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Linear scaling relaxation of the atomic positions in nanostructures

Stefan Goedecker, Fre´déric Lançon, and Thierry Deutsch
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We present a method to determine the equilibrium geometry of large atomistic systems with linear scaling.
It is based on a separate treatment of long and short wavelength components of the forces. While the rapidly
varying part is handled by conventional methods, the treatment of the slowly varying part is based on elasticity
theory. As illustrated by numerical examples containing up to a million atoms this method allows an efficient
relaxation of large nanostructures.
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Considerable effort has recently been devoted to the
velopment of various linear scaling algorithms. Only wi
these types of algorithms it is possible to perform atomis
simulations of large systems containing many atoms. Du
these efforts it is nowadays possible to calculate the t
energy of the system and the forces acting on the atoms
linear scaling under many circumstances. Linear scaling
obviously been obtained if short-range inter-atomic pot
tials are used. With the help of sophisticated algorithms s
as the fast multipole methods and particle mesh methods
also possible to obtain linear scaling for inter-atomic pot
tials that include long-range electrostatic interactions. Fina
linear scaling can be obtained if the forces are calcula
quantum mechanically by using so called O~N! electronic
structure methods.1

In spite of this important algorithmic progress concerni
length scaling problems various time scaling problems p
sist. Ordinary molecular dynamics simulations can o
cover relatively short-time intervals. Another related scal
problem is encountered in geometry optimizations of la
atomistic systems. Geometry optimizations require the m
mization of the total energy with respect to the atomic po
tions. The number of iterations required by standard mini
zation methods such as the conjugate gradient me
increases with system size, destroying thus linear sca
even if the forces are calculated with such a scaling.

Even though the problem of the increasing number
iterations in geometry optimizations has been observed
many workers in the field, it has, to the best of our know
edge, not been analyzed up to now. We will therefore s
with a detailed examination of the effect and relate it to w
known facts about the convergence rate of iterative meth
before presenting our solution on how to overcome it.

Figure 1 shows a linear chain, where the atoms are c
nected by elastic springs. The upper panel shows the e
librium configuration, the lower one a configuration whe
the right half is shifted to the left, compressing the spring
the middle. Let us now consider what happens if we use

FIG. 1. A linear chain in equilibrium~top! and in a special
out-of-equilibrium configuration~bottom!.
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lower configuration as the starting point for a geometry o
timization using any standard method such as the conju
gradient or a quasi-Newton method. Because only the for
acting on the two atoms neighboring the compressed sp
are nonvanishing, we will relax only these two atoms in t
middle during the first iteration. During the subsequent ite
tions, nonvanishing forces will appear on all the atom
whose neighbors have been moved in previous iterations
hence they will be moved as well. Consequently it takesn/2
iterations for a chain of lengthn to propagate the perturba
tion from the compressed spring in the middle to the end
follows that one needs at least of the order ofn iterations to
find the equilibrium configuration.

One can recover the basic result of this intuitive deriv
tion from a mathematical analysis. Writing down the elas
energy of a periodic three-dimensional model solid co
nected by perfect springs one finds that the eigenvaluesl i of
the Hessian matrix are the squares of the phonon frequen
v i . Mathematical theorems about the convergence of ite
tive methods2 relate the number of iterations to the conditio
numberk, which is the ratio between the largest and t
smallest eigenvalue of the Hessian matrix. Considering
case of large condition numbersk and assuming that in the
displacements that would bring the initial nonequilibriu
configuration back into the equilibrium configuration a
wavelengths are roughly equally represented, the numbe
iterationsnCG for the conjugate gradient method is given b

nit
CG}Aku log~e!u5S lmax

lmin
D 1/2

u log~e!u5
vmax

vmin
u log~e!u

~1!

wherevmin is the smallest nonzero phonon frequency ane
the required precision. The highest phonon frequencyvmax
arising either from an optic or acoustic branch is nearly
dependent of system size, whereas the acoustic pho
branch goes to zero atk50 linearly. The grid of allowed
wave vectorsk in the Brillouin zone becomes finer and fine
as the periodic cell of the solid grows. The smallest phon
frequencyvmin is related to the grid point that is closest
the origin and is proportional to 1/Lmax, whereLmax is the
largest linear dimension of the system. The number of ite
tions is therefore given by

nit
CG}

Lmax

a
u log~e!u,
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wherea is a typical inter-atomic distance. For the steep
descent method the convergence is slower:

nit
SD}

lmax

lmin
u log~e!u5

vmax
2

vmin
2

u log~e!u. ~2!

Even though these results were derived for periodic so
numerical simulations clearly show that they also hold t
for regular nonperiodic structures such as linear polym
two-dimensional sheets and bulklike clusters.

It is interesting to relate the number of conjugate gradi
iterations to the number of atomsN in the system. For a
one-dimensional system we find@Eq. ~1!# thatnit

CG is propor-
tional to the number of atomsN, in the two-dimensional cas
nit

CG}N1/2 and in the three-dimensional casenit
CG}N1/3 as-

suming that all the side lengths are comparable. The poss
gains by using a linear scaling algorithm are thus larges
the one-dimensional case.

In chemistry, geometry optimizations are usually done
internal coordinates pioneered by Pulay and co-workers~see
Refs. 3 and 4, and references therein! instead of Cartesian
coordinates. An extension of this approach to periodic s
tems has also been investigated.5 The internal coordinates
typically consist of bond stretching, bending, and torsion
ordinates. Their construction is not easy for complicated
ometries and transformations between the Cartesian an
ternal coordinates are required in each iteration step. Th
transformations are costly and have a cubic scaling w
done by conventional linear algebra methods. Recently w
have, however, been found to do these transformations
linear scaling.3 For the example in Fig. 1 there would be n
dependence of the number of iterations on the size of
system if the optimization was done in internal coordina
~just bond lengths in this case!. This property is also satisfie
for simple polymers, but is lost when one has molecules w
a higher dimensional character or bulklike structures.

Linear scaling is generally achieved by treating differe
length and time scales in appropriate ways. This will also
the guiding principle in this work. As we have seen in t
preceding discussion the slowdown of the convergence
is due to the long-wavelength acoustic phonons. Hence
basic idea is to treat high and low frequencies in a differ
way. The reduction of the high frequency components of
force during a geometry optimization is satisfactory with t
standard methods such as conjugate gradient and ste
descent. To reduce the low frequency components we
use elasticity theory. This is motivated by the fact that or
nary materials have continuumlike behavior on length sca
of just a few inter-atomic distances. This divide and conq
approach in frequency is illustrated in Fig. 2.

Elasticity theory, discretized on a grid ofM grid points,
gives the total elastic energyEel of a system as a quadrat
form of the 3M displacementsui from the equilibrium con-
figuration:

Eel5
1

2
uTAu.
16110
t

s
e
s,

t

le
in

n

s-

-
-

in-
se
n

ys
th

e
s

h

t
e

te
he
t
e

est
ill
-
s
r

To build up A one needs the elastic constants of t
material.6 Differentiating with respect tou and using the fact
that the forcef is just the negative of the derivative of th
energy with respect to the atomic positions we obtain

2Au5f. ~3!

Equation ~3! is the central equation for the relaxatio
steps of the minimization iteration that are based on elasti
theory. Given a continuous force fieldu(r ) discretized on the
M grid points it allows us to calculate the discretized d
placement field that would bring the solid into its equilibriu
configuration. An ideal harmonic solid can be relaxed w
one single step in this way. If we apply this step, as will
explained below, to our real solid it drastically brings dow
the limiting low frequency components of the force.

Equation~3! cannot be applied in a straightforward wa
to an atomic system. The derivative of a total energy expr
sion or an inter-atomic potential gives only the forces act
on the atoms but not a discretized continuous force field
the same way we need the atomic displacements for
atomic moves and not a discretized displacement field. Me
ods to transform between atoms and grid points are w
known from the various particle mesh methods.7 Following
these ideas we map the atomic forces onto the grid by sm
ing them out with the function (12x2/8)4(12y2/8)4(1
2z2/8)4 ~the unit length is the grid spacing!. The transfor-
mation from the grid onto the atoms is done by cubic int
polation.

Just by invoking elasticity theory we have actually not y
really solved the scaling problem. If we were to solve Eq.~3!
by a conjugate gradient method the number of iteratio
would as well increase with respect to the number of g
points. In this case the method might still be useful sin
under most circumstances a conjugate gradient step for
~3! will be significantly less expensive than for the atom
system, but the overall scaling would not be linear. For
nately recent developments in the field of multi-gr
methods8 allow us to solve sparse linear systems of the ty
of Eq. ~3! with linear scaling and with small prefactors. I
the case of periodic systems one can also use fast Fo
transform techniques that exhibit a nearly linearM log(M)
scaling. In summary, if we can calculate the forces with l
ear scaling and solve Eq.~3! with linear scaling using the

FIG. 2. Illustration of the subdivision into a high frequency pa
treated by conventional methods and a high frequency part
scribed by elasticity theory. The straight line is the ‘‘phonon’’ di
persion relation of an elastic solid in the continuum limit.
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above mentioned methods overall linear scaling can be
tained for the geometry optimization problem in Cartes
coordinates.

The complete algorithm consists of a iteration of the f
lowing steps.

~1! Perform nc conventional minimization sweeps. Th
choice ofnc is discussed below.

~2! Perform one step where the solid is described by e
ticity theory. ~a! Calculate the forces acting on the atom
~b! transfer the atomic forces onto a computational gr
~c! solve Eq.~3! with a linear scaling method to obtain th
displacements;~d! evaluate the numerical displacement fie
at the atomic positions to get the atomic displaceme
~e! move the atoms along these displacement directions.
can either be done using a fixed step size or by a line m
mization along these directions. We choose the latter vari

Continuum elasticity theory considers the limit where t
ratio between the wavelength of any perturbation is mu
larger than the inter-atomic spacing. In this limit the phon
dispersion relation is a straight line as shown in Fig. 3. T
point at which the phonon dispersion relation of the tr
solid starts to deviate from a straight line tells us the len
scale at which the solid can already be considered as a
tinuous elastic medium. Once one has a discretized ver
of elasticity the ‘‘phonon’’ dispersion relations are not a
more straight lines but the phonon dispersion relation o
model harmonic solid. The size of their Brioullin zone d
pends on the density of the numerical grid as shown in F
2 and 3.

The number of conventional sweepsnc in our method
depends on the size of the frequency range that the con
tional part needs to cover. This range depends both on
physical properties of the system and on the density of
numerical elasticity grid. Obviously the range will be larg
if there are high optical phonon bands. It will also be sign
cantly larger if the number of grid points is less than t
number of atoms since in this case the highest frequency
can be reached by the elastic model is small. According
our experience it is best to choose the number of grid po
M to be in the interval@N: 2d N#, whered is the dimension.
IncreasingM within this range reduces the number of iter

FIG. 3. The ‘‘phonon’’ dispersion relation of two grids used f
the solution of Eq.~3!. The wave vectork is measured in units o
p/a, wherea is the lattice constant of the physical system. T
solid line corresponds to a grid whose spacing is equal to the in
atomic distancea, the dashed line to the case where the grid spac
is half of the inter-atomic distance, and the dotted line is the c
tinuum limit.
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tions but each iteration becomes more expensive since
solution of Eq.~3! takes longer. IncreasingM further does
not lead to a significant additional reduction of the number
iterations. ChoosingM smaller thanN is not reasonable sinc
for such values the number of iteration increases stron
and the effort for the solution of Eq.~3! is completely neg-
ligible. We found that for grid densities in the recommend
interval the best values fornc were between 2 and 4. Fo
silicon systems conjugate gradient sweeps were slig
more efficient than steepest descent sweeps.

Even though each of the two steps in our method targe
specific frequency range a clearcut separation is not poss
The conjugate gradient step will slightly dampen the lo
frequency component. The elasticity step will introdu
some additional short wavelength errors since the ‘‘phono
dispersion relation for the elastic grid model deviates fro
the phonon dispersion relation of the material in the h
frequency region. These errors are however very small s
these components were already significantly decimated
the preceding conventional steps and they are therefore
mediately annihilated by the following conjugate gradie
steps.

Table I shows numerical results for the relaxation of
divacancy in silicon crystals of varying cell size model
with the environment dependent interatomic poten
~EDIP! inter-atomic potential.9 The norm of the forcesA( i f i
was reduced down to 1028 resulting in total energies tha
were converged to machine precision. The initial configu
tion was the perfect silicon crystal with two neighboring a
oms removed. We compare both the number of force ev
ations and the CPU time of the conjugate gradient met
with our method. All line minimizations were done by min
mizing the projected force and under the assumption that
energy function is quadratic. This results in just two for
evaluations per conjugate gradient step and turned out t
the most efficient conjugate gradient implementation. T
elastic equations of an isotropic homogeneous medium w
solved using Fourier techniques. The two elastic consta
needed in this context were calculated numerically by app
ing a compression and a shear to the system.

Taking the CPU time as the criterion, the crossover-po
is at around 1000 atoms for EDIP inter-atomic potential t
is fast to evaluate. If we would use another total ene
scheme where the calculation of the forces is more costly,
number of force evaluations would be the best criterion a
the crossover point goes down to 600 atoms roughly.

r-
g
-

TABLE I. Number of force evaluationsnf and CPU timeT in
seconds for the conjugate gradient~CG! and the linear scaling~SC!
method for a divacancy in silicon.

Number of atoms nf ~CG! nf ~LS! T ~CG! T ~LS!

510 102 106 0.41 0.50
998 124 106 0.90 0.93
1726 146 109 1.7 1.6
4094 184 115 5.1 4.2
13822 260 115 24.0 14.0
110592 502 115 373.0 135.0
884734 934 117 5586.0 1147.0
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The divacany example allows the examination of the sc
ing behavior over a large range of system sizes, since
behavior of the divacancy remains qualitatively the same
many other nanosystems the behavior can fundamen
change with size due, for instance, to size dependent sur
reconstructions. This can then lead to highly irregular tre
in the number of iterations. For these reasons we have
sen the divacany example even though it is a particula
difficult example to demonstrate the advantages of the lin
scaling method over the conjugate gradient method. I
fully three dimensional and the importance of the long wa
length perturbations induced by the di-vacancy decrea
with system size, leading to an increase of the numbe
conjugate gradient iterations that is slightly slower than p
dicted by Eq.~1!.

We have also applied the method to more complica
systems such as incommensurate interfaces in silicon
clusters of silicon. In all these cases we obtained cross o
points of 1000 atoms or below. As expected the gains w
particularly large for systems with two-dimensional chara
ter. Our previous analysis of the number of iterations
.

m
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geometry optimization was based on the assumption tha
are in a region where the energy functional has nearly q
dratic behavior. Our numerical experiments indicate howe
that our linear scaling method also offers advantages in
case where one starts the geometry optimization from a p
that is far away from such a region. In this case multip
minima are frequently encountered. We found that our lin
scaling method is more likely to find lower energy loc
minima than the conjugate gradient method.

We have presented a method that allows us to relax v
large systems with linear scaling, removing thus an imp
tant bottleneck in atomistic simulations. This method in co
bination with inter-atomic potentials and O~N! electronic
structure methods allows efficient geometry optimizatio
for large solid state materials and nanostructures. It is
pected that it can be extended to large molecular and biol
cal systems for which sufficiently simple elasticity mode
exist.

S. G. thanks M. Brezina, K. Nemeth P. Pulay, and
Scuseria for interesting discussions.
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