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Two-site dynamical mean-field theory
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~Received 19 February 2001; published 8 October 2001!

It is shown that a minimum realization of the dynamical mean-field theory~DMFT! can be achieved by
mapping a correlated lattice model onto an impurity model in which the impurity is coupled to an uncorrelated
bath that consists of a single site only. The two-site impurity model can be solved exactly. The mapping is
approximate. The self-consistency conditions are constructed in a way that the resulting ‘‘two-site DMFT’’
reduces to the previously discussed linearized DMFT for the Mott transition. It is demonstrated that a reason-
able description of the mean-field physics is possible with a minimum computational effort. This qualifies the
simple two-site DMFT for a systematic study of more complex lattice models which cannot be treated by the
full DMFT in a feasible way. To show the strengths and limitations of the new approach, the single-band
Hubbard model is investigated in detail. The predictions of the two-site DMFT are compared with results of the
full DMFT. Internal consistency checks are performed which concern the Luttinger sum rule, other Fermi-
liquid relations and thermodynamic consistency.
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I. INTRODUCTION

The dynamical mean-field theory~DMFT! has become a
well-established and valuable method to investigate
physics of strongly correlated electrons on a lattice.1–4 Simi-
lar to the Weiss mean-field theory for classical models
localized spins, the DMFT is exact in the nontrivial limit o
infinite spatial dimensions.5,6 For finite dimensions it pro-
vides a thermodynamically consistent and nonperturba
mean-field approach in which the spatial correlations are
glected but the temporal degrees of freedom are treated
rectly. The application of the DMFT to the single-band Hu
bard model7–9 has uncovered a complex phenomenolo
which may be characterized by strongly renormalized Fer
liquid behavior competing with the Mott insulating state a
with different kinds of spontaneous order such as collec
magnetism.3,4,10–12

The DMFT actually consists in a prescription that ma
the original lattice model onto an effective impurity mod
which describes a single correlated impurity orbital emb
ded in an uncorrelated bath of conduction-band states.
mapping is a self-consistent one, namely, the bath param
depend on the on-site lattice Green function. The impu
model is the crucial point in the DMFT since it poses
highly nontrivial many-body problem that must be solv
repeatedly. The different methods employed for an ess
tially exact solution of the impurity model, the quantu
Monte Carlo,2,13 the exact diagonalization,14,15 and the nu-
merical renormalization-group methods16,17 work well for
the single-band Hubbard model but are computationally
pensive. In practice this severely limits the applicability
the DMFT, particularly when one is concerned with mul
band models. More complex lattice models including tw
three or more degenerate or nondegenerated-like bands pos-
sibly hybridized with uncorrelateds-p-like bands are inter-
esting for obvious reasons. For example, multiband mod
are required for a minimum theory of the physics of stron
correlated electrons in the transition-metal oxides. Beca
of the large parameter space and the complexity of the ef
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tive impurity problem, a detailed and systematic calculat
of the phase diagrams of multiband models covering the
tire parameter space is far beyond the ability of pres
implementations of the DMFT.

If one is interested in a comprehensive mean-field
scription of complex lattice models but wishes to keep
essence of the DMFT, some compromise is inevitable.
principle, there are only two possibilities conceivable. Fir
one may refrain from a numerically exact solution of t
impurity problem and employ approximate treatments
stead. These may be based on different limits where a s
parameter is available. This idea has been pursued
weak- and strong-coupling perturbational approaches suc
the iterative perturbation theory1,18,19 or the noncrossing
approximation.20,21,12In fact, multiband Hubbard-type mod
els can be treated in this way with an acceptable compu
time ~see Refs. 22,23, for examples!. This route, however,
shall not be followed up here.

The present paper takes into consideration the only a
native left, namely to solve the impurity model exactly but
reduce the number of bath degrees of freedom to keep
calculations manageable. There are no problems to treat,
the single-impurity Anderson model~SIAM! with a small
number of sitesns numerically exact. On the other hand, fo
any finitens,` the self-consistent mapping of the Hubba
model onto the SIAM is approximate. The exact solution
the effective impurity model is thus achieved at the expe
of an approximate self-consistency.

As a function ofns the Hilbert-space dimensionD of the
impurity model increases exponentially. It is given byD
522M whereM is the number of~twofold spin-degenerate!
one-particle orbitals. The self-consistent mapping within
DMFT at least requiresM5r 1r (ns21)5rns orbitals for
the case of one impurity site,ns21 bath sites, andr corre-
lated bands~see the Appendix!. Consider, for example, the
d-band of a 3d transition metal with a twofold degenera
eg-derived band and a threefold degeneratet2g-derived band.
In this caseM55ns orbitals have to be considered. Accep
ing M510 as a typical value for the maximum number
©2001 The American Physical Society14-1
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MICHAEL POTTHOFF PHYSICAL REVIEW B 64 165114
orbitals that can be taken into account for a repeated solu
of the impurity model within a reasonable computing tim
limits ns to the smallest number that is reasonable:ns52,
i.e., an impurity model with one impurity site and one ba
site.

The purpose of the present paper is to test whether or
a two-site DMFT could be a meaningful approach and
show up its strengths and limitations. There are mainly t
tasks to be performed: First, it is necessary to specify
approximate self-consistent mapping. This means to fin
sensible prescription how to fix the bath parameters of
impurity model—guided by the original self-consisten
condition of the DMFT. Second, the resulting two-s
DMFT has to be tested against the full DMFT. This can
done best for the single-band Hubbard model~in infinite di-
mensions! where numerous essentially exact results
available. Thus, except for a short discussion of the ex
sion of the theory to multiband systems, the present pap
exclusively concerned with the single-band model. Since
cannot expect a strongly simplified two-site approach to
produce the known results quantitatively exact, the pres
study attaches importance to main trends, qualitative corr
ness and internal consistency. Recall that even the
DMFT cannot be expected to give more than a qualitat
~mean-field! description of the physics of transition-met
oxides.

The two-site SIAM has been considered within the co
text of the DMFT beforehand. Lange24 discussed the two-site
SIAM at half-filling to investigate renormalized versus u
renormalized perturbational approaches to the DMFT of
Mott transition. However, a self-consistent mapping of t
Hubbard model onto the two-site SIAM was not consider
Bulla and Potthoff25 developed a linearized DMFT of th
Mott transition. The Hubbard model at half-filling and at th
critical interaction strengthU5Uc was self-consistently
mapped onto the two-site SIAM resulting in a linear alg
braic mean-field equation. The solution of the two-site SIA
is exact, the mapping is approximate. It was found that, co
pared with the full DMFT, the linearized DMFT gives fairl
good analytical estimates forUc on different lattices. The
theory, however, is restricted to the critical point. Furth
extensions of the linearized DMFT for the Mott transitio
have been developed for a periodic Anderson model by H
and Bulla26 and for a two-band Hubbard model by On
et al.27 Extensions of the linearized DMFT to the Hubba
model for thin films28 and semi-infinite lattices29 have con-
vincingly shown that the main trends in the geometry dep
dence ofUc can be predicted safely. Here, it will be show
that a two-site DMFT can be constructed which is not bou
to the ~Mott! critical point but is able to access the enti
parameter space and that reduces to the linearized DMF
half-filling and U5Uc .

The paper is organized as follows. The next section gi
a brief review of the DMFT and introduces the se
consistent two-site approach. Section III presents a variet
results for the single-band Hubbard model starting with
Mott transition. Hereafter, the Fermi-liquid phase off ha
filling is addressed, and the Luttinger sum rule, other Fer
liquid relations and thermodynamical consistency are d
16511
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cussed. A discussion of the two-site DMFT in relation
other methods and the conclusions are given in Sec. IV.
generalization of the theory to multiband models is presen
in the Appendix.

II. TWO-SITE DYNAMICAL MEAN-FIELD THEORY

To be definite the single-band Hubbard model on the B
the lattice with infinite connectivityq°` is considered:

H5 (
^ i j &s

t i j cis
† cj s1

U

2 (
is

nisni 2s . ~1!

The hopping is assumed to be non-zero between nea
neighborsi and j only. t[2t i j .0 is the nearest-neighbo
hopping integral. The on-site hoppingt0[t i i is set tot050
to fix the energy zero. Furthermore,U is the on-site Coulomb
interaction,cis

† creates an electron at the sitei with spin s
5↑,↓, andnis5cis

† cis . With the usual scaling of the hop
ping, t5t* /Aq and t* 5const, the model is nontrivial in the
limit q°`.5 Setting t* 51 fixes the energy scale for th
present paper. For a paramagnetic, spatially homogen
phase the on-site Green functionG(v)5^^cis ;cis

† &&v is
given by

G~v!5E
2`

`

dx
r0~x!

v1m2x2S~v!
, ~2!

where m is the chemical potential, andS(v) is the self-
energy which is local (k independent! in the limit q°`.5,30

r0(x) denotes the free density of states

r0~x!5
1

2pt* 2
A4t* 22x2 ~3!

for uxu,2t* . The bandwidth isW54t* 54.

A. Dynamical mean-field theory

The DMFT essentially rests on the observation that
local self-energy is given by a~skeleton-diagram! functional
S5S@G# of the on-site Green function that is universal for
large class of models. Consider, in particular, the sing
impurity Anderson model~SIAM!:

H imp5(
s

edds
†ds1Ud↑

†d↑d↓
†d↓1 (

s,k52

ns

ekaks
† aks

1 (
s,k52

ns

Vk~ds
†aks1H.c.!, ~4!

which describes an impurity orbitalds
† u0& with one-particle

energyed and on-site interactionU that is coupled via the
hybridizationVk to a bath ofns21 noninteracting orbitals
aks

† u0& with energies ek . The impurity Green function
Gimp(v)5^^ds ;ds

†&&v is given by

Gimp~v!5
1

v1m2ed2D~v!2S imp~v!
, ~5!
4-2
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TWO-SITE DYNAMICAL MEAN-FIELD THEORY PHYSICAL REVIEW B 64 165114
where D(v)5(k52
ns Vk

2/(v1m2ek) is the hybridization
function, andS imp(v) the impurity self-energy. As usua
ed5t050. The important point is that the functionalS is the
same as for the Hubbard model,S imp5S@Gimp#, because the
same type of skeleton diagrams occur in the expansion
S imp . Choosing the bath parametersek andVk such that

D~v!5v1m2ed2S imp~v!2
1

G~v!
, ~6!

i.e., such that the DMFT self-consistency condition

Gimp~v!5
!

G~v!, ~7!

is fulfilled, then at once

S imp~v!5S~v!. ~8!

Therewith, the original lattice problem is mapped onto t
SIAM and can be solved by the following iterative proc
dure: Starting with a guess for the local self-energy, the
site lattice Green function is calculated from Eq.~2!. Via Eq.
~6! or Eq. ~7! the Green function and the self-energy defi
the hybridization functionD(v) and thus the parameters o
the effective SIAM. Finally, the impurity problem is solve
to get a new estimate for the self-energy. The cycles hav
be repeated until self-consistency is achieved.

B. Two-site SIAM

The self-consistency condition~7! can be fulfilled rigor-
ously only forns°`, i.e., for a bath with an infinite numbe
of degrees of freedom. This leads to the usual SIAM wh
represents an involved many-body problem. To simplify
problem and to construct a two-site DMFT, the casens52 is
considered here, i.e., an effective SIAM that consists of
impurity site and one bath site only. This represents the m
simple bath conceivable.

For ns52 the site index is fixed to the valuek52 in Eq.
~4!. There are only two independent bath parameters left,
one-particle energy of the bath siteec[ek52 and the hybrid-
ization strengthV[Vk52. The hybridization function is a
one-pole function

D~v!5V2/~v1m2ec!, ~9!

and the free (U50) impurity Green function is a two-pole
function

Gimp
(0) ~v!5

1

2r S r 1 ē

v1m2 ē2r
1

r 2 ē

v1m2 ē1r
D , ~10!

with ē[(ed2ec)/2 andr 5Aē21V2. The interacting impu-
rity Green functionGimp(v) has four poles and the sel
energyS imp(v) two poles in general. Closed analytical e
pressions can be derived for the symmetric model at h
filling ~see Ref. 24, for example!. For the nonsymmetric cas
the model can be solved straightforwardly by numeri
means without any problems.

For clarity, the theory will be developed for the parama
netic phase of single-band Hubbard model. However, i
16511
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rather straightforward to consider in essentially the same w
also different magnetic phases and/or more complica
models such as multiband Hubbard-type models, for
ample.

C. Self-consistency

For the two-site DMFT the Eqs.~2!–~5! and Eq.~8! are
retained. The original self-consistency condition~7!, how-
ever, must be reformulated. This means to find two phy
cally motivated~self-consistency! conditions to fix the bath
parametersec andV.

Consider first the limit of high frequenciesv°`. The
exact self-energy of the impurity problem~4! can be ex-
panded in powers of 1/v:

S~v!5Und1
U2nd~12nd!

v
1O~1/v2!, ~11!

wherend5nds is the average occupancy of the impurity o
bital

nd5^ds
†ds&52

1

pE2`

0

Im Gimp~v1 i01!dv. ~12!

Inserting the expansion~11! into Eq. ~2!, one finds the fol-
lowing high-frequency expansion of the on-site lattice Gre
function:

G~v!5
1

v
1

t02m1Und

v2

1
M2

(0)1~ t02m!212~ t02m!Und1U2nd

v3

1O~1/v4!. ~13!

Here M2
(0)5( j Þ i t i j

2 5*dx x2r0(x) is the variance of the
noninteracting density of states~3!. Equation ~13! can be
compared with the exact high-frequency expansion which
available by calculating the first nontrivial moments of t
interacting density of states.31 One finds that Eq.~13! in fact
represents the exact expansion provided thatnimp[2nd can
be identified with the fillingn5^ni↑&1^ni↓& of the lattice
model. It is therefore required that

nimp5
!

n, ~14!

where the band filling is calculated via

n52
2

pE2`

0

Im G~v1 i01!dv. ~15!

Equation ~14! is the first self-consistency condition. Th
high-frequency behavior ofG(v) is important for the occur-
rence and for the correct weights and centers of gravity
the two high-frequency Hubbard excitations in the spectru
With Eqs.~12!, ~14!, and~15!, an integral form of the origi-
nal self-consistency equation~7! is fulfilled: *2`

0 dv Im G
5*2`

0 dv Im Gimp .
4-3
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MICHAEL POTTHOFF PHYSICAL REVIEW B 64 165114
Consider now the low-frequency limitv°0. The exact
self-energy of the impurity problem~4! can be expanded in
powers ofv,

S~v!5a1bv1O~v2!, ~16!

with constantsa and b. The definitionz51/(12b) will be
convenient, i.e.,

z5
1

12dS~0!/dv
. ~17!

For a metalz has the meaning of the quasi-particle weig
Neglecting terms of the orderv2, and inserting into Eq.~2!
yields G(v)5G(coh)(v) for small v whereG(coh)(v) is the
coherent part of the on-site Green function defined as

G(coh)~v!5E
2`

`

dx
r0~x!

v1m2x2a2bv

5zE
2`

`

dx
r0~x!

v2z~x2m1a!
. ~18!

On the other hand, the coherent part of the impurity Gre
function is

Gimp
(coh)~v!5

1

v1m2ed2D~v!2a2bv

5z
1

v2z@ed2m1a1D~v!#
. ~19!

Comparing thehigh-frequency expansions of the respecti
coherent Green functions

G(coh)~v!5
z

v
1

z2~ t02m1a!

v2

1
z3@M2

(0)1~ t02m1a!2#

v3
1O~1/v4!

~20!

and

Gimp
(coh)~v!5

z

v
1

z2~ed2m1a!

v2
1

z2V21z3~ed2m1a!2

v3

1O~1/v4!, ~21!

leads to the second self-consistency condition

V25
!

zM2
(0) . ~22!

Thereby, the original self-consistency equation~7! is also
fulfilled at low frequencies up toO(v) in an integral way,
namely by referring to the weight, the center of gravity a
the variance of the coherent quasi-particle peak. Equat
~14! and ~22! reformulate the high- and the low-frequenc
range of the original self-consistency condition~7! in an in-
tegral, qualitative form and are thus well motivated.
16511
.

n
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D. Calculations

With the two conditions~14! and ~22! the two bath pa-
rameters are fixed and can be calculated self-consiste
Consider the model parameterst0 , t, U, m, andr0(x) to be
given. Starting with a guess forec andV, the two-site impu-
rity model ~4! is well defined and can be solved to find th
average occupancy of the impurity levelnimp and the self-
energy S(v). The latter directly yields the quasiparticl
weight z5@12dS(0)/dv#21 and from the condition~22! a
new value for the hybridization strengthV. InsertingS(v)
into Eq. ~2!, gives the on-site lattice Green functionG(v)
and, via Eq.~15!, the filling n which has to be compared wit
nimp . Finally, a new value forec is chosen such that th
differencen2nimp is reduced in the next cycle—according
condition~14!. The cycles have to be iterated untilec andV
are self-consistent~andnimp5n).

In most cases, one finds a self-consistent set of bath
rametersec andV such that the ground state of the effecti
SIAM lies in the six-dimensional subspace characterized
the total spin-dependent particle numbersN↑5N↓51. To get
the self-energy, it is convenient to calculateGimp(v) from its
Lehmann representation and to use the Dyson equatio
reverse:

S~v!5Gimp
(0) ~v!212Gimp~v!21, ~23!

where the free impurity Green function is taken from E
~10!. The calculation of the eigenenergies and eigenstate
straightforward, but even forns52 this can only be done
numerically in general. From the computational point
view, the most time-consuming step, however, is the cal
lation of the filling from Eqs.~2! and ~15!. Since the self-
energy of the two-site impurity problem is a real two-po
function of the form

S~v!5a01
a1

v2v1
1

a2

v2v2
, ~24!

the filling can be calculated more directly by a single on
dimensional integration

n52E
2`

0

dvr0@v1m2S~v!#. ~25!

r(v)[r0@v1m2S(v)# is the interacting density of states
Since even a repeated evaluation of this equation during
search for self-consistency is not very crucial, extremely f
numerical calculations can be performed.

The two-site DMFT is obviously exact in the limitsn
50 and n52. In the empty-band limit, for example, th
impurity self-energy vanishes sincenimp5n50. Further-
more, it is exact in the band limitU50. In the atomic limit
t50 one findsV50 ~and arbitraryec) to be a self-consisten
solution. Sincen5nimp , the self-energy is given by

SH2I~v!5U
n

2
1

U2~n/2!~12n/2!

v1m2t02U~12n/2!
, ~26!

which is the correct atomic-limit self-energy. Hence, the tw
site DMFT is also exact fort50 and any filling. Since Eq.
4-4
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TWO-SITE DYNAMICAL MEAN-FIELD THEORY PHYSICAL REVIEW B 64 165114
~26! is the Hubbard-I self-energy,7 the theory reduces to th
Hubbard-I approach whenever there is a self-consistent s
tion with V50. Actually, this is realized only at half-filling
n51 and for sufficiently strongU ~see below!.

Although the original lattice problem is mapped onto
effective impurity problem with a finite number of degrees
freedom, the dependence of physical quantities, such as
filling n, on the model parameters will generally be smoo
Consider, for example, the functionn(m) for a givenU. The
interacting impurity spectral function generally consists
four isolatedd peaks of different weight. An infinitesima
change ofm is unlikely to cause a finite jump ofnimp since a
change ofnimp is in first place caused by a redistribution
spectral weight among thed peaks rather than bym crossing
a pole. Bearing in mind that the bath parameters itself
pend onm, the functionn(m) can be continuous even in
largem interval. In fact, it is found that the chemical pote
tial never crosses a pole except for some extreme casen
50,n52,V50).

III. RESULTS

The two-site DMFT provides a very simple, computatio
ally fast and nonperturbative mean-field approach to co
lated lattice models. To show its strengths and limitatio
numerical results will be presented for the single-band H
bard model which has been studied extensively by the
DMFT in the past.1–6,10–23This will set the basis for a dis
cussion of the approach and a comparison with other m
ods in Sec. IV. Multiband models are considered in the A
pendix. The calculations have been performed for the Be
lattice with infinite connectivityq. The free density of state
is given by Eq.~3!. Its width isW54.

A. Mott transition

For the symmetric case of half fillingn51 andm5U/2,
the approach can be evaluated analytically. Particle-h
symmetry requiresec5U/25m to ensure the first self
consistency equationn5nimp . Thus, only the hybridization
strengthV has to be calculated self-consistently.

Let us first consider the critical point for the Mott trans
tion, i.e., U°Uc where the linearized DMFT is recovere
~see Ref. 25!: Coming from the weak-coupling, metallic sid
the critical interactionUc is characterized by a vanishin
quasiparticle weightz°0 which, according to Eq.~22! im-
pliesV°0. In this limit two of the four poles of the impurity
Green function are located nearv56U/2 while two poles
lie close tov50. Referring to the latter, the quasipartic
weight z can be calculated as the sum of their weights
straightforward calculation to leading order inV yields

z52
18V2

U2
. ~27!

On the other hand, another relation betweenz andV is given
by the second self-consistency condition~22!. This implies
16511
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V25M2
(0) 36

U2
V2, ~28!

namely, a simplelinear homogeneous mean-field equation
is characteristic for the linearized DMFT of Ref. 25. A no
trivial solution of this equation is only possible forU5Uc
where

Uc56AM2
(0). ~29!

The second moment ofr0(x) is easily calculated:M2
(0)

5( j Þ i t i j
2 5qt25t* 251, and therewith Uc56t* 51.5W.

This result of the linearized DMFT is very close to the res
of the projective self-consistent method~PSCM!,4,32 Uc
51.46W, and to the result of the numerical renormalizatio
group ~NRG! calculation,17 Uc51.47W. The linearized
DMFT is able to predict very reliably the main trends in th
dependence ofUc on the lattice geometry even for system
with reduced translational symmetry.25,28,29,26

The two-site DMFT is not restricted to the critical poin
U5Uc but more general. Form5U/2 and n51 the self-
energy of the two-site SIAM can be calculated analytically24

S~v!5
U

2
1

U2

8 S 1

v23V
1

1

v13VD . ~30!

With Eq. ~17! this gives the quasiparticle weight

z5
1

11U2/36V2
, ~31!

consistent with Eq.~27! for V°0. Together with the self-
consistency condition~22! one arrives at

V25
M2

(0)

11U2/36V2
. ~32!

This algebraic but nonlinear mean-field equation has the s
consistent solution

V5AM2
(0)2

U2

36
~33!

for U,6AM2
(0)5Uc and V50 else. This yields theU de-

pendence of the quasiparticle weight at half filling:

z512
U2

Uc
2

. ~34!

The result is the same as in the Gutzwiller variation
approach33

zBR512
U2

Uc,BR
2

. ~35!

However, the Brinkman-Rice critical interactio
Uc,BR5216*2`

0 dxxr0(x)'6.79t* .6t* is considerably
stronger.

The result of the two-site DMFT is compared with th
Brinkman-Rice solution and with the results of numeric
4-5
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MICHAEL POTTHOFF PHYSICAL REVIEW B 64 165114
solutions of the full DMFT by using the exac
diagonalization method14,34 (ns58 sites! and the NRG~Ref.
17! in Fig. 1. There is a good agreement between the res
of the ED and the NRG calculations except for interactio
close toUc where the energy scale of the quasiparticle re
nance cannot be resolved reliably within the ED method. T
two-site DMFT overestimates the quasi-particle weight
the wholeU range. However, the qualitative agreement w
the full DMFT is better than could be expected for the rath
simple approach and clearly improves on the result of
Gutzwiller method.

The two-site DMFT interpolates between the trivialU
50 limit andU5Uc . For U5Uc it is a reasonable approxi
mation to neglect~i! the influence of the Hubbard bands
high frequencies on the low-frequency~quasiparticle! peak
and ~ii ! the internal structure of the quasiparticle peak~see
the discussion in Ref. 25!. These are just the basic assum
tions of the linearized DMFT which the two-site approa
reduces to forU5Uc . For 0,U,Uc these assumptions ar
less justified. Yet, the quadratic behavior ofz(U) for U°0
as well as the eventually linear behavior forU°Uc is con-
sistent with the findings of the ED and NRG calculations

For U.Uc the self-consistent solution is given byV50
which implies that the two-site DMFT reduces to th
Hubbard-I approach in this case@Eq. ~26!#. This is a crude
description of the Mott insulator, even if compared with t
Hubbard alloy-analogy solution and the iterative perturbat
theory. The main deficiency is that the widths of the Hubb
bands are largely underestimated~see Ref. 35, for example!.

B. Fillings

nÞ1 For the symmetric casen51 the first self-
consistency equationn5nimp is fulfilled trivially by particle-
hole symmetry sinceec5U/25m, and only the hybridization
strengthV has to be determined self-consistently. For a th
ough test of the two-site DMFT it is thus necessary to c
sider fillings off half filling, too.

Figure 2 shows the self-consistent bath parametersec and
V as a function of the filling forU54. As U is smaller than
Uc the hybridization strength is finite forn51. For decreas-
ing filling the system becomes less and less correlated,

FIG. 1. U dependence of the quasiparticle weight at half-filli
as obtained within the two-site DMFT, the Brinkman-Rice approa
~Ref. 33! ~dashed!, the exact-diagonalization method~Refs. 14,34!
~solid!, and the numerical renormalization-group approach~Ref. 17!
~dots!.
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consequentlyV has to increase untilV515M2
(0) for n50.

According to Eq.~22! this implies the correct valuez51 for
the quasiparticle weight in the empty-band limit. At ha
filling the one-particle energy of the bath site is given
ec525U/2. It decreases with decreasing fillingn and di-
verges on approaching the empty-band limitec°2`, as is
necessary to ensure a vanishing occupancy of the impu
orbital nimp5n°0 for finite V. Note that both parametersec
andV are smooth functions of the filling.

Off half-filling the interacting impurity Green function
continues to have four poles forU.0 and two poles forU
50. This implies that the self-energy is a two-pole functi
of the form ~24! not only for half-filling but also fornÞ1.
The polesv1 andv2 of the self-energy and their respectiv
weightsa1 anda2 are shown in the lower panels of Fig. 2
Again, it is noteworthy that these are smooth functions c
necting the symmetric pointn51 where v11v250 and
a15a2 with the empty-band limit where the poles becom
irrelevant sincea1 ,a2°0.

It is well known4 that the density of states in the parama
netic phase of the infinite-dimensional Hubbard model ess
tially consists of three peaks, the lower and the upper H
bard band and a quasiparticle resonance in the vicinity of
Fermi energy. An attractive feature of the two-site DMFT
that this general form of the density of states can be rep
duced qualitatively. It is obvious that the two-pole structu
of the self-energy results in a three-peak structure of
density of states~DOS! r(v)[r0@v1m2S(v)#.

Because the two-pole self-energy is real, the Hubb
bands and the quasiparticle resonance will be perfectly s
rated from each other on the real frequency axis. Clearly,

h

FIG. 2. Filling dependence of the parameters of the effect
two-site impurity modelec and V and of the polesv1 , v2 and
respective weightsa1 , a2 of the self-energy@see Eq. ~24!#.
U5W54.
4-6
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TWO-SITE DYNAMICAL MEAN-FIELD THEORY PHYSICAL REVIEW B 64 165114
is only a sketch of the true density of states—the full DMF
generally predicts the resonance to merge with one of
Hubbard peaks.36,4,18,19The symmetric case at half-filling i
an exception. ForU,Uc but close toUc , a more or less
clear separation of energy scales is found to be real
in fact.4,17

Results for the DOS are shown in Fig. 3 forU52W58 at
different fillings. SinceU.Uc in this case, the Mott insula
tor is approached forn°1. As soon as there is a finite ho
concentration 12n, a quasi-particle resonance appears
width of which becomes broader with decreasing filling. T
resonance is pinned to the Fermi energy. For the symme
casen51 andU,Uc it has a maximum atv50. For de-
creasingn,1 the maximum shifts to a frequencyv0.0,
and the asymmetry with respect tov50 increases. Concur
rently, the upper Hubbard band shifts to higher frequenc
while its weight decreases. All this is qualitatively corre
when comparing with the full DMFT.36,4,18 However, the
two-site DMFT largely underestimates the widths of t
Hubbard bands and does not predict the quasiparticle r
nance to merge with the lower Hubbard band not even
smaller fillings. This is an obvious artifact.

The width of the resonance is determined byz. The filling
dependence of the quasiparticle weight is shown in Fig. 4
differentU. For n°0 there is a linear trend of the quasipa
ticle weight z21}n. For n°1 the weightz(n) behaves
linearly whenU.Uc and quadratically whenU,Uc . Gen-
erally, z is a monotonously decreasing function of the fillin
for n,1 and arbitraryU and a monotonously decreasin

FIG. 3. Density of statesr(v) for U52W58 and different
fillings.
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function of U for arbitrary n which saturates in the limit
U°`. These results are very similar to those of t
Gutzwiller approach8,37,38and qualitatively reproduce the re
sults of the full DMFT~Ref. 34! while quantitatively there
are deviations similar as for the casen51 which has been
discussed already~see Fig. 1!.

The same holds for the filling dependence of the inter
energyE, the double occupancyd[^n↑n↓& and the chemical
potentialm which is shown in Fig. 5. ForU5W54 as well

FIG. 4. Quasiparticle weight as a function of the filling for di
ferent interaction strengths. Dashed line: calculation forU54 with
a slightly modified theory~see text!.

FIG. 5. Filling dependence of the total energyE, the double
occupancyd5^n↑n↓&, and the chemical potentialm. Results for
U5W ~solid lines! andU52W ~dashed lines!.
4-7
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MICHAEL POTTHOFF PHYSICAL REVIEW B 64 165114
as for U52W58 the chemical potential monotonously in
creases with increasing filling as it is required by thermo
namic stability. From the equation of motion for the on-s
lattice Green function one can derive simple expressions
the kinetic energy per site

Ekin52E
2`

0

dv@v1m2S~v!#r~v!, ~36!

and for the potential energy per site

Epot5E
2`

0

dvS~v!r~v!. ~37!

The internal energy per site is given byE5Ekin1Epot, and
the average number of doubly occupied sites byd[^n↑n↓&
5Epot/U. The double occupancy vanishes in the stron
coupling limit U°`. For U5W,Uc it is a monotonously
increasing function ofn while d is small ~but nonzero! for
U52W.Uc at half filling.

C. Test of Fermi-liquid relations

Opposed to the full DMFT, the two-site DMFT is not
conserving approach in the sense of Baym and Kadano39

Consequently, the two-site DMFT cannot be expected to
spect certain exact Fermi-liquid relations.40 Drastic viola-
tions of the Luttinger theorem and Fermi-liquid relations f
the charge and spin susceptibilities are well known41 for
simple nonconserving theories such as the Hubba
approximation,7 the Roth two-pole approximation,42 or the
spectral-density approach,43 for example. For the two-site
DMFT it is shown here that there are violations of Ferm
liquid relations indeed. Surprisingly, however, these
fairly small.

One important property of a Fermi liquid is that the se
energyS(v) is real atv50, i.e., ImS( i01)50. This guar-
antees the existence of a Fermi surface which~for a Bravais
lattice! is defined by the set of points ink space with 05m
2e(k)2S(0) wheree(k) is the free band dispersion. Th
Luttinger sum rule40 states that the volume enclosed by t
Fermi surface

VFS52(
k

Q@m2e~k!2S~0!#, ~38!

is equal to the average particle number:

VFS5^N&. ~39!

Here,Q is the usual step function, and^N&5^( isnis&5Ln
where L is the number of lattice sites. The Fermi-surfa
volume can be calculated in the following way:

VFS/L52E
2`

`

dxr0~x!Q@m2x2S~0!#

52E
2`

0

dxr0@x1m2S~0!# ~40!
16511
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to be compared with the filling as given by Eq.~25!. The
equationVFS/L5n with VFS/L given by Eq.~40! is a refor-
mulation of the Luttinger sum rule that is also valid for th
Bethe lattice.

In Fig. 6 the Fermi-surface volumeVFS/L is compared
with the filling n for different U. For moderate interaction
(U5W, solid line! the Luttinger theoremVFS/L5n is al-
most exactly fulfilled in the whole range of fillings whil
deviations of a few percent are found for strong Coulom
interaction (U52W, dashed line! near half filling. The re-
sults of the Hubbard-I approach are shown for comparison
is seen that in this case the Fermi-surface volume is stron
overestimated up to a factor 2 near half filling and irresp
tive of U.

An alternative formulation of the Luttinger theorem
given by30

m5m01S~0!, ~41!

wherem0 is the chemical potential forU50. Replacing the
first self-consistency equation~14! by Eq. ~41!, defines a
variant of the two-site DMFT where the Luttinger theorem
enforced. The resulting filling dependence of the qua
particle weight is shown in Fig. 4 forU54 by the dashed
line. If the original two-site DMFT respected the Luttinge
theorem, there would not be any difference compared w
the result of the variant. As is seen in Fig. 4, the difference
nonzero but rather small.

By means of perturbation theory to all orders40 the com-
pressibility or charge susceptibility

k5
]n

]m
~42!

can be shown to be related to the DOS and the self-energ
v50:

k52r~0!S 12
]S~0!

]m D . ~43!

Similarly, the spin susceptibility

FIG. 6. Normalized ‘‘Fermi-surface volume’’VFS/L as a func-
tion of the filling n for U5W ~solid lines! and U52W ~dashed
lines!. Results as obtained within the two-site DMFT and t
Hubbard-I approximation.
4-8
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TWO-SITE DYNAMICAL MEAN-FIELD THEORY PHYSICAL REVIEW B 64 165114
x5
]m

]b U
b50

~44!

is given by the expression

x5r~0!S 22
]~S↑~0!2S↓~0!!

]b D . ~45!

These equations provide two more exact Fermi-liq
relations.

To calculate the spin susceptibility according to Eq.~44!,
the formalism has to be generalized for the spin-polari
case. Consider a constant external magnetic fieldb in z di-
rection which couples to the total spin

H5H022bSz5H02b(
is

qsnis , ~46!

where H05H(b50) is the Hamiltonian~1!, nis5cis
† cis ,

and q↑51, q↓521 is a sign factor. The field strength
given by b. To account for a finiteb in the formalism it is
sufficient to redefine the on-site hoppingt0°t0s5t02qsb
and likewiseed°eds5ed2qsb. Furthermore, the bath pa
rameters may become spin dependent:ec°ecs and V°Vs

in the impurity model~4!. The self-consistency condition
~14! and ~22! now read

nds[^ds
†ds&5

!
ns[^nis&, Vs

25
!

zsM2
(0) . ~47!

The magnetization is given bym5n↑2n↓ .
Figure 7 shows the filling dependence ofk andx as cal-

culated from Eqs.~42! and~44! to be compared withk andx

FIG. 7. Charge susceptibility~compressibility! k and spin sus-
ceptibility x as functions of the filling forU5W54. Results for the
two-site DMFT and the Hubbard-I approximation as indicate
Solid lines:k andx calculated from the definitions~42! and ~44!.
Dashed lines:k andx calculated from the Fermi-liquid represent
tions ~43! and ~45!.
16511
d

as calculated from Eqs.~43! and ~45!. For U54 there are
hardly any differences. Small differences of the order o
few percent are found forU58 ~not shown!. On the other
hand, within the Hubbard-I approach the filling-dependen
of k andx strongly depends on the way it is calculated. T
respective results are shown in Fig. 7 for comparison.

Concluding, one can state that the Luttinger theorem
well as certain Fermi-liquid relations are well respected
the two-site DMFT. The same holds for the question of th
modynamic consistency: Although the two-site DMFT ca
not be derived from an explicit thermodynamic potenti
consistency relations such as

]2E

]U]n
5

]m

]U U
n

5
]^n↑n↓&

]n U
U

~48!

are found to hold to a comparatively good approximation.
example is shown in Fig. 8. At half-filling the chemical po
tential is given bym5U/2. Therefore, as a function of th
filling the double occupancŷn↑n↓& should have the slope
]^n↑n↓&/]n51/2 atn51 for any ~fixed! U. To a very good
approximation this is reproduced by the results in Fig. 8.

IV. CONCLUSIONS

The two-site DMFT can be characterized as an appro
mate DMFT scheme which refers to a single-impurity And
son model consisting of two sites only, one impurity and o
bath site. Obviously, with a two-site SIAM the original sel
consistency condition of the full DMFT can no longer b
fulfilled, and consequently a comparatively crude appro
mation has to be tolerated. The idea, however, is to const
in this way the most simple approach that keeps the ess
of the DMFT, namely the mapping onto an effective impur
model the bath parameters of which are determined s
consistently. In fact, for the single-band Hubbard mod
some of the calculations can be performed even analytic
and there are no serious problems to be expected for a
merical treatment of multiband models.

Any realization of the DMFT requires a repeated soluti
of the impurity model which itself poses a complex man
body problem. An exact and unproblematic solution is p
sible for a SIAM with a finite, small number of degrees

.

FIG. 8. Filling dependence of the double occupan
d5^n↑n↓& close to half-filling for differentU.
4-9
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MICHAEL POTTHOFF PHYSICAL REVIEW B 64 165114
freedom—at the expense of an approximate mapping. T
idea of the two-site DMFT is similar in spirit to the that o
the exact-diagonalization method which aims at a minimi
tion of the errors due to the discretization of the hybridiz
tion function by including as many sitesns as feasible nu-
merically. Contrary, the two-site DMFT stays with the ca
ns52 and can thus be considered as a ‘‘two-site E
method. The latter, however, is not unique as it depends
the fit procedure used for the numerical determination of
bath parameters.14,15The advantage of the two-site DMFT
that it is based on well motivated self-consistency conditio
to fix the bath.

In principle, an extension of the two-site DMFT toward
anns-site DMFT is conceivable for the single-band Hubba
model. This requires the consideration of higher-order te
in the high- and low-frequency expansion of the origin
self-consistency equation to fix the additional 2ns24 bath
parameters. The computational effort, however, grows ex
nentially with increasingns. Furthermore, higher-order stat
correlation functions would appear in the 1/v expan-
sion of the on-site lattice Green function~13!. At the
order 1/v4 the correlated-hopping correlation functionBs

}( iÞ j t i j ^cis
† cj s(2ni 2s21)& can be expressed rigorously

terms ofG(v) by a sum rule31 similar to Eq.~15!. At still
higher orders, however, additional approximations must
tolerated.

The implementation of the two-site DMFT is straightfo
ward, and the numerics is stable for the entire param
space. It has to be stressed that the approach allows for c
putations that are faster by several orders of magnitude c
pared to numerically exact approaches such as the QMC
ED method. This advantage qualifies the approach for c
prehensive investigations as are necessary, e.g., for the d
mination of phase diagrams. In this respect it is compara
with the iterative perturbation theory~IPT!,4,18,19 for
example.

The single-band Hubbard model has been considered
to illustrate the construction of the theory and to show up
advantages and limitations. Obviously, for the mere sing
band model, the two-site DMFT cannot really compe
against other more suitable methods. The main field of
plication are multiband Hubbard-type models which requ
the solution of more complicated effective impurity pro
lems, or lattice models with reduced translational symme
where one has to solve different impurity problem
simultaneously.28,29 Opposed to the IPT,22 for example, the
extension of the two-site DMFT to the multiband ca
is straightforward. Still the computational effort will b
extremely small as compared to the numerically ex
approaches.

Taking the mass-enhancement factorm* /m5z21 as a
measure for the strength of correlation effects, the Mo
transition pointn51 and U5Uc obviously has a distin-
guished position in the phase diagram. Here the two-
DMFT reduces to the previously developed linearized DM
~Ref. 25! which rather accurately predicts~the mean-field!
Uc for the Hubbard model on different lattices25,28,29and also
for multiband models.26,27 The two-site DMFT can be con
sidered as an extension of the linearized DMFT to the en
16511
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parameter space. It interpolates between the Mott-transi
point wherez50 and the uncorrelated limitU50 or n50
wherez51. Similar as the linearized theory, however, it ca
not be controlled by a ‘‘small parameter’’ but is based on
physically motivated approximation.

The two-site DMFT is the most simple approach that d
scribes the transition from the Mott insulating state to t
Fermi liquid as a bifurcation scenario:4 At halffilling and for
U.Uc the approach reduces to the Hubbard-I approximat
and yields the Mott-insulating solution. AtU5Uc a metallic
solution splits off from the insulating one, the former bein
stable forU,Uc . Below Uc the two-site DMFT predicts a
Fermi-liquid state withz512U2/Uc

2 . This is the same as
the Brinkman-Rice-Gutzwiller result33 ~albeit with a differ-
ent Uc). Although conceptually the two-site DMFT is quit
different from the Gutzwiller method,8,37 the results for de-
pendence ofz on U andn are very similar. In particular, both
approaches yieldz(d)2z(0)}d2 for U,Uc and z(d)
2z(0)}d for U.Uc in the limit d512n°0 ~see Fig. 4
and Ref. 38!.

Similar as the IPT but opposed to the Gutzwiller metho
the two-site DMFT does not respect the Luttinger sum r
for the invariance of the Fermi-surface volume since it is n
a conserving theory in the sense of Baym and Kadano39

and cannot be derived from an explicit expression for a th
modynamic potential. On the other hand, it is remarka
that the deviations from the Luttinger sum rule and also
deviations from different exact Fermi-liquid and thermod
namical consistency relations are rather small. The comp
son with the Hubbard-I approximation~which drastically
violates these relations! suggests that this is due to the a
pearance of the quasiparticle peak in the spectral funct
The Hubbard-I approximation can be considered as a lo
impurity approximation: The exact self-energy of the sing
site ~atomic! model is taken as an approximation for the se
energy of the lattice model. This approach and similar
improved theories42,43 yield high-frequency excitations suc
as the Hubbard bands but fail to reproduce Fermi-liq
properties at low frequencies. To get the~low-frequency!
quasiparticle peak in addition and to restore the Fermi-liq
physics qualitatively, it is sufficient to couple merely a sing
~bath! degree of freedom to the single-site model. This a
holds for the multiband case. A fully conserving and cons
tent theory, however, can only be obtained by coupling to
infinite number of bath sites as in the full DMFT.

Concluding, the two-site DMFT is a simple but non
perturbative mean-field approach to correlated lattice m
els. Compared to the full DMFT and to exact Fermi-liqu
and thermodynamic relations, it yields satisfactory results
the Mott transition and the Fermi-liquid phase in the sing
band Hubbard model with a minimum computational effo
The quality of the method, when applied to different physic
problems, it not cleara priori and has to be examined. I
particular, a comparison between the two-site and the
DMFT concerning magnetic order in the single-band mo
as well as the question of finite temperatures are intended
the future. Primarily, future applications shall address
manifestly complex phase diagrams for spin, charge and
bital order in multiband Hubbard-type models. Here the tw
4-10
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TWO-SITE DYNAMICAL MEAN-FIELD THEORY PHYSICAL REVIEW B 64 165114
site DMFT may serve to give a quick and comprehens
though rough overview of the main physics which c
complement more thorough but selective studies.
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APPENDIX: MULTIBAND MODELS

The most general multiband model with on-site intera
tion reads

H5 (
i 1i 2a1a2s

t i 1i 2a1a2
ci 1a1s

† ci 2a2s

1
1

2 (
iss8

(
a1a2a3a4

Ua1a2a4a3
cia1s

† cia2s8
† cia3s8cia4s .

~A1!

In most cases it is sufficient to take into account interact
parameters that are labeled by two indices, the direct in
action Uaa85Uaa8aa8 and the exchange interactionsJaa8
5Uaa8a8a andJaa8

8 5Uaaa8a8 . Herea51, . . . ,r is an or-
bital index, andr denotes the number of orbitals. Fouri
transformation of the hoppingt i i 8aa8 to k space yields the
free Hamilton matrixtaa8(k) the eigenvalues of which rep
resent the free band structureem(k), wherem51, . . . ,r is
the band index. The orbitally resolved free density of sta
is given by

r0,a~v!5
1

L (
km

ufam~k!u2d@v2em~k!#, ~A2!

where fam(k) is the ath component of themth eigen-
state at eachk, namely, (aa8fam(k)* taa8(k)fa8m8(k)
5em(k)dmm8 .

Assuming the self-energy to be local, it is easy to s
from the usual diagram expansion that it must be diago
with respect to the orbital indexSaa8s(v)5daa8Sas(v).
Consider a cubic lattice and leta refer to orbitals with an
angular dependence given by the cubic harmonics. The
tice symmetries then require the on-site (i 5 i 8) elements of
the lattice Green functionGii 8aa8s(v)5^^cias ;ci 8a8s

† &&v to
be diagonal with respect toa:

Gii aa8s~v!5daa8Gas~v!. ~A3!

Using the Dyson equation, the on-site Green function
generally be written as

Gas~v!5
1

L (
k

F 1

v1m2t~k!2Ss~v!G
aa

. ~A4!

HereSs(v) is the (k independent! diagonalr 3r self-energy
matrix andt(k) the k-dependent~nondiagonal! free Hamil-
ton matrix with the elementstaa8(k).

Within the DMFT the model~A1! can be mapped onto th
following impurity model:
16511
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H imp5(
as

edadas
† das

1
1

2 (
ss8

(
a1a2a3a4

Ua1a2a4a3
da1s

† da2s8
† da3s8da4s

1 (
as,k52

ns

ekasakas
† akas

1 (
as,k52

ns

Vkas~das
† akas1H.c.!, ~A5!

with eda5t0a5t i i aa . The impurity Green function
Gimp,as(v)5^^das ;das

† &&v is given by

Gimp,as~v!5
1

v1m2eda2Das~v!2S imp,as~v!
.

~A6!

The hybridization function Das(v)5(kVkas
2 /(v1m

2ekas) and the impurity self-energy are diagonal with r
spect toa.

The lattice self-energy can be derived by functional d
ferentiation from the Luttinger-Ward functiona
TS i 8 ia8as( iv)5dF/dGii 8aa8s( iv).40 For any finite-
dimensional lattice the DMFT consists in the assumption t
the self-energy be local. This implies thatF depends on the
on-site propagatorGas(v) only. Hence, the functionalF
and thus the functionalS5dF/dG are the same for both, th
lattice model (S5S@G#) and the impurity model (S imp
5S@Gimp#). One can proceed as for the single-band case
the bath parametersekas andVkas are chosen such that

Das~v!5v1m2eda2S imp,as~v!2
1

Gas~v!
, ~A7!

i.e., such that the DMFT self-consistency condition

Gimp,as~v!5
!

Gas~v!, ~A8!

is fulfilled, then at onceS imp,as(v)5Sas(v), and the usual
self-consistent procedure can be set up.

If different orbitals are equivalent due to lattice symm
tries as, for example, the threet2g orbitals in a cubicd-band
system, one can make use of some simplifications: The s
energySas(v)5Ss(v) and the DOSr0,a(v)5r0(v) are
independent of the orbital index, and the on-site Green fu
tion is simply given by

Gas~v!5Gs~v!5E
2`

`

dx
r0~x!

v1m2x2Ss~v!
. ~A9!

The lattice model can be mapped onto a simpler impu
model with ekas5eks andVkas5Vks . In this case the hy-
bridization function and the impurity self-energy a
a-independent, consistent with Eq.~A7!.

The two-site DMFT is constructed straightforwardly. Th
number of~twofold spin-degenerate! one-particle orbitals in
the impurity model isM5r 1r (ns21)5rns. For ns52 and
4-11
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for the general case ofr nonequivalent orbitals there are~for
each spin direction! 2r bath parameters to be determined, t
one-particle energieseas and the hybridization strengthsVas

for a51, . . . ,r . The comparison of the high-frequency e
pansions ofSas(v) andS imp,as(v) to lowest order leads to
a first set ofr self-consistency conditions

nd,as[^das
† das&5

!

nas[^cias
† cias& ~A10!

with nas5(21/p)*2`
0 Im Gas(v1 i01)dv.

In the low-frequency limit the self-energy is expanded
Sas(v)5aas1(12zas

21)v1O(v2) where zas is the
orbital-dependent quasi-particle weight. Inserting the s
energy expansion up to the linear order into Eqs.~A4! and
~A6!, yields the respective coherent parts of the on-site
tice and the impurity Green function. Analogous to t
single-band case one gets

Gimp,as
(coh) ~v!5

zas

v
1

zas
2 ~eda2m1aas!

v2

1
zas

2 Vas
2 1zas

3 ~eda2m1aas!2

v3
1O~1/v4!.

~A11!
ev

ys

a

16511
s

f-

t-

The expansion of the coherent on-site lattice Green funct
however, is slightly different:

Gas
(coh)~v!5

zas

v
1

zas
2 ~ t0a2m1aas!

v2

1
zas

3 ~ t0a2m1aas!2

v3

1zas
2 (

i 8a8
t i i 8aa8za8st i 8 ia8a

1

v3
1O~1/v4!.

~A12!

From the comparison one obtains the second set ofr self-
consistency conditions

Vas
2 5

!

(
i 8a8

za8st i i 8aa8
2 . ~A13!

This includes an additional coupling of the different orbita
Both self-consistency conditions~A10! and ~A13! reduce to
Eq. ~47! for the single-band case.
a-
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