_2 > 2 > 5 . expand the right-hand side @A15) in the powers of the
may Ko(aok)Ji(aky) +Ki(aox)Jo(aoky) small parameteagk, . We neglect the small term of the or-
(A4 der of (aok,)? and find thati(k, ) is k, independent
After the integration, we find
T(k?— k3 +9(kd—kd) (2m)? K2+kg
k )= —2mAgdo(agky){ Jo(@ok ) == k )|?= —_—, Al6
p(ky) mAcJo(ag v)[ o(@oky) ST (—I)(2—KD) [k T KA (A16)
k>—Kk& . .
+agkdi(aok) 55— (A15) and Eq.(18) follows for all the wave vectors determined in
(ky—=kD (k“=kp) Eq. (2).
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