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Inhomogeneous broadening of polaritons in high-quality microcavities and weak localization
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We theoretically study the elastic scattering of lower cavity polaritons on the static disorder in high quality
semiconductor microcavities in the strong coupling regime. We consider the dominant contribution of the
resonant scattering on localized exciton levels and calculate for a model density of states the corresponding
elastic mean free path. Our analytical results compare well with available linewidth data and substantiate the
possibility of weak localization.
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I. INTRODUCTION

Semiconductor microcavities have attracted much at
tion as they permit to control the interaction between lig
and quantum well~QW! exciton modes.1 In the strong cou-
pling regime, when the exciton-photon coupling is larg
than the QW exciton and the cavity photon linewidths, t
fundamental excitations of the system are a doublet of t
dimensional polaritons separated by the vacuum Rabi s
ting. In general, such cavity polaritons are broadened b
homogeneously and inhomogeneously, and it can be exp
mentally determined which kind of broadening prevails. T
homogeneous broadening stems mainly from the cavity p
ton damping due to the finite transmission of the Bragg m
rors as well as from the QW exciton inelastic scattering
phonons. Both contributions may, respectively, be contro
by increasing the quality factor of the cavity and by decre
ing the temperature. The inhomogeneous part of the ca
polariton broadening is mainly due to the elastic scattering
QW excitons on the static structural disorder caused by Q
width and alloy fluctuations, which can be much reduced
high-quality samples2–5 and is responsible for Rayleig
scattering.6 While the theoretical description of the homog
neous broadening of cavity polaritons is well understood7,8

the microscopic mechanism responsible for the inhomo
neous broadening has been controversial.

The motional narrowing model proposed in Ref. 9 impli
that a cavity polariton, being partly a cavity photon and th
having a very small mass, experiences a much reduced
fective disorder potential. However, the corresponding low
polariton ~LP! inhomogeneous linewidth, calculated bo
from a scaling argument10 and by means of perturbatio
theory,11 is found to be

gmot-narr5
W2l c

2m

2\2

D4

~v02v!2@D21~v02v!2#
, ~1!
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whereW and l c are, respectively, the variance and the cor
lation length of the disorder potential,m is the cavity photon
mass (m.1025 m* , m* being the bare exciton mass!, \v0

is the bottom of the bare exciton band, 2\D is the Rabi
splitting ~typically several meV!, and\v is the LP energy.
Using typical disorder parameters such asW.0.5 meV and
l c.300 Å,12 one obtainsgmot-narr;1025 meV, while the ex-
perimentally observed typical values areg inh;0.1 meV for
state of the art high quality samples andg inh;1 meV for
good samples. Thus, the motional narrowing model alo
cannot explain the inhomogeneous broadening of the ca
polaritons.

A satisfactory theoretical description of the inhomog
neous broadening of cavity polaritons due to the static dis
der scattering has only been given in terms of large sc
numerical simulations in one-dimension14 and later also in
the more relevant case of two-dimensions.15 The absorption
linewidths of both polaritons were numerically calculated
examining the photon Green function for normal inciden
geometry for various detunings. The LP inhomogeneo
linewidth g inh;1 meV was explained in terms of the sca
tering of the LP to large wave vector bare exciton stat
When the disorder strength becomes small compared to
Rabi splitting (W,D\) such scattering is suppressed and
very weak disorder (W!D\) the regime of motional nar-
rowing described by Eq.~1! is reached and the inhomoge
neous broadening becomes negligible. The numerical res
have also been interpreted15 in terms of a phenomenologica
model which simply assumes that the wave vector
conserved,16–19 but the exciton energy is distributed with a
asymmetric line shape20,21 corresponding to the bare QW
exciton density of states. The predictions of this model re
ing the cavity polariton linewidths to the bare QW excito
absorption line shape are in good agreement w
experiments.22,2 However, from the theoretical point of view
the wave vector conserving approximation has only been
©2001 The American Physical Society16-1
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tified by the comparison with the numerical simulations
the actual disorder scattering.15

In high-quality samples (W,\D), the inhomogeneous
broadening of cavity polaritons (g inh;0.1 meV) is small
compared to their kinetic energy~a fraction of the Rabi split-
ting!, which allows one to examine the problem analytica
as done here. The QW disorder potential gives rise to
low-energy tail of bare exciton states which are spatially
calized at defects corresponding to potential wells for
exciton center of mass motion.12 In a recent paper,23 we have
shown that such a defect scatters strongly a LP only when
LP energy is resonant with its bare exciton bound state;
erwise, the defect is nearly ‘‘transparent.’’ We therefore co
sider a microscopic kinetic model~Sec. II! of the disorder
induced elastic scattering which describes a LP of a gi
energy as a wave moving in a statistical distribution of d
crete resonant defects. All the other details of the conti
ously varying QW disorder potential only contribute to t
nonresonantpart of the elastic scattering, which is compar
bly negligible and determine just the motional narrowi
linewidth of Eq.~1!. Based on model statistical distribution
of bare exciton localized levels~Sec. III!, we calculate the
resonantmean free path of a LP. It allows us to find analy
cally the dominating contribution to the LP inhomogeneo
broadening related to the resonant scattering of a LP by
calized exciton levels. Within the limits of validity of th
present approach, the calculated broadening~Sec. IV! is in
agreement with what is measured in high-quality samp
and its functional form provides an alternative theoreti
justification of the wave vector conserving model. Furth
more, the analytical expression for the mean free path
function of the disorder strength enables us to substan
the possibility of weak localization in high-quality micro
cavities, as suggested by recent experiments4,5 and numerical
simulations.13 A few technical details are relegated to th
Appendix.

II. STATISTICAL KINETIC MODEL AND RESONANT
MEAN FREE PATH

An exciton in a nonideal QW can be treated as a part
moving in an effective potentialV(r i), which represents the
microscopic structural disorder averaged by the rela
electron-hole motion.12 The effective potential is characte
ized by its correlation lengthl c of the order of the exciton
Bohr radius and its varianceW25^V(r i)V(r i)& ~here, we
only consider the caseW,\D). In a microcavity, the inho-
mogeneously broadened exciton couples to the cavity ph
and two polariton branches appear. The polaritons mov
the continuous disorder potential and interact with it throu
their excitonic component. In addition to the perturbati
scattering,11 the most important feature of disorder is that
introduces localized exciton states. In a previous paper,23 we
have calculated the LP elastic scattering cross section
single model defect of radiusa0 and depthV0 which has a
bare exciton bound state at a definite energy\v* as given
by Eq. ~A2! of the Appendix. We found thats(v) has a
strong and narrow peak atv5v* , and almost vanishe
away from resonances(v5v* );100a0, while s
16531
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;1026 a0 for vÞv* , the resonant contribution integrate
over the peak width being a factorm* /m larger than the
nonresonant one. This allows us to single out the reson
scattering of a LP by the localized exciton levels from t
nonresonant scattering which can be taken into account
turbatively. In terms of the corresponding mean free pa
we havel res! l nonres. Thus, we can model the actual smoo
and continuous disorder potential acting on the LP cente
mass motion by a set of separated scattering centers as
ated to the negative fluctuations of the potential having
bound state close to the LP energy. The scattering pro
can be treated as due to a succession of independent
sions only if the corresponding mean free pathl res exceeds
the size of a typical scatterer 2a0 : l res@2a0. In addition,l res
must exceed the de Broglie wavelength in order to ha
propagating wave packets:l res@l; otherwise, strong local-
ization of the LP would occur according to the Ioffe-Reg
criterion.24

We have then to introduce a model distribution of loc
ized exciton states. Generally speaking, there are familie
defects with different depths and extensions which have
same bound levelv* . However, for a model cylindrical wel
defect, the LP cross section depends mostly on the pos
of the resonance, and not on the parameters of the pa
well: smax(v5v* )54/kL , being kL52p/l the LP wave
vector given by Eq.~A1! of the Appendix, and the radius an
the depth of the well only weakly influence the width of th
resonance. For the sake of simplicity, we therefore model
disorder potential as a set of randomly distributed cylindri
wells of equal radiusa0 and a statistical distribution o
depths. It is natural to associate the size of the well with
correlation length of the disordera05 l c/2. This approxima-
tion is appropriate if the energy of the LP is in the low
energy tail of localized exciton levels, since then the pro
ability that different resonant negative fluctuations m
cluster is negligibly small. Consequently, we restrict the
energy to the range

\v02\D,\v,\v02W. ~2!

In the following, we measure the energy down from t
bottom of the excitonic band in an ideal QW, introducing t
notationsv̄5v02v,v̄* 5v02v* . The usual formulal 21

5( inis i for the mean free pathl in a mixture of scatterers
with different scattering cross sectionss i and concentrations
ni can be written in the form

l 21~v̄ !5E d~\v̄* !r~v̄* !s~v̄;v̄* !, ~3!

wherer(v̄* ) is the density of states~DOS! of a bare QW
exciton and the detailed expression for the cross sec
s(v̄;v̄* ) can be obtained from Eq.~A4! of the Appendix.

The important thing is that if the depth of a well is suc
that v̄* is far from v̄, then

s~v̄;v̄* !;
1

kL
S m

m*
D 2

. ~4!
6-2
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Such nonresonant scattering would contribute as (m/m* )2 to
l 21. Even though the approximation of separated defect
unjustified for the nonresonant scattering, it is natural to
sociate such a contribution to the motional narrowing bro
ening of Eq.~1!. As a matter of fact, we can estimate th
nonresonant mean free path asl nonres.\ vg /gmot-narr, where
the group velocity of the LP is given by

vg5
\kL

m

v̄2

D21v̄2
, ~5!

from which we have

l nonres.2kL~v̄ !S m*
m D 2S \2

m* l cW
D 2 v̄4

D4
, ~6!

exactly of the order of (m* /m)2. If, on the contrary,v̄*
;v̄, we have for the cross section

s~v̄* 'v̄!5
4p«

kL
H «/p

«21@v̄* 2v̄1a«#2J , ~7!

wherea;1 and«;(m/m* )D, as given by Eq.~A11! of the
Appendix. We then expand the expression in the bracket
Eq. ~7! in powers of the small parameter«. The leading term
is d(v̄2v̄* ). The next term is linear in«, contains no sin-
gularities, contributes as (m/m* )2 to l 21, and again is to be
associated with the very small nonresonant scattering.
first term corresponding to resonant scattering gives a c
tribution to l 21 aboutm* /m;105 times larger than the non
resonant one, confirming the assumption that the latter m
be treated as a perturbative correction. We stress that
width of the resonant cross section is very narrow; precis
this fact allows one to separate out such a dominant co
bution to the elastic scattering from the negligible motion
narrowing background and, as shown below, prove ana
cally the validity of the wave vector conserving ‘‘absorptio
model.’’15 Then, the resonant mean free path reduces to

l res~v̄ !5
kL~v̄ !

~2p!2

m*
m

\v̄

~\D!2

V* ~v̄ !2\v̄

V* ~v̄ !

1

r~v̄!
, ~8!

where we denote byV* the depth of the well which sustain
a bare exciton localized level of energy\v̄* 5\v̄. In order
to estimateV* , we note that the energyV* 2\v̄ is of the
order of the kinetic energy of an exciton confined in a well
width a0, so that V* 2\v̄;\2/(m* a0

2). Finally, Eq. ~8!
takes the form

l res~v̄ !.
kL~v̄ !

~2p!2

\v̄

~\D!2r~v̄!

~\/ma0
2!

v̄1~\/m* a0
2!

. ~9!

Equation~9! determines the elastic mean free path, dom
nated by the resonant scattering on localized exciton sta
as a function of the statistical characteristics of the disor
potential, such as its variance and correlation length a
most importantly, its bare exciton DOS. In the following se
tion, we discuss the relevant choice of a model bare exc
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DOS r(v̄). Then in Sec. IV, we use Eq.~9! to calculate the
inhomogeneous broadening of LP induced by the reson
scattering and draw our conclusions.

III. BARE EXCITON DENSITY OF STATES

To make use of Eq.~9! a model for the bare exciton DOS
is to be specified. Unfortunately, no analytical computation
possible in the general case, as discussed in the follow
We recall27 that there exist two asymptotics for the DO
r(E) of a particle of massm ~in our case,m5m* ) in the
deep tail of a disorder potential. These asymptotics w
found by the method of optimal fluctuations, which consi
in the minimization of the functionalS@V#, being
exp(2S@V#) the functional of the probability density of th
realizationV. The value ofr(E) is mainly determined by the
‘‘optimal fluctuation,’’ i.e., the one having a ground state
energyE and minimizingS@V#. In order to solve such a
constrained minimization problem, one proceeds for e
given energyE through the self-consistent evaluation of th
wave function of the ground statec(r ) in the optimal fluc-
tuation; for Gaussian statistics the wave functionc is found
to obey the following integrodifferential equation:27,28

2
\2

2m
Dc~r !2bc~r !E dr 8c2~r 8!^V~r !V~r 8!&5Ec~r !,

~10!

whereE is known andb is a Lagrange multiplier to be found
together withc, from which the asymptotic forr(E) is
eventually obtained. The four relevant length scales in t
problem are~i! the correlation length of the potentiall c , ~ii !
the spatial sizer c(E) of the ground state wave functionc of
energyE, ~iii ! the scale related to the energy of the partic
r E5A(\2/2muEu), ~iv! the scale related to the strength of th
disorderr W5A(\2/2mW). In the deep tail (2E@W), r(E)
is expected to be exponentially small; to find the form
such asymptotic behavior is possible in the two limitin
cases of disorder potential of either small or large correlat
length compared tor W . To begin with, depending on th
relation betweenr c and l c , two regimes can be distin
guished:~i! the classical limit, which corresponds tor c! l c
and~ii ! the quantum limit, which corresponds tor c@ l c ~the
latter is the case of white noise potential, when the poten
correlation function may be reduced to ad function!. The
limitations of validity of these two regimes follow, first, from
the relation betweenl c and r c(E), and, second, from the
requirement to be in the tail of the DOS.

In the classical limitr c
252r El c in two dimensions,27 and

the asymptotical form of the DOS is

r~E!5
2

~2p!3/2

E2

W3l c
2

exp~2E2/2W2!, ~11!

where the prefactor of the exponent for two dimensions
be calculated following the method of Ref. 28 and agre
with the appropriate limit of the recent results of Ref. 2
The restrictions imposed on the energy of the particle are
this case
6-3
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uEu@maxH W;
\2

mlc
2J . ~12!

The quantum limit for two dimensions is considered in R
30. Though Eq.~10! greatly simplifies for the case of white
noise potential, it can be solved only numerically. The res
ing expression forr(E) is

r~E!}uEu3/2exp~11.8\2E/W2l c
2m!, ~13!

and the restrictions imposed on the energy are then

mW2l c
2

10\2
!uEu!

\2

mlc
2

. ~14!

On the basis of Eqs.~12! and ~14!, one can make the
following classification for the disorder potentials.27 The first
class represents the potentials with small correlation len
( l c!r W). For these potentials the classical asymptotic of
~11! is valid for uEu large enough so that (2muEu l c

2/\2)@1.
For smalleruEu, such that (l c /r W)4/10!(2muEu l c

2/\2)!1,
the quantum asymptotic of Eq.~13! is valid. On the contrary,
for the potentials with large correlation length (l c@r W) only
the classical asymptotic of Eq.~11! is valid for energies sat
isfying 2E@W. In the case of a QW excitonl c and r W are
of the same order for a typical disorder strength ofW
;0.1–1 meV. Moreover, even the classical asymptotic
Eq. ~11! which is always valid for energies very deep in t
tail cannot always be reached since the energy of a L
restricted from below by\(v02D). That is why, in general,
one must resort to the use of some simple model express
for the bare exciton DOS, or to large scale numeri
simulation.31 We approximate here the true DOS by~i!
Gaussian or~ii ! exponential distribution functions with en
ergy independent prefactors

rG~v̄ !5A2

p

N

W
exp@2~\v̄!2/2W2#;

rexp~v̄ !5
N

W
exp~2\v̄/W!, ~15!

whereN is the total number of excitonic levels per unit are
typical values given in the literature beingN51010

21011 states/cm2.32 Though such a choice is not analytical
justified, the model DOS~15! are able to reproduce bot
qualitatively and quantitatively the line shape of bare exci
luminescence.33 In Fig. 1, the two DOS forms of Eq.~15! are
compared with the classical asymptotic of Eq.~11! for suit-
ably chosen parameters.

IV. INHOMOGENEOUS BROADENING AND WEAK
LOCALIZATION

To understand how realistic are the present results,
calculate the inhomogeneous broadening related to the r
nant scattering. First, we compare the mean free pathl res
given by Eq.~9! with a de Broglie wavelength of a LPl
52p/kL . We notice that due to the smallness of the
16531
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wave vectorkL the inequality l res@2a0 follows from the
inequality l res@l. In Fig. 2, the ratiol res/l is plotted as a
function of v̄ for both exponential and Gaussian DOS f
realistic disorder parameters at zero detuning. Our theor
only valid in the frequency intervals wherel res/l.1, which
are wide enough and correspond to energies of experime
interest. As soon as the inequalityl res.l is satisfied, and as
long as the inelastic mean free pathl inel is also larger thanl,
we may apply the kinetic model of Sec. II to a well define
LP wave packet. Then, the inhomogeneous broadening do
nated by the resonant scattering can be found asg res
5\vg / l res, wherevg is given by Eq.~5!. We have

g res.~2p!2
v̄2

D21v̄2
~\D!2

\2r~v̄!

m*

V*
\v̄~V* 2\v̄!

.~2p!2
D2r~v̄!a0

2

D21v̄2
\v̄S \v̄1

\2

m* a0
2D . ~16!

In Fig. 3, g res is plotted as a function ofv̄ at zero detuning
for the same disorder parameters as were used in Fig. 2. E
line is plotted in that frequency interval for which, for th
given disorder parameters, the conditionl, l res is satisfied.
The predicted linewidths of the order of 100meV are in
reasonable agreement with those reported for high qua
samples.2–4 It is also clear that, for suitable choices of the
parameters, both Gaussian and exponential DOS give s
factory results; in the following, the Gaussian DOS is e
ployed as it is commonly assumed to be the more reali
one.

In Fig. 4, we plot the dependence ofg res on detuning for
kL5104 cm21 for a Gaussian DOS with various paramete
of the disorder for those frequencies for which the inequa
l, l res is satisfied. Qualitatively, the dependence is the sa
as obtained for the case of stronger disorder~see Fig. 2 of
Ref. 15!. As a matter of fact, the expression forg res given in
Eq. ~16! can be cast in the same form as the respective t
in Eq. ~4! of Ref. 15, i.e., the ‘‘absorption model’’ broaden
ing given by

FIG. 1. Comparison of different models for the DOS. Solid lin
Gaussian DOS; dashed line: exponential DOS; dot-and-dash
classical asymptotic of Eq.~11!; the chosen parameters areN52
31010 states/cm2,l c52a05300 Å,W50.4 meV.
6-4
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INHOMOGENEOUS BROADENING OF POLARITONS IN . . . PHYSICAL REVIEW B64 165316
gabs52ucl u2~\D!2@2Im Gex~kL ,v̄ !#, ~17!

where the photon fraction of the LPucl u2 is v̄2/(D21v̄2)
and the imaginary part of the exciton Green function,
shown in the Appendix, is given within our model by

2Im Gex~kL ,v̄ !5~2p!2
\2

2m*
r~v̄!

V*
\v̄~V* 2\v̄!

,

~18!

so that g res ~16! is exactly equal togabs ~17!. Therefore,
within the limits of validity of Eq.~16!, i.e., for high quality
samples where the resonant scattering is still dominant o
the nonresonant one, we can provide analytically a theo
cal justification, alternative to the numerical simulations,
the widely used wave vector conserving phenomenolog
model. We notice that the simplified shape of defect poten
we use here does not restrict the validity of our approach
the resonant scattering cross section is insensitive to the

FIG. 2. Relation betweenl and l res for model DOS for various
parameters of the disorder. Inset shows the frequency interva
which Ioffe-Regel criterion is violated and the kinetic model is n
applicable. ~a! Gaussian DOS. Solid line:a5100 Å,W50.5
meV,N51010 states/cm2; dashed line:a5150 Å,W50.4 meV,N
51010 states/cm2; dot-and-dash line:a5200 Å, W50.4 meV,N
51011 states/cm2. ~b! Exponential DOS. Solid line:a5100 Å,W
50.3 meV,N51010 states/cm2; dashed line: a5150 Å,W50.2
meV, N51010 states/cm2; dot-and-dash line: a5200 Å,W
50.2 meV,N51011 states/cm2.
16531
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tailed values of the potential well parameters (a0; l c/2 and
V* ), but only depends on the energy of the localized exci
level. An important merit of the present treatment is tha
allows one to relate analytically the inhomogeneous bro
ening to the phenomenological characteristics of the diso
potential, such asl c andr(v̄).

Finally, our results also allow us to discuss the conditio
under which it is possible to achieve the regime of LP we
localization in a high quality sample.19 It is clearly seen from
Fig. 2 that there exist a rather large energy range where
conditionl, l res is satisfied for realistic values of the diso
der parameters. However, the homogeneous dephasing d
inelastic processes may wash out the interference eff
characteristic of the regime of weak localization~e.g., the
coherent backscattering24–26!. Therefore, for weak localiza
tion to occur, the inequalityl res, l inel must also be satisfied
wherel inel is the LP mean free path related to inelastic sc
tering processes which can be evaluated as

l inel.
\ vg

ucexu2gex~T!1ucl u2g l

, ~19!

at
t

FIG. 3. Inhomogeneous broadening at zero detuning. The
rameters of disorder are the same as in Fig. 2.
6-5
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whereucexu2 and ucl u2 are, respectively, the bare exciton a
the photon fractions of the LP,gex(T) and g l are, respec-
tively, the homogeneous broadenings of the microcavity e
bedded QW exciton, which is temperature dependent, an
the empty cavity photon. Since in high quality samples
homogeneous broadening is of the same order as~or even
prevails over! the inhomogeneous broadening, one has
apply special efforts to increasel inel by reducinggex andg l .
The value ofg l may be reduced by increasing the reflectiv
of the DBR mirrors and, thus, the quality factor of the cavi
a value as low asg l5120 meV has been reported34 ~the
sample of Ref. 4 might also have such a low value!. In turn,
gex originates mainly from the scattering of the QW excit
by acoustic phonons which, however, can be strongly s
pressed at low temperatures in a microcavity with a su
ciently large Rabi splitting.8,35 In Fig. 5, the three length
scalesl, l res, and l inel are compared: forl res the Gaussian
DOS was used witha05150 Å,N51010 states/cm2,W
50.5 meV; the inelastic mean free path was calculated w
g l5120 meV andgex520 meV. We conclude that, thoug

FIG. 4. Inhomogeneous broadening as a function of detuning
Gaussian model DOS.N51010 states/cm2,kL510000 cm21. Solid
line: a5100 Å,W50.4 meV; dashed line: a5150 Å,W
50.3 meV; dot-and-dash line:a5200 Å;W50.2 meV.

FIG. 5. The three length scalesl res(v̄) ~solid line!, l(v̄)

~dashed line!, and l inel(v̄) ~dot-and-dash line!; a05150 Å,N
51010 states/cm2,W50.5 meV,g l5120 meV,gex520 meV.
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the weak localization regime may well be achieved in hi
quality samples, it puts rather stringent limits to the usa
frequency range~to satisfy the inequalityl, l res) and to the
allowed homogeneous broadening~to satisfy the inequality
l inel. l res). We remark that in Ref. 4 the LP enhanced bac
scattering in an appropriate frequency range has been
served in a high quality sample with inhomogeneous bro
ening of the order of 100meV. Also, in Ref. 5 the LP in-
plane propagation in a high quality sample has been stud
the cavity quality factor, the inhomogeneous broadening
the LP energy being again amenable to the possibility
weak localization. The authors report the detection of t
traces, the stronger one in the same direction as the inci
beam, and the other one in the opposite direction: the la
might be a manifestation of coherent back scattering.
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APPENDIX

~1! We consider the problem of the scattering of a LP
a single cylindrical potential well of radiusa0 and of depth
V0, generalizing the results of Ref. 23 to the case of a fin
detuning. Letu be the detuning between the cavity mode a
the exciton resonanceu5vc(ki50)2v0. Then for the fre-
quency range of interest@see Eq.~2!# the wave vectors of the
lower ~subscript ‘‘L ’’ ! and the upper~subscript ‘‘U ’’ ! polar-
iton inside ~subscript ‘‘V’’ ! and outside a single cylindrica
well are

kL
25

2m

\ FD22v̄2

v̄
2uG , kU

2 5
2m* v̄

\ F11
m

m*

D2

v̄2G ,

kVL
2 5

2m* ~V02\v̄!

\2 F11
m

m*

~\2D2!

~V02\v̄!2G ,

kVU
2 5

2m

\ F D2

V0 /\2v̄
1v̄1uG . ~A1!

We denote as\v̄* the energy of the bare exciton bound sta
in the well, measured down from the bottom of the excit
band\v0 in an ideal QW. For a givenV0 , v̄* can be found
as a solution of the equation

2
J0~a0kV!

a0kVJ1~a0kV!
[g̃~v̄* ;V0!

5 f̃ ~v̄* ;V0![2
K0~a0k!

a0kK1~a0k!
, ~A2!

whereJ0 , J1 , K0, andK1 are Bessel functions, andkV andk
are bare exciton wave vectors inside and outside the pote
well

r
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kV
25

2m* ~V02v̄\!

\2
, k25

2m* v̄

\
. ~A3!

The scattering cross section of LP23 is determined bys-wave
scattering only and is

s~v̄;V0!5
p2

kL

11x~v̄;V0!

p2

4
1R2~v̄;V0!

,

R~v̄;V0!5F~v̄;V0!2 ln
a0kL

2
, ~A4!

wherex(v̄;V0) is negligible if v̄'v̄* and is of the order of
unit if v̄ is far from v̄* , and

F~v̄;V0!5
2a1l f 1a2lg2a3g f

a1g2a2f 1a3l
, ~A5!

g~a0kVL!52
J0~a0kVL!

a0kVLJ1~a0kVL!
;1,

f ~a0kU!52
K0~a0kU!

a0kUK1~a0kU!
;1,

l ~a0kVU!5
I 0~a0kVU!

a0kVUI 1~a0kVU!
'

\

ma0
2D

1

b4
, ~A6!

a1~v̄;V0!5a0F11
m

m*
b1~v̄ !G ,

a2~v̄;V0!5a0F11
m

m*
b2~v̄ !G ,

a3~v̄;V0!5a0

m

m*
b3~v̄ !, ~A7!

b1~v̄;V0!5
~D\!2

~V02\v̄!2
1

D2

v̄2

2
2~D\!2

v̄\~V02\v̄!
1

v̄\1u\

V02v̄\
212

u

v̄
,

b2~v̄;V0!5
2~D\!2

~V02\v̄!2
1

2D2

v̄2
1

v̄\1u\

V02v̄\
212

u

v̄
,

b3~v̄;V0!5FD

v̄

V0

V02\v̄
G 2

, ~A8!

b4~v̄;V0!5
D21~v̄1u!~V0 /\2v̄ !

D~V0 /\2v̄ !
.

We rewriteF(v̄;V0) in the form
16531
F~v̄;V0!5

m*
m

~g2 f !1@b2g2b1f #

b31
m* a0

2D

\
~g2 f !

, ~A9!

and we see that, since the argumentsa0kV and a0k of the
functionsg̃ and f̃ differ from the argumentsa0kVL anda0kU
of the functionsg and f only by terms of the order of
m/m* ;1025, the magnitude ofF has a peculiarity exactly
nearv̄5v̄* @see Eq.~A2!#. If v̄ is far fromv̄* , thenF is of
the order ofm* /m, and Eq.~4! follows. If, on the contrary,
v̄'v̄* , then F;1, and it results in a strong and narro
peak ins(v̄;V0). Now let us fix the energy of LP\v̄ and
vary the depth of the wellV0 (a0 is always fixed!. The en-
ergy of the localized excitonic state also becomes a varia
related toV0 by Eq.~A2!. We denote byV* the depth of the
well which possess the bare exciton level of the ene
\v̄* 5\v̄. We expand the functionR(v̄;V0) nearv̄* 5v̄:

R~v̄;V0'V* !

'R~v̄;V05V* !1~v̄* 2v̄ !F dR

dV0

dV0

dv̄*
G

v̄
*

5v̄

5
m*
m

v̄* 2v̄

2D

v̄

D

V* ~v̄ !2v̄\

V* ~v̄ !
1r ~v̄ !, ~A10!

where r (v̄)5R(v̄;V05V* );1. Then the scattering cros
section is given by Eq.~7!, where

a5
2

p
r ~v̄ !, «5p

m

m*

D2

v̄

V*
V* 2v̄\

. ~A11!

~2! To compare the present results with the ‘‘absorpti
model’’ of Ref. 15, we have to calculate

2Im Gex~kL ,v!5
p

S K (
i

uc i~kL!u2d~\v̄2\v̄ i !L
5puc~kL!u2r~v̄!, ~A12!

where S is the normalization area, c(kL)
5*dr ie

2 ikL•r ic(r i), andc(r i) is the wave function of the
bare exciton having the energy level\v̄. The last equality in
Eq. ~A12! holds since in our model potential all the wel
which have the same energy level are identical, and t
uc(kL)u2 can be taken out from the averaging. The wa
function of a bare exciton in a cylindrical well of the radiu
a0 is

c~r i!5A0J0~kVr i!, r i,a0 ,

A0@J0~a0kV!/K0~a0k!#K0~kr i!, r i.a0 , ~A13!

wherekV and k are determined in Eq.~A3!, andA0 is the
normalization coefficient found as
6-7
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uA0u25
1

pa0
2

K0
2~a0k!

K0
2~a0k!J1

2~a0kV!1K1
2~a0k!J0

2~a0kV!
.

~A14!

After the integration, we find

c~kL!522pA0J0~a0kV!H J0~a0kL!
f̃ ~k22kL

2!1g̃~kV
22kL

2!

g̃ f̃ ~kV
22kL

2!~k22kL
2!

1a0kLJ1~a0kL!
k22kV

2

~kV
22kL

2!~k22kL
2!
J , ~A15!
it-

am

G

I

.
.

s

.
.

de

-
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d

16531
where the functionsf̃ and g̃ are defined in Eq.~A2!. We
expand the right-hand side of~A15! in the powers of the
small parametera0kL . We neglect the small term of the o
der of (a0kL)2, and find thatc(kL) is kL independent

uc~kL!u25
~2p!2

p

k21kV
2

k2kV
2

, ~A16!

and Eq.~18! follows for all the wave vectors determined i
Eq. ~2!.
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