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We present a method to determine the equilibrium geometry of large atomistic systems with linear scaling.
It is based on a separate treatment of long and short wavelength components of the forces. While the rapidly
varying part is handled by conventional methods, the treatment of the slowly varying part is based on elasticity
theory. As illustrated by numerical examples containing up to a million atoms this method allows an efficient
relaxation of large nanostructures.
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Considerable effort has recently been devoted to the ddewer configuration as the starting point for a geometry op-
velopment of various linear scaling algorithms. Only with timization using any standard method such as the conjugate
these types of algorithms it is possible to perform atomistiggradient or a quasi-Newton method. Because only the forces
simulations of large systems containing many atoms. Due tacting on the two atoms neighboring the compressed spring
these efforts it is nowadays possible to calculate the totahre nonvanishing, we will relax only these two atoms in the
energy of the system and the forces acting on the atoms witmiddle during the first iteration. During the subsequent itera-
linear scaling under many circumstances. Linear scaling cations, nonvanishing forces will appear on all the atoms
obviously been obtained if short-range inter-atomic potenwhose neighbors have been moved in previous iterations and
tials are used. With the help of sophisticated algorithms suchence they will be moved as well. Consequently it takés
as the fast multipole methods and particle mesh methods it iserations for a chain of length to propagate the perturba-
also possible to obtain linear scaling for inter-atomic poten+tion from the compressed spring in the middle to the end. It
tials that include long-range electrostatic interactions. Finallyfollows that one needs at least of the ordemnaferations to
linear scaling can be obtained if the forces are calculatedind the equilibrium configuration.
quantum mechanically by using so calledN) electronic One can recover the basic result of this intuitive deriva-
structure methodb. tion from a mathematical analysis. Writing down the elastic

In spite of this important algorithmic progress concerningenergy of a periodic three-dimensional model solid con-
length scaling problems various time scaling problems pernected by perfect springs one finds that the eigenvalues
sist. Ordinary molecular dynamics simulations can onlythe Hessian matrix are the squares of the phonon frequencies
cover relatively short-time intervals. Another related scalingw; . Mathematical theorems about the convergence of itera-
problem is encountered in geometry optimizations of largetive methodé relate the number of iterations to the condition
atomistic systems. Geometry optimizations require the mininumber x, which is the ratio between the largest and the
mization of the total energy with respect to the atomic posismallest eigenvalue of the Hessian matrix. Considering the
tions. The number of iterations required by standard minimi-case of large condition numbeksand assuming that in the
zation methods such as the conjugate gradient methodisplacements that would bring the initial nonequilibrium
increases with system size, destroying thus linear scalingonfiguration back into the equilibrium configuration all
even if the forces are calculated with such a scaling. wavelengths are roughly equally represented, the number of

Even though the problem of the increasing number ofiterationsn.g for the conjugate gradient method is given by
iterations in geometry optimizations has been observed by

many workers in the field, it has, to the best of our knowl- ce Amax| 22 Omax
edge, not been analyzed up to now. We will therefore start Nt Vx|log(e)| = | llog(e)|=—""log(e)]
. . N . . min min
with a detailed examination of the effect and relate it to well (1)
known facts about the convergence rate of iterative methods
before presenting our solution on how to overcome it. wherew,;, is the smallest nonzero phonon frequency and

Figure 1 shows a linear chain, where the atoms are corthe required precision. The highest phonon frequeagyy
nected by elastic springs. The upper panel shows the equiising either from an optic or acoustic branch is nearly in-
librium configuration, the lower one a configuration wheredependent of system size, whereas the acoustic phonon
the right half is shifted to the left, compressing the spring inbranch goes to zero &=0 linearly. The grid of allowed
the middle. Let us now consider what happens if we use th&ave vectork in the Brillouin zone becomes finer and finer

as the periodic cell of the solid grows. The smallest phonon
: : : : : : : : frequencyw,,;, is related to the grid point that is closest to
0-\\V-@-\\/-@\\-@\\-@\\\ @\ -@\\-@ the origin and is proportional to [14,,,, WhereL . is the
largest linear dimension of the system. The number of itera-
000\ eWe &\ & G tions is therefore given by

FIG. 1. A linear chain in equilibriumitop) and in a special CG Lmax
A amn i Ny~ —=/log(e)|,
out-of-equilibrium configuratioribottom). a
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wherea is a typical inter-atomic distance. For the steepest
descent method the convergence is slower:

A w?
e <7 log( )| = —5[log(e)]. @
min WDmin

Tnh k

Even though these results were derived for periodic solids FIG. 2. lllustration of the subdivision into a high f "
numerical simulations clearly show that they also hold true - . lllustration ot the subdivision into a figh frequency par

for regular nonperiodic structures such as linear polymerstreateol by conventional methods and a high frequency part de-

two-dimensional sheets and bulklike clusters. scribed by elasticity theory. The straight line is the “phonon” dis-

It is interesting to relate the number of conjugate gradienf)ersmn relation of an elastic solid in the continuum limit.
iterations to the number of atoni¥ in the system. For a
one-dimensional system we fifilq. (1)] thatnﬁG is propor-  To build up A one needs the elastic constants of the
tional to the number of ator, in the two-dimensional case Material® Differentiating with respect tal and using the fact
n$CxNY2 and in the three-dimensional can§®xN? as- that the f_orcef is just the negatiye of f[he derivative_of the
suming that all the side lengths are comparable. The possib@Nergy with respect to the atomic positions we obtain
gains by using a linear scaling algorithm are thus largest in
the one-dimensional case.

In chemistry, geometry optimizations are usually done in —Au=f. 3
internal coordinates pioneered by Pulay and co-worksse
Refs. 3 and 4, and references thejdimstead of Cartesian
coordinates. An extension of this approach to periodic sys
tems has also been investigafe@he internal coordinates ) . i : ;
typically consist of bond stretching, bending, and torsion Co_theor_y. Gl\_/en a continuous force fieldr) dlscre_tlzed on the_
ordinates. Their construction is not easy for complicated geM 911d points it allows us to calculate the discretized dis-
ometries and transformations between the Cartesian and iﬁ’-lac?mem field th{it would brmg_ the S.Ol'd Into its eqwhbnum
ternal coordinates are required in each iteration step. The&@nfiguration. An ideal harmonic solid can be relaxed with
transformations are costly and have a cubic scaling wheRn€ Single step in this way. If we apply this step, as will be
done by conventional linear algebra methods. Recently way pr@qu below, to our real solid it drastically brings down
have, however, been found to do these transformations witH'€ limiting low frequency components of the force.
linear scaling® For the example in Fig. 1 there would be no Eq“a“or_‘(3) cannot be appllec_i in a straightforward way
dependence of the number of iterations on the size of thi an atomic system..The derl_vatn(e of a total energy expres-
system if the optimization was done in internal coordinates>oN O an inter-atomic po_tentla_ll gives o_nly the forces.actlng
(just bond lengths in this casdhis property is also satisfied on the atoms but not a discretized gont!nuous force field. In
for simple polymers, but is lost when one has molecules witdh€ same way we need the atomic displacements for the
a higher dimensional character or bulklike structures. atomic moves and not a discretized displacement field. Meth-

Linear scaling is generally achieved by treating different0ds to transform between atoms and grid points are well

length and time scales in appropriate ways. This will also bémown from the various partig:le mesh meth&déol_lowing
the guiding principle in this work. As we have seen in thethese ideas we map the atomic forces onto the grid by smear-

: : 2/a\4(1 _ y2/a\A
preceding discussion the slowdown of the convergence rat@9 them out with the function (*x%/8)"(1-y</8)"(1

is due to the long-wavelength acoustic phonons. Hence the 2*/8)* (the unit length is the grid spacingThe transfor-
basic idea is to treat high and low frequencies in a differenfation from the grid onto the atoms is done by cubic inter-
way. The reduction of the high frequency components of thdolation. .
force during a geometry optimization is satisfactory with the JUSt by invoking elasticity theory we have actually not yet
standard methods such as conjugate gradient and steepf&glly solved the scaling problem. If we were to solve £3).
descent. To reduce the low frequency components we wilPy & conjugate gradient method the number of iterations
use elasticity theory. This is motivated by the fact that ordi-Vould as well increase with respect to the number of grid
nary materials have continuumlike behavior on length scaleBOINtS. In this case the method might still be useful since
of just a few inter-atomic distances. This divide and conquelNder most circumstances a conjugate gradient step for Eg.
approach in frequency is illustrated in Fig. 2. (3) will be significantly less expensive than for_ the atomic
Elasticity theory, discretized on a grid ® grid points, system, but the overall scallng_would not be linear. ForFu—
gives the total elastic enerdg,, of a system as a quadratic nately recent developments in the field of multi-grid

form of the a displacementsi; from the equilibrium con- method§ allow us to solve sparse linear systems of the type
figuration: ! of Eqg. (3) with linear scaling and with small prefactors. In

the case of periodic systems one can also use fast Fourier
transform techniques that exhibit a nearly linédtog(M)
E zluTAu scaling. In summary, if we can calculate the forces with lin-
el 2 ' ear scaling and solve E@3) with linear scaling using the

_ Equation (3) is the central equation for the relaxation
steps of the minimization iteration that are based on elasticity
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' ' R TABLE I. Number of force evaluations; and CPU timeT in
seconds for the conjugate gradi€B1G) and the linear scalingSO
method for a divacancy in silicon.

= ,;;;;:?5" Number of atoms  n; (CG) n; (LS) T(CG TI(LS

: 510 102 106 0.41 0.50

998 124 106 0.90 0.93

! ! ! 1726 146 109 1.7 1.6

° e ? 4094 184 115 5.1 4.2

13822 260 115 24.0 14.0

FIG. 3. The “phonon” dispersion relation of two grids used for 110592 502 115 373.0 135.0
the solution of Eq(3). The wave vectok is measured in units of gg4734 934 117 5586.0 1147.0

m/a, wherea is the lattice constant of the physical system. The
solid line corresponds to a grid whose spacing is equal to the inter- ) ) ) )
atomic distance, the dashed line to the case where the grid spacindgiOns but each iteration becomes more expensive since the

is half of the inter-atomic distance, and the dotted line is the consolution of Eq.(3) takes longer. Increasiniyl further does

tinuum limit. not lead to a significant additional reduction of the number of
iterations. Choosin{yl smaller tharlN is not reasonable since

or such values the number of iteration increases strongly

above mentioned methods overall linear scaling can be ol:f—

tained for the geometry optimization problem in Cartesianand the effort for the solution of Eq3) is completely neg-

coordinates. ligible. We found that for grid densities in the recommended

. . . . interval the best values fan, were between 2 and 4. For
Iovx;li—rrllg ;:toengglete algorithm consists of a iteration of the fOI'silicon systems conjugate gradient sweeps were slightly

; ional minimizati Th more efficient than steepest descent sweeps.
(1) Performn, conventional minimization sweeps. The " £yen though each of the two steps in our method targets a
choice ofn, is discussed below.

o _ specific frequency range a clearcut separation is not possible.
(2) Perform one step where the solid is described by elasthe conjugate gradient step will slightly dampen the low

ticity theory. (a) Calculate the forces acting on the atoms; frequency component. The elasticity step will introduce
(b) transfer the atomic forces onto a computational grid;some additional short wavelength errors since the “phonon”
(c) solve Eq.(3) with a linear scaling method to obtain the dispersion relation for the elastic grid model deviates from
displacements(d) evaluate the numerical displacement field the phonon dispersion relation of the material in the high
at the atomic positions to get the atomic displacementsfrequency region. These errors are however very small since
(e) move the atoms along these displacement directions. Thihiese components were already significantly decimated by
can either be done using a fixed step size or by a line minithe preceding conventional steps and they are therefore im-
mization along these directions. We choose the latter variantnediately annihilated by the following conjugate gradient
Continuum elasticity theory considers the limit where thesteps.
ratio between the wavelength of any perturbation is much Table | shows numerical results for the relaxation of a
larger than the inter-atomic spacing. In this limit the phonondivacancy in silicon crystals of varying cell size modeled
dispersion relation is a straight line as shown in Fig. 3. Thewith the environment dependent interatomic potential
point at which the phonon dispersion relation of the true(EDIP) inter-atomic potential. The norm of the force§>; f;
solid starts to deviate from a straight line tells us the lengthwas reduced down to 1§ resulting in total energies that
scale at which the solid can already be considered as a comere converged to machine precision. The initial configura-
tinuous elastic medium. Once one has a discretized versioiion was the perfect silicon crystal with two neighboring at-
of elasticity the “phonon” dispersion relations are not any oms removed. We compare both the number of force evalu-
more straight lines but the phonon dispersion relation of ations and the CPU time of the conjugate gradient method
model harmonic solid. The size of their Brioullin zone de- with our method. All line minimizations were done by mini-
pends on the density of the numerical grid as shown in Figsmizing the projected force and under the assumption that the
2 and 3. energy function is quadratic. This results in just two force
The number of conventional sweepg in our method evaluations per conjugate gradient step and turned out to be
depends on the size of the frequency range that the convethe most efficient conjugate gradient implementation. The
tional part needs to cover. This range depends both on thelastic equations of an isotropic homogeneous medium were
physical properties of the system and on the density of theolved using Fourier techniques. The two elastic constants
numerical elasticity grid. Obviously the range will be larger needed in this context were calculated numerically by apply-
if there are high optical phonon bands. It will also be signifi-ing a compression and a shear to the system.
cantly larger if the number of grid points is less than the Taking the CPU time as the criterion, the crossover-point
number of atoms since in this case the highest frequency tha at around 1000 atoms for EDIP inter-atomic potential that
can be reached by the elastic model is small. According tés fast to evaluate. If we would use another total energy
our experience it is best to choose the number of grid pointscheme where the calculation of the forces is more costly, the
M to be in the interval N: 29 NJ, whered is the dimension. number of force evaluations would be the best criterion and
IncreasingM within this range reduces the number of itera- the crossover point goes down to 600 atoms roughly.
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The divacany example allows the examination of the scalgeometry optimization was based on the assumption that we
ing behavior over a large range of system sizes, since thare in a region where the energy functional has nearly qua-
behavior of the divacancy remains qualitatively the same. Irdratic behavior. Our numerical experiments indicate however
many other nanosystems the behavior can fundamentalifhat our linear scaling method also offers advantages in the
change with size due, for instance, to size dependent surfageise where one starts the geometry optimization from a point
reconstructions. This can then lead to highly irregular trendsghat is far away from such a region. In this case multiple
in the number of iterations. For these reasons we have choninima are frequently encountered. We found that our linear
sen the divacany example even though it is a particularlyéca"ng method is more likely to find lower energy local
difficult example to demonstrate the advantages of the linegfinima than the conjugate gradient method.
scaling method over the conjugate gradient method. It is \yie have presented a method that allows us to relax very
fully three dimen_siona_l and the importan<_:e of the long waveiarge systems with linear scaling, removing thus an impor-
length perturbations induced by the di-vacancy decreasqgt pottleneck in atomistic simulations. This method in com-
with system size, leading to an increase of the number ofination with inter-atomic potentials and () electronic
conjugate gradient iterations that is slightly slower than prexirycture methods allows efficient geometry optimizations
dicted by Eq.(1). _ _ for large solid state materials and nanostructures. It is ex-

We have also applied the method to more complicateghecied that it can be extended to large molecular and biologi-

systems such as incommensurate interfaces in silicon andy systems for which sufficiently simple elasticity models
clusters of silicon. In all these cases we obtained cross ovelys;

points of 1000 atoms or below. As expected the gains were
particularly large for systems with two-dimensional charac- S. G. thanks M. Brezina, K. Nemeth P. Pulay, and G.
ter. Our previous analysis of the number of iterations forScuseria for interesting discussions.
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