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Formation of an edge striped phase in thev=3 fractional quantum Hall system
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We have performed an exact diagonalization study of uN 4012 interacting electrons on a disk at filling
v=% for both true Coulomb interaction, and thge Haldane short-range interaction for which Laughlin wave
function is the exact solution. For the Coulomb interaction Biz10 we find persistent radial oscillations in
electron density, which are not captured by the Laughlin wave function. Our results strongly suggest formation
of a chiral striped phase at the edge of the fractional quantum Hall systems. The amplitude of the charge
density oscillations decays slowly, only as a power law with the distance from the edge. Thus the spectrum of
edge excitations is likely to be affected.
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[. INTRODUCTION effects for small number of electrons.
In this paper we report results of a detailed numerical

An important open problem in the physics of the frac-investigation of the microscopic structure of the FQH edge.
tional quantum Hall effectFQHE)*?is the structure and the To this end, we diagonalize the interaction Hamiltonian in
properties of edge states. The bulk FQHE is reasonably wethe disk geometry for up tbl=12 Coulomb-interacting elec-
understood. The kinetic energy of two-dimensiorfaD)  trons. ForN=10 we observe formation of a striped order in
electrons is quenched by the strong perpendicular magnetitie charge density at the edges. These edge stripes are not
field B, and the Coulomb interaction dominates the physicsaptured by the Laughlin wave function that works well for
of the partially filled Landau level. At certain filling factors ~ the bulk FQH states. We also obtain an analytical fit to the
the electrons condense into highly correlated gapped quamumerical data, which suggests that the amplitude of the
tum fluids, which results in quantization of the Hall conduc-charge density oscillations decays only as a power(&pe-
tanceo,, and vanishing diagonal conductivity,,.> There cifically, as inverse square rgowith distance, appreciably
has been much interest in the physics of FQH edge states fextending into the sample. We interpret these results as for-
several reasons. First, on a QH plateau the bulk electromation of an edge striped phasESP with wave vector
states are localized by disorder, and gapless excitations afgsp~ /2|, possibly smectic liquid crystal, at the edge of a
possible only in extended edge statéshus the transport FQH system.
current flows along the edg@sSecond, FQH edge states
have played an important role in many experiments: internal II. MODEL
resonant tunneling from one edge to another through states ) a1
bound on a quantum antidot has been employed to measure We study the most simple FQH state at filling- 3, that
the fractionally quantized charge of the tunneling of spm-pola_mzeq electrons r_est_ncted to lowest La_mdau level,
quasiparticled,and external electron tunneling into an edgeaS appropriate in the largé limit. In the symmetric gauge
of a FQH system has been used to study its excitatiohl® Vector potential isA=3[B,r], and the single-particle
spectrunf Also, an edge channel is usually assumed to bavave functions in the angular momentum representation are
localized within a few magnetic lengthg= J#c/eB at the . y (r)=(2w2mm!)‘1’2rme‘m‘f"f2’4 (1)
boundary of the FQH system, then the low-energy dynamics m '
is effectively 1D, and field-theoretic descriptions of edgewherem=0,1,2 ..., andr (in units of ly) and ¢ are the
channels as a chiral Tomonaga-Luttinger liquid have beeRolar coordinates in the plane.
developed:*® The interaction Hamiltonian in the second-quantized form

Our gquantitative understanding of the FQHE is based ons
Laughlin wave functiorf, which is known to be quite accu- AT
rate for the bulk, translationally invariant=% FQH state H= EI VinrCm+1CnCn+1Cm, 2
from extensive comparisons with exact diagonalization re- + m . . . .
sults in the edgeless spherical geom&td? However, the wherec, creates an electron in the single-particle eigenstate

accuracy of this wave function remains relatively untested a?f the angulgr .momenltunﬁm. There. is no external co_nfme-
the edge. Validity of a wave function in the bulk does notMeNt potential; the-= 3 FQH state is chosen by setting the

necessarily extend to the edge: the ground state of the systeiffa! angular momentum as described below. The Coulomb
is separated from excited states by a gap in the bulk, whicalrix elements/y,, are

makes it insensitive to perturbations; on the other hand, the Vlmn:<m+ In

o ; . rlmn+1)
system has gapless excitations at the edge, which makes it

more susceptible to the particular form of the interelectron 1
interaction. The FQHE has been relatively less studied in the If f dzrldzrzlﬁan(Fl)l/fﬁ(fz)m

disk geometry?*3'*because, in part, the interest was focused roe

on the bulk states, and it is difficult to separate disk edge X hm(T1) Wni1(r2). 3
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FIG. 1. Electron densities, (r) andpc(r) for N interacting electrons in the disk geometry. The dashed lines show the Laughlin state for
a short-range interaction, solid lines show the exact ground state for the Coulomb interaction.

We have fount that the Coulomb matrix elements can be | " (m\ T2+ )T (1/2+1+i) [1
expressed via finite sums an:igo ( i | TFOIT @2 1+ T1) §+|+2|>.
y o JE e DIr men 32 (5b)
mn— m!n! 2! Tm+n+2 The above equations are valid for,n,|=0. For matrix ele-
- _— ments with negativé<0 the identiter;'nz V'm_,‘n_I can be
X[ AmnBam* BmrAnml, (4 used. These finite sums make the Coulomb-matrix elements
significantly easier to compute than the expressions of Girvin
where 6
and JacH!
m . . It is well knowr? that the bulk ground state of interact-
Al :2 m| I'(1/2+ D) (1241 +i) an (59) ing electrons is well approximated by the Laughlin wave
mnE Vi (DT 324+ +n+i)’ function
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N N 712 TABLE I. Normalized overlaps of the Laughlin ground state
Y (zg, ... z0=11 (zj— Zk)seXp[ > |2 ] , (6)  with the exact Coulomb ground stai., and the Coulomb ground
I<k T 12 state in the restricted Hilbert spadg-, for N electrons. Fow ¢, the

single-particle angular momentumm is restricted tom<m .,

wherez=x;—iy; (in units oflo) gives the position ofth wheremy, . is for ¥ . HereW is the weight of the components in
electron as a complex number. The Coulomb mteractloqhe exactd - with m=m-
C max*

Hamiltonian can be expressed as

N N (UL Pep (V[ Pe) 10°XW
L— = ]
V(lzi—zd) Z VIPIT, ™ 3 0.993606 0.990997 3.81
. . 4 0.983108 0.978804 5.20
whereV, are the Haldane pseudopotentials, @l is the 5 0.988168 0.985047 410
projection operator that selects the states in which partjcles g 0.986102 0.981767 461
?ndk.havle Lelatwe angular: momentmehg Laqulén 1:/v?]ve 7 0.964758 0.956392 6.92
ulnc;uon IS tnowr;. to et e ixatct groun ts . oht e | 8 0.968652 0.962187 6.49
electrons interacting via a short-range potential when only o 0.972992 0.966526 6.61

V, is nonzero. The corresponding matrix elements for the

short-range interaction Hamiltonian were obtained followin 0.971415 0.964413 7.08
Kasner arg1d Ape}g 9 11 0.966118 0.958138 7.42
' 12 0.961240 0.9579 7.5
2 2
sp_ m(M+ n+1=1)![(m=n)—=17] ®) 3 or N=12 “unrestricted” overlap was obtained by an extrapola-
mn

2MHENHH2 mint (m+ D! (n+1)! ’ tion, using the results fom$ <m’ . +2.
Il. RESULTS M = %N(N—_l) selects the»z_% state for_ Coulomb interac-
tion too: it fixesaveragedensity on the diskpc)~{p,) (for
We construct, and¥ ¢ numerically as the ground states r <r 4,9 to better than 10°.
of the short-range and Coulomb Hamiltonians, respectively,
for the total angular momentud = 3N(N—1) for N elec-
trons, which gives filingr=3% in thermodynamic limitN IV. ANALYSIS AND DISCUSSION
—o. The Hilbert space is restricted by consideration of

. . . . For N=6 to 8, density profilep clearly displays a com-
single-particle orbitals with angular momentum=m,,, Y profiee y ispiay

. ) . mensurability effect, strongest foi=7, which can be visu-
only. ForV, shortLrange interaction, the contribution of Or- 416 in 4 classical picture as tendency to have one central
bitals - with m>m.maX=03(N—1) vanishes identically; for  gactron ar =0 surrounded by a ring of six electrons. For
Coulomb interactiom,;, is obtained by increasing Hilbert n=7 the position of the outer maximum in the density pro-
space until overlagW¥, | ¥ ) converges to at least three sig- file is very close to the lattice constaa,c=(4m3)"4,
nificant digits. For example, foN=12, the largestv=5  —4 665, of the v=% 2D Wigner crystal in the thermody-
FQH system studiedM =198 and the size of the Hilbert namic jimit?° This commensurability effect is barely visible
space is 15, 293, 119 fong,,= 35. To the best of our knowl- - oy the Laughlin density profile, (r), indicating importance
edge, the largest= 3 systems studied in the disk geometry of the long-range part of Coulomb interaction for formation
prior to this study was\=10 by Cappelliet al,** who used  of an ordered phase, even for such small electron systems.
only V; interaction. For N=10 the Laughlin statel’, develops a constant
In Fig. 1 we present the radial electron density profiles  density plateay, ~ % in the interior of the disk. This is the
and pc for both ¥, (short-range interactionrand W (true  precursor of the translationally and rotationally invariant
Coulomb interactionfor N=5 to 12 electrons. A compari- =1 pylk FQH condensate. Surprisingly, a second oscillation
son of p (r) with the exact Coulomlpc(r) should clarify  jn the Coulombpc(r) becomes evident fox=10; the sec-
the importance of the long-range part of the Coulomb interpnd oscillation shifts to larger asN is increased, following
action for the FQH edge structure. For Blllthe exponential  the first oscillation. The second oscillation is clearly caused
fall off of pc(r) at the edge and the density oscillation near-py the long-range part of the Coulomb interaction, in other
est the edge is captured well by the Laughdir(r). As ex-  words, by the Haldane pseudopotentisiswith 1=3 (be-
pected, the edge shifts to largerin accordance Witfreqge  cause of Fermi statistic$, must be odd for spin-polarized
“(Zmanax)llz- The properly normalized overlapsV |V ) electrong. In view of large overlaps, one may want to de-
are given in Table |. The corresponding overlaps are mucRcribe the edge charge density oscillation®ig in terms of
closer to unity in the spherical geometry, which indicates thakxcitations of ¥, by the long range part of the Coulomb
the deviation originates in the disk edge. Still, given the hugénteraction. Since the charge and the angular momemum
size of the Hilbert space, the overlaps indicate that Laughlirof the total system are fixed, a relevant elementary excitation
¥, capture the important short-range FQH correlations reto consider is a quasiparticle-quasihole bound excitorhe
markably well, even at the edge. Table | also giV¥sthe  excitations that do not conserve are not relevant because
weight of the components o with m>m}_.. Al W they alterM. A variational wave function that admixes one
<1%, which means that fixing total angular momentumbound exciton intoV'| reproduces charge density oscillations
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In the disk geometry rotational symmet(gorresponding
/\ ; to translational invariancalong a linear edggof the chiral
04 / basis orbitals/y, ensures that azimuthal density modulations
in p(6) are not possible. A broken symmetry ground state is
[ /’\ ] possible only as a superposition of several rotationally in-
0.3 / \\_/ variant degenerateground states at different totdd. Such
ground state would be pinned by disorder and QHE would

not be observable in experiments. A charge density wave
—N=12 \ (CDW) order is possible in the radial direction, however; in

o N=11 the thermodynamic limit? the edge confinement breaks the
01 p—rof - fit Eq. (4) translational invariance and “excites” radial CDW. Because
of the long-range nature of the Coulomb interaction, the ra-
dial CDW is expected to propagate deep into the interior of
0-00 > 4 6 8 10 the electron system and form a locally anisotropic edge
radius r (%) str_iped phas€dESP. Since there is ab.undant e_xperimental
evidence that FQH edges are conducting, ESP is a conductor
FIG. 2. Electron densityp(r) for N Coulomb-interacting elec- along the edge, and an insulator in the perpendicular direc-
trons. The N=11 density data(circles is shifted radially by tion, in the sense that in a QH system radial perturbation will
I eggd N=12)—r 9o d N=11)~0.378. The dashed line is the fit of induce only azimuthal Hall current. Thus, ESP can be

Eq. (10) with parameters given in the text. thought of as a quantum smectic liquid crystal pRaaethe
edge of the system.
in pe(r) for N=10 to 12 reasonably welf The deviation of Extrapolating to the thermodynamic limit, and setting

the variationap(r) from the exacpc(r) increases, however, PESFO:%: Qesp=7/2, the following S|mplle expression de-
asN is increased from 10 to 11 to 12, which indicates thatScribes well the electron density at the=3 FQH edge:
more than one bound exciton is needed for larger systems. 1

We have obtained a good phenomenological fit of the ex- p(y)= g(erfy+ 1)

actpc(r) dependence using an analytical expression:

T

1
1+ EJO{ > (y—1)

] . (10

wherey is the distance from the edge. In the disk geometry

r)= erfr+1)/21{1+ 1o, the azimuthal transport current density=d,p(r). Differen-
P(1)=pal( JZI{1+ pesrodbl Gesel ol} (9 tiating Eq.(10) we obtain edge current density

wherepg=3 for v=3, r=regger is the distance from the Jx(y)xi(e*yz) 1+ 1Jo z(y—l)”

edge in units of, erf(x) is the Gauss error function, adg 3\/; 2712

is the Bessel function of the first kind. The fitting parameters - o

are the ESP oscillation amplitude at the edge;y, the —ﬂ(erfy-i- 1)J, E(y—l) . (12)

ordering wave vectogesp, and the shift of the first oscilla-

tion from the edge . The fit is robust in the sense that the In practice, the first term with exp(y?) vanishes after the
same fitting parameters also give good fitsXo# 10 and 11, first oscillation. The phenomenological expressions Eb3.
scalingr eggeas (2Mp,,)*% Afit for N=11, 12 is shown in and(11) are plotted in Fig. 3. Largg asymptotic behavior of
Fig. 2, where the values of the parameters age,;  both Bessel functions isy~YZcos(ry/2) (with a /2 phase
=0.519, wave vectogesp=1.5701,, andr,=0.99. We be- Shift). Thus, should Egs(10) and (11) prove applicable to
lieve that the deviation of the fit from the exact density in thelinear edges in large systems, the amplitudes of the charge
center of the disk for <1 is a finite-size effect. The param- density and the transport current oscillations both decay
eterspesr andr_may be varied by 1% to give equally good only as a power law of distance from the edge, specifically as

-1/2 -1/2 H : H
overall fit. The wavelength g5p=4.002 can be compared to y  © We note that thexy asymptqﬂc_bghawor IS not
several natural lengths in the problem. It is significantlywe” established for the thermodynamic limit; the exponent

smaller than the Wigner crysta-latice constaatyc of the power law may be affected by the geometry effects of

=(4\/3)"?=4.665, and, more relevant, is accurately equaf’jl small disc in our numerical results.
to the distance between the crystal plandsyc
= (\/3/2)ayc= (37/3)"?=4.040. We also note thajzspis
close to the wave vector of the bulk magnetoroton minimum  There are likely to be several important implications of
qur->> Similar length scales are provided by many otherthe observed slow-decaying charge density oscillations at
guantities, e.g., the “ion diameter’ Ry=\67=4.342, a FQH edges. Note first that they do not affect topological
little too large; square root of the “disk area per electron” QHE properties, such as the values of the quantizgd
(2mmi o /JN)Y2=[67(N—1)/N]*?=4.157 for N=12 is Ref. 1, and the charge of the bulk Laughlin quasipartiéles.
closer, but thepc(r) data do not show such dependence onOn the other hand, dynamic properties, where edge excita-
N, Fig. 2. tions at finite frequency and wave vector are important, are

V. IMPLICATIONS
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propagation of edge magnetoplasmons on frequé&hiéshen
0.4 there are several edge modes present, a striped phase ex-
tending hundreds of, from the edge is likely to couple
0.3 various modes, and this may explain the failure to observe
multiple and/or counterpropagating modes in experiméhts.
0.2 A complementary field-theoretic approach for the dynam-
01l ics of an edge channel treats it as a Luttinger liquid, focus-
’ ing on the asymptotic long-distance, low-energy phy$ics.
0.0 It has been argued that many expected power law behaviors
in this limit are completely determined by the quantized
0.1 value ofao,,, and would not be affected by the specifics of
02 the edge structure. The mapping of a FQH edge onto the
’ 0 10 20 30 40 Luttinger liquid is based on rather general considerations,
distance from edge vy (%) provided there is noc1/r interparticle interaction. In this

_ _ work we specifically show that the long-ranged true Cou-
FIG. 3. Electron density and transport current dens@yb.  |omb interaction leads to formation of a striped phase at the
units) vs distance from the=3 FQH edge. Densityc(r) for 12 ;,—1 FQH edge, calling into question the fundamental as-

electrons is also shown. The analytical expressions BdB.and  gymption that all important physics at the edge is one dimen-
(12) are inferred from the numerical data. sional.

likely to be affected. For example, since gdge e>_<citations are ACKNOWLEDGMENTS

expected to be transverse charge density waieseems

that the presence of ESP at QH edges should affect spectrum We are grateful to I. L. Aleiner and J. K. Jain for discus-
of edge excitation&?” The striped phase may be the reasonsions. This work was supported in part by the NSF under
for the reported experimental dependence of velocity ofGrant No. DMR9986688.

1D.C. Tsui, H.L. Stormer, and A.C. Gossard, Phys. Rev. 148}. B 58, 16 291(1998.
1559(1982. 15E. V. Tsiper(unpublishel
2R.B. Laughlin, Phys. Rev. Let&0, 1395(1983. 185.M. Girvin and T. Jach, Phys. Rev. 29, 5617(1984.

SReviewed in:The Quantum Hall Effec2nd ed., edited by R.E. s A. Trugman and S. Kivelson, Phys. Rev3B, 5280(1985.
Prange and S.M. GirvitiSpringer, New York, 1990 Perspec-  8F.D.M. Haldane, inThe Quantum Hall EffecRef. 3.
tives in Quantum Hall Effectedited by S. Das Sarma and A. *°M. Kasner and W. Apel, Ann. Phy$Leipzig) 3, 433 (1994.
Pinczuk(Wiley, New York, 199F; S.M. Girvin, inThe Quantum  2°It is well known that the ground sate at cannot be a Wigner

Hall Effect, 1998 Les Houches Lecture Noté&DP Sciences, crystal without Landau level mixing, in the high limit.

Paris, 1999 21R.B. Laughlin, Physica B & C126, 254 (1984.
4R.B. Laughlin, Phys. Rev. B3, 5632(1981). 225, 5. Mandal and J. K. Jaifprivate communication
5B.I. Halperin, Phys. Rev. B5, 2185(1982. 233.M. Girvin, A.H. MacDonald, and P.M. Platzman, Phys. Rev. B
6J.K. Wang and V.J. Goldman, Phys. Rev. L&¥, 749 (1991); 33, 2481(1986.

Phys. Rev. B45, 13 479(1992. 24In the thermodynamic limit the azimuthal anglg degree of
"V.J. Goldman and B. Su, Scien@7, 1010 (1995; Physica E freedom maps onto coordinatealong the linear edge, and the

(Amsterdam 1, 15(1997. radiusr maps ontoy transverse to the edge. We also note that
8M. Grayson, D.C. Tsui, L.N. Pfeiffer, K.W. West, and A.M. confinement by fixingVl is very sharp; electron confinement by

Chang, Phys. Rev. Let80, 1062(1998. a shallow external potentiaV, (small gradient:yd,Vey
9X.G. Wen, Intl. J. Mod. Phys. B, 1711(1992. <Ag,p may reduce amplitude of the edge striped phase, but can
10\, Stone, Phys. Rev. B2, 8399(1990. also lead to a phase separation.
1F D.M. Haldane, Phys. Rev. Le&1, 605 (1983. 255 A. Kivelson, E. Fradkin, and V.J. Emery, Nat{t®ndon 393
125, He, X.C. Xie, and F.C. Zhang, Phys. Rev. L8 3460 550 (1998.

(1992. 26N.B. Zhitenevet al, Phys. Rev. B49, 7809 (1994, and refer-
13G. Dev and J.K. Jain, Phys. Rev.45, 1223(1992. ences therein.

1A, Cappelli, C. Mendez, J. Simonin, and G.R. Zemba, Phys. Rev?’V.J. Goldman and E.V. Tsiper, Phys. Rev. L&6, 5841(2001).

165311-5



