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Electron-phonon interaction in impure polycrystalline metals
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We calculate the electron-phonon scattering rate in polycrystalline metals, e.g., Ti12xAl x , in the limit of
dilute impurity concentration. We consider the additional contribution due to the Umklapp process of impurity
scattering, which has been neglected in all previous nearly free-electron calculations but is important for the
present problem. We find that, as a result of including the Umklapp process, the scattering rate in the dirty limit
qTl !1 is enhanced by the disorder due to substitutional impurities and random lattice shift of crystallites,
whereqT5thermal phonon wave vectorand l 5electron mean free path. Specifically, we obtain the scattering
rate 1/tep;T2l 21, whereT5temperature, in agreement with previous experiments both in order of magnitude
and in functional dependence. This work satisfactorily explains the long-standing discrepancy between theories
and experiments regarding the effect of disorder on electron-phonon scattering, for the case of polycrystalline
metals with dilute impurity concentration.

DOI: 10.1103/PhysRevB.64.165101 PACS number~s!: 72.10.Di, 72.15.Rn, 73.20.Fz
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I. INTRODUCTION

The effect of disorder on electron-phonon~e-ph! interac-
tion has been a long-standing subject. The primary issu
concern is whether the disorder weakens or enhances
e-ph interaction. Clarification of the issue has a direct be
ing on the understanding of mesoscopic transport phenom
in impure metals, for which the dephasing of an electr
wave caused by various inelastic scattering, including
e-ph one, plays an important role.1 It is also relevant to the
question of how the properties of a phonon-mediated su
conductor are modified by impurities in the metal
lattice.2,3

On the theoretical side, thee-ph interaction in disordered
systems has been treated for the problem of sound atte
tion in impure metals, where the various theories4–6 agree
among themselves as well as with experimental results.
the other hand, in the case of thee-ph scattering rate, 1/tep ,
theoretical predictions7–10 in the dirty limit qTl !1 are in
conflict with each other, whereqT5kBT/\cs , with T
5temperatureandcs5sound velocity, andl 5electron mean
free path. For example, Bergman7 argues for the linear form
of Eliashberg functiona2F(w→0)}w, which leads, in the
dirty limit, to 1/tep}T2. This is an enhancement over 1/tep

0 ,
with 1/tep

0 }T3 being the scattering rate in the clean lim
But the work of Schmid and co-workers,8,11 based on the
transformation to a coordinate system moving with the
tice, gives 1/tep;T4l , which is a reduction from 1/tep

0 . On
the other hand, the calculation of Takayama9 predicts an en-
hancement of 1/tep over 1/tep

0 . However, it is later pointed
out by Reizeret al.10 that Takayama’s calculation does n
properly subtract the elastic contribution from the total~im-
purity and phonon! scattering rate, and hence overestima
1/tep . Moreover, Reizeret al. have performed an extensiv
calculation of 1/tep in the laboratory coordinate system
which yields the same result as the calculation of Schm
using the moving system approach, and therefore puts m
weight on Schmid’s prediction of a reduced 1/tep;T4l .

However, the enhancement of 1/tep is widely observed in
0163-1829/2001/64~16!/165101~6!/$20.00 64 1651
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experiments,12,13 in conflict with Schmid’s result. Since the
result has been independently confirmed by Reizeret al. us-
ing a different approach, it indicates that Schmid’s calcu
tion is basically sound from theoretical point of view, and,
close the discrepancy, the consensus among theorists ha
cently been that the attention should turn to model assu
tions. For example, Belitzet al.14 have introduced strong
phonon damping, and demonstrated that it can modify 1/tep
and lead to agreement with the experiment. But ‘‘the phys
underlying the strong damping is not known,’’ as they ha
pointed out. On the other hand, Sergeevet al.15 have invoked
static random potentials which do not move with lattice
brations, and obtained an enhanced 1/tep . They propose that
such static potentials may arise from heavy defects or to
grain boundaries. Without them, e.g., if there is only pre
ence of substitutional disorder, the theory still predicts a
duction in 1/tep . However, when this theory is compare
with the experiment of Wuet al. in polycrystalline Ti12xAl x
~Ref. 13! where the enhancement 1/tep}T2l 21 has been ob-
served, there are facts that seem hard to reconcile with
theory. First of all, from analyzing their experimental da
one sees that their samples show the propertyl 21}x, the Al
fraction. When combined with the observed depende
1/tep}T2l 21, it gives 1/tep}x, which strongly suggests tha
Al- related disorderis the reason causing the enhanceme
Secondly, Al and Ti are very close in ionic radius, wi
r (Al) 51.43 A andr (Ti) 51.46 A. It favors Al impurities to
go tosubstitutional sitesin the Ti12xAl x system. The former
statement is also consistent with the x-ray diffraction dat16

which shows that Ti12xAl x has good crystallinity and ha
virtually the same lattice constant as pure Ti. Thirdly, Al
actually lighter in massthan Ti. These facts, when put to
gether, appear to rule out heavy defects or tough gr
boundaries as the reason for the observed enhanceme
1/tep , in the case of Ti12xAl x system. Rather, contrary to th
theory, this experiment clearly indicates that it is the sub
tutional disorder that enhances thee-ph interaction.

In this work, we shall propose a different model for th
explanation of 1/tep-enhancement. We consider impure me
als which arepolycrystalswith substitutionaldisorder, com-
©2001 The American Physical Society01-1
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monly used in the experimental study of disorder phys
The impurity concentration is taken to be in the dilute lim
We shall demonstrate that the substitutional disorder can
hance 1/tep in a quite natural way, and lead to the depe
denceT2l 21. In Sec. II, we shall discuss our theoretic
model. In Sec. III, we shall conclude the study.

II. THEORETICAL MODEL

Our model has two main features that distinguish it fro
the other models. The first is the inclusion ofUmklapp pro-
cessof impurity scattering, which involves the Fourier com
ponents of impurity potential at the wave vectors
magnitude;o(2p/a), wherea5 lattice constant. In contrast
the previous models are basically nearly free electron~NFE!
calculations and neglect such process. We now give a ro
qualitative argument for why such components are impor
for a full treatment of impurity scattering. We note that, for
host atom in a crystal, the Fourier components of its ato
potential at the reciprocal lattice vectors of magnitudeuGu
;o(2p/a) are important for electron dynamics, becau
they can strongly Bragg reflect the electron and coupl
free-electron wave exp(ik•r) to exp@i(k1G)•r#, which is es-
pecially prominent in the case of transition metals, wh
tight-binding orbitals are better descriptions of electron sta
than plane waves. Likewise, when an impurity substitutes
a host atom, the impurity potential should be treated with
Fourier components included up to the terms at the w
vectors of magnitude;o(2p/a), i.e., those involved in the
Umklapp process. Below, we shall give an alternative,
more quantitative discussion of the Umklapp impurity sc
tering.

Let Z be the valence number of a host atom, andZimp that
of an impurity. We writeZimp5Z1DZ, where DZ is the
valence difference that gives rise to ionic impurity scatteri
We neglect any scattering due to the short-range impu
core potential. To estimate the magnitude of Umklapp p
cess, let us consider the scatteringp→p1k on the Fermi
surface, off an impurity atRi , wherep and p1k are wave
vectors of an electron. The impurity potential matrix eleme
involved in this scattering is, in previous NFE models,5–11

taken to be~with crystal volume51!

^p1kuVimp~r 2Ri !up&;Vimp~k!exp~2 ik•Ri !,

where Vimp(k)[2(4pe2DZ/k2) and the states have bee
approximated as plane waves. Such an expression incl
effectively only the normal process of impurity scattering.
contrast, a full evaluation of the matrix element, with the tr
crystal state wave function, e.g., up&5exp(ip•r)up(r) where
up is the cell-periodic Bloch function, gives

^p1kuVimp~r 2Ri !up&5(
G

Vimp~k2G!C~G;p1k,p!

3exp@2 i ~k2G!•Ri #, ~1!

where
16510
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C~G;p1k,p![E exp~2 iG•r !up1k* updr

and G5reciprocal lattice vectors. In Eq.~1!, Vimp(k2G)
with GÞ0 describes the Umklapp scattering, while that w
G50 the normal scattering. From Eq.~1!, we can make
quantitative comparison between the normal and the U
klapp contributions, in the following two steps. Firstk, being
the wave vector difference between two Fermi surface sta
is of the order of the Fermi wave vectorkf , and so isk
2G for small uGu<o(2p/a). This means thatVimp(k2G)
andVimp(k) are of the same order. Secondly,C(G50) and
C(GÞ0) for uGu;o(2p/a) are also of the same orde
~Other arguments in the functionC are omitted whenever i
does not cause confusion.! This can be seen as follows. Th
functionsu’s in the integral ofC(G) are cell periodic and
hence have primary Fourier components arounduGu
<o(2p/a). Expandingu’s in Fourier series and evaluatin
the integral, one can see that, foruGu<o(2p/a), C(G)’s are
large and have comparable magnitudes@actually, with
uC(G)u;o(1)#. With these two facts put together, it follow
that the terms in Eq.~1! with G50 ~i.e., the normal process!
and with uGu;o(2p/a) ~i.e., the Umklapp process! are
about equally important.

Next, we describe how the usual impurity diagramma
technique17 is modified, as a result of including the Umklap
process. In the previous NFE models, with only the norm
process, the kind of Green’s function diagram surviving i
purity configuration average is, for example, the following

,

where—5electron line, ---5 impurity line, and the vertex
denotes the electron-impurity~e-i! interaction screened
by electron-electron~e-e! interaction, i.e.,@Vimp(k)/«(k)#
3exp(2ikRi) ~or its complex conjugate!, with «(k)5static
dielectric function. The two impurity lines joined toX refer
to a double scattering off the same impurity. Throughout
paper, we shall takeVimp(k)/«(k);const5V0, which means
isotropic impurity scattering. Now, with the Umklapp pro
cess included, the diagram is modified as

~2a!
1-2
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ELECTRON-PHONON INTERACTION IN IMPURE . . . PHYSICAL REVIEW B 64 165101
where the e-i vertex now representsC(G)V0 exp@2i(k
2G)Ri# ~or its c.c.!. Note that, in comparison with the norm
scattering case, this diagram is weighted by the follow
extra factor:

C~G!C* ~G8!exp@ i ~G2G8!Ri #, ~2b!

and the diagram is to be summed overG, G8, and also the
impurity positionRi .

The second main theme of our model is therandom lat-
tice shift of crystallites in a polycrystal. It has the cons
quence that only the diagram such as Eq.~2a! with G5G8
survives the configuration average. To see this, let us c
sider two neighboring grains in the system, which are ty
cally separated by a low-angle grain boundary created
edge dislocation.18 If we take our coordinate origin to be a
some lattice site of grain 1, then a general lattice site in gr
1 can be expressed in the formmA1nB1 lC, wherem, n,
and l are integers, andA, B, andC are lattice basis vectors
On the other hand, because of the edge dislocation betw
grains, the lattice sites of grain 2 are shifted by a vectos,
relative to the lattice of grain 1, and a site in grain 2
described by the formmA1nB1 lC1s, where the lattice
shift s, being due to the dislocation, is of the order of latti
constant. Therefore, when Eq.~2b! is summed over impuri-
ties, a random phase factor difference exp@i(G2G8)s# ap-
pears between contributions from different grains. Only
diagram with G5G8 survives the configuration averag
Note also that the weighting factor in Eq.~2b! then reduces
to uC(G)u2. The above discussion still holds if one takes in
account that crystal orientation also varies~though only
slightly! among grains. Such a variation only induces ro
tion in G andG8 and does not reduce the randomness of
phase factor.

Quite often, the inclusion of Umklapp process does
qualitatively change the physics of disordered systems on
investigating. For example, from the self-energy in diagr
~2a!, the impurity scattering rate, with the Umklapp proce
included, becomes

1/t;(
k

(
G

uC~G!u2uV0u2d~jp1k2jp!,

wherej is the electronic energy. If we consider only the ma
contribution from smallG, it gives, roughly,

1/t;nGC0
2(

k
uV0u2d~jp1k2jp!,

wherenG;number of smallG’s, e.g., with uGu<o(2p/a),
and C0 is the typical magnitude ofuC(G)u. Apart from the
factornGC0

2 @which is actuallyo(1)#, the rate 1/t is basically
of the same form as what one would obtain if only the n
mal process of impurity scattering is considered. In contr
as we shall show, the inclusion of Umklapp process modi
1/tep in a qualitative way.

We now describe our calculation. Basically, we adopt
same Keldysh formalism of equilibrium Green’s functions19

as applied to the calculation of energy relaxation rate in d
ordered metals firstly by Altshuler20 and later by Reizer
16510
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et al.10 Great details of this application can be found in th
papers and, hence, we shall limit our presentation only t
brief description.

In the Keldysh formalism, four Green’s functions a
calculated simultaneously. In addition to the usual tim
ordered one G22(r ,t;r 8,t8)52 i ^T@c(r ,t)c1(r 8,t8)#&,
there are G21(r ,t;r 8,t8)52 i ^c(r ,t)c1(r 8,t8)&,
G12(r ,t;r 8,t8)5 i ^c1(r 8,t8)c(r ,t)&, and G11(r ,t;r 8,t8)
52 i ^T̃@c(r ,t)c1(r 8,t8)#& with T̃ denoting reverse-time or
dering. These functions contain not only dynamic but a
distribution information. In particular, the distributio
Green’s functionG12(r ,t;r 8,t8) can be used to write down
quantum transport equations, from which expressions
various collision rates can be identified. The advantage
this method is that it properly separates the elastic and
elastic scattering and gives unambiguously the energy re
ation rate, which, in the case of our problem, is exactly
e-ph scattering rate 1/tep .

For the interaction part in the Hamiltonian of our syste
we writeH int5He-e1He- i1He-ph1He-MI , whereHe-e is the
e-e interaction,He- i the e-i interaction,He-ph the e-ph inter-
action, andHe-MI the electron-moving impurity~e-MI ! inter-
action. In particular, with the Umklapp process included,
have~with \51!

He- i5(
p,s

( 8
k (

G
C~G;p,p2k!Vimp~k2G!

3cp,s
1 cp2k,s(

Ri

exp@2 i ~k2G!Ri #,

He-MI5(
p,s

( 8
k ( 8

q,l (
G

C~G;p,p2k!g~k2G,q,l!

3cp,s
1 cp2k,s~bq,l1bq,l

1 !

3(
Ri

exp@2 i ~k2G2q!Ri #,

where g(k2G,q,l)52 iV imp(k2G)(k2G)eql /
(2MNwql)1/2. In above,c andc1 are electron operators,b
andb1 phonon operators,eql a unit vector along the phono
polarization,l the phonon branch index,M5mass of a unit
cell, N5number density of unit cells, andwql5phonon en-
ergy. For later use, we draw the diagram forHe-MI below

,

where the wavy line is a phonon line, and the vertex is p
portional toi (k2G)eqlVimp(k2G)/«(k2G,w), with w the
1-3
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frequency of the phonon line. Here, we have included
dynamic screening of thee-MI vertex by thee-e interaction.

Following previous works, several approximations a
made in the calculation. First, because we are conside
alloys with dilute impurity concentration and lattice vibr
tions of long wavelength, we take the phonon dispersion
be just that of the corresponding clean metal. Second,
screening of interactions bye-e interaction is taken into ac
count within the diffusion-modified random phase appro
mation, where the usual electron-hole bubble is inserted w
a ladder of impurity lines as follows:

Third, we take the weake-ph coupling limit and conside
only those electron self-energy diagrams which are fi
order in thee-ph interaction. The following diagrams ar
most important and are explicitly shown below:

~3!

~4a!

~4b!
16510
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These diagrams and their symmetric counterparts make
largest contributions,I 7 and I 8 ~in terms of the symbols of
Reizeret al.!, to 1/tep. I 7 is given by the diagram in Eq.~3!
as follows:

I 7~j!5
8Nimp

pn E dpdkdqdw

~2p!10 J7

R~j,w!

2MNwq,l

3Im GA~p,j!Im GA~p1k,j1w!Im DR~q,w!.

I 8 is given by the diagrams in Eqs.~4a!, ~4b! and their sym-
metric counterparts as follows:

I 8~j!58Nimp
2 E dpdk1dk2dqdw

~2p!13 J8

R~j,w!

2MNwql

3@ Im GA~p1k11k2 ,j1w!#

3Im GA~p,j!] @GR~p1k2 ,j!

3GA~p1k21q,j1w!1c.c.#@ Im DR~q,w!#.

In the integralsI 7 and I 8 ,

R~j,w!5Nwnj~12nj1w!2~11Nw!~12nj!nj1w ,

GR~p,j!5@GA~p,j!#* 5~j2jp1 i /2t!21,

DR~q,w!5@DA~q,w!#*

5~w2wql1 i0!212~w1wql1 i0!21

with Nw the Bose-Einstein distribution andnj the Fermi-
Dirac distribution, whileJ7 andJ8 are contributions from the
e- i and e-MI interaction vertices in the corresponding di
grams, respectively. For thee-MI vertex, we can replace the
dynamical screening of impurity potential~at the frequency
w of the phonon line! by static screening, and take th
screened potential to beV0 , since the contribution to thew
integral inI 7 andI 8 mainly comes from the frequency rang
wherew;wql;0. This gives

J752(
G

uC~G;p1k,p!u2@~k2G!eql#2uV0u2

and

J85 (
G,G8

C~G8;p1k2 ,p!C* ~G8;p1k21q,p!uV0u4

3C~G;p1k11k2 ,p1k2!

3C* ~G;p1k11k2 ,p1k21q!

3@~k12G!eql#@~k22G81q!eql#.

In the NFE work of Reizeret al., it is found that bothI 7
and I 8 haveo(T2l 21) as leading-order terms, but they a
opposite in sign and exactly cancel out. This leaves them
next-order terms which areo(T4l ). Since other self-energy
diagrams not drawn here are also ofo(T4l ), it gives, in
overall, 1/tep}T4l . However, we shall show in below tha
with the inclusion of Umklapp process,I 7 becomes severa
1-4
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ELECTRON-PHONON INTERACTION IN IMPURE . . . PHYSICAL REVIEW B 64 165101
times as large asI 8 . As a result, the cancellation is not exa
in the leading order and it yields 1/tep}T2l 21.

We discuss the functional dependence of 1/tep in the fol-
lowing way. First, note that, in the mathematical expressi
I 7 and I 8 , we can regard the Fermi wave vectorkf as a
continuous variable andI 7 and I 8 as functions ofkf . Their
domain ofkf consists of an interval@kf

2 , kf
1;o(G/2)#, with

kf small but still large enough to satisfy the conditionkf l
@1. For example, ifl 5100a/p, we takekf to be 0.1p/a.
The enforcement of the foregoing inequality is to make s
that, the same mathematical approximation, e.g., retain
only the lowest-order term in (kf l )

21 in the calculation ofI 7
and I 8 , can be used throughout the interval ofkf .

We now evaluate 1/tep for the case wherekf is small, i.e.,
nearkf

2 . In this case, our argument against the cancella
of o(T2l 21) terms in 1/tep is made in two steps.~A! First,
we make the approximation thatuk f;u0 , whereuk f andu0
are Bloch cell-periodic functions atkf and at the zone cente
respectively. The validity of this approximation follows from
thekp theory of band structures in which one expandsuk f in
a perturbation series withu0 being the leading-order term
Moreover, we assumeu0 has the full symmetry of the lattice
e.g.,u0 is S-like in the case of a crystal with cubic symmetr
With the approximation thatuk f;u0 , C~G;p1 ,p2) @defined
in Eq. ~1!# ;C(G;0,0) whenp1 andp2 both are restricted to
the Fermi surface. Moreover, it is obvious thatuC(G;0,0)u
5uC(uGu;0,0)u, independent of theG direction, which fol-
lows from the symmetry ofu0 . ~B! Next, we note that, inJ7
and J8 , the phonon wave vectorq;0, and, moreover, the
electron wave vectorsp, p1k, p1k2 , andp1k11k2 which
appear as arguments in variousC(G)’s there are all restricted
to the Fermi surface, both resulting from the fact that con
butions to the integralsI 7 and I 8 mainly come from the re-
gion with q;0 and with the foregoing electron wave vecto
;kf . So, we can take allC’s in J7 and J8 as C(G;kf ,kf)
;C(G;0,0), according to~A!. Then, we have, for the cros
term in J7 ,

2(
G

uC~G;0,0!u2~keql!~Geql!

52(
uGu

uC~ uGu;0,0!u2~keql!S eql(
VG

GD ,

whereSVG
G denotes the summation ofG’s over the direc-

tion of G. SinceSVG
G50 with G’s distributing symmetri-

cally for a crystal of, say, cubic symmetry, the cross te
vanishes. We are then left with only the squared terms

J7}2(
G

uC~ uGu;0,0!u2@~keql!21~Geql!2uV0u2.

Similarly, we have

J8}~1/t!(
G

uC~ uGu;0,0!u2@k1eql~k21q!el#uV0u2.

We note that the (keql)2 term in J7 and the wholeJ8 are of
the same forms as what one would obtain if only norm
16510
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scattering is considered. When we put back in the integralI 7
and I 8 , they both result ino(T2l 21) contributions to 1/tep
that cancel with each other just as in the original NFE c
culation of Reizeret al. This leaves us the (Geql)2 term in
J7 which comes from the Umklapp scattering. It is easy
check that the (Geql)2 term, when integrated, makes an e
tra o(T2l 21) contribution to 1/tep , too. Therefore, after
summing I 7 and I 8 , we obtain 1/tep;o(T2l 21) or, more
accurately,

1

tep
;2

d~ I 71I 8!

dnj
;nGC0

2 3p2

4

G0
2

kf
4

T2

I S b l

cl
12

b t

ct
D , ~5!

where

b t5b l S cl

ct
D 2

5S 2e f

3 D 2 n

2MNct
2 .

In the above,G0;o(2p/a), e f5Fermi energy,cl5sound
velocity of longitudinal phonon mode,ct5that of transverse
one, andn5electronic density of states.~A! together with
~B! is a rigorous argument in the case of smallkf . We stress
that this result is significant and distinct from that of Reiz
et al., since theirs always giveso(T4l ) dependence regard
less of the value ofkf .

Now, we discuss the functional dependence of 1/tep when
kf increases towardso(G/2). Generally speaking, cancella
tion among terms is less likely to occur than noncancellati
unless there is certain symmetry-related physics behind
good example is the optical dipole transition between t
states, which is usually finite unless there is inversion sy
metry and the two states are of the same parity. In our c
if there were a symmetry-caused cancellation, it would ha
shown up in the foregoing calculation for a smallkf . The
fact that the cancellation does not occur there strongly s
gests lack of such symmetry. Moreover, if we write 1/tep
5 f (kf)T

2l 21 and regardf (kf) as an analytic function ofkf ,
with f (kf)^0, it is hardly likely that the coefficientf (kf)
should go from being nonvanishing in the domain of sm
kf , proved earlier, to being identically zero for all large va
ues ofkf . Therefore, we can conclude convincingly again
the vanishing off (kf) for general values ofkf . To estimate
the order of 1/tep , we could just rely on Eq.~5!, or start
from the scratch making the simplest assumptionuC(G)u
;constant5C0 in the original expressions ofJ7 andJ8 and
go through the mathematics once more. In the latter case
arrive at Eq.~5! again.

Let us apply our theory to the Ti12xAl x system. We take
nG51, C051, cl56000 m/s, ct52950 m/s, v f53.2
3105 m/s, M57.97310226kg, N55.6631028/m3, kf
51.4631010m21, G0;kf , and obtain the estimate 1/tep
;0.1T2l 21 ~in MKS unit!, in agreement with the experimen
tal result 1/tep;0.2T2l 21 of Wu et al.13 in both order of
magnitude and functional dependence.

III. CONCLUSION

In summary, we have calculated 1/tep in polycrystalline
metals in the limit of dilute impurity concentration. We con
1-5
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sider the additional contribution due to the Umklapp proc
of impurity scattering, which has been neglected in all p
vious NFE calculations but is important for the present pro
lem, and find that 1/tep in the dirty limit is enhanced by the
disorder due to substitutional impurities and random latt
shift of grains. Specifically, we obtain 1/tep;T2l 21, in
agreement with previous experiments both in order of m
nitude and in functional dependence. This work satisfacto
explains the long-standing discrepancy between theories
experiments regarding the effect of disorder one-ph scatter-
u

16510
s
-
-

e

-
y
nd

ing, for the case of polycrystalline metals with dilute imp
rity concentration.
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