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It is shown that a minimum realization of the dynamical mean-field théDMFT) can be achieved by
mapping a correlated lattice model onto an impurity model in which the impurity is coupled to an uncorrelated
bath that consists of a single site only. The two-site impurity model can be solved exactly. The mapping is
approximate. The self-consistency conditions are constructed in a way that the resulting “two-site DMFT”
reduces to the previously discussed linearized DMFT for the Mott transition. It is demonstrated that a reason-
able description of the mean-field physics is possible with a minimum computational effort. This qualifies the
simple two-site DMFT for a systematic study of more complex lattice models which cannot be treated by the
full DMFT in a feasible way. To show the strengths and limitations of the new approach, the single-band
Hubbard model is investigated in detail. The predictions of the two-site DMFT are compared with results of the
full DMFT. Internal consistency checks are performed which concern the Luttinger sum rule, other Fermi-
liquid relations and thermodynamic consistency.
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[. INTRODUCTION tive impurity problem, a detailed and systematic calculation
of the phase diagrams of multiband models covering the en-
The dynamical mean-field theo®pMFT) has become a tire parameter space is far beyond the ability of present
well-established and valuable method to investigate thémplementations of the DMFT.
physics of strongly correlated electrons on a latlickSimi- If one is interested in a comprehensive mean-field de-
lar to the Weiss mean-field theory for classical models ofScription of complex lattice models but wishes to keep the
localized spins, the DMFT is exact in the nontrivial limit of essence of the DMFT, some compromise is inevitable. In
infinite spatial dimensions® For finite dimensions it pro- principle, there are only two possibilities conceivable. First,
vides a thermodynamically consistent and nonperturbativéne may refrain from a numerically exact solution of the
mean-field approach in which the spatial correlations are némpurity problem and employ approximate treatments in-
glected but the temporal degrees of freedom are treated costead. These may be based on different limits where a small
rectly. The application of the DMFT to the single-band Hub-parameter is available. This idea has been pursued with
bard model~® has uncovered a complex phenomenologyweak- and strong-coupling perturbational approaches such as
which may be characterized by strongly renormalized Fermithe iterative perturbation theory®'® or the noncrossing
liquid behavior competing with the Mott insulating state andapproximatiort.>?**?In fact, multiband Hubbard-type mod-
with different kinds of spontaneous order such as collectiveels can be treated in this way with an acceptable computing
magnetisn®:*10-12 time (see Refs. 22,23, for exampleShis route, however,
The DMFT actually consists in a prescription that mapsshall not be followed up here.
the original lattice model onto an effective impurity model ~ The present paper takes into consideration the only alter-
which describes a single correlated impurity orbital embednative left, namely to solve the impurity model exactly but to
ded in an uncorrelated bath of conduction-band states. Thigduce the number of bath degrees of freedom to keep the
mapping is a self-consistent one, namely, the bath parametegglculations manageable. There are no problems to treat, e.g.,
depend on the on-site lattice Green function. The impuritythe single-impurity Anderson modéBIAM) with a small
model is the crucial point in the DMFT since it poses anhumber of sitesis numerically exact. On the other hand, for
highly nontrivial many-body problem that must be solvedany finitens<c the self-consistent mapping of the Hubbard
repeatedly. The different methods employed for an essertmodel onto the SIAM is approximate. The exact solution of
tially exact solution of the impurity model, the quantum the effective impurity model is thus achieved at the expense
Monte Carlo®!® the exact diagonalizatiol;® and the nu-  of an approximate self-consistency.
merical renormalization-group methd&s’ work well for As a function ofng the Hilbert-space dimensidd of the
the single-band Hubbard model but are computationally eximpurity model increases exponentially. It is given By
pensive. In practice this severely limits the applicability of =22" whereM is the number oftwofold spin-degenerate
the DMFT, particularly when one is concerned with multi- one-particle orbitals. The self-consistent mapping within the
band models. More complex lattice models including two,DMFT at least requireM =r +r(ns—1)=rng orbitals for
three or more degenerate or nondegenatddilee bands pos- the case of one impurity sitéis,—1 bath sites, and corre-
sibly hybridized with uncorrelated-p-like bands are inter- lated bandgsee the Appendjx Consider, for example, the
esting for obvious reasons. For example, multiband modeld-band of a @ transition metal with a twofold degenerate
are required for a minimum theory of the physics of stronglye,-derived band and a threefold degenetagederived band.
correlated electrons in the transition-metal oxides. Becauskn this caseM =5ng orbitals have to be considered. Accept-
of the large parameter space and the complexity of the effedng M =10 as a typical value for the maximum number of

0163-1829/2001/64.6)/16511412)/$20.00 64 165114-1 ©2001 The American Physical Society



MICHAEL POTTHOFF PHYSICAL REVIEW B 64 165114

orbitals that can be taken into account for a repeated solutiooussed. A discussion of the two-site DMFT in relation to
of the impurity model within a reasonable computing time,other methods and the conclusions are given in Sec. IV. The
limits ng to the smallest number that is reasonalig=2,  generalization of the theory to multiband models is presented
i.e., an impurity model with one impurity site and one bathin the Appendix.
site.

The purpose of the present paper is to test whether or not Il. TWO-SITE DYNAMICAL MEAN-FIELD THEORY
a two-site DMFT could be a meaningful approach and to - .
show up its strengths and limitations. There are mainly twoh TIO t?‘e def.'?h't? ]Ehgt5|ngle-bzatrthHil>)2qrd mod%I on dt.he Be-
tasks to be performed: First, it is necessary to specify thé € lattice with infinite: connectivity) IS considerea:
approximate self-consistent mapping. This means to find a U
sensible prescription how to fix the bath parameters of the H= >, tijCiJrngtr'i' — > NNy 1)
impurity model—guided by the original self-consistency (iPe 2 9s

condition of the DMFT. S_econd, the resulting.tvvo—site The hopping is assumed to be non-zero between nearest
DMFT has to be tested against the full DMFT. This can beneighborsi andj only. t=—t;;>0 is the nearest-neighbor

done _best for the single-band Hubbard mogielinfinite di- hopping integral. The on-site hoppirig=t; is set toty=0

iiable. Th Cf hort di _ F th ; 8o fix the energy zero. Furthermond,is the on-site Coulomb
available. Thus, except for a short discussion of the exten t “Creates an electron at the sitavith spin o

sion of the theory to multiband systems, the present paper I@teraction,cw
’ S T ) . . )
exclusively concerned with the single-band model. Since one, ioCio- With the usual scaling of the hop

=1,], andn;,=c
—+% * — H H¥H H
cannot expect a strongly simplified two-site approach to repmg't_t ’5@ angt :COﬂSt.‘ the madel is nontrivial in the
Settingt* =1 fixes the energy scale for the

produce the known results quantitatively exact, the preserdt™t d—%. . :
study attaches importance to main trends, qualitative correcRresent paper. I_:or a paramagqet|c, spatially hTomog.eneous
ness and internal consistency. Recall that even the fufPhase the on-site Green functidB(w)=((Ci;;Ci,))w is
DMFT cannot be expected to give more than a qualitativediven by
(mean-field description of the physics of transition-metal .
oxides. G(“’):f dx
The two-site SIAM has been considered within the con- —o
text of the DMFT beforehand. Lanffediscussed the two-site
SIAM at half-filling to investigate renormalized versus un-
renormalized perturbational approaches to the DMFT of th
Mott transition. However, a self-consistent mapping of theP°
Hubbard model onto the two-site SIAM was not considered.
Bulla and Potthof® developed a linearized DMFT of the po(X) =
Mott transition. The Hubbard model at half-filling and at the 0 2mt*2
critical interaction strengthU=U_ was self-consistently
mapped onto the two-site SIAM resulting in a linear alge-
braic mean-field equation. The solution of the two-site SIAM
is exact, the mapping is approximate. It was found that, com- A. Dynamical mean-field theory

pared with the full DMFT, the linearized DMFT gives fairly  the DMFT essentially rests on the observation that the

good analytical estimates fdd on different lattices. The |ocq| self-energy is given by ékeleton-diagrainfunctional

theory,_ however, is_ restricted to the critical point. Fu_rt_herEZS[G] of the on-site Green function that is universal for a
extensions of the linearized DMFT for the Mott transition large class of models. Consider, in particular, the single-

have been developed for a periodic Anderson model by He"i’mpurity Anderson modelSIAM):
and Bull#® and for a two-band Hubbard model by Ono
et al?’ Extensions of the linearized DMFT to the Hubbard N
model for thin film® and semi-infinite latticéd have con- Himp= > eqdid,+Udldd]d + X eal,a,
vincingly shown that the main trends in the geometry depen- o o.k=2
dence ofU, can be predicted safely. Here, it will be shown N
that a two-site DMFT can be C(_)nstructed which is not bm_md + > Vk(d:rfaka"" H.c), (4)
to the (Mott) critical point but is able to access the entire o k=2

t d that red to the li ized DMFT at . . . . . . .
Eg{f frrn?angrasnpdaﬁe:ﬁ at reduces fo the finearize evhlch describes an impurity orbnalllO) with one-particle

c

The paper is organized as follows. The next section give§"¢"9Y €d 'and on-site interaction) that .is coupled via. the
a brief review of the DMFT and introduces the self- )T/brldlzat.lon Vy to a bath ofns—.l nomnteractmg orb|t§1Is
consistent two-site approach. Section IIl presents a variety diko/0) With ENeIgIes e - The impurity Green function
results for the single-band Hubbard model starting with theGimp(®@) =((d:d;)),, is given by
Mott transition. Hereafter, the Fermi-liquid phase off half
filling is addressed, and the Luttinger sum rule, other Fermi- G @)= 1
liquid relations and thermodynamical consistency are dis- imp o+ u— e Alw)—Zipp(w)’

po(X)
o+u—x—2(w)’

2

where o is the chemical potential, anl(w) is the self-
gnergy which is localK independentin the limit qr>00.5%0
(x) denotes the free density of states

Va2 —x2 (3

for [x|<2t*. The bandwidth isV=4t* =4,

®)
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where A(w) =2E12Vﬁ/(w+,u— €) is the hybridization rather ;traightforward tp consider in essentially the same way
function, ands () the impurity self-energy. As usual, also different magnetic phases and/or more complicated
eq=to=0. The important point is that the functionglis the =~ MOdels such as multiband Hubbard-type models, for ex-
same as for the Hubbard modBl,,= S Gimp], because the ample.
same type of skeleton diagrams occur in the expansion of
Simp- Choosing the bath parametessandV, such that C. Self-consistency

For the two-site DMFT the Eq€$2)—(5) and Eq.(8) are

Aw)=w+pu— €= Simp0)— = (6) retained. The original self-consistency conditiof), how-

G(w)’ ever, must be reformulated. This means to find two physi-
i.e., such that the DMFT self-consistency condition cally motivated(self-consistencyconditions to fix the bath
parameters, andV.
| . . . . . .
_ _ Consider first the limit of high frequencies—o. The
Gimp(@)=G(), ™ exact self-energy of the impurity proble) can be ex-
is fulfilled, then at once panded in powers of &
2imp(a)):zf(w)- (8) Uznd(l_nd) 5
2(w)=Und+T+O(1/w ), (11

Therewith, the original lattice problem is mapped onto the
SIAM and can be solved by the following iterative proce- wheren,=n,, is the average occupancy of the impurity or-
dure: Starting with a guess for the local self-energy, the ongjtg)
site lattice Green function is calculated from Eg). Via Eq.

(6) or Eq. (7) the Green function and the self-energy define 1 (o
the hybridization functiom(w) and thus the parameters of ng=(dld,) =~ ;J IMGimp(@+i0")dw.  (12)
the effective SIAM. Finally, the impurity problem is solved o
to get a new estimate for the self-energy. The cycles have tmserting the expansiofill) into Eq. (2), one finds the fol-
be repeated until self-consistency is achieved. lowing high-frequency expansion of the on-site lattice Green
function:
B. Two-site SIAM

The self-consistency conditioff) can be fulfilled rigor- G(w)= £+ w’
ously only forng—, i.e., for a bath with an infinite number w w?
of degrees of freedom. This leads to the usual SIAM which
represents an involved many-body problem. To simplify the M)+ (tg— )+ 2(tg— w)Ung+U?ng
problem and to construct a two-site DMFT, the case 2 is + w3
considered here, i.e., an effective SIAM that consists of one
impurity site and one bath site only. This represents the most +O(1w*). (13

simple bath conceivable. () 2 . .
Forn,=2 the site index is fixed to the valie=2 in Eq.  1ere Ma"=2 .t =_deX2P0(X) is the variance of the
(4). There are only two independent bath parameters left, thBoninteracting density of state8). Equation(13) can be
one-particle energy of the bath sitg=€,_, and the hybrid- compared with the exact high-frequency expansion which is
ization strengthV=V,_,. The hybridization function is a available by calculating the first nontrivial moments of the

one-pole function - interacting density of statés.One finds that Eq(13) in fact

represents the exact expansion provided that=2ny can
Alw)=V?(o+pn—¢), (9)  be identified with the fillingn=(n;;)+(n;;) of the lattice

. . L model. It is therefore required that
and the free U =0) impurity Green function is a two-pole q

function !
nimp: n ’ (14)

— € (10) where the band filling is calculated via
wtpu—e—r owtpu—etr '

2 (0

with e=(eg— €.)/2 andr =\ €2+ V2. The interacting impu- n=- ;jﬁxlm G(w+i0")dw. (19

rity Green functionG;,,(w) has four poles and the self- _ . _ . -

energys () two poles in general. Closed analytical ex- Equation (14) is the first self-consistency condition. The

pressions can be derived for the symmetric model at halfhigh-frequency behavior d&(w) is important for the occur-

filling (see Ref. 24, for exampleFor the nonsymmetric case rence and for the correct weights and centers of gravity of

the model can be solved straightforwardly by numericalthe two high-frequency Hubbard excitations in the spectrum.

means without any problems. With Egs.(12), (14), and(15), an integral form of the origi-
For clarity, the theory will be developed for the paramag-nal self-consistency equatiof7) is fulfilled: [°.doImG

netic phase of single-band Hubbard model. However, it is= [°  dw Im Gimp-

1 r+e r—
Gl @) =5, +
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Consider now the low-frequency limib—0. The exact D. Calculations
self-energy of the impurity problertd) can be expanded in With the two conditions(14) and (22) the two bath pa-
powers ofw, rameters are fixed and can be calculated self-consistently:

_ 2 Consider the model parametegs t, U, u, andpg(x) to be
2(w)=atbotO(w?, (16 given. Starting with a guess fey, andV, the two-site impu-
with constantsa andb. The definitionz=1/(1—b) will be rity model (4) is well defined and can be solved to find the

convenient, i.e., average occupancy of the impurity level,, and the self-
energy 3 (w). The latter directly yields the quasiparticle
7= 1 17) weightz=[1—d2 (0)/dw] ! and from the conditiori22) a
1-d3(0)/dw’ new value for the hybridization strength Inserting> (w)

into Eq. (2), gives the on-site lattice Green functi@( w)
and, via Eq(15), the filling n which has to be compared with
Nimp- Finally, a new value fore; is chosen such that the
differencen—n;y,, is reduced in the next cycle—according to
condition(14). The cycles have to be iterated urgjl andV
o po(X) are self-consisterand nj,,=n).
G(°°h)(w)=j dx In most cases, one finds a self-consistent set of bath pa-
—= @t p—x-a—be rameterse, andV such that the ground state of the effective
- po(X) SIAM lies in the six-dimensional subspace characterized by
= zf dx———"—. (18  the total spin-dependent particle numblrs=N, =1. To get
—» 0~ Z(X—pta) the self-energy, it is convenient to calcul&@ig,(w) from its

On the other hand, the coherent part of the impurity Greef-€hmann representation and to use the Dyson equation in
function is reverse:

For a metalz has the meaning of the quasi-particle weight.
Neglecting terms of the ordes?, and inserting into Eq(2)
yields G(w) =GV w) for small @ whereG(°®"(w) is the
coherent part of the on-site Green function defined as

1 3(0)=GP(w) 1= Gipylw) 1, (23)

ot+tpu—€eg—A(w)—a—bow where the free impurity Green function is taken from Eg.
(10). The calculation of the eigenenergies and eigenstates is

=7 1 . (19 straightforward, but even fon,=2 this can only be done

w—Zeg—ptatA(o)] numerically in general. From the computational point of
view, the most time-consuming step, however, is the calcu-
lation of the filling from Egs.(2) and (15). Since the self-
energy of the two-site impurity problem is a real two-pole
function of the form

G w)=

Comparing thehigh-frequency expansions of the respective
coherent Green functions

Z(ty—p+a)
w2 aq Ay
S(w)=agt+ + , (24)

W—w; W)

Gl )= =+
w

ZIMP + (to— p+2)’] .
+ 3 +O(1/") the filling can be calculated more directly by a single one-

@ dimensional integration
(20)
0
and n=2f dwpglw+u—2(w)]. (25
z Z%(eq—p+a) z°V2+7%(eq—p+a)? _ : ; : ;
G_(r%oh)(w): iy 4 p(w)=p0[w+,u—2(w)] is the interacting densny of states.
mp ] w? w3 Since even a repeated evaluation of this equation during the
. search for self-consistency is not very crucial, extremely fast
+0(l/o"), (21)  numerical calculations can be performed.

The two-site DMFT is obviously exact in the limits
=0 andn=2. In the empty-band limit, for example, the
| impurity self-energy vanishes since,=n=0. Further-
V2=zM(2°). (22)  more, it is exact in the band limi=0. In the atomic limit
t=0 one findsvV=0 (and arbitrarye.) to be a self-consistent

Thereby, the original self-consistency equatidh is also  ggjution. Sincen=n;,,, the self-energy is given by
fulfilled at low frequencies up t@(w) in anintegral way,

namely by referring to the weight, the center of gravity and n U2(n/2)(1—n/2)

the variance of the coherent quasi-particle peak. Equations EHfl((‘)):UE‘i— ot fi—To—U(1=112)’ (26)
(14) and (22) reformulate the high- and the low-frequency 0

range of the original self-consistency conditiéf in an in-  which is the correct atomic-limit self-energy. Hence, the two-
tegral, qualitative form and are thus well motivated. site DMFT is also exact fot=0 and any filling. Since Eq.

leads to the second self-consistency condition
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(26) is the Hubbard-I self-enerdythe theory reduces to the

36
Hubbard-I approach whenever there is a self-consistent solu- V=MD —V2, (28)
tion with V=0. Actually, this is realized only at half-filling U
n=1 and for sufficiently strong) (see below. namely, a simpldinear homogeneous mean-field equation as

Although the original lattice problem is mapped onto anjg characteristic for the linearized DMFT of Ref. 25. A non-
effective impurity problem with aflnlte numbe'r' of degrees of yivial solution of this equation is only possible far=U,
freedom, the dependence of physical quantities, such as thghere
filling n, on the model parameters will generally be smooth.

Considgr, fo_r exa_mple, the functicn_(,u) for a givenU. The U= 6~/M2(6). (29)
interacting impurity spectral function generally consists of ) ) ©)
four isolated s peaks of different weight. An infinitesimal The sezcond moment opo(x) is easily calculatedM;
change ofu is unlikely to cause a finite jump of,, sincea  =2j+tj;=qt*=t*?=1, and therewith U =6t*=1.5\.
change ofnyy, is in first place caused by a redistribution of This result of the linearized DMFT is very close to the result
spectral weight among th& peaks rather than by crossing  of the projective self-consistent metha®SCM,** U,
a pole. Bearing in mind that the bath parameters itself de= 1.46W, and to the result of the numerical renormalization-
pend ong, the functionn(x) can be continuous even in a group (NRG) calculatiom;” U,=1.4MW. The linearized
large u interval. In fact, it is found that the chemical poten- DMFT is able to predict very reliably the main trends in the
tial never crosses a pole except for some extreme cases dependence ofl; on the lattice geometry even for systems
=0n=2V=0). with reduced translational symmef3?229:26
The two-site DMFT is not restricted to the critical point
U=U, but more general. Fop=U/2 andn=1 the self-

Ill. RESULTS energy of the two-site SIAM can be calculated analytic&fly:
The two-site DMFT provides a very simple, computation- U u? 1
ally fast and nonperturbative mean-field approach to corre- 2(w)= E+ 5 m+ T3V (30
lated lattice models. To show its strengths and limitations,
numerical results will be presented for the single-band HubWith Eq. (17) this gives the quasiparticle weight
bard model which has been studied extensively by the full
DMFT in the past=®1°-2This will set the basis for a dis- 1
cussion of the approach and a comparison with other meth- = 1+ U%36V2’ (32)

ods in Sec. IV. Multiband models are considered in the Ap-

pendix. The calculations have been performed for the Betheonsistent with Eq(27) for V—0. Together with the self-
lattice with infinite connectivityg. The free density of states consistency conditio22) one arrives at

is given by Eq.(3). Its width isW=4.

M

2 (32

A. Mott transition 1+U?%36v?

For the symmetric case of half filling=1 andu=U/2,  This algebraic but nonlinear mean-field equation has the self-
the approach can be evaluated analytically. Particle-hol€onsistent solution
symmetry requirese.=U/2=pu to ensure the first self-
consistency equation=n;y,. Thus, only the hybridization V= A /M(ZO)_ U_ (33)
strengthV has to be calculated self-consistently. 36

Let us first consider the critical point for the Mott transi-
tion, i.e., U—=U. where the linearized DMFT is recovered

(see Ref. 25 Coming from the weak-coupling, metallic side,
the critical interactionU,. is characterized by a vanishing

for U<6/MP=U, and V=0 else. This yields th&J de-
pendence of the quasiparticle weight at half filling:

2
quasiparticle weight—0 which, according to Eq22) im- 7=1— U_z (34)
pliesV—0. In this limit two of the four poles of the impurity U

C_ireen function are Iocat_ed near= = U/2 while two _pole_s The result is the same as in the Gutzwiller variational
lie close tow=0. Referring to the latter, the quasiparticle approach?

weight z can be calculated as the sum of their weights. A
straightforward calculation to leading order\Vhyields

U2
ZBR: 1_ 2 . (35)
2 Uc,BR

18v ) . . _ i
z2=2 > - (27) However, the Brinkman-Rice critical interaction

U UC,BRz—16f9deXp0(x)~6.79*>6t* is considerably

stronger.

On the other hand, another relation betweemdV is given The result of the two-site DMFT is compared with the

by the second self-consistency conditi@®). This implies Brinkman-Rice solution and with the results of numerical

165114-5
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FIG. 1. U dependence of the quasiparticle weight at half-filling
as obtained within the two-site DMFT, the Brinkman-Rice approach

(Ref. 33 (dashedg the exact-diagonalization meth@Refs. 14,34
(solid), and the numerical renormalization-group approdoéf. 17
(dots.

solutions of the full DMFT by using
diagonalization methdd3*(n,=8 siteg and the NRGRef.

17) in Fig. 1. There is a good agreement between the results .
of the ED and the NRG calculations except for interactions 8002 o4
close toU. where the energy scale of the quasiparticle reso-

the exact-
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filling n

nance cannot be resolved reliably within the ED method. The

two-site DMFT overestimates the quasi-particle weight in

FIG. 2. Filling dependence of the parameters of the effective

the wholeU range. However, the qualitative agreement withtwo-site impurity modele, and V and of the polesw;, w, and
the full DMFT is better than could be expected for the ratherrespective weightsa;, a, of the self-energy[see Eq.(24)].
simple approach and clearly improves on the result of théJ=W=4.

Gutzwiller method.
The two-site DMFT interpolates between the trividl

consequently has to increase untV=1=M% for n=0.

=0 limitandU=U,. ForU=U, it is a reasonable approxi- According to Eq.(22) this implies the correct value=1 for
mation to neglecti) the influence of the Hubbard bands at the quasiparticle weight in the empty-band limit. At half-

high frequencies on the low-frequenéguasiparticl¢ peak
and (ii) the internal structure of the quasiparticle pdake

filling the one-particle energy of the bath site is given by
e.=2=U/2. It decreases with decreasing fillingand di-

the discussion in Ref. 25These are just the basic assump-verges on approaching the empty-band ligit> — =, as is
tions of the linearized DMFT which the two-site approachnecessary to ensure a vanishing occupancy of the impurity
reduces to fot)=U,. For 0<U<U, these assumptions are orbital n;,,=n—0 for finite V. Note that both parameteeg

less justified. Yet, the quadratic behavioragf)) for U—0
as well as the eventually linear behavior fde—U, is con-

sistent with the findings of the ED and NRG calculations.

For U>U_ the self-consistent solution is given M=0

andV are smooth functions of the filling.

Off half-filling the interacting impurity Green function
continues to have four poles ftd>0 and two poles fotJ
=0. This implies that the self-energy is a two-pole function

which implies that the two-sitte DMFT reduces to the of the form (24) not only for half-filling but also fom#1.

Hubbard-I approach in this ca$Eg. (26)]. This is a crude

The polesw; and w, of the self-energy and their respective

description of the Mott insulator, even if compared with theweightsa, and «, are shown in the lower panels of Fig. 2.
Hubbard alloy-analogy solution and the iterative perturbatiomagain, it is noteworthy that these are smooth functions con-
theory. The main deficiency is that the widths of the Hubbarchecting the symmetric poinh=1 where w;+ w,=0 and

bands are largely underestimatege Ref. 35, for example

B. Fillings

n#1 For the symmetric cassn=1 the first self-
consistency equatiom=njy, is fulfilled trivially by particle-
hole symmetry since.=U/2= u, and only the hybridization

a1= a, with the empty-band limit where the poles become
irrelevant sincex,a,—0.

It is well knowrf that the density of states in the paramag-
netic phase of the infinite-dimensional Hubbard model essen-
tially consists of three peaks, the lower and the upper Hub-
bard band and a quasiparticle resonance in the vicinity of the
Fermi energy. An attractive feature of the two-site DMFT is

strengthV has to be determined self-consistently. For a thorthat this general form of the density of states can be repro-
ough test of the two-site DMFT it is thus necessary to conduced qualitatively. It is obvious that the two-pole structure

sider fillings off half filling, too.

Figure 2 shows the self-consistent bath parameigesd
V as a function of the filling fotJ=4. As U is smaller than
U, the hybridization strength is finite for=1. For decreas-

of the self-energy results in a three-peak structure of the
density of state$sDOS) p(w)=po[w+u—2(w)].

Because the two-pole self-energy is real, the Hubbard
bands and the quasiparticle resonance will be perfectly sepa-

ing filling the system becomes less and less correlated, an@dted from each other on the real frequency axis. Clearly, this
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quasi-particle weight z

filling n

FIG. 4. Quasiparticle weight as a function of the filling for dif-
ferent interaction strengths. Dashed line: calculationfer4 with
a slightly modified theory(see text

function of U for arbitrary n which saturates in the limit
U—o. These results are very similar to those of the
Gutzwiller approach®’*8and qualitatively reproduce the re-
sults of the full DMFT (Ref. 39 while quantitatively there
are deviations similar as for the case=1 which has been

discussed alreadfsee Fig. L

FIG. 3. Density of statep(w) for U=2W=8 and different
fillings.

The same holds for the filling dependence of the internal
energyE, the double occupanay=(n;n ) and the chemical

potentialu which is shown in Fig. 5. Fo=W=4 as well

is only a sketch of the true density of states—the full DMFT
generally predicts the resonance to merge with one of the
Hubbard peak#819The symmetric case at half-filling is
an exception. FolJ<U_ but close toU., a more or less
clear separation of energy scales is found to be realized
in fact**’

Results for the DOS are shown in Fig. 3 fde=2W=8 at
different fillings. SinceU>U. in this case, the Mott insula-
tor is approached fon— 1. As soon as there is a finite hole
concentration +n, a quasi-particle resonance appears the
width of which becomes broader with decreasing filling. The
resonance is pinned to the Fermi energy. For the symmetric
casen=1 andU<U, it has a maximum atb=0. For de-
creasingn<1 the maximum shifts to a frequeney,>0,
and the asymmetry with respect &=0 increases. Concur-
rently, the upper Hubbard band shifts to higher frequencies
while its weight decreases. All this is qualitatively correct
when comparing with the full DMF418 However, the
two-site DMFT largely underestimates the widths of the
Hubbard bands and does not predict the quasiparticle reso-
nance to merge with the lower Hubbard band not even for
smaller fillings. This is an obvious artifact.

The width of the resonance is determinedzby he filling
dependence of the quasiparticle weight is shown in Fig. 4 for
differentU. Forn—0 there is a linear trend of the quasipar-
ticle weight z—1on. For n—1 the weightz(n) behaves
linearly whenU>U, and quadratically whek<U.. Gen-

E

0
-0.1
-0.2
-0.3
-0.4
-0.5

0.1

0.05

-

DY A R R R
%.0 02 04 06 08 1.0

filling n

FIG. 5. Filling dependence of the total enerfy the double

erally, z is a monotonously decreasing function of the filling occupancyd=(n;n), and the chemical potentigt. Results for

for n<1 and arbitraryU and a monotonously decreasing U=W (solid lineg andU=2W (dashed lines
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as forU=2W=8 the chemical potential monotonously in- L e A B e
creases with increasing filling as it is required by thermody- - E
namic stability. From the equation of motion for the on-site 16 Hubbard-I i
lattice Green function one can derive simple expressions for L /2
the kinetic energy per site
o 12 -
~
0 o B
Ean=2 | dofwtp-S()lpe), (@9 £ el ]
and for the potential energy per site 0.4} ~ two-site DMFT _
0 N R R R
Epo= f xdwz(w)p(w)- (37) 089 "0z 04 08 08 10
filling n

The internal energy per site is given By=E,j,+Ey, and
the average number of doubly occupied sitesdsy(n;n )
=E,o/U. The double occupancy vanishes in the strong
coupling limit U+, For U=W=<U, it is a monotonously
increasing function ofh while d is small (but nonzerg for
U=2W=>U, at half filling.

C. Test of Fermi-liquid relations

Opposed to the full DMFT, the two-site DMFT is not a
conserving approach in the sense of Baym and KadaRoff.

FIG. 6. Normalized “Fermi-surface volumeV g/L as a func-
tion of the filling n for U=W (solid lineg and U=2W (dashed
lines). Results as obtained within the two-site DMFT and the
Hubbard-I approximation.

to be compared with the filling as given by E@5). The
equationVes/L=n with Vs/L given by Eq.(40) is a refor-
mulation of the Luttinger sum rule that is also valid for the
Bethe lattice.

In Fig. 6 the Fermi-surface volum¥cs/L is compared

Consequenﬂy, the two-site DMFT cannot be expected to reWith the fllllng n for different U. For moderate interactions

spect certain exact Fermi-liquid relatiotfsDrastic viola-

U=W, solid line the Luttinger theoremV/s/L=n is al-

tions of the Luttinger theorem and Fermi-liquid relations for most exactly fulfilled in the whole range of fillings while

the charge and spin susceptibilities are well kn&wior
simple nonconserving theories such as the Hubbard
approximatior!, the Roth two-pole approximatidl},or the
spectral-density approaéh,for example. For the two-site

deviations of a few percent are found for strong Coulomb
Jnteraction U=2W, dashed ling near half filling. The re-
sults of the Hubbard-I approach are shown for comparison. It
is seen that in this case the Fermi-surface volume is strongly

DMFT it is shown here that there are violations of Fermi-overestimated up to a factor 2 near half filling and irrespec-
liquid relations indeed. Surprisingly, however, these ardive of U.

fairly small.

One important property of a Fermi liquid is that the self-
energy (w) is real atw=0, i.e., Im2(i0*)=0. This guar-
antees the existence of a Fermi surface wttfoh a Bravais
lattice) is defined by the set of points i space with G= u
—€(k)—2(0) wheree(k) is the free band dispersion. The

An alternative formulation of the Luttinger theorem is
ven by®

gi
u=pot+2(0), (41

where uq is the chemical potential fod =0. Replacing the
first self-consistency equatiotl4) by Eq. (41), defines a

Luttinger sum rul&’ states that the volume enclosed by thevariant of the two-site DMFT where the Luttinger theorem is

Fermi surface

VFS=2; O[u—e(k)—2(0)], (39
is equal to the average particle number:
Ves=(N). (39

Here, © is the usual step function, afd)=(=,; n;,)=Ln

where L is the number of lattice sites. The Fermi-surface

volume can be calculated in the following way:
Ves/L=2 | dupo(00u—x-3(0)]

=2Jichp0[X+,u,—2(0)] (40

enforced. The resulting filling dependence of the quasi-
particle weight is shown in Fig. 4 fod =4 by the dashed
line. If the original two-site DMFT respected the Luttinger
theorem, there would not be any difference compared with
the result of the variant. As is seen in Fig. 4, the difference is
nonzero but rather small.

By means of perturbation theory to all ord&the com-
pressibility or charge susceptibility

an

o (42

K

can be shown to be related to the DOS and the self-energy at
w=0:

d%(0)
I

K=2p(0)<1— (43

Similarly, the spin susceptibility
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3 0.25— I I I
I U=1
/“—/’
0.2 —
x >
Q
G
g o5 U8 ——
8
2 o1 -
3 U=5
8 =L
0.05— ]
—_— U=55
s oL 1 L1
16 ,,r 0.98 099 1.00 1.01 1.02
ot filling n
1.2 .
r ] FIG. 8. Filing dependence of the double occupancy
0.8~ " Hubbard-1 7] d=(n;n) close to half-filling for differentJ.
04f .
wo-ito DMFT as calculateq from Eqg43) and (45). For U=4 there are
) | ) | ' L | L
O or  oa os o8 To hardly any differences. Small differences of the order of a

few percent are found fod =8 (not shown. On the other
hand, within the Hubbard-I approach the filling-dependence
FIG. 7. Charge susceptibilitccompressibility « and spin sus- Of x andy strongly depends on the way it is calculated. The
ceptibility y as functions of the filling folJ=W=4. Results for the ~ respective results are shown in Fig. 7 for comparison.
two-site DMFT and the Hubbard-l approximation as indicated. ~Concluding, one can state that the Luttinger theorem as
Solid lines: k and y calculated from the definition@2) and(44).  well as certain Fermi-liquid relations are well respected by
Dashed linesk and y calculated from the Fermi-liquid representa- the two-site DMFT. The same holds for the question of ther-
tions (43) and (45). modynamic consistency: Although the two-site DMFT can-
not be derived from an explicit thermodynamic potential,

filling n

am consistency relations such as
X= 55 (44)
b=0 FE  op| anin)) 48
is given by the expression guon guf — an | (48)
d(%4(0)—%,(0)) are found to hold to a comparatively good approximation. An
x=p(0)| 2~ b : example is shown in Fig. 8. At half-filling the chemical po-

_ _ - tential is given byu=U/2. Therefore, as a function of the
These equations provide two more exact Fermi-liquidfilling the double occupancyn;n;) should have the slope
relations. d(nyn)/an=1/2 atn=1 for any (fixed) U. To a very good

To calculate the spin susceptibility according to B&f),  approximation this is reproduced by the results in Fig. 8.
the formalism has to be generalized for the spin-polarized

case. Consider a constant external magnetic fieiid z di- IV. CONCLUSIONS
rection which couples to the total spin
The two-site DMFT can be characterized as an approxi-
mate DMFT scheme which refers to a single-impurity Ander-
H=Ho=2bS,=Ho— b% AoNic (46) son model consisting of two sites only, one impurity and one
bath site. Obviously, with a two-site SIAM the original self-
where Ho=H(b=0) is the Hamiltonian(1), n;,=c{,ci,,  consistency condition of the full DMFT can no longer be
andq,;=1, q,=—1 is a sign factor. The field strength is fulfilled, and consequently a comparatively crude approxi-
given byb. To account for a finitéb in the formalism it is  mation has to be tolerated. The idea, however, is to construct
sufficient to redefine the on-site hoppitg—ty,=to—q,b in this way the most simple approach that keeps the essence
and likewiseeq— €4,= €4— Q0. Furthermore, the bath pa- of the DMFT, namely the mapping onto an effective impurity
rameters may become spin dependept>e., andV—V,  model the bath parameters of which are determined self-
in the impurity model(4). The self-consistency conditions consistently. In fact, for the single-band Hubbard model

(14) and (22) now read some of the calculations can be performed even analytically
. . and there are no serious problems to be expected for a nu-
ndgE<dzda>¥ngE(nig>, Vi;ZUM(ZO)_ (47) ~ merical treatment of multiband models. _
Any realization of the DMFT requires a repeated solution
The magnetization is given by=n;—n, . of the impurity model which itself poses a complex many-

Figure 7 shows the filling dependenceofand y as cal- body problem. An exact and unproblematic solution is pos-
culated from Eqgs(42) and(44) to be compared witlk andy  sible for a SIAM with a finite, small number of degrees of
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freedom—at the expense of an approximate mapping. Thiparameter space. It interpolates between the Mott-transition
idea of the two-site DMFT is similar in spirit to the that of point wherez=0 and the uncorrelated limly=0 orn=0
the exact-diagonalization method which aims at a minimizawherez= 1. Similar as the linearized theory, however, it can-
tion of the errors due to the discretization of the hybridiza-not be controlled by a “small parameter” but is based on a
tion function by including as many siteg as feasible nu- physically motivated approximation.
merically. Contrary, the two-site DMFT stays with the case The two-site DMFT is the most simple approach that de-
ns=2 and can thus be considered as a “two-site ED”scribes the transition from the Mott insulating state to the
method. The latter, however, is not unique as it depends oRermi liquid as a bifurcation scenartaAt halffilling and for
the fit procedure used for the numerical determination of theJ > U the approach reduces to the Hubbard-I approximation
bath parameter¥:*>The advantage of the two-site DMFT is and yields the Mott-insulating solution. At=U, a metallic
that it is based on well motivated self-consistency conditionssolution splits off from the insulating one, the former being
to fix the bath. stable forU<U,. Below U, the two-site DMFT predicts a
In principle, an extension of the two-site DMFT towards Fermi-liquid state Withz=1—U2/U§. This is the same as
anngsite DMFT is conceivable for the single-band Hubbardthe Brinkman-Rice-Gutzwiller resdf (albeit with a differ-
model. This requires the consideration of higher-order termgnt U,). Although conceptually the two-site DMFT is quite
in the high- and low-frequency expansion of the originaldifferent from the Gutzwiller methoti®” the results for de-
self-consistency equation to fix the additionals2 4 bath  pendence of on U andn are very similar. In particular, both
parameters. The computational effort, however, grows eXpoapproaches yieldz(8) —z(0)x6* for U<U. and z(4)
nentially with increasingys. Furthermore, higher-order static —2(0)x 6 for U>U, in the limit 5=1—n—0 (see Fig. 4
correlation functions would appear in the wl/expan- and Ref. 38.
sion of the on-site lattice Green functiofl3). At the Similar as the IPT but opposed to the Gutzwiller method,
order 1k* the correlated-hopping correlation functi®),  the two-site DMFT does not respect the Luttinger sum rule
OCEi;ejtij(CiTgcjg(Znifg— 1)) can be expressed rigorously in for the invariance of the Fermi-surface volume since it is not

terms of G(w) by a sum ruld" similar to Eq.(15). At still  a conserving theory in the sense of Baym and Kaddhoff
higher orders, however, additional approximations must bend cannot be derived from an explicit expression for a ther-
tolerated. modynamic potential. On the other hand, it is remarkable

The implementation of the two-site DMFT is straightfor- that the deviations from the Luttinger sum rule and also the
ward, and the numerics is stable for the entire parameteadeviations from different exact Fermi-liquid and thermody-
space. It has to be stressed that the approach allows for comamical consistency relations are rather small. The compari-
putations that are faster by several orders of magnitude conson with the Hubbard-I approximatiofwhich drastically
pared to numerically exact approaches such as the QMC afiolates these relationsuggests that this is due to the ap-
ED method. This advantage qualifies the approach for compearance of the quasiparticle peak in the spectral function.
prehensive investigations as are necessary, e.g., for the det@he Hubbard-I approximation can be considered as a local
mination of phase diagrams. In this respect it is comparablénpurity approximation: The exact self-energy of the single-
with the iterative perturbation theory(IPT),**81° for  site (atomig model is taken as an approximation for the self-
example. energy of the lattice model. This approach and similar but

The single-band Hubbard model has been considered heigproved theorie¥*?yield high-frequency excitations such
to illustrate the construction of the theory and to show up itsas the Hubbard bands but fail to reproduce Fermi-liquid
advantages and limitations. Obviously, for the mere singleproperties at low frequencies. To get tllew-frequency
band model, the two-site DMFT cannot really competequasiparticle peak in addition and to restore the Fermi-liquid
against other more suitable methods. The main field of apphysics qualitatively, it is sufficient to couple merely a single
plication are multiband Hubbard-type models which require(bath degree of freedom to the single-site model. This also
the solution of more complicated effective impurity prob- holds for the multiband case. A fully conserving and consis-
lems, or lattice models with reduced translational symmetrytent theory, however, can only be obtained by coupling to an
where one has to solve different impurity problemsinfinite number of bath sites as in the full DMFT.
simultaneously®?° Opposed to the IPF for example, the Concluding, the two-site DMFT is a simple but non-
extension of the two-site DMFT to the multiband caseperturbative mean-field approach to correlated lattice mod-
is straightforward. Still the computational effort will be els. Compared to the full DMFT and to exact Fermi-liquid
extremely small as compared to the numerically exactnd thermodynamic relations, it yields satisfactory results for
approaches. the Mott transition and the Fermi-liquid phase in the single-

Taking the mass-enhancement factaf/m=z"! as a  band Hubbard model with a minimum computational effort.
measure for the strength of correlation effects, the Mott-The quality of the method, when applied to different physical
transition pointn=1 and U=U, obviously has a distin- problems, it not clear priori and has to be examined. In
guished position in the phase diagram. Here the two-sitparticular, a comparison between the two-site and the full
DMFT reduces to the previously developed linearized DMFTDMFT concerning magnetic order in the single-band model
(Ref. 25 which rather accurately predictshe mean-field  as well as the question of finite temperatures are intended for
U, for the Hubbard model on different lattic8$%?°and also  the future. Primarily, future applications shall address the
for multiband model€®?’ The two-site DMFT can be con- manifestly complex phase diagrams for spin, charge and or-
sidered as an extension of the linearized DMFT to the entirdital order in multiband Hubbard-type models. Here the two-
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site DMFT may serve to give a quick and comprehensive .
though rough overview of the main physics which can Himp= 2 €dalhoUao
complement more thorough but selective studies. “
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APPENDIX: MULTIBAND MODELS ng
+
The most general multiband model with on-site interac- +MEk:2 Viao(dgo@kaotH.C), (A5)
tion reads '

with  €4,=tg,=tiiwa- The impurity Green function

T Gimp.aa(w):<<dag—;dzg>>w is given by

H= >

i sy 1i2&lazcilalaci2a20 .
1 Gimp,ao(w): .
t ot 0+ pu—€gy— A ()2, )
+5 2 E Uaa aacia (J'Cia (;-’Cia o' Cia,o - K da ag( Imp,a(r( )
2 ioco’ @1@2030y 1reats 2 8 4 (A6)

(A1) The hybridization function Am,(w)=2kvﬁwl(w+,u

In most cases it is sufficient to take into account interaction_peekgt"zoznd the impurity self-energy are diagonal with re-

. . . . S
parameters that are labeled by two indices, the direct inter- The lattice self-energy can be derived by functional dif-

action U““'_U“,“"m' and the exchange mteraf:nodga, ferentiation from the  Luttinger-Ward  functional,
;ua?,a,a andJ, ,=U 440 - Herea=1,... r is an or—_ TS0 an(i©) = 6018G ()20 For any finite-
bital index, andr denotes the number of orbitals. Fourier gimensional lattice the DMFT consists in the assumption that
transformation of the hopping; ., to k space yields the e self-energy be local. This implies thitdepends on the
free Hamilton matrixt, (k) the eigenvalues of which rep- on-site propagatos,,(w) only. Hence, the functionad
resent the free band structueg(k), wherem=1,...1is  gnd thus the functionaf= 6®/5G are the same for both, the
fche _band index. The orbitally resolved free density of state$attice model E=8[G]) and the impurity model ¥;n,

is given by =S[Gimpl). One can proceed as for the single-band case: If
the bath parameters,, andV,,, are chosen such that

1
Poa( @)= 2 |$am(K)PA0—en(k)],  (A2)

1

. . Aa(r(a)):w+M_Eda_2imp,a0(w)_—v (AY)
where ¢,m(k) is the ath component of themth eigen- ao(®)
state(k?g eachk, namely, = ,q ham(K)*taar(K)darm(K) e, such that the DMFT self-consistency condition
= €m mny -

Assuming the self-energy to be local, it is easy to see |
from the usual diagram expansion that it must be diagonal Gimp,ac(®) =G 4ol ), (A8)
with respect to the orbital indeX ' (@)= 6,402 go(®). . .
Consider a cubic lattice and let refer to orbitals with an 1S fulfilled, then at once i 4o(@) =2 4(w), and the usual
angular dependence given by the cubic harmonics. The laB€!f-consistent procedure can be set up.

tice symmetries then require the on-site=(’) elements of I diffefrent orbitallls e;]re e;]quivalet?t cliue_z to Iatg_ccg ;ymdme-

the lattice Green functiofs”,aa,g(w)=(<ciw;c.T, , Mo tO tries as, for example, the thrég, orbitals in a cubi 3 an

be di | with g lalo system, one can make use of some simplifications: The self-

€ diagonal with respect to- energy> ,,(w)=2 () and the DOSpg ,(w)=po(w) are
Giian o) = 801 Gy @). (A3) independent of.the orbital index, and the on-site Green func-
tion is simply given by
Using the Dyson equation, the on-site Green function can
generally be written as po(X)

M_X_Eo(w) .

Gusl®)=Gyl0)= | dr— (9)

1 1
Gaolw)= 2

e ot 03,00, AY

The lattice model can be mapped onto a simpler impurity
model with €, ,,= €, andVy,,=V,, . In this case the hy-
HereX () is the k independentdiagonalr X r self-energy  bridization function and the impurity self-energy are

matrix andt(k) the k-dependentnondiagonal free Hamil-  a-independent, consistent with EGA7).

ton matrix with the elements, (k). The two-site DMFT is constructed straightforwardly. The
Within the DMFT the mode{A1) can be mapped onto the number of(twofold spin-degenerateone-particle orbitals in

following impurity model: the impurity model isM=r +r(ng—1)=rng. Forng=2 and
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for the general case efnonequivalent orbitals there af@r ~ The expansion of the coherent on-site lattice Green function,
each spin direction2r bath parameters to be determined, thehowever, is slightly different:

one-particle energies,,, and the hybridization strength§, .
for a=1, ... r. The comparison of the high-frequency ex-
pansions ok ,,(w) andX iy ..(®) to lowest order leads to
a first set ofr self-consistency conditions

2
ZaO'(th_ mt aaa’)

w2

4
G )= 227 +

!
nd,aUE<dZUdaa>: naUE<CiTa0'Ciao'> (AlO)

3 2
Zao'(th_ Mt aom')
+ 3

w
with n,,=(—1m)f°.ImG, (w+i0")dw.

In the low-frequency limit the self-energy is expanded as ) 1 4
Seo(@)=a,+(1-2,)o+O(w?) where z,, is the +ch_2, tii’aa’za'oti’ia’aE”LO(l/‘” ).
orbital-dependent quasi-particle weight. Inserting the self- b
energy expansion up to the linear order into E@st) and (A12)

(AB6), yields the respective coherent parts of the on-site lat-
tice and the impurity Green function. Analogous to theFrom the comparison one obtains the second set s#lf-

single-band case one gets consistency conditions
2
(coh) _ @ Zaa-( €da— Iu‘+ aaa—) I
Ginpao(®@)=—=+ = V2 = z,th (A13)
i"a'
Ziovfm'—i_ Z?za-( €do— M T aaa—)z 4
+ 3 +O(1lw”). This includes an additional coupling of the different orbitals.
@ Both self-consistency conditiori&10) and (A13) reduce to
(A11) Eq. (47) for the single-band case.
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