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Effects of van Hove singularities on magnetism and superconductivity in thé-t" Hubbard model:
A parquet approach
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Thet-t’ Hubbard model for the Fermi level near the van Hove singularity is considered within the renor-
malization group and parquet approaches. Interplay of ferromagnetic, antiferromagnetic, and superconducting
channels is investigated, and the phase diagram of the model is constructed. In comparison with previous
approaches, the account of ferromagnetic fluctuations suppresses superconducting pairing and, vice versa, the
influence of the Cooper channel decreases the Curie temperature, so that the Stoner criterion is inapplicable
even qualitatively.
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[. INTRODUCTION account nearest-neighbor and next-nearest-neighbor hopping.
It is often discussed also in connection with HTSC com-
Magnetic mechanisms of high-temperature supercondug@ounds where the valug/t=—0.15 was determined for
tivity (HTSC) have become the subject of intensive investi-La,CuQ, and the valugé’/t=—0.30 for the Bi2212 systeff
gations during last decaddsee, e.g., Refs. 1481t was  (we neglect third-neighbor hoppirt§ that does not lead to
argued that the superconducting properties of HTSC materany qualitative changgs
als are intimately related to their magnetic properties in the The interplay of antiferromagnetism and superconductiv-
normal phase. In particular, many features of HTSC comity near VH fillings within the Hubbard model with’ =0
pounds were explained from the point of view of the com-was first investigated in Refs. 19 and 25. It was shown that
petition of antiferromagnetic and superconducting ordetthe leading instability in this case is antiferromagnetic one,
parameter§-8 A similar physical situation takes place in ru- and the transition temperature is close to its mean-field
thenates like SRuQ,, where the interplay of ferromag- value. At the same time, the authors of Refs. 19 and 25 did
netism and p-wave superconductivity is of crucial not include the contribution of the particle-hole scattering at
importance’ Both copper-oxide systems and,BuQ, are  small momenta, as well as particle-particle scattering at mo-
layered compounds. Therefore a general problem can be fomenta neaQ= (7, 7) by the reason that these contributions
mulated as the investigation of the competition betweerare logarithmic rather than double logarithmic. As we will
magnetic and superconducting instabilites in two-argue in the present paper, even for weak-to-intermediate
dimensional(2D) electron systems. coupling regime these contributions should be also taken into
On the other hand, the problem should be concretizedaccount, which leads to an essential change of the results.
There are some evidences from both electron-structure cal- Recently, the authors of Ref. 26 have performed the renor-
culations and experimental data that the Fermi surf&@®@  malization grougRG) analysis of the states close to f#t
of HTSC compounds at optimal doping or optimal pressureonly near VH singularitieswithin an approach that is similar
is close to the van Hové&/H) singularities of electron spec- to that of Ref. 27. Att'/t=—0.30 they found competing
trum (see, e.g., Refs. 10— 2he situation in the ruthenates antiferromagnetism and superconductivity, depending on the
is similar* Due to the presence of VH singularities, at VH band filling. However, the approach of Ref. 27 also does not
band filling the density of states at the Fermi level becomegnable one to treat particle-hole scattering at small momenta
logarithmically divergent, which makes the Fermi liquid un- on the equal footing with other contributions. As it was
stable with respect to magnetic ordering or superconductivshown by the RG analysis in Ref. 28, the account of particle-
ity. One may expech priori that near VH band fillings the hole scattering leads to occurrence of ferromagnetic phase at
physics is determined by VH points and is not sensitive tdarge enouglft’|/t; the criteriont’/t< —0.27 for the stability
the form of the whole FS. This should be correct providedof ferromagnetism was obtained. At0.27<t’/t<0 it was
that FS is not nested, since in the nesting situdtidhthe  also found that either antiferromagnetism or superconductiv-
contribution of flat FS parts is also importditt®As it was ity takes place. However, unlike Refs. 19, 25 and 26, the
first discussed by Dzyaloshinskfl,the situation in 2D fer- contributions of the Cooper channel were not taken into ac-
mion system near VH fillings is similar in some respects tocount in Ref. 28. The backward influence of the Cooper
that in one-dimensionallD) system&>?! or in 2D systems channel on magnetic ordering was investigated within the
under the nesting conditidi.It turned out that in the insta- T-matrix approack’ It was found for the nondegenerate
bility region the “normal” state can demonstrate a non- Hubbard model that the Cooper channel strongly suppresses
Fermi liquid behaviof® the tendency to ferromagnetism, so that it is possible only for
The simplest model that gives a possibility to investigatet’/t<—0.35. Numerical calculation® predict much larger
the effects of VH singularities on magnetic ordering and suvalues ¢'/t). for the stability of ferromagnetism at VH fill-
perconductivity is thet-t’” Hubbard model that takes into ing: (t'/t).=—0.47.
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Summarizing all these approaches, one can see that we A A

need to consider on equal footing all four types of scattering /‘\
to obtain the correct phase diagram, i.e., the particle-particle { )

and particle-hole channels at both small momentand g -
~Q. The first step in this direction was made in Refs. 31 and A B
32 within the so-called two-patch approach. The authors of a)

Refs. 31 and 32 wrote down approximate equations, which

were very similar to the parquet equations in one A A

ever, they also neglected particle-hole scattering at small mo-
menta and particle-particle scatteringgat Q at final stage.

dimensiort® and obtained reasonable physical results. How- Q /‘\

@A

Besides that, these 1D-like equations do not reproduce A
correctly all the peculiarities of the 2D dispersion law even b)
close to VH singularities. From this point of view, most
straightforward is the parquet approach of Refs. 19¢@ra FIG. 1. Diagrams(bubble$ for noninteracting susceptibilities

review see also Ref. 34lt was applied to the VH singularity nhearq=0 andq=Q in (a) Peierls channe(b) Cooper channel.
problem in Refs. 19 and 25, but only the cas&=0 was Solid and dashed lines correspond to the electron Green functions
consideredstrictly speaking, this case requires an account of’arA and B singularities with the spectre3a) and (3b), respec-
the whole FS because of nesttfig tively.

In the present paper we consider different phases of the .
t-t’ Hubbard model {'/t<0) and construct the phase dia- = —2t(sirPpk;—cofokl) = -2tk k_—u, (33
gram near VH fillings within the approaéf.Note that this
approach9 is somewhat different from that used in later sE=2t(cosz<pk)2(—sinzgok§)=2t~k+l~<,—,u, (3b)
paperé>!® and, as we will argue in this work, is more cor- . o
rect. wherek,=m7—k,, k,=m—Kk,,

The outline of the paper is the following. In Sec. Il we -
discuss noninteracting susceptibilities and consider the k. =singk,* cosek,
random-phase approximatigRPA). In Sec. Il we consider (4)
two-patch eq_uations with all four chann_els of sce_lttering in- K. = cosek, = Sin@K/,
cluded and discuss the results of numerical solution of these
equations. In Sec. IV we consider a full parquet approach te is the half of the angle between asymptotes at VH singu-
VH problem and compare the results with those of two-patcHarity, 2¢ = cos 1(2t'/t).
approach. In conclusion we summarize main results of the At U=0 we have the following results for the suscepti-
paper and discuss possible directions of further investigahilities at smallg andg~ Q=(m, ) [see Fig. 13)]:
tions.
s fe)—flekig _ 2

+E
IIl. THE MODEL AND RPA RESULTS Xa™ < sp—ef g 4772t(§+ ¢, (53

We considert-t” Hubbard model on the square lattice: A 5
flep)—f(ersq)

_.B
H=2 el Chot U NN (1) : fk™ kg
k i
1
with = - Min(zgé ,2gé- &4 &-). (5b)
2t
g = — 2t(cosk,+ cosky) + 4t’ cosk, cosk,+ 4t" — u, Here f(e) is the Fermi distribution function, &
(2 =min[In(A/g.),In(AtY%|u|?)], . are defined in the same

. _ ) ) way as in Eq.(4),
where u is the chemical potentigwe have picked out 4

for further convenienge We have already absorbed the sign 2,=1N1-R?% zo=In[(1+1-R?/R], (6)
of t' into Eq. (2), i.e., (hereafter we assume the transfer
integralst,t’ to be positive. (6st'/t<1/2). and R=2t'/t. The expressions foB«~ A are obtained by

The spectrum(2) contains VH singularities connected replacingé, —¢,, & ——&_ whereZ.=min[In(A/d.),
with the pointsA=(w,0), B=(0,). These singularities In(At"%|u*3)]. The momentum dependence yf calculated
lie at the Fermi surface for the filling witk=0 and arbi-  with the spectra2) is shown in Fig. 2a). Since both the
trary values ot’. Fort’ =0 the FS is nested, but the nesting susceptibilities are divergent, we have at least two competing

is removed fort’/t>0. order parameters. In fact, two other polarization bubbles of
Being expanded near the VH singularity points, the specfig. 1(b), which are responsible for zero momentum and
trum (2) takes the form pairing, are also divergent at small [see also Fig. @)]:
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FIG. 2. The momentum dependence fay noninteracting sus-
ceptibility and(b) noninteracting Cooper responset &t =0.3.
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where

co=1N1-R?% co=tan }(R/V1-R?/R.
For Hﬁ‘ we again have the replacemems—B and &,
—&, §&——¢ inEq.(7a).

In the RPA the expressions for particle-hole and particle-

particle susceptibilities read

— Xq
— II
_ q
Hq_1+UHq' ©
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wherep?= max(T/t,|u|/t,Alt) (A~Sis the spin splitting The
solution to this equation reads

p=A ex —2m72\t2— (2t")2/U].

Therefore the ferromagnetism is present at Bnynoreover,

at U~272[t2—(2t')2]Y? one can expect that it becomes
saturated. Similarly, considering the antiferromagnetic insta-
bility we obtain

U ,(I A A) . 0
min| In*—,zoIn—| =1,
2%t p’ % p
which gives
N exp—272t/U), Ul(27%t)>1/z%
p=

exp( —2m?t/zgU), Ul(2m?t)<1iz}

so that antiferromagnetism is favorable at smalt.

However, as it was discussed first by Dzyaloshinskii and
coworkers '°"?2RPA is incorrect even in the weak-coupling
limit, except for the case when only one bubble is divergent.
Since in the VH case all four bubbles of Fig. 1 are divergent,
we have to use the parquet approdcff instead of RPA.
While in 1D case the parquet equations reduce to conven-
tional differential RG equationésee, e.g., Refs. 17, 21 and
33), for higher space dimensionalities we have coupled inte-
gral equations. First we consider the application of the two-
patch approach of Refs. 31 and 32 that uses mapping of the
full parquet equations on an “effective” 1D problem.

IIl. TWO-PATCH EQUATIONS

The authors of Refs. 31 and 32 proposed the approach
that neglects the difference betweén and¢_ (and conse-

quently betweer, andZ_) and introduced a single-scaling

variable é&=min(&, ,&_ &, £.). Note that this approach is
not strict, in particular because of the presence of double-
logarithmic terms in Eq95b) and(7a). At the same time, as
we will see below(see also Ref. 32 this reproduces cor-
rectly main features of the exact parquet equations.

The two-patch equations refd?
¥1=20d1(€) y1(v2— v1) +2d2¥174— 2d3717>
Y5=d1(E) (Y3 +¥3) +2do( 1~ v2) ya—da( ¥+ ¥3)
v3= —2do(€) yayat2d1(€) va(2y2— 71)

V4= —do<§>(7§+yi>+d2w§+2ym—2y§+yfo,( )
12

wherey/ =dv; /d¢,

Thus II decreases when the Coulomb interaction is taken

into account, whiley increases and can diverge at sobhe

do(§)=2co&;  d1(£)=2min(£,zq)

In particular, we have the conventional Stoner criterium of

ferromagnetisnl yo,=1, or

2 nZog (10)
n — y
2%t P

and four verticesy; _, are defined in Fig. 3. In these nota-
tions, y;(0)=go=U/(47?t) corresponds to the Hubbard
model. While only the casé,,d;<d;,d; was considered in
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FIG. 3. The verticesy,(i=1...4). The solid lines inside the %0

circles show which incoming and outgoing particles have the same
spin projection.

. . a
Refs. 31 and 32, we perform a more general consideration (@)
where all the bubbles are taken into account. We have also 120

taken into account the coefficien} to treat correctly the’ 100
dependence of the amplitude of particle-particle scattering.
Note that the equationd 2) are very similar to those in the 80
1D casé”?Y*with the difference that in the latter case one . 60
has
40
d0=d2=0; d1=d3=1. (14) 20
e e

The complete discussion of the physics of the equati®@s R e R
in the 1D case is given in Ref. 21. In two dimensions, the E
coefficientsd, andd, become¢ dependent because of the (b)

presence of double-logarithmic terms. As we have already
mentioned, this gives only approximate treatment of such
terms. The equationd 2) give a possibility to investigate the 125
interplay of all the four scattering channels.

For ferromagnetic, antiferromagnetic, addvave super-
conducting susceptibilities we obtafsee Ref. 38

150

3
XF.AFd-sd &)= Jo dgdz,l,o(g)Té,AF,d-sc@), (15

where7 satisfies the equation

da(y1t va) FIG. 4. The ferromagneti¢solid line), antiferromagneti¢long-

din TEAF,d-SC_ d1(&)( Yo+ ¥a) 16 dashed ling andd-wave superconductin¢short-dashed linesus-

dé B ! YT (16 ceptibilities for the two-patch model witfa) t’'/t=0.15,9,=0.10
do(&)(y3—v4) (b) t'/t=0.45,9,=0.10, (c) t'/t=0.30,g,=0.01.

The squared vertex in Eq15) has the same origin as in
the RG equationg12). It arises after the application of
Sudakov’s tricR® (see also the Appendixwhich replaces

2 .
907 (Ky . .. Kkq) by 77({). The same result can be obtained pe a¢re lowering, we may neglect the interpatch scattering.
directly by RG approach. Provided thgaf andy, are simul- :
y by PP : f andy, ) ., In the ferromagnetic case we have only one nonzero vertex
taneously relevant, we have ferromagnetic ordering, while

. ) ; v4, @and the equation for it has the form

v, and y; lead to antiferromagnetic ordering. For the super-
conductivity, we have a more complicated combination of r_ _ 2
relevant and irrelevant vertices. 7=~ 2(20~ Co) %, (7

The results of the solution of equatiofi®)—(16) for vari-  gg that
ous values ofjy andt’/t are shown in Fig. 4. Depending on
the values ofyy andt’/t, ferromagnetic or antiferromagnetic
susceptibility, ord-wave superconducting response diverges = 9o .
first. The parameter dependences of the critical energy scale 1+9go(Cof?—220¢)
uc=texp(=2&) are shown in Fig. 5. This scale can be ap-
proximately identified with the critical chemical potential or
transition temperature. For comparison, the RPA results for

tures obtained from the two-patch equations are much lower
than the corresponding RPA results.
To understand qualitatively the nature of the critical tem-

(18

The modification of the Stoner criterion takes the form

- . . . 1/2
the stability of ferromagnetic and antiferromagnetism are 9ol 22,1 At —c Inzé 1 (19)
shown too. One can see that the values of transition tempera- S PR P B
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FIG. 6. The phase diagram for the two-patch modegdrt’/t

FIG. 5. The phase diagram for the two-patch modejin’/t coordinates at van Hove fillingi{=0).

coordinates foigy=0.1 (U=3.98). Dotted line is the mean-field

boundary for antiferromagnetic phase, dot-dashed line for ferro-

magnetic one. —kq+ k3= —ky+} being the Cooper and zero-sound momenta
transfer. Note that, because of the presence of double loga-

Then we have from Eq19) at z,=c, (which is the case of rithms, we cannot restrict ourselvespriori to considering

t-t’ mode) the caseé¢, ~¢_ and .~ #n_, but have to treat a more
general case. The verticeg(¢.. ,7.) in different regions of

AtL/2 1 1 £, and 7. are given by°
In T2 =1- 1—>
| ] Z0o 22099

Yi(és,m2)= 'Yih(fi N+)=00+ Ci(€+, ) +Zi( 7+ ,m+)

(for R close to unity we havey,go>1). Thus, the decrease of 5
the Curie temperature in comparison with the mean- TZi(72,n:) (62> 72),
field approach ¢;=0) is directly connected with the ac- |
count of the Cooper bubble, which is in agreement with the Yi(§+,7+)=¥i(§+x,7+)=0o+Ci(&+,6-)+Zi(Ex,m+)
T-matrix approximatiorf® Note, however, that the structure ~ 1 @)
of Eq. (18) is different from that obtained in th&-matrix HZi(6x E)(Ex<m= < 7Y),
approach.

The resulting phase diagram -t'/t plane with all the yi(és ,ni):}!(gi ) =00+Ci(éx ,EL)+Zi(£x L)
scattering channels being included is shown in Fig. 6. One
can see that thé-wave superconducting response is strongly +Zi(éx ) (é=<n2, 7P>9P), (20
suppressed by particle-hole scattering processes. This is the
leading divergent response only at small values of couplingvheren(il'z)zIn(A/|k3i—k1,2i|). Following Ref. 20, we have
constantgy<0.04, which corresponds 10<1.6. The criti-  taken into account that @t. > ».. the Cooper brick depends
cal temperature in this region is also exponentially smallon both ¢é. and 7., while the zero-sound bricks depend

[T~ pe~ exp(=1/go) 1. only on . . Vice versa, att.<n. the Cooper brick and
one of the zero-sound bricks depend only §n, and an-
IV. PARQUET EQUATIONS other zero-sound brick depends on bgthand 7.. .

) ) When all momenta are of the same order of magnitude,
Now we pass to the consideration of the full parquet equaje ¢, = 5. | the vertices

tions and compare the results of their solution with approxi-
mate RG equations of Sec. Il. We use the generalization of yi(£x E0)=y(E2)
the approach of Ref. 20 to the case of two dimensions. A
In the parquet approactsee the Appendixwe have for  are analogous to those introduced in Sec. Il with the only
each vertexi=1...4 three types of bricks, which are (gifference that now they depend on two scaling variables
shown in Fig. 7: the Cooper bridg;(¢- ,7+), and two zero- ¢, However, unlike the 1D case, the parquet equations do
sound bricksZ;(¢+,7+) andZ;(¢-,7-). Up to a logarith-  not reduce to the equations fes(£-), but contain the full
mic accuracy, they depend og.=In(A/k.) and 7. dependencey;(¢+,7+). The corresponding equations are
=In(A/g=) only, ki=kj-+k,. and q-=maxXks- presented in the Appendix. As discussed in Appendix, the

(21)
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k k
k| Kk, Kk K,k k, ! S K,
FIG. 7. The representation of
the vertex in the parquet approach
>2<= >< + + + as a sum of bricks for the Cooper
(C) and zero-soundZ,Z) chan-
h ) nels.

approach we use gives a possibility to treat the 2D situatiomquations, but are still lower than the RPA results. In particu-
in a more correct way in comparison with the approach oflar, in the limit of smallt’/t the parquet calculatiors;*®
Refs. 22 and 19. which do not take into account single-logarithmic contribu-
The parquet equations were solved numerically. To thigions of the loops Figs. (&), and 1d), yield for go=0.1 the
end, we placed the variablés» on a grid with 16 points in  critical value for stability of antiferromagnetisrﬁ§=5.2,
each dimension, so that the total number of vertices to bghich is close to RPA resulEizS.O. At the same time, our

taken into account is 84x16'~8x1(P. It is important  parquet calculations give larger valu@=6.37 (the result of
that the grid was chosen for the logarithmic variables, two-patch equations i§2= 18.2). The region of stability of
but not fOI.’ the mpmenta.themselves. This gives a pos_s'b'"t)ﬂ-wave superconducting phase is even smaller than that ob-
to use simple integration method®.g., the trapezium (sined from two-patch equations.

method to obtain the results that are correct to logarithmic The critical concentrations,, for the stability of ferro-

accuracy. The resulting system ok8(° algebraic equations magnetic, antiferromagnetic or superconducting phases close

was solved by the Zeidel method. _.to VH filling can be estimated from the critical chemical
The structure of the solutions of the parquet equations i3otential with the use of the condition

quite similar to that in the two-patch approach, except for

that now we have momenta-dependent vertices. Again, the

relevance ofy; andy, with £. = 7. = ¢ leads to ferromag- n= ; flew). (22
netic ordering, while the relevance of, and y; at &.

= . = £ to antiferromagnetic one. The results of solution of Using the form of spectrurt?) and taking the limit of filling
the parquet equations are shown in Figs. 8 and 9. One caslose to VH one, we obtain fdpu|<t

see that the results coincide qualitatively with those of the

two-patch parquet approach of Sec. Ill. At not too latte, 5 e I AtY2 £ exp(—2&,)
the antiferromagnetic instability occurs first, while fdr't Ne=Nc—Nyy= n—p= ,
close to 1/2 the leading instability is ferromagnetic one. The 2mt1-R? Mo 2m?\1-R?
superconductivity occurs also only for very smggl. (23

The transition temperatures obtained within the parquefyheren,,, is the VH filling. In particular, forgo=0.1 (U
approach are larger than those obtained from two-patch- 3.95) we have from Fig. 8

025 T T T T
0.15 —
I /
0.20 ' B i
P /
i /
0.15 | ' . _otor T
=3 R
g - =
E = L
]
0.10 - "
S AF
r 0.05 .
0.05 -
0.00 1 | Il I\
0.00 0.10 0.20 0.30 0.40 0.50 0.00 —_
ti 0.00 0.10 0.20 0.30 0.40 0.50

t'ft
FIG. 8. The phase diagram from parquet equationgeitf/t

coordinates foigy=0.1 (U=3.98). The lines are the same as in FIG. 9. The phase diagram from parquet equations for van Hove
Fig. 5. filling (1=0) in go-t'/t coordinates.
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&n.=0.01 (AF phase, t'/t—0), per. Although the margin¥i and non-Fermi-liquid
behaviof® was found(see also the discussion in Ref.)37
8n.=0.03 (F phase,t’/t=0.45). (24)  this problem needs further investigations, since a simulta-

neous account of all the scattering channels can be important
Thus, except for the limiR—1 (t'—t/2), the critical con- in this case too. For example, only one of four scattering
centrations are very small, which is in qualitative agreementhannels was included in Ref. 23.
with the results of Ref. 29. Because of the exponential small- We believe that the results of the present paper can be also
ness of the critical chemical potential, the critical concentraimportant for the theory of itinerant-electron ferromag-
tions for the superconducting phase are even smaller thametism. A standard consideratidincluding contemporary

those for the magnetically ordered phases. spin-fluctuation theori€§) starts from the RPA approach. It
was noted in Ref. 39 that for almost all known itinerant-
V. CONCLUSION electron ferromagnets the Fermi level lies near a 2D-like VH

singularity. This is a result of merging two weaker 3D

Now we summarize the main results of the paper. Usingsquare-root singularities along symmetrical directions in the
the two-patch equationgSec. ll) and parquet equations Brillouin zone?® We have shown that under such conditions
(Sec. IV) we constructed the phase diagrams-bf Hubbard  the RPA approach and the Stoner criterion are not applicable
model(Figs. 5, 6, 8, and Bat the fillings that are close to the even qualitatively because of the strong interference with the
van Hove one. It was argued that the simultaneous accouooper channel. Of course, the effect of the logarithmic VH
of all the scattering channels is important in considering thesingularity in the 3D case is not exactly the same as in the
VH problem, the smallness of contributions of some chanpure 2D case considered here, so that the 3D problem needs
nels (logarithmical vs double-logarithmical divergendee-  further investigations. However, the naive Stoner criterion is
ing compensated by the growth of relevant couplings. Bothn any case doubtful and needs a careful justification.
the approaches used, two-patch and parquet ones, give simi- |n this respect, it would be interesting to generalize the
lar phase diagrams. In agreement with the previougesults of the present papet least those from the two-patch
approache$~3° antiferromagnetism is favorable for small equation$ on the degenerate-band Hubbard model. As was
t’/t, while ferromagnetism for larger values Bft. The sta- argued in Ref. 29, in this case the suppression of ferromag-
bility of antiferromagnetism and especially ferromagnetismnetic ordering is much weaker than for the nondegenerate
is greatly reduced in comparison with the correspondingnodel considered. One can also expect that the particle-hole
mean-field criteria. Thus the Stoner criterion is completelyscattering with small momenta will not renormalize super-
inapplicable for the systems with VH singularities; depend-conducting channel as strongly as for the nondegenerate
ing on the value'/t, it overestimates the critical temperature model. However, these statements need further justification
by two to ten times. This conclusion is in qualitative agree-since the diagram series in the degenerate and nondegenerate
ment with the results of Ref. 29. Besides that, the mean-fieldases look like rather similar.
approach is unable to determine the critical valwé&'t{,
which separates the ferromagnetic and antiferromagnetic
phases.

Unlike Ref. 28, ¢'/t). turns out to beU dependent and The research described was supported in part by Grant
decreases with increasing Although the RGand also par-  No. 00-15-96544 from the Russian Basic Research Founda-
queb approach is unable to describe the ordered states, frofion (Support of Scientific Schools
scaling arguments we ha® (u./t)?, whereg is the mag-
netization critical exponent. With increasing, the ferro-
magnetic and antiferromagnetic states are characterized by
large magnetic moments, and ferromagnetism possibly be-
comes saturated. However, these valuedJofre not de- First we consider the simple model of spinless fermions
scribed by perturbative approaches and should be treated in
the strong-coupling limit. At the same time, determining pa-
rameters of the ferro-antiferromagnetic quantum-phase tran- sz 8kCICk+E 9(p)Cle—pCle+p (A1)
sition would be of interest, especially the critical exponents. k kp
One can expect that they are independent of the coupling.

Another result of the paper is that the tendencg4wave ~ With  g(kg)=go. In one dimension we have the
superconducting pairing is considerably reduced in comparitepresentatiof! for the renormalized vertey (Fig. 5)
son with the treatments of Refs. 28 and 26: it can occur only
at very small values of). Of course, this concerns only the Y(EN)=0o+C(E ) +Z1(E ) +2Za(Em),  (A2)
pairing due to the VH singularities themselves; the pairing
can be further enhanced by other factors. This can be also thgnere the bricks are given by
subject for future investigations. Details of the electron spec-
trum, especially the form of the fermion Green’s functions ;
close to the_phase transition into the ferromagnetic or anti- C(&m)= _Cj devS(E, My (&m), >
ferromagnetic state are beyond the scope of the present pa- 0
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case where the integration in the Cooper bubble is double
logarithmic while in the zero-sound channel this yields only
simple logarithmgwhich is similar to the situation for VH
singularities. Then it can be checked by a direct comparison
with perturbation theory that the equations

C(é+,m-)

Z1 &)= 21,2J0nd§3’i,2(5) 7I1,2( &), €<nm,
(A3)

and &=In(A/lk+ky|);  n=In(A/maxks—k; ks—ks}). Here

the definition is used
1Z1<]¢]

a:[g
’ & |L=>E’

and we assume that the Cooper and zero-sqénand 2)
loops are logarithmically divergent with the coefficierds
and z; ,, respectively(we generalize here the approach of

Ref. 20 to the case where both the channglandZ contain
divergencels The vertices in Eq(A3) are given by

Y(E) =00+ Z1(£,6)+Zy(£,8),
YiAé) =00+ C(£,6)+Z,4(,8),

Y(Em =) +C(£m),

A4 [Ty —
(A4) :_Cgofo fo d§+dé’—’}’c(§:v7lt)?’h(§:aﬁt)a

E>ma
Zl,z(ft 17]i)
:Zl,2g0f0n+d§+ 7,%_,2(§+ 1§+ lg—)Fyll,Z(é,+ /= 1771)

A5 - e
(A5) +21,2g0f07] dZ_ YA€ L E )Y Lo ime),

L<m A10
NAEN=ViAE+ZiAEm). _ fesme (MO
with
The equationgA2)—(A5) form the closed system of par-
guet equations for the 1D spinless case. The validity of these Y ne)=00+Z1( <, n+)+Zo( 1+, )
equations can be demonstrated for the simple case where
only one bubble is divergent, e.gz;=2z,=0, so that the Y(EL)=0o+Ci(€x &)+ 25 (€~ ,E0)
direct ladder(RPA) summation is possible. In this case
Z1 & m)=0, ¥°(£)=0g,, and we obtain from(A2) and YW(ér 7 )=9(5+)+C(éx ,72)
(Ab) the standard ladder equation
| _ Az
Y1) = Qo= COoEYV(E, 7). (A6) Yilés o) =vi(E0)+Zi(€x  m+) (A11)
This has the solution give the parquet solution of the problem. Note that beyond
one dimension the integral parquet equations do not reduce
9o to differential ones.
v(é€,m)= 17 cauE’ (A7) The above approach is different from the approach of

Now we return to the general cage,z,,c#0. As it is
shown in Ref. 20, the equatiorid2)—(A5) at £=» can be
reduced to

¢
7(6,5)57(§)=90+(21+22—00)L YA({)d¢  (A8)

which is equivalent to the differential RG equation
dy
d—§=(21+ 2,—C) .

Since in one dimensiom;=c, z,=0, v is marginal and
we have a Luttinger-liquid behaviéf:*31Alternatively, the

(A9)

equation(A8) or (A9) can be obtained directly with the use

of the Sudakov’s trick or standard RG approathwithout
considering the general dependendé, »). Thus, in the 1D
case the parquet and RG approaches are equivalent.

In the 2D case we have two pairs of variablés, and

Refs. 22, 19, and 17 where a standard RG scheme was ap-
plied in one dimension, while momentum dependence in an-
other dimension was taken into account exactly rather than to
logarithmic accuracy. However, the applicability of last ap-
proach is doubtful. Indeed, in the 1D case the equaik®)

can be considered as a logarithmic approximation to the
Bethe-Salpeter equations

A
C(kllk21k3):go_COgOJ'0 dk7(k1+kvk2_klk3)
A
Zl(kl,k2,k3)290+zlgofo dky(ky,ks+k,ks)

A
Z5(Kq,ky,k3) =00+ Zzgofo dky(ky,ky+K,k3+K).
(A12)

In the 2D case where we haw®th slow and fast momenta

7. . Moreover, unlike the 1D case, now two possibilities we need to combine Eq$A8) and (A12) which is impos-

occur: the momentum integration in bubbles can be logarithsible since Eq(A8) is quadratic iny while Eq. (Al2) is
mical or double logarithmical. For example, we consider thdinear. The equations of Refs. 22, 19 and 17

165107-8
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& A
Clky Kok, €)=00Co | i [ " dhevi ke kst

X y(ky+k ko =k, K33 )

¢ A
Zl(k11k2ak3:§):go+21f0dgjo dky(ky,ks+Kk,Ks;0)

X y(ky+k,ky ks +Kk;{)

& A
Zz<kl’k2,k3’§)290+22f0dgjo dk'y(kl,k2+k,k3

+K; ) v(kst+ KKy, Ks:0) (A13)

are not fully correct. If we suppose thatdoes not depend on
¢, we do not reproduce the 1D Bethe-Salpeter equations
(A12). At the same time, the approach of Ref. 20 is free from

these problems.

The generalization of equation®10) to the full VH
problem is trivial. The parquet equations have the form

Ci(és,ms)= _CQJ ['}’i(gtﬂ?:)'}’g(ft L)
CQ

+ 73(&#&)72(& )],

zl(st;ng:fo (V2o o) Pl e L)
2Q

V5L E) Vi€ L)

— 2940 E) (£ L)
+ V5L E) Va(£x L)
V5L Ex) Va(£x L)
—294(02 ) V(£ .00)],

- A_ —
Zl(fi;n:)=20f Yﬁ(gryfr)yl(grﬂl:)
20

B — o~
+20f ')’i(gtygr)')’lzl(gr'ﬂr);
%0

Co(és,m+)= _CQJ ["}’g(grﬂlr)"yg(ft L+
cQ

FYS(La ) V(s L],

PHYSICAL REVIEW & 165107

A~
Zy(€+im+)=29 [7§(§i1§i)7|2(§i177t)
)

+ '}’zzl(grygr);’ll(gr ' N+)

_Zyi(gtifr)ylz(griﬁt)]
B 5 |

+Zof [F)/i(giagi)’)ﬁ(givnt)
%

+ y;({t,gt);h(ft ' 7=)

_Zyg(givfi)')’ld,(gi 177i)]1
2z<§i;ni)=zqf [Ye(LerE) VoL 1)
2Q
Y5 E0) Ve )]s

A ~ __\.h
C3(§:;7]:):_COJ 72((117]:)73(5:@:)
Co

B -
_Cof 75(51,%)72(&,&).
Co

zs<§i;nt>=zqf (YA ) G Lo 1) — V(L 0)
2Q
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+ (Yoo ) = VoL E) Vo Lo 77
+ YL E)VA(Le 1) — V5(Ls  2))

+ (VL Er) = VoL E VAL )],

23(5: ;Ut):ZQf [’Y;Zs(é‘/:vfr)fylz(gr 1 7+)
Q
+ '}’é(giafi);’ls({i =) 1

A [
C4(§i;771):_cof Yg(fi,ﬂi)yg(fi,§i)
Co

B ~ __\.h
_COJ 72(§i177i)74(§i1§i)1
Co

A
Zy(&+ ;ﬂi):ZOJ; [7§(§i1§i)74(§i V1)

+ ')’:21(5:15:)'))4(@: ' 7=+)

_Zyzzl(girgi)’ylzl(gi ' 7=+)]
B PR

+Zof [V5(Ls ) va(Ls  ms)
20

+ 7%(€i1§i)7|2(§i ' 7=+)

—294(La €)Y Le 1)),
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max0,¢_|signé , }
+ d

- Al
Z4(§t;ni)220f 'yz(giagi)'ylzl(giint) ) )
) min{0,|¢_ |signé , }

B, —— min(cos2<pk,,p+)+p+‘ _
+ZOLO7’1(§:,§:)71(§:,77:)- (A14) ‘ cos 2pk_+Sin 2¢p ‘f(§+,§_),
The vertices are now given by A (7]
_ f f(§+l§—):f7 d§+f(§+,7]_)
V(0 =G0+ Zi e 0e)+Zi( 92 92, Z° 7!
[7-]
Vi) =G0t Cilé £2) HZi(é2 E0), +f|,7_|df+f<’7+ £-)s
Z(E,)= 4 . : B 7 -
7I(§i) gO+CI(§i1§t)+ZI(§il§i)i J‘ f(§+,f—):J|T~||d§+f(§+:77—)
Z —|n+
W(Es 72) =y (n2)+Cilés 72), ’ -

n_ ~
7:(5::77:):%2(51)"'2(5:1771)1 +f|;]|d§+f(7]+,§),
’Y:(‘f:,7]:)2')’?@:)"'2(5::7]:); (A15) f f(§+,§)=J|7]+| (me{o,lnlsigr{g

and the regions of integration are defined by Q ~l [ T minf0]n[sigr
A el [le| f max{g“),gm})
_ + dz.de_
fcof(§+,§) f_|§+J_§|d§+d§f(§+,§). mingc®) /) {+dg
B €. (T Kk |
f(£+,§7)= ~ ~ ngrdg,f(ng,g,), + .
fco —[e 1) -[e| X ki+k2,+20052pk+k,‘f(g+'g_)’
“f+‘ ma ,(j') max —|&_|si 4+ (,2)
j f(§+’§*):J' (j - X{Ofl)}—FJ | X —|¢ \-gn( ({2)}) (A16)
He) —|é4] min{0,¢’} min{—|£_|signz, &7} where
d2.de k- | = AsgriZ.)exp—| )
OS2 K2 +k2 +2 cos 20k, k._|
. )+Jma’{o’§*|5igrf}d§ L(ks)=sgrk.)In|A/k.|
T Imingole, lsigne (M= —L[k, /cos 2]
X‘min(coszpk+,p)+pf(§+’§_) [P =—L[k, /cos 2p].

cos 2pk . +sin 2¢p
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