
PHYSICAL REVIEW B, VOLUME 64, 165107
Effects of van Hove singularities on magnetism and superconductivity in thet-t8 Hubbard model:
A parquet approach

V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson
Institute of Metal Physics, 620219 Ekaterinburg, Russia

~Received 1 March 2001; published 3 October 2001!

The t-t8 Hubbard model for the Fermi level near the van Hove singularity is considered within the renor-
malization group and parquet approaches. Interplay of ferromagnetic, antiferromagnetic, and superconducting
channels is investigated, and the phase diagram of the model is constructed. In comparison with previous
approaches, the account of ferromagnetic fluctuations suppresses superconducting pairing and, vice versa, the
influence of the Cooper channel decreases the Curie temperature, so that the Stoner criterion is inapplicable
even qualitatively.
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I. INTRODUCTION

Magnetic mechanisms of high-temperature supercond
tivity ~HTSC! have become the subject of intensive inves
gations during last decades~see, e.g., Refs. 1–8!. It was
argued that the superconducting properties of HTSC ma
als are intimately related to their magnetic properties in
normal phase. In particular, many features of HTSC co
pounds were explained from the point of view of the co
petition of antiferromagnetic and superconducting or
parameters.6–8 A similar physical situation takes place in ru
thenates like Sr2RuO4, where the interplay of ferromag
netism and p-wave superconductivity is of crucia
importance.9 Both copper-oxide systems and Sr2RuO4 are
layered compounds. Therefore a general problem can be
mulated as the investigation of the competition betwe
magnetic and superconducting instabilities in tw
dimensional~2D! electron systems.

On the other hand, the problem should be concretiz
There are some evidences from both electron-structure
culations and experimental data that the Fermi surface~FS!
of HTSC compounds at optimal doping or optimal press
is close to the van Hove~VH! singularities of electron spec
trum ~see, e.g., Refs. 10–13!; the situation in the ruthenate
is similar.14 Due to the presence of VH singularities, at V
band filling the density of states at the Fermi level becom
logarithmically divergent, which makes the Fermi liquid u
stable with respect to magnetic ordering or superconduc
ity. One may expecta priori that near VH band fillings the
physics is determined by VH points and is not sensitive
the form of the whole FS. This should be correct provid
that FS is not nested, since in the nesting situation15,16 the
contribution of flat FS parts is also important.17,18As it was
first discussed by Dzyaloshinskii,19 the situation in 2D fer-
mion system near VH fillings is similar in some respects
that in one-dimensional~1D! systems20,21 or in 2D systems
under the nesting condition.22 It turned out that in the insta
bility region the ‘‘normal’’ state can demonstrate a no
Fermi liquid behavior.23

The simplest model that gives a possibility to investig
the effects of VH singularities on magnetic ordering and
perconductivity is thet-t8 Hubbard model that takes int
0163-1829/2001/64~16!/165107~11!/$20.00 64 1651
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account nearest-neighbor and next-nearest-neighbor hop
It is often discussed also in connection with HTSC co
pounds where the valuet8/t520.15 was determined fo
La2CuO4 and the valuet8/t520.30 for the Bi2212 system24

~we neglect third-neighbor hoppingt9 that does not lead to
any qualitative changes!.

The interplay of antiferromagnetism and superconduc
ity near VH fillings within the Hubbard model witht850
was first investigated in Refs. 19 and 25. It was shown t
the leading instability in this case is antiferromagnetic o
and the transition temperature is close to its mean-fi
value. At the same time, the authors of Refs. 19 and 25
not include the contribution of the particle-hole scattering
small momenta, as well as particle-particle scattering at m
menta nearQ5(p,p) by the reason that these contributio
are logarithmic rather than double logarithmic. As we w
argue in the present paper, even for weak-to-intermed
coupling regime these contributions should be also taken
account, which leads to an essential change of the resul

Recently, the authors of Ref. 26 have performed the ren
malization group~RG! analysis of the states close to FS~not
only near VH singularities! within an approach that is simila
to that of Ref. 27. Att8/t520.30 they found competing
antiferromagnetism and superconductivity, depending on
band filling. However, the approach of Ref. 27 also does
enable one to treat particle-hole scattering at small mome
on the equal footing with other contributions. As it wa
shown by the RG analysis in Ref. 28, the account of partic
hole scattering leads to occurrence of ferromagnetic phas
large enoughut8u/t; the criteriont8/t,20.27 for the stability
of ferromagnetism was obtained. At20.27,t8/t,0 it was
also found that either antiferromagnetism or superconduc
ity takes place. However, unlike Refs. 19, 25 and 26,
contributions of the Cooper channel were not taken into
count in Ref. 28. The backward influence of the Coop
channel on magnetic ordering was investigated within
T-matrix approach.29 It was found for the nondegenera
Hubbard model that the Cooper channel strongly suppre
the tendency to ferromagnetism, so that it is possible only
t8/t,20.35. Numerical calculations30 predict much larger
values (t8/t)c for the stability of ferromagnetism at VH fill-
ing: (t8/t)c*20.47.
©2001 The American Physical Society07-1
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Summarizing all these approaches, one can see tha
need to consider on equal footing all four types of scatter
to obtain the correct phase diagram, i.e., the particle-par
and particle-hole channels at both small momentaq and q
'Q. The first step in this direction was made in Refs. 31 a
32 within the so-called two-patch approach. The authors
Refs. 31 and 32 wrote down approximate equations, wh
were very similar to the parquet equations in o
dimension,33 and obtained reasonable physical results. Ho
ever, they also neglected particle-hole scattering at small
menta and particle-particle scattering atq'Q at final stage.

Besides that, these 1D-like equations do not reprod
correctly all the peculiarities of the 2D dispersion law ev
close to VH singularities. From this point of view, mo
straightforward is the parquet approach of Refs. 19–22~for a
review see also Ref. 34!. It was applied to the VH singularity
problem in Refs. 19 and 25, but only the caset8/t50 was
considered~strictly speaking, this case requires an accoun
the whole FS because of nesting17!.

In the present paper we consider different phases of
t-t8 Hubbard model (t8/t,0) and construct the phase di
gram near VH fillings within the approach.20 Note that this
approach is somewhat different from that used in la
papers22,19 and, as we will argue in this work, is more co
rect.

The outline of the paper is the following. In Sec. II w
discuss noninteracting susceptibilities and consider
random-phase approximation~RPA!. In Sec. III we consider
two-patch equations with all four channels of scattering
cluded and discuss the results of numerical solution of th
equations. In Sec. IV we consider a full parquet approach
VH problem and compare the results with those of two-pa
approach. In conclusion we summarize main results of
paper and discuss possible directions of further invest
tions.

II. THE MODEL AND RPA RESULTS

We considert-t8 Hubbard model on the square lattice:

H5(
k

«kcks
† cks1U(

i
ni↑ni↓ ~1!

with

«k522t~coskx1cosky!14t8coskx cosky14t82m,
~2!

wherem is the chemical potential~we have picked out 4t8
for further convenience!. We have already absorbed the si
of t8 into Eq. ~2!, i.e., ~hereafter we assume the transf
integralst,t8 to be positive. (0<t8/t,1/2).

The spectrum~2! contains VH singularities connecte
with the pointsA5(p,0), B5(0,p). These singularities
lie at the Fermi surface for the filling withm50 and arbi-
trary values oft8. For t850 the FS is nested, but the nestin
is removed fort8/t.0.

Being expanded near the VH singularity points, the sp
trum ~2! takes the form
16510
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«k
A522t~sin2w k̄ x

22cos2wky
2!522tk1k22m, ~3a!

«k
B52t~cos2wkx

22sin2w k̄ y
2!52t k̃1k̃22m, ~3b!

wherek̄x5p2kx , k̄y5p2ky ,

k65sinw k̄x6 coswky

~4!
k̃65coswkx6 sinw k̄y ,

w is the half of the angle between asymptotes at VH sin
larity, 2w5cos21(2t8/t).

At U50 we have the following results for the suscep
bilities at smallq andq'QÄ„p,p… @see Fig. 1~a!#:

xq
A5(

k

f ~«k
A!2 f ~«k1q

A !

«k
A2«k1q

A
5

z0

4p2t
~j11j2!, ~5a!

xq1Q
AB 5(

k

f ~«k
A!2 f ~«k1q

B !

«k
A2«k1q

B

5
1

2p2t
min~zQj1 ,zQj2 ,j1j2!. ~5b!

Here f («) is the Fermi distribution function, j6

5min@ln(L/q6),ln(Lt1/2/umu1/2)#, q6 are defined in the sam
way as in Eq.~4!,

z051/A12R2; zQ5 ln@~11A12R2!/R#, ~6!

and R52t8/t. The expressions forB↔A are obtained by
replacingj1→ j̃1 , j2→2 j̃2 where j̃65min@ln(L/q̃6),
ln(Lt1/2/umu1/2)]. The momentum dependence ofxq calculated
with the spectra~2! is shown in Fig. 2~a!. Since both the
susceptibilities are divergent, we have at least two compe
order parameters. In fact, two other polarization bubbles
Fig. 1~b!, which are responsible for zero momentum andp
pairing, are also divergent at smallq: @see also Fig. 2~b!#:

FIG. 1. Diagrams~bubbles! for noninteracting susceptibilities
near q50 and q5Q in ~a! Peierls channel~b! Cooper channel.
Solid and dashed lines correspond to the electron Green func
nearA and B singularities with the spectra~3a! and ~3b!, respec-
tively.
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Pq
A5(

k

12 f ~«k
A!2 f ~«k1q

A !

«k
A1«k1q

A
5

c0

4p2t
j1j2 ~7a!

Pq¿Q
AB 5(

k

12 f ~«k
A!2 f ~«k1q

B !

«k
A1«k1q

B
5

cQ

2p2t
min~j1 ,j2!,

~7b!

where

c051/A12R2; cQ5tan21~R/A12R2!/R.

For Pq
B we again have the replacementsA→B and j1

→ j̃1 , j2→2 j̃2 in Eq. ~7a!.
In the RPA the expressions for particle-hole and partic

particle susceptibilities read

x̄q5
xq

12Uxq
~8!

P̄q5
Pq

11UPq
. ~9!

Thus P decreases when the Coulomb interaction is ta
into account, whilex increases and can diverge at someU.
In particular, we have the conventional Stoner criterium
ferromagnetismUx051, or

Uz0

2p2t
ln

L

r
51, ~10!

FIG. 2. The momentum dependence for~a! noninteracting sus-
ceptibility and~b! noninteracting Cooper response att8/t50.3.
16510
-

n

f

wherer25max(T/t,umu/t,D/t) (D;S̄ is the spin splitting!. The
solution to this equation reads

r5L exp@22p2At22~2t8!2/U#.

Therefore the ferromagnetism is present at anyU; moreover,
at U;2p2@ t22(2t8)2#1/2 one can expect that it become
saturated. Similarly, considering the antiferromagnetic ins
bility we obtain

U

2p2t
minS ln2

L

r
,zQ ln

L

r D51, ~11!

which gives

r5LH exp~2A2p2t/U !, U/~2p2t !.1/zQ
2

exp~22p2t/zQU !, U/~2p2t !,1/zQ
2

so that antiferromagnetism is favorable at smallt8/t.
However, as it was discussed first by Dzyaloshinskii a

coworkers,19–22RPA is incorrect even in the weak-couplin
limit, except for the case when only one bubble is diverge
Since in the VH case all four bubbles of Fig. 1 are diverge
we have to use the parquet approach19–22 instead of RPA.
While in 1D case the parquet equations reduce to conv
tional differential RG equations~see, e.g., Refs. 17, 21 an
33!, for higher space dimensionalities we have coupled in
gral equations. First we consider the application of the tw
patch approach of Refs. 31 and 32 that uses mapping of
full parquet equations on an ‘‘effective’’ 1D problem.

III. TWO-PATCH EQUATIONS

The authors of Refs. 31 and 32 proposed the appro
that neglects the difference betweenj1 andj2 ~and conse-
quently betweenj̃1 and j̃2) and introduced a single-scalin
variable j5min(j1 ,j2 ,j̃1 ,j̃2). Note that this approach is
not strict, in particular because of the presence of doub
logarithmic terms in Eqs.~5b! and~7a!. At the same time, as
we will see below~see also Ref. 32!, this reproduces cor-
rectly main features of the exact parquet equations.

The two-patch equations read31,32

g1852d1~j!g1~g22g1!12d2g1g422d3g1g2

g285d1~j!~g2
21g3

2!12d2~g12g2!g42d3~g1
21g2

2!

g38522d0~j!g3g412d1~j!g3~2g22g1!

g4852d0~j!~g3
21g4

2!1d2~g1
212g1g222g2

21g4
2!,

~12!

whereg i8[dg i /dj,

d0~j!52c0j; d1~j!52 min~j,zQ!

d252z0 ; d352cQ ~13!

and four verticesg124 are defined in Fig. 3. In these nota
tions, g i(0)5g0[U/(4p2t) corresponds to the Hubbar
model. While only the cased2 ,d3!d0 ,d1 was considered in
7-3
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Refs. 31 and 32, we perform a more general considera
where all the bubbles are taken into account. We have
taken into account the coefficientc0 to treat correctly thet8
dependence of the amplitude of particle-particle scatter
Note that the equations~12! are very similar to those in the
1D case17,21,33with the difference that in the latter case o
has

d05d250; d15d351. ~14!

The complete discussion of the physics of the equations~12!
in the 1D case is given in Ref. 21. In two dimensions, t
coefficientsd0 and d1 becomej dependent because of th
presence of double-logarithmic terms. As we have alre
mentioned, this gives only approximate treatment of su
terms. The equations~12! give a possibility to investigate th
interplay of all the four scattering channels.

For ferromagnetic, antiferromagnetic, andd-wave super-
conducting susceptibilities we obtain~see Ref. 33!

xF,AF,d-SC~j!5E
0

j

dzd2,1,0~z!T F,AF,d-SC
2 ~z!, ~15!

whereT satisfies the equation

d ln TF,AF,d-SC

dj
5H d2~g11g4!

d1~j!~g21g3!

d0~j!~g32g4!
J . ~16!

The squared vertex in Eq.~15! has the same origin as i
the RG equations~12!. It arises after the application o
Sudakov’s trick35 ~see also the Appendix!, which replaces
g0T (k1 . . . k4) by T 2(z). The same result can be obtaine
directly by RG approach. Provided thatg1 andg4 are simul-
taneously relevant, we have ferromagnetic ordering, w
g2 andg3 lead to antiferromagnetic ordering. For the sup
conductivity, we have a more complicated combination
relevant and irrelevant vertices.

The results of the solution of equations~12!–~16! for vari-
ous values ofg0 andt8/t are shown in Fig. 4. Depending o
the values ofg0 andt8/t, ferromagnetic or antiferromagneti
susceptibility, ord-wave superconducting response diverg
first. The parameter dependences of the critical energy s
mc5t exp(22jc) are shown in Fig. 5. This scale can be a
proximately identified with the critical chemical potential
transition temperature. For comparison, the RPA results
the stability of ferromagnetic and antiferromagnetism
shown too. One can see that the values of transition temp

FIG. 3. The verticesg i( i 51 . . . 4). The solid lines inside the
circles show which incoming and outgoing particles have the sa
spin projection.
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than the corresponding RPA results.

To understand qualitatively the nature of the critical te
perature lowering, we may neglect the interpatch scatter
In the ferromagnetic case we have only one nonzero ve
g4, and the equation for it has the form

g48522~z02c0j!g4
2 , ~17!

so that

g45
g0

11g0~c0j222z0j!
. ~18!

The modification of the Stoner criterion takes the form

g0S 2z0 ln
Lt1/2

umu1/2 2c0 ln2
L

m D51. ~19!

e

FIG. 4. The ferromagnetic~solid line!, antiferromagnetic~long-
dashed line!, andd-wave superconducting~short-dashed line! sus-
ceptibilities for the two-patch model with~a! t8/t50.15,g050.10
~b! t8/t50.45,g050.10, ~c! t8/t50.30,g050.01.
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Then we have from Eq.~19! at z05c0 ~which is the case of
t-t8 model!

ln
Lt1/2

umu1/2 512A12
1

z0g0

.
1

2z0g0

~for R close to unity we havez0g0.1). Thus, the decrease o
the Curie temperature in comparison with the me
field approach (c050) is directly connected with the ac
count of the Cooper bubble, which is in agreement with
T-matrix approximation.29 Note, however, that the structur
of Eq. ~18! is different from that obtained in theT-matrix
approach.

The resulting phase diagram inU-t8/t plane with all the
scattering channels being included is shown in Fig. 6. O
can see that thed-wave superconducting response is stron
suppressed by particle-hole scattering processes. This i
leading divergent response only at small values of coup
constantg0,0.04, which corresponds toU,1.6t. The criti-
cal temperature in this region is also exponentially sm
@Tc;mc; exp(21/g0)#.

IV. PARQUET EQUATIONS

Now we pass to the consideration of the full parquet eq
tions and compare the results of their solution with appro
mate RG equations of Sec. II. We use the generalization
the approach of Ref. 20 to the case of two dimensions.

In the parquet approach~see the Appendix! we have for
each vertexi 51 . . . 4 three types of bricks, which ar
shown in Fig. 7: the Cooper brickCi(j6 ,h6), and two zero-
sound bricks,Zi(j6 ,h6) and Z̃i(j6 ,h6). Up to a logarith-
mic accuracy, they depend onj65 ln(L/k6) and h6

5 ln(L/q6) only, k65k161k26 and q65max$k36

FIG. 5. The phase diagram for the two-patch model inm-t8/t
coordinates forg050.1 (U53.95t). Dotted line is the mean-field
boundary for antiferromagnetic phase, dot-dashed line for fe
magnetic one.
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2k16 ,k362k26% being the Cooper and zero-sound mome
transfer. Note that, because of the presence of double l
rithms, we cannot restrict ourselvesa priori to considering
the casej1;j2 and h1;h2 , but have to treat a more
general case. The verticesg i(j6 ,h6) in different regions of
j6 andh6 are given by20

g i~j6 ,h6!5g i
h~j6 ,h6![g01Ci~j6 ,h6!1Zi~h6 ,h6!

1Z̃i~h6 ,h6!~j6.h6!,

g i~j6 ,h6!5g i
l~j6 ,h6![g01Ci~j6 ,j6!1Zi~j6 ,h6!

1Z̃i~j6 ,j6!~j6,h6 ,h6
(1),h6

(2)!,

g i~j6 ,h6!5g̃ i
l~j6 ,h6![g01Ci~j6 ,j6!1Zi~j6 ,j6!

1Z̃i~j6 ,h6!~j6,h6 ,h6
(1).h6

(2)!, ~20!

whereh6
(1,2)5 ln(L/uk362k1,26u). Following Ref. 20, we have

taken into account that atj6.h6 the Cooper brick depend
on both j6 and h6 , while the zero-sound bricks depen
only on h6 . Vice versa, atj6,h6 the Cooper brick and
one of the zero-sound bricks depend only onj6 , and an-
other zero-sound brick depends on bothj6 andh6 .

When all momenta are of the same order of magnitu
i.e. j65h6 , the vertices

g i~j6 ,j6!5g i~j6! ~21!

are analogous to those introduced in Sec. III with the o
difference that now they depend on two scaling variab
j6 . However, unlike the 1D case, the parquet equations
not reduce to the equations forg i(j6), but contain the full
dependenceg i(j6 ,h6). The corresponding equations a
presented in the Appendix. As discussed in Appendix,

FIG. 6. The phase diagram for the two-patch model ing0-t8/t
coordinates at van Hove filling (m50).

-
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FIG. 7. The representation o
the vertex in the parquet approac
as a sum of bricks for the Coope

~C! and zero-sound (Z,Z̃) chan-
nels.
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approach we use gives a possibility to treat the 2D situa
in a more correct way in comparison with the approach
Refs. 22 and 19.

The parquet equations were solved numerically. To t
end, we placed the variablesj,h on a grid with 16 points in
each dimension, so that the total number of vertices to
taken into account is 3343164'83106. It is important
that the grid was chosen for the logarithmic variablesj,h,
but not for the momenta themselves. This gives a possib
to use simple integration methods~e.g., the trapezium
method! to obtain the results that are correct to logarithm
accuracy. The resulting system of 83106 algebraic equations
was solved by the Zeidel method.

The structure of the solutions of the parquet equation
quite similar to that in the two-patch approach, except
that now we have momenta-dependent vertices. Again,
relevance ofg1 andg4 with j65h65j leads to ferromag-
netic ordering, while the relevance ofg2 and g3 at j6

5h65j to antiferromagnetic one. The results of solution
the parquet equations are shown in Figs. 8 and 9. One
see that the results coincide qualitatively with those of
two-patch parquet approach of Sec. III. At not too larget8/t,
the antiferromagnetic instability occurs first, while fort8/t
close to 1/2 the leading instability is ferromagnetic one. T
superconductivity occurs also only for very smallg0.

The transition temperatures obtained within the parq
approach are larger than those obtained from two-pa

FIG. 8. The phase diagram from parquet equations inm-t8/t
coordinates forg050.1 (U53.95t). The lines are the same as
Fig. 5.
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equations, but are still lower than the RPA results. In parti
lar, in the limit of small t8/t the parquet calculations,19,25

which do not take into account single-logarithmic contrib
tions of the loops Figs. 1~a!, and 1~d!, yield for g050.1 the
critical value for stability of antiferromagnetismjc

255.2,
which is close to RPA result,jc

255.0. At the same time, ou
parquet calculations give larger value,jc

256.37~the result of
two-patch equations isjc

2518.2). The region of stability of
d-wave superconducting phase is even smaller than that
tained from two-patch equations.

The critical concentrationsnc for the stability of ferro-
magnetic, antiferromagnetic or superconducting phases c
to VH filling can be estimated from the critical chemic
potential with the use of the condition

n5(
k

f ~«k!. ~22!

Using the form of spectrum~2! and taking the limit of filling
close to VH one, we obtain forumu!t

dnc5nc2nVH5
mc

2p2tA12R2
ln

Lt1/2

mc
1/2 .

jc exp~22jc!

2p2A12R2
,

~23!

wherenVH is the VH filling. In particular, forg050.1 (U
53.95t) we have from Fig. 8

FIG. 9. The phase diagram from parquet equations for van H
filling ( m50) in g0-t8/t coordinates.
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dnc50.01 ~AF phase, t8/t→0!,

dnc50.03 ~F phase, t8/t50.45!. ~24!

Thus, except for the limitR→1 (t8→t/2), the critical con-
centrations are very small, which is in qualitative agreem
with the results of Ref. 29. Because of the exponential sm
ness of the critical chemical potential, the critical concent
tions for the superconducting phase are even smaller
those for the magnetically ordered phases.

V. CONCLUSION

Now we summarize the main results of the paper. Us
the two-patch equations~Sec. III! and parquet equation
~Sec. IV! we constructed the phase diagrams oft-t8 Hubbard
model~Figs. 5, 6, 8, and 9! at the fillings that are close to th
van Hove one. It was argued that the simultaneous acc
of all the scattering channels is important in considering
VH problem, the smallness of contributions of some ch
nels ~logarithmical vs double-logarithmical divergence! be-
ing compensated by the growth of relevant couplings. B
the approaches used, two-patch and parquet ones, give
lar phase diagrams. In agreement with the previo
approaches,28–30 antiferromagnetism is favorable for sma
t8/t, while ferromagnetism for larger values oft8/t. The sta-
bility of antiferromagnetism and especially ferromagneti
is greatly reduced in comparison with the correspond
mean-field criteria. Thus the Stoner criterion is complet
inapplicable for the systems with VH singularities; depen
ing on the valuet8/t, it overestimates the critical temperatu
by two to ten times. This conclusion is in qualitative agre
ment with the results of Ref. 29. Besides that, the mean-fi
approach is unable to determine the critical value (t8/t)c
which separates the ferromagnetic and antiferromagn
phases.

Unlike Ref. 28, (t8/t)c turns out to beU dependent and
decreases with increasingU. Although the RG~and also par-
quet! approach is unable to describe the ordered states, f
scaling arguments we haveS̄}(mc /t)b, whereb is the mag-
netization critical exponent. With increasingU, the ferro-
magnetic and antiferromagnetic states are characterize
large magnetic moments, and ferromagnetism possibly
comes saturated. However, these values ofU are not de-
scribed by perturbative approaches and should be treate
the strong-coupling limit. At the same time, determining p
rameters of the ferro-antiferromagnetic quantum-phase t
sition would be of interest, especially the critical exponen
One can expect that they are independent of the couplin

Another result of the paper is that the tendency tod-wave
superconducting pairing is considerably reduced in comp
son with the treatments of Refs. 28 and 26: it can occur o
at very small values ofU. Of course, this concerns only th
pairing due to the VH singularities themselves; the pair
can be further enhanced by other factors. This can be also
subject for future investigations. Details of the electron sp
trum, especially the form of the fermion Green’s functio
close to the phase transition into the ferromagnetic or a
ferromagnetic state are beyond the scope of the presen
16510
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per. Although the marginal36 and non-Fermi-liquid
behavior23 was found~see also the discussion in Ref. 37!,
this problem needs further investigations, since a simu
neous account of all the scattering channels can be impo
in this case too. For example, only one of four scatter
channels was included in Ref. 23.

We believe that the results of the present paper can be
important for the theory of itinerant-electron ferroma
netism. A standard consideration~including contemporary
spin-fluctuation theories38! starts from the RPA approach.
was noted in Ref. 39 that for almost all known itineran
electron ferromagnets the Fermi level lies near a 2D-like V
singularity. This is a result of merging two weaker 3
square-root singularities along symmetrical directions in
Brillouin zone.40 We have shown that under such conditio
the RPA approach and the Stoner criterion are not applica
even qualitatively because of the strong interference with
Cooper channel. Of course, the effect of the logarithmic V
singularity in the 3D case is not exactly the same as in
pure 2D case considered here, so that the 3D problem n
further investigations. However, the naive Stoner criterion
in any case doubtful and needs a careful justification.

In this respect, it would be interesting to generalize t
results of the present paper~at least those from the two-patc
equations! on the degenerate-band Hubbard model. As w
argued in Ref. 29, in this case the suppression of ferrom
netic ordering is much weaker than for the nondegene
model considered. One can also expect that the particle-
scattering with small momenta will not renormalize sup
conducting channel as strongly as for the nondegene
model. However, these statements need further justifica
since the diagram series in the degenerate and nondegen
cases look like rather similar.
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APPENDIX: THE PARQUET APPROACH IN ONE AND
TWO DIMENSIONS

First we consider the simple model of spinless fermion

H5(
k

«kck
†ck1(

k,p
g~p!ck

†ck2pck
†ck1p ~A1!

with g(kF)5g0. In one dimension we have th
representation20 for the renormalized vertexg ~Fig. 5!

g~j,h!5g01C~j,h!1Z1~j,h!1Z2~j,h!, ~A2!

where the bricks are given by

C~j,h!52cE
0

j

dzgc~z,h!gh~z,h!, j.h
7-7



of

-
e
he

e

e

es
ith
th

ble
ly

on

nd
uce

of
ap-

an-
n to
p-

the

V. Yu. IRKHIN, A. A. KATANIN, AND M. I. KATSNELSON PHYSICAL REVIEW B 64 165107
Z1,2~j,h!5z1,2E
0

h
dzg1,2

z ~z,j!g1,2
l ~z,h!, j,h,

~A3!

and j5 ln(L/uk11k2u); h5ln(L/max$k32k1,k32k2%). Here
the definition is used

z,j5H z uzu,uju

j uzu.uju
, ~A4!

and we assume that the Cooper and zero-sound~Z and Z̃!
loops are logarithmically divergent with the coefficientsc
and z1,2, respectively~we generalize here the approach
Ref. 20 to the case where both the channels,Z andZ̃ contain
divergences!. The vertices in Eq.~A3! are given by

gc~j!5g01Z1~j,j!1Z2~j,j!,

g1,2
z ~j!5g01C~j,j!1Z2,1~j,j!, ~A5!

gh~j,h!5gc~j!1C~j,h!,

g1,2
l ~j,h!5g1,2

z ~j!1Z1,2~j,h!.

The equations~A2!–~A5! form the closed system of par
quet equations for the 1D spinless case. The validity of th
equations can be demonstrated for the simple case w
only one bubble is divergent, e.g.,z15z250, so that the
direct ladder ~RPA! summation is possible. In this cas
Z1,2(j,h)50, gc(j)5g0, and we obtain from~A2! and
~A5! the standard ladder equation

g~j,h!5g02cg0jg~j,h!. ~A6!

This has the solution

g~j,h!5
g0

11cg0j
. ~A7!

Now we return to the general casez1 ,z2 ,c5” 0. As it is
shown in Ref. 20, the equations~A2!–~A5! at j5h can be
reduced to

g~j,j![g~j!5g01~z11z22c0!E
0

j

g2~z!dz ~A8!

which is equivalent to the differential RG equation

dg

dj
5~z11z22c!g2. ~A9!

Since in one dimensionz15c, z250, g is marginal and
we have a Luttinger-liquid behavior.27,33,17Alternatively, the
equation~A8! or ~A9! can be obtained directly with the us
of the Sudakov’s trick35 or standard RG approach27 without
considering the general dependenceg(j,h). Thus, in the 1D
case the parquet and RG approaches are equivalent.

In the 2D case we have two pairs of variables,j6 and
h6 . Moreover, unlike the 1D case, now two possibiliti
occur: the momentum integration in bubbles can be logar
mical or double logarithmical. For example, we consider
16510
se
re

-
e

case where the integration in the Cooper bubble is dou
logarithmic while in the zero-sound channel this yields on
simple logarithms~which is similar to the situation for VH
singularities!. Then it can be checked by a direct comparis
with perturbation theory that the equations

C~j6 ,h6!

52cg0E
0

j1E
0

j2

dz1dz2gc~z6 ,h6!gh~z6 ,h6!,

j6.h6

Z1,2~j6 ,h6!

5z1,2g0E
0

h1

dz1g1,2
z ~z1 ,j1 ,j2!g1,2

l ~z1 ,h2 ;h6!

1z1,2g0E
0

h2

dz2g1,2
z ~j1 ,z2 ,j2!g1,2

l ~h1 ,z2 ;h6!,

j6,h6 ~A10!

with

gc~h6!5g01Z1~h6 ,h6!1Z2~h6 ,h6!

g i
z~j6!5g01Ci~j6 ,j6!1Z32 i~j6 ,j6!

gh~j6 ,h6!5gc~h6!1C~j6 ,h6!

g i
l~j6 ,h6!5g i

z~j6!1Zi~j6 ,h6! ~A11!

give the parquet solution of the problem. Note that beyo
one dimension the integral parquet equations do not red
to differential ones.

The above approach is different from the approach
Refs. 22, 19, and 17 where a standard RG scheme was
plied in one dimension, while momentum dependence in
other dimension was taken into account exactly rather tha
logarithmic accuracy. However, the applicability of last a
proach is doubtful. Indeed, in the 1D case the equation~A8!
can be considered as a logarithmic approximation to
Bethe-Salpeter equations

C~k1 ,k2 ,k3!5g02c0g0E
0

L

dkg~k11k,k22k,k3!

Z1~k1 ,k2 ,k3!5g01z1g0E
0

L

dkg~k1 ,k31k,k3!

Z2~k1 ,k2 ,k3!5g01z2g0E
0

L

dkg~k1 ,k21k,k31k!.

~A12!

In the 2D case where we haveboth slow and fast momenta
we need to combine Eqs.~A8! and ~A12! which is impos-
sible since Eq.~A8! is quadratic ing while Eq. ~A12! is
linear. The equations of Refs. 22, 19 and 17
7-8
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C~k1 ,k2 ,k3 ,j!5g02c0E
0

j

dzE
0

L

dkg~k1 ,k2 ,k31k;z!

3g~k11k,k22k,k3 ;z!

Z1~k1 ,k2 ,k3 ,j!5g01z1E
0

j

dzE
0

L

dkg~k1 ,k31k,k3 ;z!

3g~k11k,k2 ,k31k;z!

Z2~k1 ,k2 ,k3 ,j!5g01z2E
0

j

dzE
0

L

dkg~k1 ,k21k,k3

1k;z!g~k31k,k2 ,k3 ;z! ~A13!

are not fully correct. If we suppose thatg does not depend on
j, we do not reproduce the 1D Bethe-Salpeter equati
~A12!. At the same time, the approach of Ref. 20 is free fro
these problems.

The generalization of equations~A10! to the full VH
problem is trivial. The parquet equations have the form

C1~j6 ,h6!52cQE
cQ

@g1
c~z6,h6!g2

h~j6 ,z6!

1g2
c~z6,h6!g1

h~j6 ;z6!#,

Z1~j6 ;h6!5zQE
zQ

@g1
z~z6,j6!g̃2

l ~j6 ,z6!

1g̃2
z~z6,j6!g1

l ~j6 ,z6!

22g1
z~z6,j6!g1

l ~j6 ,z6!

1g3
z~z6,j6!g̃3

l ~j6 ,z6!

1g̃3
z~z6,j6!g3

l ~j6 ,z6!

22g3
z~z6,j6!g3

l ~j6 ,z6!#,

Z̃1~j6 ;h6!5z0E
z0

A

g̃4
z~z6,j6!g̃1

l ~z6 ,h6!

1z0E
z0

B

g1
z~z6,j6!g̃4

l ~z6 ,h6!;

C2~j6 ,h6!52cQE
cQ

@g1
c~z6,h6!g1

h~j6 ,z6!

1g2
c~z6,h6!g2

h~j6 ,z6!#,
16510
s

Z2~j6 ;h6!5z0E
z0

A

@g4
z̃~z6,j6!g2

l ~z6 ,h6!

1g4
z~z6,j6!g̃1

l ~z6 ,h6!

22g4
z~z6,j6!g2

l ~z6 ,h6!#

1z0E
z0

B

@g1
z̃~z6,j6!g4

l ~z6 ,h6!

1g2
z~z6,j6!g̃4

l ~z6 ,h6!

22g2
z~z6,j6!g4

l ~z6 ,h6!#,

Z̃2~j6 ;h6!5zQE
zQ

@g2
z̃~z6,j6!g̃2

l ~z6 ,h6!

1g3
z̃~z6,j6!g̃3

l ~z6 ,h6!#;

C3~j6 ;h6!52c0E
c0

A

g4
c~z6 ,h6!g3

h~j6 ,z6!

2c0E
c0

B

g3
c~z6 ,h6!g4

h~j6 ,z6!,

Z3~j6 ;h6!5zQE
zQ

@g3
z~z6,j6!„g̃2

l ~z6 ,h6!2g1
z~z6 ,h6!…

1„g2
z̃~z6,j6!2g1

z̃~z6,j6!…g3
l ~z6 ,h6!

1g1
z~z6,j6!„g̃3

l ~z6 ,h6!2g3
l ~z6 ,h6!…

1„g3
z̃~z6,j6!2g3

z~z6,j6!…g1
l ~z6 ,h6!#,

Z̃3~j6 ;h6!5zQE
zQ

@g3
z̃~z6,j6!g̃2

l ~z6 ,h6!

1g2
z̃~z6,j6!g̃3

l ~z6 ,h6!#;

C4~j6 ;h6!52c0E
c0

A

g3
c~z6 ,h6!g3

h~j6 ,z6!

2c0E
c0

B

g4
c~z6 ,h6!g4

h~j6 ,z6!,

Z4~j6 ;h6!5z0E
z0

A

@g4
z~z6,j6!g̃4

l ~z6 ,h6!

1g4
z̃~z6,j6!g4

l ~z6 ,h6!

22g4
z~z6,j6!g4

l ~z6 ,h6!#

1z0E
z0

B

@g2
z~z6,j6!g̃1

l ~z6 ,h6!

1g1
z̃~z6,j6!g2

l ~z6 ,h6!

22g2
z~z6,j6!g2

l ~z6 ,h6!#,
7-9
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Z̃4~j6 ;h6!5z0E
z0

A

g̃4
z~z6,j6!g̃4

l ~z6 ,h6!

1z0E
z0

B

g̃1
z~z6,j6!g̃1

l ~z6 ,h6!. ~A14!

The vertices are now given by

g i
c~h6!5g01Zi~h6 ,h6!1Z̃i~h6 ,h6!,

g i
z~j6!5g01Ci~j6 ,j6!1Z̃i~j6 ,j6!,

g i
z̃~j6!5g01Ci~j6 ,j6!1Zi~j6 ,j6!;

g i
h~j6 ,h6!5g i

c~h6!1Ci~j6 ,h6!,

g i
l~j6 ,h6!5g i

z~j6!1Zi~j6 ,h6!,

g i
l~j6 ,h6!5g i

z̃~j6!1Z̃i~j6 ,h6!; ~A15!

and the regions of integration are defined by

E
c0

A

f ~z1 ,z2!5E
2uj1u

uj1u E
2uj2u

uj2u
dz1dz2 f ~z1 ,z2!,

E
c0

B

f ~z1 ,z2!5E
2u j̃1u

u j̃1u E
2u j̃2u

u j̃2u
dz1dz2 f ~z1 ,z2!,

E
cQ

f ~z1 ,z2!5E
2uj1u

uj1u S E
min$0,z2

(1)%

max$0,z2
(1)%

1E
min$2uj2usignz1 ,z2

(2)%

max$2uj2usignz1 ,z2
(2)% D

3
dz1dz2

cos 2w U k1k2

k1
2 1k2

2 12 cos 2wk1k2
U

3 f ~z1 ,z2!1E
min$0,uj1usignj2%

max$0,uj1usignj2%
dz1

3Umin~cos 2wk1 ,p2!1p2U f ~z1 ,j2!

cos 2wk11sin 2wp2

et

ns
.
t.

et
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1E
min$0,uj2usignj1%

max$0,uj2usignj1%
dz2

3Umin~cos 2wk2 ,p1!1p1

cos 2wk21sin 2wp1
U f ~j1 ,z2!;

E
z0

A

f ~z1 ,z2!5E
2uh1u

uh1u
dz1 f ~z1 ,h2!

1E
2uh2u

uh2u
dz1 f ~h1 ,z2!,

E
z0

B

f ~z1 ,z2!5E
2uh̃1u

uh̃1u
dz1 f ~z1 ,h̃2!

1E
2uh̃2u

uh̃2u
dz1 f ~ h̃1 ,z2!,

E
zQ

f ~z1 ,z2!5E
2uh1u

uh1u S E
min$0,uh2usignz1%

max$0,uh2usignz1%

1E
min$z2

(1) ,z2
(2)%

max$z2
(1) ,z2

(2)% D dz1dz2

3U k1k2

k1
2 1k2

2 12 cos 2wk1k2
U f ~z1 ,z2!;

~A16!

where

k65Lsgn~z6!exp~2uz6u!

L~k6!5sgn~k6!lnuL/k6u

z2
(1)52L@k1 /cos 2w#

z2
(2)52L@k1 /cos 2w#.
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