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Deconstructing Kubo formula usage: Exact conductance of a mesoscopic system
from weak to strong disorder limit
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Department of Physics, Georgetown University, Washington, DC 20057-0995

~Received 20 March 2001; published 1 October 2001!

In both research and textbook literature one often finds two ‘‘different’’ Kubo formulas for the zero-
temperature conductance of a noninteracting Fermi system. They contain a trace of the product of velocity

operators and single-particle~retarded and advanced! Green operators: Tr(v̂xĜ
r v̂xĜ

a) or Tr(v̂xIm Ĝv̂xIm Ĝ).
The study investigates the relationship between these expressions, as well as the requirements of current
conservation, through exact evaluation of such quantum-mechanical traces for a nanoscale~containing 1000
atoms! mesoscopic disordered conductor. The traces are computed in the semiclassical regime~where disorder
is weak! and, more importantly, in the nonperturbative transport regime~including the region around
localization-delocalization transition! where the concept of a mean free path ceases to exist. Since quantum
interference effects for such strong disorder are not amenable to diagrammatic or nonlinears-model tech-
niques, the evolution of different Green function terms with disorder strength provides insight into the devel-
opment of an Anderson localized phase.

DOI: 10.1103/PhysRevB.64.165303 PACS number~s!: 73.23.2b, 05.60.Gg, 72.15.Rn
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At first sight, the title of this paper might sound perple
ing. What else can be said about Kubo formula1 after almost
a half of a~last! century of explorations in practice, as we
as through numerous rederivations in both the research2 and
textbook3,4 literature? Kubo linear response theory~KLRT!
represents the first full quantum-mechanical transport
malism. It connects irreversible processes in nonequilibri
to the thermal fluctuations in equilibrium@fluctuation-
dissipation theorem~FDT!#. Therefore, the study of transpo
is limited to the nonequilibrium states close to equilibriu
Nevertheless, the computation of linear kinetic coefficient
greatly facilitated since final expressions deal with equil
rium expectation values of relevant physical quantit
~which are much simpler than the corresponding nonequ
rium ones5!. It originated6 from the Einstein relation for the
diffusion constant and mobility of a particle performing
random walk.

Until the scaling theory of localization7 and ensuing com-
putation of the lowest-order quantum correction, we
localization8 ~WL!, to the Drude conductivity, it almost ap
peared that the microscopic and complicated Kubo formu
tion of quantum transport merely served to justify the int
tive Bloch-Boltzmann semiclassical approach3 to transport in
weakly disordered (kFl @1, wherekF is the Fermi wave vec-
tor andl is the mean free path! conductors. Furthermore, th
advent of mesoscopic physics9 has led to a reexamination o
major transport ideas—in particular, we learned how to ap
properly KLRT to finite-size systems. Thus, equivalence w
established2 between the rigorous Kubo formalism and he
ristically founded Landauer-Bu¨ttiker10 scattering approach to
linear response transport of noninteracting quasiparticle11

This has emerged as an important tool for studying me
scopic transport phenomena, where system size and i
faces through which electrons can enter or leave the con
tor play an essential role in determining the conductance.12,13

This study presents an exact evaluation of two differ
Kubo-type expressions for the linear conductance of a me
0163-1829/2001/64~16!/165303~7!/$20.00 64 1653
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scopic disordered conductor. Both expressions are freque
encountered in the research as well as textbook literat
and are displayed below. They consist of a trace~or linear
combination of such traces! over the product of velocity op-
eratorsv̂x with retarded and advanced single-particle Gre
operators Ĝr ,a5@E2Ĥ6 i01#21, like Tr@ v̂xĜ

r ,av̂xĜ
r ,a#,

whereĤ is an equilibrium Hamiltonian~in the spirit of FDT,
it contains random and confining potentials, but not the
ternal electric field!, and the velocity operator is defined b
i\ v̂5@ r̂ ,Ĥ#. These quantum-mechanical traces are compu
here, Figs. 1 and 2, in the site representation~i.e., using
real-space Green functions! defined by a lattice model, suc
as the tight-binding Hamiltonian~TBH!

Ĥ5(
m

«mum&^mu1 (
^m,n&

tmnum&^nu ~1!

on a hypercubic latticeNd of sizeL5Na (a being the lattice
constant!. Here tmn is the nearest-neighbor hopping integr
betweens orbitals ^r um&5c(r2m) on adjacent atoms lo
cated at sitesm of the lattice (tmn51 inside the sample
defines the unit of energy!. The disorder is simulated by tak
ing a random on-site potential such that«m is uniformly
distributed over the interval@2W/2,W/2#, which is the so-
called Anderson model of localization. I emphasize the
quirements of current conservation throughout this analy
which will allow us to understand the features of differe
trace expressions introduced above.

The mesoscopic methods~mesoscopic Kubo2,14 or,
equivalently, Landauer10 formula! make it possible to get the
exact zero-temperature~i.e., quantum! conductance of a
finite-size sample attached to semi-infinite disorder-f
leads. Although KLRT is a standard formalism for introdu
ing the many-body physics into the computation of transp
coefficients,4 here the focus is on the transport propert
determined by scattering of noninteracting~quasi!electrons
on impurities. The ‘‘old’’ Kubo formula15 for the macro-
©2001 The American Physical Society03-1
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BRANISLAV K. NIKOLIĆ PHYSICAL REVIEW B 64 165303
scopic volume-averaged longitudinal dc conductivity at z
temperature (E[EF in all formulas below,EF being the
Fermi energy! of a noninteracting Fermi gas described by
single-particle HamiltonianĤ is given by

sxx5
2pe2\

V
Tr@ v̂xd~E2Ĥ !v̂xd~E2Ĥ !#, ~2!

where the factor of 2 accounts for the spin degeneracy.
Kubo conductivity relates the spatially averaged currenj
5*dr j (r )/V to the spatially averaged electric fieldj5sE,
where thermodynamic limitV5Ld→` ~while keeping the
impurity concentration finite! is implied to get an unambigu
ous intensive quantity16,7 ~and well-defined steady state!. For
electrons in a random potential further averaging should
performed over the disorder to gets as a material constant.17

On the other hand, quantum corrections to the conducti
are nonlocal8 on the scale of the dephasing lengthLf@ l .
This invalidates the concept of local quantities, like cond
tivity, in mesoscopic samples, which are smaller thanLf and
thereby effectively atT50. Therefore, mesoscopic transpo

FIG. 1. Different terms in the Kubo formula for the two-prob
quantum conductance of a single finite-size sample modeled
simple cubic lattice 103 by an Anderson model with disorde
strengthW52 ~upper panel—single sample in the semiclassi
transport regime! or W57 ~lower panel—disorder averaged over 5
samples in the nonperturbative transport regimekFl &1). The full
Kubo conductance~thick solid line! is given by the sum of terms
defined in Eq.~6! ~thin solid line! and Eq.~7! ~dashed line!, G
5Gra1Grr . The respective traces in these expressions are
formed only over the states residing on the first two planes ins
the sample. The dotted line in the upper panel representsGra

lead ob-
tained by tracing over the two planes deep inside the left lead~at a
distance 10a away from the sample!.
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has to be described in terms of sample-specific quantit
like conductance, which describe a given sample measu
in a given manner2 ~i.e., more generally, conductance coef
cientsI p5(qgpqVq in Ohm’s law for a multiprobe geometry
where several leads are attached to the sample to feed
currentI p or measure the voltagesVq) or, alternatively, the
nonlocal conductivity tensor introduced below. Switching
conductance leads to the following Kubo expression:

G5
4e2

h

1

L2
Tr@\ v̂xIm Ĝ\ v̂xIm Ĝ#, ~3a!

Im Ĝ5
1

2i
~Ĝr2Ĝa!52pd~E2Ĥ !. ~3b!

Here the definition of the retarded~r! or advanced~a! single-
particle Green operatorĜr ,a5@E2Ĥ6 i01#21 requires a
numerical trick to handle the small imaginary parti01,
which then spoils the prospect of obtaining the exact ze
temperature conductance.18,19 Once the semi-infinite clean
leads are attached to the finite sample~at planes 1 andN
along x axis for a two-probe geometry, Fig. 3!, the ‘‘self-
energy’’ Ŝ r ,a5ŜL

r ,a1ŜR
r ,a , arising from the ‘‘interaction’’

with the leads (L left, R right!, provides a well-defined
imaginary part in the definition of the Green operators20

Ĝr ,a5@E2Ĥ2Ŝ r ,a#21. ~4!

a

l

r-
e

FIG. 2. Different terms in the Kubo formulaG5Gra1Grr for
the two-probe quantum conductance of the same finite-size con
tors as in Fig. 1, but with respective traces in these express
performed over the site states inside the whole disordered sam
3-2
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DECONSTRUCTING KUBO FORMULA USAGE: EXACT . . . PHYSICAL REVIEW B 64 165303
The Green functionĜr ,a(n,m)5^nuĜr ,aum& describes the
propagation of electrons between two sites ins
an open conductor (Lf5L in the two-probe geometry!.
The self-energy terms are given20,21 by ŜL,R

r (n,m)

5(tC
2/2tL

2)ĝL,R
r (nS ,mS) with ĝL,R

r (nS ,mS) being the surface
Green function of the bare semi-infinite lead between
sitesnS andmS located on the end atomic layer of the le
~and adjacent to the corresponding sitesn andm inside the
conductor!. It has an imaginary part only foruEu<6tL ,
which means thatG(EF) goes to zero at the band edge of
clean leaduEFu56tL because there are no states in the le
beyond this energy which can carry the current. Here
leads will be described by the TBH with«m50 and
tmn5tL ; the hopping between the sites in the lead and
sample istmn5tC, as illustrated in Fig. 3.

I use the term ‘‘mesoscopic Kubo formula’’ for Eq.~3!
with the Green operators~4! plugged in. This formula is
exactly equivalent2 to a two-probe Landauer formula10 for
the conductance measured between two points deep in
macroscopic reservoirs to which the leads are attache
infinity.22 Thus, it is conceptually different from the ‘‘plain’
Kubo formula ~2! which follows from combining the con
ductance of smaller partsG5sLd21/L, thereby implying a
local description of transport which becomes applicable o
at sufficiently high temperatures. Such mesoscopic formu
provide a means to compute the quantum conductance
sample-specific quantity which takes into account the fin
system size, measuring geometry, arrangement of impuri
and nonlocal features of quantum transport and can desc
ballistic transport~where the local relationj5sE does not
hold!. Attempts to use the original Kubo formulas on fini
samples, throughout the premesoscopic history18,19 of the
Anderson localization theory, were thwarted with ambig
ities, which can be traced back to the general questions
the origin of dissipation.23 This stems from the fact that
stationary regime cannot be reached unless the system
finite or coupled to a thermostat. From the practical point
view, leads make the system infinite by opening the sam
and therefore eliminating the technical obstacles in hand
of the discrete spectrum of finite samples.24 Furthermore, the

FIG. 3. A two-dimensional~2D! version of the actual 3D mode
of the two-probe measuring geometry employed here. Each
hosts a singles orbital which hops to six~or fewer for surface
atoms! nearest neighbors. The hopping matrix element ist ~within
the sample!, tL ~within the leads!, andtC ~coupling of the sample to
the leads!. The leads are semi-infinite and are considered to
connected at6` to ‘‘reservoirs’’ biased by the potential differenc
eV5mL2mR .
16530
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use of semi-infinite leads allows us to bypass explicit mo
eling of reservoirs in the computation of conductance sin
‘‘hot’’ electrons which escape into the leads~due to the
broadening of energy levels! do not come back in a phase
coherent fashion. The concept of reservoirs was always
essential part of Landauer’s subtle arguments.23 They pro-
vide dissipation and therefore the steady state.27 However,
the computation of conductance, as a measure the diss
tion, involves only a conservative Hamiltonian of noninte
acting electrons scattered on impurities~i.e., when comput-
ing the linear conductance of a mesoscopic system
usually does not deal explicitly with electron-electron a
electron-phonon interactions11!.

The conductance computed from the mesoscopic quan
expression is exact, but characterizes the wholesample
1leadssystem in the spirit of quantum measurement the
since leads can also be considered as the ‘‘macroscopic m
suring apparatus.’’25,26 However, for a disordered enoug
sample~and not too narrow leads or too smalltC! the con-
ductance is determined mostly by the disordered reg
itself.28,21 This exactness makes it possible to compute
transport properties in both the semiclassical regime~where
Boltzmann theory and perturbative quantum corrections
applicable sincekFl @1) and the nonperturbative transpo
regime29 where semiclassical concepts, likel, lose their
meaning. Although the distinction betweenkFl;1 ~where
semiclassical theory, including the perturbative quantum c
rections, breaks down! and the criterionG;2e2/h for the
localization-delocalization~LD! critical point has been
known since the scaling theory of localization,7 it is not un-
common practice to find these two different boundaries
transport regimes confused. As the disorder is increase
sample goes from the semiclassical transport regime, thro
a vast region betweenkFl;1 and the LD transition~e.g., 6
&W&16.5 atEF50 in the Anderson model29!, and finally
enters into a localized phase. Since the nonperturbative tr
port regime lacks the small parameter required by pres
analytical schemes, the numerical techniques employed
are the only way to gain insight into the quantum effe
beyond the lowest-order corrections, like WL, or a resumm
tion of all such perturbative quantum correction within t
nonlinears-model formalism.30,31

Another expression is often encountered in t
literature3,16,5,20,32for both the conductance of finite-size sy
tems and conductivity of infinite systems. It gives the co
ductance through an apparently different trace,G

}Tr@\ v̂xĜ
r\ v̂xĜ

a#. While some textbooks quote this onl
as a convenient approximation to the disorder-averaged
formula,3,16,5 sometimes the claim goes further to say th
such a trace is equivalent to the Landauer formula, and m
over it can be evaluated at any cross section inside the
ordered region, thus relaxing the requirement of perfect le
‘‘as the weakest point of the Landauer formalism.’’32

Namely, ĜrĜr or ĜaĜa terms can be reduced to a sing
Green function via the Ward identity in weakly disorder
conductors,33,3 and are therefore related to the density
states. They are ‘‘abandoned’’ in the limitkFl @1 since they
do not generate interesting contributions to WL or me

ite

e
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BRANISLAV K. NIKOLIĆ PHYSICAL REVIEW B 64 165303
scopic fluctuations@for example, such terms generate cont
bution to universal conductance fluctuations which are sm
as ;1/(kFl )2]. 16 In fact, both the diffusion modes of th
Diffuson-Cooperon diagrammatic perturbation theory a
different versions of the nonlinears model ~NLSM! are
derived25,31 by considering only the term containing th
product ĜrĜa. The NLSM is a quantum field theory25 of
weakly disordered mesoscopic conductors where diffus
modes of the diagrammatic perturbation theory play the r
of soft modes responsible for long-range spatial correlati
of local density of states, mesoscopic fluctuations of glo
quantities, and nonlocal corrections to conductivity.34 It
makes it possible to handle the breakdown of perturba
theory due to the proliferation of such modes34 by summa-
rizing all WL-type corrections to conductivity.30 This then
justifies the phenomenological one-parameter scaling the7

~if not rigorously, then at least qualitatively! and explains the
LD transition in 21e dimensions where Anderson localiz
tion occurs at weak disorderkFl @1.

To remove possible confusion,25 it should be emphasize
that the conductance coefficientsgpq , obtained by integrat-
ing the Kubo nonlocal conductivity tensors(r ,r 8) over the
cross sections in the leadsp, q,

gpq52E
Sp

E
Sq

dSp•s~r ,r 8!•dSq , ~5!

also contain ImĜ for p5q, while for pÞq only the terms
involving ĜrĜa are nonzero.2 The cross sectionsSp andSq
are to be chosen far enough from the sample, where all
nescent modes have died out. This not only provides a
orous foundation for the Landauer formalism, but also cla
fies some subtle points in the Kubo formalism~like disorder
averaging35 and independence of linear transport propert
from the nonequilibrium charge redistribution36!. By writing
the full Kubo formula~3! as a sumG5Gra1Grr , I intro-
duce the ‘‘Kubo conductance terms’’

Gra5
2e2

h

1

L2
Tr@\ v̂xĜ

r\ v̂xĜ
a#, ~6!

Grr 52
2e2

h

1

L2
Tr@\ v̂xĜ

r\ v̂xĜ
r #. ~7!

Obviously, if in some transport regime conductance can
obtained from the trace inGra , the other termGrr has to
vanish, at least approximately.

Before embarking on the direct evaluation of these
pressions for a conductor described by TBH~1!, the crucial
point is to understand the way~i.e., space of state
um&) in which the traces should be performed, Tr(•••)
5(m^mu(•••)um&. Naively, in the site representation
would appear that trace in formula~3! should include site
states inside the whole sample. However, once the cur
conservation¹• j (r )50 is invoked, this becomes extran
ous. All Kubo conductivity or conductance formulas ste
16530
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from the more fundamental quantity in KLRT, the nonloc
conductivity tensor relating local current density to the loc
electric field,

j ~r !5E dr 8 s~r ,r 8!•E~r 8!. ~8!

This tensor is obtained as a response to an external field
since corrections to the current due to the field of induc
charges go beyond the linear transport regime37,38 ~i.e., one
does not have to engage in the much more cumbersome
of finding the response to a full electric field inside th
conductor4!. In application of KLRT to mesoscopic system
s(r ,r 8) is a sample-specific quantity, i.e., defined for ea
impurity configuration and arrangement of the leads,2 and is
in fact nonlocal even after disorder averaging.36 Because it is
not directly measurable, some volume averaging is neede
get the quantities that can be related to experiments:

G5
1

V2EV
dr dr 8E~r !•s~r ,r 8!•E~r 8!. ~9!

HereV is the bias voltage (V→0 in the linear transport re
gime!, e.g., in the case of two-probe geometryeV5mL
2mR , where leads are in equilibrium with two macroscop
reservoirs characterized by constant chemical potentialsmL
andmR ~Fig. 3!. Although this expression contains the loc
electric fieldE(r )5¹m(r )/e inside the conductor, becaus
of current conservation entailing¹•s(r ,r 8)5s(r ,r 8)•¹8
50 ~which is a special case, in the absence of magnetic fi
of a more general theorem2!, the conductance will not de
pend on these field factors.35,36 In the case of TBH~1! with
nearest-neighbor hopping the expectation value of the ve
ity operator in the site representation̂ muv̂xun&
5( i /\)tmn(mx2nx) is nonzero only between the states r
siding on adjacent planes@technical details of the route from
Eq. ~9! to the trace involving the velocity operator are m
ticulously covered in Ref. 2#. Thus, the minimal space choic
here is defined by takingE(r ) to be nonzero on two adjacen
planes, while the standard textbook assumption of a ho
geneous field3,15 uEu5V/L throughout the sample leads t
Eqs.~2! and~3!. Blind tracing over the whole sample woul
give simply the conductance multiplied by the square of
number of pairs of adjacent planes, meaning that such a t
should be divided by (N21)2a2 to getG @when the trace is
performed only over the arbitrary two adjacent planes,L2 in
Eq. ~3! is replaced bya2#. The physical content of this state
ment is simple: currentI 5GV is the same on each cros
section. Therefore, the conductance depends only on the
voltage drop over the sample, and not on the local curr
density and electric field distributions.

At this point, it is worth mentioning that another expre
sion is frequently employed in the real-space computatio
practice. It stems from the linear response limit of a formu
derived by the Keldysh technique~for noninteracting39 or
interacting systems40!:
3-4
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G5
4e2

p\
Tr~ Im ŜLĜ1N

r Im ŜRĜN1
a !. ~10!

Here Ĝ1N
r , ĜN1

a are the submatrices of the full Green fun

tion Ĝr ,a(m,n) whose elements connect layer 1 to layerN of
the sample. Therefore, only anN23N2 block of the whole
N33N3 matrix Ĝr(n,m) is needed to compute the condu
tance. Although such ‘‘partial’’ knowledge of the whol
Green function and the trace over matrices of sizeN2 in Eq.
~10! are different from the corresponding counterparts
quired in application of the mesoscopic Kubo formu
~where the minimal trace goes over 2N232N2 matrices!, the
final result for the conductance is the same. Positive defin
ness of the operators22 Im ŜL,R makes it possible to find
their square root and recast the expression under the tra
Eq. ~10! as a Hermitian operator. The expression~10! then
looks like the two-probe Landauer formula involving a tran
mission matrixt,

G5
e2

p\
Tr~ tt†!5

e2

p\ (
n51

N2

Tn , ~11!

t52A2Im ŜL Ĝ1N
r A2Im ŜR, ~12!

or transmission eigenvaluesTn when the trace is evaluated i
a basis which diagonalizestt†. Moreover, it is more efficient
from a practical point of view since the Green function tec
niques used to evaluate Eq.~10! do not require one to know
the exact asymptotic eigenstates in the leads~as is the case
with the ‘‘original’’ Landauer formulation relying on knowl-
edge of the scattering basis of the wave functions defi
within the asymptotic regions of the leads!. This becomes
sine qua nonwhen computing the conductance of syste
with complicated ‘‘leads,’’ e.g., like in the case of atomi
size point contacts.41

Trace expressions like Eqs.~6! and ~7! do not conserve
the current. Therefore, the suggested strategy is to eva
Gra andGrr by tracing over the states located on two plan
inside the sample~or inside the leads!, as well as over the
whole sample~and see how closeGra can get toG). Differ-
ent types of conductors are chosen for this evaluat
weakly disordered withW52 ~e.g., l'9a at EF50) and
strongly disordered conductors withW57 ~for which unwar-
ranted use of the Drude-Boltzmann formula would give29 l
,a). The exact computation of these traces is shown in
upper panels of Figs. 1 and 2 for a single-impurity config
ration of W52 @hereGra is also computed by tracing ove
two planes deep inside the leads, which corresponds to
gratings(r ,r 8) over such cross section, as discussed abo#.
The lower panels of Figs. 1 and 2 plot disorder-averag
quantities over an ensemble of impurity configurations
disorder strengthW57. In both ways of tracing, the sum o
two termsGra andGrr gives the full expression for conduc
tanceG(EF), which have to cancel each other foruEFu.6t
in order to ensure vanishing ofG(EF) whentL5t is chosen.
16530
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The result forW57 disorder belongs to the nonperturb
tive transport regime. It is interesting, therefore, to follow t
behavior ofGra and Grr terms further throughout this re
gime, eventually reachingWc.16.5 where the whole band
becomes localized.42 The generic LD transition point in 3D
is beyond NLSM treatment inasmuch as it corresponds t
strong-coupling limit in field theoretical language. Furthe
more, recent description43 of Anderson localization in terms
of an order parameter, obtained from a theory based o
local approximation, suggests that probing the instability
the delocalized phase through WL-type corrections might
a daunting road to reach the transition in 3D. Figure 4 sho
that aroundWc the conductanceG;2e2/h is mostly defined
by the Grr term—a situation completely opposite to th
weak-disorder finding (W52 in Figs. 1 and 2!. Therefore, at
some intermediate disorder 7,W,10, within the nonpertur-
bative transport regime, a transition occurs fromGra.Grr to
Grr .Gra , ending up eventually with a caseGra,0,Grr
around the LD critical point.

An inquisitive reader might have come up by now wi
the question as to what happens in the clean case

FIG. 4. Different terms in the Kubo formulaG5Gra1Grr for
the two-probe quantum conductance of the finite-size condu
modeled on a 103 lattice with diagonal disorderW515 ~the whole
band becomes localized atWc.16.5). Respective traces in thes
expressions are performed over the site states inside the whole
ordered sample and disorder averaged over 50 realizations.

FIG. 5. Different terms in the Kubo formulaG5Gra1Grr for
the two-probe quantum conductance of a clean finite-size condu
modeled on a 33 lattice («m50, t5tL5tC51). The conductance
as a function of the Fermi energy changes in steps correspondin
the number of open conducting channels~defined by nine quantized
transverse propagating modes!.
3-5
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BRANISLAV K. NIKOLIĆ PHYSICAL REVIEW B 64 165303
mesoscopic ballistic sample attached to two leads has
zero point contact conductance38 of a purely geometrical ori-
gin since leads are widening into macroscopic reservoir
infinity, where reflection occurs when the large number
conducting channels in the macroscopic reservoir matc
the small number of channels in the lead.44 Such point con-
tact conductance is quantized16 as a function of sample
width20 or Fermi energy,21 which becomes conspicuous whe
the number of quantized transverse propagating modes~i.e.,
the sample cross section! is small enough. A clean («m50)
33333 toy sample illustrates conductance quantization
Fig. 5, as obtained from the two-probe Kubo formula forG.
In this case, both termsGra and Grr are contributing in a
nontrivial fashion to a stepwise conductance.

What can be learned from these numbers is thatGra , Eq.
~6!, can serve as a decentapproximationto the exact Kubo
formula for the quantum conductanceG only in very weakly
disordered conductors, wherel @a. However, because of no
conserving the current, the trace inGra has to be performed
over the whole disordered region~which is an enormous
,

-
99

,

16530
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computational effort and is therefore useless in real-sp
computational practice!. The essential outcome of this exe
cise is the explicit quantification of the difference betweenG
andGra . This and current conservation are important poi
to bear in mind when using the simplified expressionGra in
analytical derivations and arguments of the quantum tra
port theory.3,16,20 Finally, the strong-disorder~nonperturba-
tive! behavior of two different Green function terms, com
prising the Kubo formula for quantum conductance, mig
provide a clue for the inadequacy of attempts to analyz
genuine Anderson transition in 3D by probing the instabil
of the metallic phase to weak-localization~perturbative!
corrections.
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21B.K. Nikolić and P.B. Allen, J. Phys.: Condens. Matter12, 9629

~2000!.
22Note that derivation of the Landauer or Kubo formulas proce

from conceptually different grounds: Landauer conductan
measures a response to the difference in chemical potentials
tween two different reservoirs, while Kubo conductance giv
linear dc current as a response to perturbing the Hamiltonian
a constant electric field. For a physical situation when this d
tinction becomes important see Ref. 11.

23R. Landauer, Z. Phys. B: Condens. Matter68, 217 ~1987!.
24Here we are interested in mesoscopic~i.e., finite-size phase-

coherent! samples which are open to an infinitely conducti
surrounding environment. For a linear response approach to
sipation in closed mesoscopic systems see Y. Noat, B. Reule
Bouchhiat, and D. Mailly, Superlattices Microstruct.23, 621
~1998!; A. Barnet, D. Cohen, and E.J. Heller, J. Phys. A34, 413
~2001!; and Ref. 11.

25K.B. Efetov, Supersymmetry in Disorder and Chaos~Cambridge
University Press, Cambridge, England, 1997!.

26H.A. Weidenmu¨ller, Physica A167, 28 ~1990!.
27For an alternative viewpoint on the role of leads in the Ku

formalism see X.-G. Zhang and W.H. Butler, Phys. Rev. B55,
10 308~1997!.

28D. Braun, E. Hofstetter, A. MacKinnon, and G. Montambau
Phys. Rev. B55, 7557~1997!.
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