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Deconstructing Kubo formula usage: Exact conductance of a mesoscopic system
from weak to strong disorder limit
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In both research and textbook literature one often finds two “different” Kubo formulas for the zero-
temperature conductance of a noninteracting Fermi system. They contain a trace of the product of velocity
operators and single-particieetarded and advance@reen operators: To(G'v,G?) or Tr(v,Im Go,Im G).

The study investigates the relationship between these expressions, as well as the requirements of current
conservation, through exact evaluation of such quantum-mechanical traces for a natmstaieing 1000

atomsg mesoscopic disordered conductor. The traces are computed in the semiclassicalwéggneedisorder

is weak and, more importantly, in the nonperturbative transport regiineluding the region around
localization-delocalization transitiprwhere the concept of a mean free path ceases to exist. Since quantum
interference effects for such strong disorder are not amenable to diagrammatic or noamhmeatel tech-

nigues, the evolution of different Green function terms with disorder strength provides insight into the devel-
opment of an Anderson localized phase.

DOI: 10.1103/PhysRevB.64.165303 PACS nunider73.23-b, 05.60.Gg, 72.15.Rn

At first sight, the title of this paper might sound perplex- scopic disordered conductor. Both expressions are frequently
ing. What else can be said about Kubo forntdéter almost ~ encountered in the research as well as textbook literature,
a half of a(last century of explorations in practice, as well and are displayed below. They consist of a tréoelinear
as through numerous rederivations in both the reséamsti ~ combination of such tracgsver the product of velocity op-
textbool* literature? Kubo linear response thed®LRT) eratorsf)x with retarded and advanced single-particle Green
represents the first full quantum-mechanical transport forpperators G'2=[E—H=+i0*]7%, like TH0,G"%,G"?],
malism. It connects irreversible processes in nonequilibriumy narefy is an equilibrium Hamiltoniarin the spirit of FDT,

to the thermal fluctuations in equilibriungfluctuation- i contains random and confining potentials, but not the ex-
dissipation theorenFDT)]. Therefore, the study of transport (erna electric fiely, and the velocity operator is defined by

is limited to the nonequilibrium states close to equilibrium.iﬁQ:[F I:I] These quantum-mechanical traces are computed
Nevertheless, the computation of linear kinetic coefficients i%ere F,igs. 1 and 2, in the site representatipe., using

greatly facilitat_ed since final expressions degl with equlillib'real-space Green functiondefined by a lattice model, such
rium expectation values of relevant physical quantitiesyg ihe tight-binding HamiltoniafrBH)

(which are much simpler than the corresponding nonequilib-

rium ones). It originated from the Einstein relation for the -

diffusion constant and mobility of a particle performing a H:% sm|m>(m|+<% tn| M)(N| .y
random walk. "

Until the scaling theory of localizatidrand ensuing com- on a hypercubic latticl® of sizeL =Na (a being the lattice
putation of the lowest-order quantum correction, weakconstank Heret,,, is the nearest-neighbor hopping integral
localizatiorf (WL), to the Drude conductivity, it almost ap- betweens orbitals (r|m)= ¢(r—m) on adjacent atoms lo-
peared that the microscopic and complicated Kubo formulacated at sitesn of the lattice €,,=1 inside the sample
tion of quantum transport merely served to justify the intui-defines the unit of energyThe disorder is simulated by tak-
tive Bloch-Boltzmann semiclassical approathtransportin  ing a random on-site potential such that, is uniformly
weakly disorderedKgI>1, wherekg is the Fermi wave vec- distributed over the intervdl—W/2,W/2], which is the so-
tor andl is the mean free patttonductors. Furthermore, the called Anderson model of localization. | emphasize the re-
advent of mesoscopic physidsas led to a reexamination of quirements of current conservation throughout this analysis,
major transport ideas—in particular, we learned how to applywhich will allow us to understand the features of different
properly KLRT to finite-size systems. Thus, equivalence wagrace expressions introduced above.
establishetibetween the rigorous Kubo formalism and heu- The mesoscopic method$mesoscopic Kubo* or,
ristically founded Landauer-Btiker'® scattering approach to equivalently, Landaué? formula) make it possible to get the
linear response transport of noninteracting quasipartftles. exact zero-temperaturé.e., quantum conductance of a
This has emerged as an important tool for studying mescfinite-size sample attached to semi-infinite disorder-free
scopic transport phenomena, where system size and intdeads. Although KLRT is a standard formalism for introduc-
faces through which electrons can enter or leave the condu@ag the many-body physics into the computation of transport
tor play an essential role in determining the conductdA¢®. coefficients’ here the focus is on the transport properties

This study presents an exact evaluation of two differendetermined by scattering of noninteractifguasjelectrons
Kubo-type expressions for the linear conductance of a mes®n impurities. The “old” Kubo formuld® for the macro-
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FIG. 1. Different terms in the Kubo formula for the two-probe Fermi Energy

quantum conductance of a single finite-size sample modeled on a

simple cubic lattice 1D by an Anderson model with disorder FIG. 2. Different terms in the Kubo formul@=G,,+G,, for

strengthW=2 (upper panel—single sample in the semiclassicalthe two-probe quantum conductance of the same finite-size conduc-

transport regimeor W=7 (lower panel—disorder averaged over 50 tors as in Fig. 1, but with respective traces in these expressions

samples in the nonperturbative transport regkpe<1). The full performed over the site states inside the whole disordered sample.

Kubo conductancéthick solid ling is given by the sum of terms

defined in Eq.(6) (thin solid line and Eq.(7) (dashed ling G has to be described in terms of sample-specific quantities,

=G4+ G, . The respective traces in these expressions are petike conductance, which describe a given sample measured

formed only over the states residing on the first two planes insidén a given mannér(i.e., more generally, conductance coeffi-

the sample. The dotted line in the upper panel repres8fifob-  cientsl p=2q0pqVq in Ohm’s law for a multiprobe geometry,

tained by tracing over the two planes deep inside the left(aad  where several leads are attached to the sample to feed the

distance 18 away from the sample currentl,, or measure the voltagé,) or, alternatively, the
nonlocal conductivity tensor introduced below. Switching to

scopic volume-averaged longitudinal dc conductivity at zerosgnductance leads to the following Kubo expression:
temperature E=E; in all formulas below,Ex being the

Fermi energy of a noninteracting Fermi gas described by a 4e2 1 R o R
single-particle Hamiltonia is given by G=— PTf[ﬁUﬂm Gho,ImG], (33
e SE—F)p SE—F) @
To= gy LYol oxd 1, ImG= (6"~ 6=~ ws(E~H). (3b)

where the factor of 2 accounts for the spin degeneracy. Th I .

Kubo conductivity relates the spatially averaged current ﬁerg the definition of theA retardéd or a.dvancecﬂa) s!ngle—
= [drj(r)/Q to the spatially averaged electric figlet oE, ~ Particle Green operatoG"*=[E—H=i _0*]’_l requires a
where thermodynamic limif=L% o (while keeping the —numerical trick to handle the small imaginary pa@",
impurity concentration finiteis implied to get an unambigu- Which then spoils the prospect of obtaining the exact zero-
ous intensive quantit§” (and well-defined steady statgor ~ temperature conductan&%?g_o_nce the semi-infinite clean
electrons in a random potential further averaging should béeads are attached to the finite sampde planes 1 andN
performed over the disorder to getas a material constaht. ~ @long x axis for a two-probe geometry, Fig),3the “self-
On the other hand, quantum corrections to the conductivitgnergy” 2"2=3[4+3c% arising from the “interaction”
are nonlocd on the scale of the dephasing lendth>1.  with the leads [ left, R right), provides a well-defined
This invalidates the concept of local quantities, like conducimaginary part in the definition of the Green operatdrs
tivity, in mesoscopic samples, which are smaller thgrand . o

thereby effectively af =0. Therefore, mesoscopic transport Gra=[E-H-X"3]1, (4
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oy use of semi-infinite leads allows us to bypass explicit mod-
PARTICLE RESERVOIRS i

% | eling of reservoirs in the computation of conductance since
LEAD SAMPLE LEAD “hot” electrons which escape into the leadgue to the
o0 o oo broadening of energy levelslo not come back in a phase-
Hi oo OG- |-0—0-81-000 oo Mg coherent fashion. The concept of reservoirs was always an
— o © essential part of Landauer’s subtle arguméhtShey pro-

: vide dissipation and therefore the steady statelowever,
M the computation of conductance, as a measure the dissipa-
II tion, involves only a conservative Hamiltonian of noninter-
) _ _ acting electrons scattered on impuritieé®., when comput-
FIG. 3. Atwo-dlmensm_naQZD) version of the actual 3D model _ing the linear conductance of a mesoscopic system one
of the two-probe measuring geometry employed here. Each sitgq oy goes not deal explicitly with electron-electron and
hosts a singles orbital which hops to six(or fewer for surface . .
electron-phonon interactiot3.

atoms nearest neighbors. The hopping matrix elemerit(igithin h q df h .
the samplg t, (within the lead§g andt; (coupling of the sample to The conductance computed from the mesoscopic quantum

the leads The leads are semi-infinite and are considered to bé&XPression is exact, but characterizes the whedenple
connected at- = to “reservoirs” biased by the potential difference +leadssystem in the spirit of quantum measurement theory
eV=u — g since leads can also be considered as the “macroscopic mea-
A A suring apparatus?®2® However, for a disordered enough
The Green functionG"#(n,m)=(n|G"#m) describes the sample(and not too narrow leads or too sma}) the con-
propagation of electrons between two sites insideductance is determined mostly by the disordered region
an open conductorL(,=L in the two-probe geometyy itself.2®?! This exactness makes it possible to compute the

The self-energy terms are giv@f' by 3! (n,m) transport properties in both the semiclassical regimleere

_ - T ; : Boltzmann theory and perturbative quantum corrections are
=(t4/2t3)g! x(ns,ms) with g/ r(ns,ms) being the surface : . ;

Gregn fLuncL:iiRon of the bareLéF;mi—infinite lead between thé"pP“CgE'e smcekﬂ%l) an'd the nonpertur_batlve transport
sitesng and mg located on the end atomic layer of the lead regime™ where semiclassical concepts, life lose their

(and adjacent to the corresponding siteand m inside the meaning. .Although the d|s_t|nct|on betweaka.l~1 (where
conductoy. It has an imaginary part only fofE|<6t, , semiclassical theory, including the perturbative quantum cor-

which means thaG(Eg) goes to zero at the band edge of arecti(_)ns,_ breaks dqur_and the crit_e_rionG~_2e2/h for the
clean lead E¢| = 61, because there are no states in the Ieadi(ocal|zat|on—delocal|zat|on(LD) critical point has been

beyond this energy which can carry the current. Here th nown since the scaling theory of localizatibit,is not un-
leads will be described by the TBH witk,=0 and common practice to find these two different boundaries of
=

t..=t,_: the hopping between the sites in the lead and théransport regimes confuse_d. As_the disorder is !ncreased, a
o . L Sample goes from the semiclassical transport regime, through
sample ist,,,=tc, as illustrated in Fig. 3.

| use the term “mesoscopic Kubo formula” for E¢R) i\\ﬁitlrgggo;[é)et_wg ?Irﬂk; 1A?12|2rtslfnLn?otcrl%ir)]sgr?giig;llts
with the Green operatored) plugged in. This formula is o S ot e hase. Since the nonperturbati eytrans-
exactly equivaleritto a two-probe Landauer formdfafor ! 1z€0 p e perturbativ

the conductance measured between two points deep insi(&’é’rt regime lacks the small parameter required by present

macroscopic reservoirs to which the leads are attached gpalytical schemes, the 'nu.me.rical .techniques employed here
infinity.22 Thus, it is conceptually different from the “plain” &€ the only way to gain insight into the quantum effects

Kubo formula(2) which follows from combining the con- 'l[)igzogfd;n ?shogﬁesgglrj?g;t(i:\?gei:nﬁﬁ?k(?o\r/YeLéti(gnav:/?tﬂijr:n{r?g-
ductance of smaller par= oL /L, thereby implying a P 4

; _ ian30,31
local description of transport which becomes applicable onlynonlmeara model formalism’

at sufficiently high temperatures. Such mesoscopic formuIaF Another _expression is often encountered in the

,16,5,20,3 i _
provide a means to compute the quantum conductance—geraturé Zfo.r .bOth the_cpnductance of f”?'te SIZ€ Sys
tems and conductivity of infinite systems. It gives the con-

sample-specific quantity which takes into account the finite .
system size, measuring geometry, arrangement of impuritieg,UCtarlceA ttlrciugh a_n apparently  different trgca

and nonlocal features of quantum transport and can descrite7vxG'%v,G®]. While some textbooks quote this only
ballistic transportwhere the local relatiofj=oE does not &S & convenient approximation to the disorder-averaged full
hold). Attempts to use the original Kubo formulas on finite formula;== sometimes the claim goes further to say that
samples, throughout the premesoscopic hidfdfof the ~ Such atrace is equivalent to the Landauer formula, and more-
Anderson localization theory, were thwarted with ambigu-OVer it can be evaluated at any cross section inside the dis-
ities, which can be traced back to the general questions ofrdered region, thus rglaxmg the requirement of perf_ect leads
the origin of dissipatior® This stems from the fact that a ‘@S the weakest point of the Landauer formalisrif.”
stationary regime cannot be reached unless the system is ikamely, G'G" or G®G?® terms can be reduced to a single
finite or coupled to a thermostat. From the practical point ofGreen function via the Ward identity in weakly disordered
view, leads make the system infinite by opening the sampleonductors™3 and are therefore related to the density of
and therefore eliminating the technical obstacles in handlingtates. They are “abandoned” in the linkitl>1 since they

of the discrete spectrum of finite sampfé4:urthermore, the do not generate interesting contributions to WL or meso-
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scopic fluctuationgfor example, such terms generate contri-from the more fundamental quantity in KLRT, the nonlocal
bution to universal conductance fluctuations which are smaltonductivity tensor relating local current density to the local
as ~1/(kgl)?].%8 In fact, both the diffusion modes of the electric field,
Diffuson-Cooperon diagrammatic perturbation theory and

different versions of the nonlinear model (NLSM) are

derived®3! by considering only the term containing the

product G'G2. The NLSM is a quantum field thed?y of
weakly disordered mesoscopic conductors where diffusion
modes of the diagrammatic perturbation theory play the roldhis tensor is obtained as a response to an external field only
of soft modes responsible for long-range spatial correlationsince corrections to the current due to the field of induced
of local density of states, mesoscopic fluctuations of globatharges go beyond the linear transport regine(.e., one
quantities, and nonlocal corrections to conductivftylt does not have to engage in the much more cumbersome task
makes it possible to handle the breakdown of perturbatiowf finding the response to a full electric field inside the
theory due to the proliferation of such modtby summa- conductof). In application of KLRT to mesoscopic systems,
rizing all WL-type corrections to conductivi{). This then  a(r,r’) is a sample-specific quantity, i.e., defined for each
justifies the phenomenological one-parameter scaling theorympurity configuration and arrangement of the ledsyd is
(if not rigorously, then at least qualitativelgnd explains the in fact nonlocal even after disorder averagifig@ecause it is
LD transition in 2+ € dimensions where Anderson localiza- not directly measurable, some volume averaging is needed to
tion occurs at weak disordég-I>1. get the quantities that can be related to experiments:

To remove possible confusidijit should be emphasized
that the conductance coefficierdg,, obtained by integrat-
ing the Kubo nonlocal conductivity tenser(r,r’) over the 1 ) ) )
cross sections in the leags g, G= ?Ldr dr'E(r)-o(r,r')-E(r'). ©)

j(r)=fdr’g(r,r’)~E(r’)- (8

_ , HereV is the bias voltage\(— 0 in the linear transport re-
Ypa™ ijsqup a(r,r)-ds, ®) gime), e.g., in the case of two-probe geome®&y=u,
R — ur, Where leads are in equilibrium with two macroscopic
also contain InG for p=q, while for p#q only the terms reservoirs characterized by constant chemical potengals

involving G'G? are nonzerd.The cross sectionS, andS, ~ andug (Fig. 3. Although this expression contains the local
are to be chosen far enough from the sample, where all ev&lectric fieldE(r)=Vu(r)/e inside the conductor, because
nescent modes have died out. This not only provides a rigof current conservation entailing - o(r,r')=o(r,r')-V’
orous foundation for the Landauer formalism, but also clari-= 0 (which is a special case, in the absence of magnetic field,
fies some subtle points in the Kubo formaliglike disorder ~ Of a more general theoréi the conductance will not de-
averaging® and independence of linear transport propertieend on these field factof$In the case of TBH1) with
from the nonequilibrium charge redistributi§h By writing ~ hearest-neighbor hopping the expectation value of the veloc-

the full Kubo formula(3) as a sumG=G,,+G,,, | intro- ity operator in the site representatior‘(m|f;x|n>
duce the “Kubo conductance terms” =(i/h)tmn(my—ny) is nonzero only between the states re-
siding on adjacent plangtechnical details of the route from
262 1 Eqg. (9) to the trace involving the velocity operator are me-
Gra=— —Ti[ h0,G"40,52], (6) t|culo_usly c_overed in Ref.]ZThus, the minimal space (_:h0|ce
h L2 here is defined by taking(r) to be nonzero on two adjacent

planes, while the standard textbook assumption of a homo-
2e? 1 geneous field®® |E|=V/L throughout the sample leads to
B € P Egs.(2) and(3). Blind tracing over the whole sample would
Cn="4" PTr[ﬁUXG hvyG']. @) give simply the conductance multiplied by the square of the
number of pairs of adjacent planes, meaning that such a trace
Obviously, if in some transport regime conductance can bshould be divided byN— 1)?a? to getG [when the trace is
obtained from the trace iG,,, the other termG,, has to  performed only over the arbitrary two adjacent planéesin
vanish, at least approximately. Eq. (3) is replaced by?]. The physical content of this state-
Before embarking on the direct evaluation of these exment is simple: current=GV is the same on each cross
pressions for a conductor described by TBH), the crucial  section. Therefore, the conductance depends only on the total
point is to understand the wayi.e., space of states voltage drop over the sample, and not on the local current
m)) in which the traces should be performed, Tr()  density and electric field distributions.
=3 {(m|(---)|m). Naively, in the site representation it At this point, it is worth mentioning that another expres-
would appear that trace in formul@) should include site sion is frequently employed in the real-space computational
states inside the whole sample. However, once the curreptractice. It stems from the linear response limit of a formula
conservationV-j(r)=0 is invoked, this becomes extrane- derived by the Keldysh techniqudor noninteracting® or
ous. All Kubo conductivity or conductance formulas steminteracting systent9):
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4¢? o . . 2
G=—Tr(Im 2 GinIm2RGRY). (10)

LOFW=15

N WV L
i [T A Bt Y ~
LA v

=
)
E o6hs NV
Here G}y, Gi; are the submatrices of the full Green func- f 0.4
tion G"3(m,n) whose elements connect layer 1 to lajxeof = 8’3
the sample. Therefore, only a¥x N? block of the whole g 0
N3x N3 matrix G'(n,m) is needed to compute the conduc- 5-0.4
tance. Although such “partial” knowledge of the whole 8-0.6
Green function and the trace over matrices of $iZen Eq. B S R
(10) are different from the corresponding counterparts re- Fermi Energy
quired in application of the mesoscopic Kubo formula . .
(where the minimal trace goes ovel2x 2N? matrices, the FIG. 4. Different terms in the Kubo formulé=G,,+G,, for

final result for the conductance is the same. Positive definitethe two-probe quantum conductance of the finite-size conductor

ness of the operators 2 ImiL,R makes it possible to find modeled on a matt'.ce with Tagonal d'sorddﬂ.lz 15 (the Whme

their square root and recast the expression under the trace %?nd be.comes localized ;= 16.5). Respective traces in these .

Eq. (10) H it tor. Th @n) th expressions are performed over the site states inside the whole dis-
g. (14 as a rermitian operator. 1he expressic €N ordered sample and disorder averaged over 50 realizations.

looks like the two-probe Landauer formula involving a trans-

mission matrixt, .
The result forlW=7 disorder belongs to the nonperturba-

tive transport regime. It is interesting, therefore, to follow the
e? e? N2 behavior ofG,, and G,, terms further throughout this re-
G= —ﬁTr(ttT)=—ﬁ > T, (1)  gime, eventually reachingV,=16.5 where the whole band
™ i n=1 becomes localizet? The generic LD transition point in 3D
is beyond NLSM treatment inasmuch as it corresponds to a
strong-coupling limit in field theoretical language. Further-
t=2v—Im3, & V-Im3g (12)  more, recent descriptiéfhof Anderson localization in terms
of an order parameter, obtained from a theory based on a
or transmission eigenvalud@s, when the trace is evaluated in local approximation, suggests that probing the instability of
a basis which diagonalizes'. Moreover, it is more efficient the delocalized phase through WL-type corrections might be
from a practical point of view since the Green function tech-a daunting road to reach the transition in 3D. Figure 4 shows
niques used to evaluate Ed.0) do not require one to know that around/, the conductanc&~ 2e?/h is mostly defined
the exact asymptotic eigenstates in the le@dsis the case by the G, term—a situation completely opposite to the
with the “original” Landauer formulation relying on knowl- weak-disorder finding =2 in Figs. 1 and 2 Therefore, at
edge of the scattering basis of the wave functions definedome intermediate disordekAV< 10, within the nonpertur-
within the asymptotic regions of the lead3his becomes bative transport regime, a transition occurs frém>G,, to
sine qua norwhen computing the conductance of systemsG,,>G,,, ending up eventually with a case,,<0<G,,
with complicated “leads,” e.g., like in the case of atomic- around the LD critical point.
size point contact$: An inquisitive reader might have come up by now with
Trace expressions like Eq&) and (7) do notconserve the question as to what happens in the clean case. A
the current. Therefore, the suggested strategy is to evaluate
G,, andG,, by tracing over the states located on two planes
inside the sampléor inside the leads as well as over the
whole sampldand see how clos&,, can get toG). Differ-
ent types of conductors are chosen for this evaluation:
weakly disordered withV=2 (e.g.,1~9a at Er=0) and
strongly disordered conductors wikt= 7 (for which unwar-
ranted use of the Drude-Boltzmann formula would §iMe
<a). The exact computation of these traces is shown in the
upper panels of Figs. 1 and 2 for a single-impurity configu-
ration of W=2 [hereG,, is also computed by tracing over
two planes deep inside the leads, which corresponds to inte-
gratingo(r,r’) over such cross section, as discussed apove

The lower panels of Figs. 1 and 2 plot disorder-averaged pg 5 pifferent terms in the Kubo formulé=G,,+G,, for
quantities over an ensemble of impurity configurations fOrihe two-probe quantum conductance of a clean finite-size conductor
disorder strength=7. In both ways of tracing, the sum of modeled on a 3 lattice (em=0, t=t_=tc=1). The conductance
two termsG,, andG,, gives the full expression for conduc- as a function of the Fermi energy changes in steps corresponding to
tanceG(Eg), which have to cancel each other f@&|> 6t the number of open conducting chann@sfined by nine quantized

in order to ensure vanishing &(Er) whent, =t is chosen. transverse propagating modes

—
[\

(=

______

o

o
-é).“- Hetiriupelil

-

1
N

L=

Kubo Conductance Terms (2e2/h)

Fermi Energy
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mesoscopic ballistic sample attached to two leads has nomomputational effort and is therefore useless in real-space

zero point contact conductariéef a purely geometrical ori-

computational practige The essential outcome of this exer-

gin since leads are widening into macroscopic reservoirs aise is the explicit quantification of the difference betw&en
infinity, where reflection occurs when the large number ofandG,,. This and current conservation are important points
conducting channels in the macroscopic reservoir matche$ pear in mind when using the simplified express@g in

the small number of channels in the I€4dSuch point con-
tact conductance is quantiZ8das a function of sample

analytical derivations and arguments of the quantum trans-
port theory>'%2° Finally, the strong-disordefnonperturba-

. 20 . l - .
width?” or Fermi energy;' which becomes conspicuous when tive) behavior of two different Green function terms, com-

the number of quantized transverse propagating mades
the sample cross sectipis small enough. A cleans(,=0)

3X3X 3 toy sample illustrates conductance quantization i

Fig. 5, as obtained from the two-probe Kubo formula Gr
In this case, both term&,, and G,, are contributing in a
nontrivial fashion to a stepwise conductance.

What can be learned from these numbers is @at, EqQ.
(6), can serve as a deceapproximationto the exact Kubo
formula for the quantum conductanGeonly in very weakly
disordered conductors, whelrea. However, because of not
conserving the current, the trace®;, has to be performed
over the whole disordered regiomvhich is an enormous

prising the Kubo formula for qguantum conductance, might

rgrovide a clue for the inadequacy of attempts to analyze a

enuine Anderson transition in 3D by probing the instability
of the metallic phase to weak-localizatioiperturbative
corrections.
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