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Electron-phonon interaction in impure polycrystalline metals
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We calculate the electron-phonon scattering rate in polycrystalline metals, g.gAlli, in the limit of
dilute impurity concentration. We consider the additional contribution due to the Umklapp process of impurity
scattering, which has been neglected in all previous nearly free-electron calculations but is important for the
present problem. We find that, as a result of including the Umklapp process, the scattering rate in the dirty limit
g7l<1 is enhanced by the disorder due to substitutional impurities and random lattice shift of crystallites,
whereq;=thermal phonon wave vectand| = electron mean free pattSpecifically, we obtain the scattering
rate 1/rep~T2I ~1, whereT=temperaturein agreement with previous experiments both in order of magnitude
and in functional dependence. This work satisfactorily explains the long-standing discrepancy between theories
and experiments regarding the effect of disorder on electron-phonon scattering, for the case of polycrystalline
metals with dilute impurity concentration.
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. INTRODUCTION experiments?2in conflict with Schmid’s result. Since the
result has been independently confirmed by Reéteal. us-

The effect of disorder on electron-phonémph) interac-  ing a different approach, it indicates that Schmid’s calcula-
tion has been a long-standing subject. The primary issue ition is basically sound from theoretical point of view, and, to
concern is whether the disorder weakens or enhances tif¢ose the discrepancy, the consensus among theorists has re-
e-ph interaction. Clarification of the issue has a direct bearcently been that the attention should turn to model assump-
ing on the understanding of mesoscopic transport phenomeri@ns. For example, Belitzt al'* have introduced strong
in impure metals, for which the dephasing of an electronPhonon damping, and demonstrated that it can modify,1/
wave caused by various inelastic scattering, including thénd lead to agreement with the experiment. But “the physics
e-ph one, plays an important rotdt is also relevant to the Underlying the strong damping is not known,” as they have

question of how the properties of a phonon-mediated supepo'med out. On the o'ther hand, Sergetal. haye |nv0I_<ed .
conductor are modified by impurities in the metallic static random potentials which do not move with lattice vi-

lattice 23 brations, and obtained an enhanced.}/ They propose that
On the theoretical side, theph interaction in disordered such static potentials may arise from heavy defects or tough

systems has been treated for the problem of sound attenu rain boundaries. Without them, e.g., if there is only pres-
Y SIEMS pro! 416 ce of substitutional disorder, the theory still predicts a re-
tion in impure metals, where the various theoriésagree duction in 1#.,. However, when this theory is compared
among themselves as well as with experimental results. O ep '

. X With the experiment of Wit al. in polycrystalline Ti _,Al
the other hand, in the case of teeh scattering rate, #,,  (Ref. 13 where the enhancementr1/x T2l ~* has been ob-
theoretical predictior’s®® in the dirty limit /<1 are in

: i , served, there are facts that seem hard to reconcile with the
conflict with each other, wheregr=kgT/iCs, With T heqry First of all, from analyzing their experimental data,
=temperatureandcs=sound velocityand| = electron mean  4,q sees that their samples show the progertyx, the Al
free path For example, Bergmdrargues for the linear form  ¢action. When combined with the observed dependence
of El|gshberg funct|ogu2F(W.—>0)ocw, which leads, in the 1/Tep°<T2|_1. it gives 1k, x, which strongly suggests that
dirty limit, to 1/, T?. This is an enhancement overrd),  Al-related disorderis the reason causing the enhancement.
with 1/7g<T? being the scattering rate in the clean limit. Secondly, Al and Ti are very close in ionic radius, with
But the work of Schmid and co-worke?s; based on the r(Al)=1.43A andr(Ti)=1.46 A. It favors Al impurities to
transformation to a coordinate system moving with the latgo to substitutional sitesn the Ti,_,Al, system. The former
tice, gives 1#,,~T*l, which is a reduction from £, On  statement is also consistent with the x-ray diffraction Hata
the other hand, the calculation of Takay&rpeedicts an en- which shows that Ti Al, has good crystallinity and has
hancement of 1, over 1/r2 . However, it is later pointed virtually the same lattice constant as pure Ti. Thirdly, Al is
out by Reizeret all® that Takayama’s calculation does not actually lighter in massthan Ti. These facts, when put to-
properly subtract the elastic contribution from the taied-  gether, appear to rule out heavy defects or tough grain
purity and phonohscattering rate, and hence overestimatesboundaries as the reason for the observed enhancement of
1/7¢p,. Moreover, Reizeet al. have performed an extensive 1/7¢, in the case of Ti,Al, system. Rather, contrary to the
calculation of 1f,, in the laboratory coordinate system, theory, this experiment clearly indicates that it is the substi-
which yields the same result as the calculation of Schmidutional disorder that enhances tegh interaction.
using the moving system approach, and therefore puts more In this work, we shall propose a different model for the
weight on Schmid’s prediction of a reducedrey~T4I. explanation of 1#,-enhancement. We consider impure met-
However, the enhancement ofrl} is widely observed in  als which arepolycrystalswith substitutionaldisorder, com-
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monly used in the experimental study of disorder physics.

The impurity concentration is taken to be in the dilute limit. C(Gip+ k,p)Ef exp(—iG - r)ug, udr
We shall demonstrate that the substitutional disorder can en-

hance 1f,, in a quite natural way, and lead to the depen-
denceT?~ 1. In Sec. Il, we shall discuss our theoretical
model. In Sec. lll, we shall conclude the study.

and G=reciprocal lattice vectors. In Ed1), Vimy(k—G)
with G#0 describes the Umklapp scattering, while that with
G=0 the normal scattering. From E@l), we can make
quantitative comparison between the normal and the Um-
Il. THEORETICAL MODEL klapp contributions, in the following two steps. Fikstbeing

o del h it hat distinguish it f the wave vector difference between two Fermi surface states,
ur model has two main features that distinguish It from;s ot he order of the Fermi wave vectés, and so isk

he other mogels. The first s the Inclusion dMkiapp Pro-  —G for small|G|<o(2/a). This means thaVy(k—G)
CESSo tlmpomFy scaE[terlngt, Wt'ICI n:vct)k:/est N ourletr Com'fandvimp(k) are of the same order. Secondf(G=0) and
ponents ot impurity potential at the wave Veclors Ol c g0y for |G|~o(2n/a) are also of the same order.

magnitude-o(2/a), wherea=lattice constantin contrast e, arguments in the functiod are omitted whenever it
thel pTe;(lous mzdels Iaret baS|hcaIIy nearly\//\l;ree eIecFNJIﬁE) g?]oes not cause confusigi.his can be seen as follows. The
calculations and neglect such process. YWe Now give a rougly, otions s in the integral ofC(G) are cell periodic and
qualitative argument for why such components are |mportangIence have primary Fourier components arouf@|
for a full treatment of impurity scattering. We note that, for a

. . . .<o0(2w/a). Expandingu’s in Fourier series and evaluating
host atom in a crystal, the Fourier components of its atom|qhe integral, one can see that, f@|<o(2m/a), C(G)'s are
potential at the reciprocal lattice vectors of magnityce ' SR !

o(2m/a) are important for electron dvnamics. beca SeIarge and have comparable magnitudezctually, with
(2mla) 'mp y ICS, " C(G)|~o0(1)]. With these two facts put together, it follows
they can strongly Bragg reflect the electron and couple

free-electron wave exii(r) to exgdi(k+G)-r], which is es- a na(: th?trt]e{ E;n|S~|2(EZCEL\)NIt(T§:t?] él'a;lr(llzggrgg CZ';;?ES
pecially prominent in the case of transition metals, Whereabout equally important.

tight-binding orbitals are better descriptions of electron states Next, we describe how the usual impurity diagrammatic
than plane waves. Likewise, when an impurity substitutes foEechniquéﬂ is modified, as a result of including the Umklapp

23&?;??0% tgﬁémguirr'%fg;nﬂal tS:c;ﬁled tt; ?rgsa;??h\/:tcvg:/ rocess. In the previous NFE models, with only the normal
P P rocess, the kind of Green’s function diagram surviving im-

vectors of magnitudeo(2=/a), i.e., those involved in the : ' ; . P
Umklapp process. Below, we shall give an alternative, buPunty configuration average is, for example, the following:

more quantitative discussion of the Umklapp impurity scat- VA
tering. /// \\\
Let Z be the valence number of a host atom, @ng, that k /‘ A k

of an impurity. We writeZ;,,,=Z+AZ, where AZ is the / \

valence difference that gives rise to ionic impurity scattering. / \\

We neglect any scattering due to the short-range impurity w | - \

core potential. To estimate the magnitude of Umklapp pro- d d

cess, let us consider the scatteripg>p+k on the Fermi p p+k P,

surface, off an impurity aR;, wherep andp+k are wave

vectors of an electron. The Impurlty potential matrix element\Nhere_:e|ectron |ine, _——— |mpur|ty |ine, and the vertex

involved in this scattering is, in previous NFE mod¥lS,  denotes the electron-impuritye-i) interaction screened

taken to be(with crystal volume=1) by electron-electron(e-8 interaction, i.e.,[Viny(K)/e(k)]

X exp(—ikR) (or its complex conjugaje with &(k) = static

(P+K[Vimp(r —=R)|p) ~ Vimp(K) exp( — ik - R;), dielectric function The two impurity lines joined tX refer

to a double scattering off the same impurity. Throughout the
where V;(k)=— (47e?AZ/k?) and the states have been Paper, we shall take/yy(k)/e(k)~const=V,, which means
approximated as plane waves. Such an expression includétropic impurity scattering. Now, with the Umklapp pro-
effectively only the normal process of impurity scattering. Incess included, the diagram is modified as
contrast, a full evaluation of the matrix element, with the true

crystal state wave functiore.g.,|p)=exp(p-r)uy(r) where =
u, is the cell-periodic Bloch function, gives k-G ‘_// \\Y’ G’
// \\
/ \
(P+KVimp(r =R)IP)= 2 Vimp(k—G)C(G:p+k,p) / \
© > > >
xexd —i(k—G)-R], (1) p ptk p
where (28
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where the e-i vertex now represent(G)Voexd—i(k et all® Great details of this application can be found in their
—G)R/] (or its c.c). Note that, in comparison with the normal papers and, hence, we shall limit our presentation only to a
scattering case, this diagram is weighted by the followingorief description.
extra factor: In the Keldysh formalism, four Green’s functions are
calculated simultaneously. In addition to the usual time-
C(G)C*(G"exdi(G-G')R], (2b)  ordered one G~ (r,t;r’,t")y=—i(T[y(r,t) " (r' ,t')]),
there are  GT(r,tr' t)=—i{y(r, )t (r',t')),

and the diagram is to be summed o¥&rG’, and also the G (rtr ) =i(y (1 ) g(r 1), and G (r.tr' )

impurity positionR; .

The second main theme of our model is taadom lat- = —1{TL¢(r,t)¢" (r',t")]) with T denoting reverse-time or-
tice shiftof crystallites in a polycrystal. It has the conse- dering. These functions contain not only dynamic but also

survives the configuration average. To see this, let us corfereen’s functionG™~(r,t;r’,t’) can be used to write down
sider two neighboring grains in the system, which are typi-duantum transport equations, from which expressions of
cally separated by a low-angle grain boundary created byarious collls_lon rates can be identified. The advgntage _of
edge dislocation® If we take our coordinate origin to be at this method is that it properly separates the elastic and in-
some lattice site of grain 1, then a general lattice site in graii¢lastic scattering and gives unambiguously the energy relax-
1 can be expressed in the formA+nB+IC, wherem, n ation rate, WhICh, in the case of our problem, is exactly the
and| are integers, and, B, andC are lattice basis vectors. €Ph scattering rate ¥/,. o

On the other hand, because of the edge dislocation between FOr the interaction part in the Hamiltonian of our system,
grains, the lattice sites of grain 2 are shifted by a vesfor We WriteHiy=He e+ He i+ Hepnt He v, WhereHe e is the
relative to the lattice of grain 1, and a site in grain 2 is€-€interaction,He.; the e-i interaction,He.p, the e-ph inter-
described by the fornmA+nB+IC+s, where the lattice action, andHe.y, the electron-moving impuritye-MI) inter-
shift s, being due to the dislocation, is of the order of lattice @ction. In particular, with the Umklapp process included, we
constant. Therefore, when E€@b) is summed over impuri- have(with 72=1)

ties, a random phase factor difference [@(@—G’)s| ap-

pears between contributions from different grains. Only the Hei=>, Z’ > C(G;p,p—K)Vimp(k—G)
diagram with G=G' survives the configuration average. p.o G

Note also that the weighting factor in E(b) then reduces

to |C(G)|?. The above discussion still holds if one takes into xXcl co_k UZ exg —i(k—G)R/],
account that crystal orientation also variékough only PP

slightly) among grains. Such a variation only induces rota-

tion in G andG’ and does not reduce the randomness of the BN

ohase factor. Hew=2 3" &' 2 C(Gip.p-k¥(k=G.aM)
Quite often, the inclusion of Umklapp process does not

qualitatively change the physics of disordered systems one is X C;,u-cp—k,o’(bq,)\+ bq+,>\)
investigating. For example, from the self-energy in diagram
(2a), the impurity scattering rate, with the Umklapp process X 2 exd —i(k—G—-q)Ri],
included, becomes Ri
where Y(K=G,q,N) = —iVinpy(k—G)(k—G)eg, /
1/T~z E |C(G)|2|VO|25(§p+k_§p)! (2m quh)l’z. In above,c andc™ are electron operators,
k G

andb™ phonon operatorg,, a unit vector along the phonon

where¢ is the electronic energy. If we consider only the mainPlarization,\ the phonon branch indeX =mass of a unit
contribution from smaliG, it gives, roughly, cell, N=number density of unit cells, anal,, = phonon en-
ergy. For later use, we draw the diagram Fbg., below

Ur=ngCo2 [Vol*8(ép i &),

whereng~number of smallG’s, e.g., with|G|<o(2/a),
andC, is the typical magnitude ofC(G)|. Apart from the
factorngC3 [which is actuallyo(1)], the rate 1#is basically
of the same form as what one would obtain if only the nor-
mal process of impurity scattering is considered. In contrast,
as we shall show, the inclusion of Umklapp process modifies
1/7¢p in @ qualitative way.

We now describe our calculation. Basically, we adopt the p-k p '
same Keldysh formalism of equilibrium Green’s functidfis,
as applied to the calculation of energy relaxation rate in diswhere the wavy line is a phonon line, and the vertex is pro-
ordered metals firstly by Altshul®t and later by Reizer portional toi (k— G)egVimp(k—G)/e(k—G,w), with w the
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frequency of the phonon line. Here, we have included thelhese diagrams and their symmetric counterparts make the

dynamic screening of the-MI vertex by thee-e interaction.  largest contributionsl; andlg (in terms of the symbols of
Following previous works, several approximations areReizeret al), to 1/re,. |7 is given by the diagram in Eq3)

made in the calculation. First, because we are considerings follows:

alloys with dilute impurity concentration and lattice vibra-

tions of long wavelength, we take the phonon dispersion to (&)= 8Nimpf dpdkdqdw  R(§,w)

be just that of the corresponding clean metal. Second, the ' mY (2m)* “T2MNwyg,

screening of interactions bg-e interaction is taken into ac-

count Wi'?hin the diﬁusionﬁodified random phase approxi- xXIm GA(p,&)Im G*(p+k,&-+w)Im D¥(q,w).

mation, where the usual electron-hole bubble is inserted with, is given by the diagrams in Eq&ta), (4b) and their sym-

a ladder of impurity lines as follows: metric counterparts as follows:

., [ dpdkdk,dgdw _ R(¢£w)
I8(§)—8Nimpj 2m JBZMquA

X[ImGA(p+ky+Ky, E+w)]

XIm GA(p, )] [GR(p+kz,)

XGA(p+ky+q,é+w)+c.c][ImDR(g,w)].

Third, we take the weale-ph coupling limit and consider ]

only those electron self-energy diagrams which are first{n the integrald; andlg,

order in thee-ph interaction. The following diagrams are _

most important and are explicitly shown below: R(&EW) =NwNe(1=Ngw) = (14 Nw) (1= N Ngrw,

GR(p,&)=[GA(p,O)1* = (£— & +il2n)

q
DR(q,w)=[D"(q,w)]*
‘jf'/\v/\\\‘t\ =(W—Wg, +i0) "= (W+wg, +i0)~*
p - P with N,, the Bose-Einstein distribution and, the Fermi-

> - > Dirac distribution, whileJ; andJg are contributions from the
\\ / e-i ande-MI interaction vertices in the corresponding dia-

\\ // grams, respectively. For thee Ml vertex, we can replace the

k-G Y /“ k-G dynamical screening of impurity potenti@t the frequency
\\\‘X"’// w of the phonon ling by static screening, and take the

screened potential to Bé;, since the contribution to the
integral inl; andlg mainly comes from the frequency range
wherew~wg, ~0. This gives

q
p ’fﬂt\‘g p 37== 2 |C(G;p+kp)’L(k=G)eq )| Vol?

)

\ > > 7
\ \N/L / and
N\ k-G J/
Y o-G' T \~><—”/ le-G '+q Jg=62G, C(G';p+kz,p)C*(G";p+ka+0a,p)| Vol
XC(G;p+kitky,pt+ky)
(43)
q XC*(G;p+ki+ky,p+ky,+0q)
p p X[(ki=G)epll(ko—G"+a)eg].
” \ - \F:} 4 / a In the NFE work of Reizeet al, it is found that botH
\\ k-G / andlg haveo(T? 1) as leading-order terms, but they are
\Y » opposite in sign and exactly cancel out. This leaves them the
k-G~ O~ _~ kz-G'+q next-order terms which are(T#l). Since other self-energy
() ~—X— diagrams not drawn here are also @fT*l), it gives, in

overall, 1/7'epO<T4|. However, we shall show in below that,
(4b) with the inclusion of Umklapp process; becomes several

165101-4



ELECTRON-PHONON INTERACTION IN IMPUFE . .. PHYSICAL REVIEW B 64 165101

times as large ak;. As a result, the cancellation is not exact scattering is considered. When we put back in the intedals

in the leading order and it yields A/, T? 1. andlg, they both result iro(T?~*) contributions to 1,
We discuss the functional dependence af, }in the fol-  that cancel with each other just as in the original NFE cal-

lowing way. First, note that, in the mathematical expressiongulation of Reizeret al. This leaves us theC{em)2 term in

I, and Ig, we can regard the Fermi wave vector as a J; which comes from the Umklapp scattering. It is easy to

continuous variable antl, andlg as functions ok;. Their  check that the((;em)2 term, when integrated, makes an ex-

domain ofk; consists of an intervdk; , ki ~0(G/2)], with  tra o(T?l~*) contribution to 1fep, too. Therefore, after

k: small but still large enough to satisfy the conditil summingl; andlg, we obtain 1+ep~o(T2I*1) or, more

>1. For example, il =100a/m, we takek; to be 0.1r/a.  accurately,

The enforcement of the foregoing inequality is to make sure

that, the same mathematical approximation, e.g., retaining 1 o(l7+1g) ,37m GE T2 (B Py
only the lowest-order term irk¢l) ~* in the calculation of ; T_GpN_ sn, ~Ne 4 KTl o) ®)
andlg, can be used throughout the intervallgf
We now evaluate ¥, for the case wherk; is small, i.e., where
neark; . In this case, our argument against the cancellation 5 5
of o(T? 1) terms in 1k, is made in two stepgA) First, 8= p (ﬂ) =(ﬁ) v
we make the approximation thaf;~u,, whereu,; andu, P ¢, 3 | 2MN¢

are Bloch cell-periodic functions &t and at the zone center, i

respectively. The validity of this approximation follows from [N the above,Go~o(2/a), e;=Fermienergy,c,=sound
the kp theory of band structures in which one expangsin velocity of Iongltudlngl phonpn mode, = that of transverse

a perturbation series with, being the leading-order term. One, andv=electronic density of state¢A) together with
Moreover, we assume, has the full symmetry of the lattice, (B) is @ rigorous argument in the case of smiqll We stress
e.g.,Up is Slike in the case of a crystal with cubic symmetry. that this result is significant and distinct from that of Reizer
With the approximation thati,;~u,, C(G;p,p,) [defined €t al, since theirs always gives(T*l) dependence regard-

in Eq. (1)] ~C(G;0,0) whenp; andp, both are restricted to €SS of the value ok; . _

the Fermi surface. Moreover, it is obvious th&(G;0,0)| Now, we discuss the functional dependence ot Jihen
—|C(|G|;0,0)|, independent of the& direction, which fol-  Kr increases towards(G/2). Generally speaking, cancella-
lows from the symmetry ofiy. (B) Next, we note that, id, /0N among terms is less likely to occur than noncancellation,
and Jg, the phonon wave vectag~0 ’and moreovér the unless there is certain symmetry-related physics behind it. A
electron wave vectors, p+k, p+k, a;ndpn’t Ky + Ky which  good example is the optical dipole transition between two
appear as arguments in varidDéG)'s there are all restricted states, which is usually finite unless there is inversion sym-
to the Fermi surface, both resulting from the fact that contri-M€ry and the two states are of the same parity. In our case,
butions to the integrals, and |5 mainly come from the re- if there were a symmetry-caused cancellation, it would have

gion with g~ 0 and with the foregoing electron wave vectors shown up in the foregoing calculation for a smijl. The
~K;. So, we can take alC’s in J, and Js as C(G:k; ki) fact that the cancellation does not occur there strongly sug-

. . ; gests lack of such symmetry. Moreover, if we writer,
tercm(?n’ 270) according taA). Then, we have, for the cross =f(k;)T?l ! and regard (k) as an analytic function d{f]f/
with f(k¢)=0, it is hardly likely that the coefficient(k;)
should go from being nonvanishing in the domain of small
22, |C(G;0,0)|%(kegy)(Geg) k¢, proved earlier, to being identically zero for all large val-
© ues ofk; . Therefore, we can conclude convincingly against
) the vanishing off (k;) for general values ok;. To estimate
:2% |C(|G;0,0)| (keqx)(equZ G), the order of 1t.,, we could just rely on Eq(5), or start
e from the scratch making the simplest assumpti@{G)|
whereEQGG denotes the summation &’s over the direc- ~constantCy in the original expressions @ andJg and
tion of G. SinceX, G=0 with G's distributing symmetri- 90 through the mathematics once more. In the latter case, we
G arrive at Eq.(5) again.
Let us apply our theory to the Ti,Al, system. We take
ng=1, Cy=1, ¢,=6000m/s, ¢;=2950m/s, v;=3.2
X10°m/s, M=7.97x10 26kg, N=5.66x10°%m° kK

cally for a crystal of, say, cubic symmetry, the cross term
vanishes. We are then left with only the squared terms

I = |C(|G[;0,0|2[ (keg)?+(Geg) Y Vol =1.46x10°m !, Go~k¢, and obtain the estimate 7/,
¢ ~0.1T? 1 (in MKS unit), in agreement with the experimen-
Similarly, we have tal result 1fe,~0.2T%1"* of Wu et al™® in both order of

magnitude and functional dependence.

Jgoe(1/ C(|G|:0,0)| [ kyeg (kp+ Vol
5 ( T)%| (|G| )| 1eqx( 2+qg)e ]|Vl ll. CONCLUSION

We note that thel»(em)2 term inJ; and the wholelg are of In summary, we have calculatedrd} in polycrystalline
the same forms as what one would obtain if only normalmetals in the limit of dilute impurity concentration. We con-

165101-5



W. JAN, G. Y. WU, AND H.-S. WEI PHYSICAL REVIEW B64 165101

sider the additional contribution due to the Umklapp processng, for the case of polycrystalline metals with dilute impu-
of impurity scattering, which has been neglected in all pre~ity concentration.

vious NFE calculations but is important for the present prob-
lem, and find that X, in the dirty limit is enhanced by the
disorder due to substitutional impurities and random lattice
shift of grains. Specifically, we obtain ﬂJp~T2I “1 in We acknowledge the support of the National Science
agreement with previous experiments both in order of magCouncil of ROC under the Contract No. NSC88-2112-M-
nitude and in functional dependence. This work satisfactorilyp07-018. We thank Dr. J. J. Lin for useful discussion and for
explains the long-standing discrepancy between theories argtoviding us with the information regarding the crystallinity
experiments regarding the effect of disorderesph scatter- of their Ti;_,Al, samples.
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