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Critical exponent of the random flux model on an infinite two-dimensional square lattice
and anomalous critical states
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The random flux model~RFM! on a square lattice with random fluxFP(2pp,pp),0,p<1 per plaquette
has been studied by analyisis of high-precision transfer-matrix calculations, as well as the exact numerical
diagonalization in the vicinity and at the band center. Interpreting thus obtained results using the recent
findings for the Anderson bond-disordered~ABD! model from Phys. Rev. B62, 12 775~2000!, the importance
of chiral symmetry is further emphasized and localization properties explained in terms of the scaling associ-
ated with the central two states of the spectrum. The results support the existence of two critical states at the
band center of the infinite system. These states exhibit a different kind of critical behavior, named anomalous,
allowing one to calculate the critical exponent which has been done forp50.5 and 1. Some differences
between the ABD and RFM models are also discussed, the most important one being a broken symmetry at the
critical point of the former.
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The problem of a quantum particle moving in a rando
magnetic flux has attracted considerable interest due to
relation to the problem of high-Tc superconductivity,1 theory
of the half-filled lowest Landau level,2 as well as its unre-
solved localization properties within the context of the sc
ing theory of localization.3,4

The model of a quantum particle hopping on a squ
lattice studied here is described by the Hamiltonian:

H52(
^ i , j &

~ t i , j ci
†cj1t i , j* cj

†ci !1(
i

e i ci
†ci , ~1!

where^ . . . & denotes the nearest neighbors on a square
tice,ci is the destruction operator of a particle on thei th site,
and * and † are, respectively, complex and Hermitian c
jugation. Hoppingst i , j[exp(ifi,j), where phasesf i , j are
chosen such that the total flux per plaquette,F iP
(2pp,pp), is a uniformly distributed random variable, p
rametrized by 0,p<1. The uniformly distributede iP
(2W/2,W/2) represent the on-site disorder, and the rand
flux model ~RFM! refers below toH with W50 unless ex-
plicitly stated differently.

Localization properties of the RFM remained only pa
tially understood despite a significant effort of th
community,5–15 and three incompatible conclusions~with
variations! have emerged:~i! all states are localized and th
model is in the unitary class;5,10,13 ~iia! there is a critical
point at the band center of the RFM~Refs. 11 and 15! due to
the chiral symmetry16–19 of the model~disscussed below!,
while all the other states are localized,~iib! with an addi-
tional Kosterlitz-Thouless-Berezinskii~KTB! transition into
a phase of critical states around the band center for 0,p
,1;14 or ~iiia! a full metal-insulator transition,6–9,12 ~iiib !
even in the presence of~sufficiently weak but finite! on-site
disorder.12

This paper presents some further evidence that the
nario~iia! is the correct one and that the localization lengthj
0163-1829/2001/64~16!/161101~4!/$20.00 64 1611
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diverges asuEu2n at the band center with a critical expone
n, which has been calculated for the first time forp50.5 and
1.

The main source of difficulties in numerical studies
RFM is very largej, growing approximately exponentially
going from the band edges toward the band center.5,10,15The
standard numerical method to determine the scaling ofj is
from the finite-size scaling analysis of either the small
Lyapunov exponentlM of the transfer matrix of a long strip
of width M ~TMM !, or the logarithm of the norm of retarde
Green’s function connecting the two far ends of the st
~GF!.4 In numerical studies of systems with smallM, the
exponential rise ofj may give a false impression of a gen
ine continuous phase transition, as illustrated by Xieet al.14

Particularly difficult is distiguishing between the scenari
~i! and ~iia!, because the eigenstate at a given energy w
very largej in a finite-size system looks like a critical sta
even if it is localized in the infinite system.

Another approach was to study the Chern number
eigenstates by analyzing the boundary-phase averaged
conductance in the system with generalized periodic bou
ary conditions.20 The conductance is quantized by an integ
the Chern number, and states with a zero Chern number
localized. The necessity of averaging the conductance o
boundary conditions limits numerical studies to systems
smaller sizes than in other methods, although one may
pect that the averaging somewhat reduces the boundar
fects due to the finite size. Sheng and Weng9 have given
numerical evidence of scenario~iiia! using this method. Ad-
ditional calculations on larger systems were done by Ya
and Bhatt,12 who studied the total number of states with
nonzero Chern number,Nc , as a function ofL and W, and
then used the scaling analysis to determineEc . They found a
critical disorder strength,Wc.0, such that for 0<W,Wc a
band of states with a nonzero Chern number opens up aro
the band center. What is, however, puzzling about this re
is that the calculatedNc , even deep inside the ‘‘metallic’
region, appears to grow asNa, with a,1, approaching 1
©2001 The American Physical Society01-1
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whenW→0. Hence, numerical data from Ref. 12 seem co
patible with the conclusion that the ratioNc /N goes to zero
asN→`, suggesting that there is no band of nonzero Ch
number states forany W>0 in the infinite system. This is
indirectly supported by the TMM calculation of Xieet al.14

who found that the states are localized at the band cente
W significantly smaller thanWc .

The most extensive numerical study so far of the RF
was done by Furusaki.15 He found the one-parameter scalin
to be obeyed foruEu.2.55, all states localized foruEu>0.1,
and gave some further evidence for the scenario~iia! and
against the scenario~iib!. Let us therefore first investigate th
scaling properties ofLM[1/lMM in the energy regionuEu
<0.1 anduEu!0.1. The TMM is applied and scaling of th
LM studied for the RFM in a gauge where all the comp
phases are zero along the strip of widthM and length up to
23107 sites, the largest systems studied so far.

LM decreases withM for uEu.0.1,15 as it is typical for
localized states. Figure 1 showsLM for E51021,
1021.5, . . . , 1024,0, andM54, . . .,128. ForE'0.1, there
is a suddenn increase ofLM for small system sizes befor
the decrease. This, previously thought of as being a fin
size artifact,15 marks the beginning of a different scaling r
gime that is characteristic for the chiral disordered syste
near the band center. In this regime,LM increases with in-
creasing ofM, implying the existence of some sort of e
tended states in the infinite system. Figure 1 suggests, h
ever, that this rise is not indefinite and that, for sufficien
wide strips at any givenE, LM reaches maximum and the
decreases with further increase ofM, and numerical evidence
for this behavior is seen foruEu<1023. This is very reminis-
cent of the recent TMM calculation21 for uniformly distrib-
uted realt i , jP(21/2,1/2),W50 Anderson bond-disordere
model ~ABD!, where a similar asympototic behavior wa
found. Due to much smaller localization lengths for sm
uEu in the ABD model, it was possible to analyze in mo

FIG. 1. Largest renormalized inverse Lyapunov exponentLM of
the transfer matrix of RFM model near the band center.LM initially
increases with strip widthM but eventually starts to decrease f
sufficiently wide strips, indicating localized behavior.
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detail the behavior ofLM whenM is increased, when a res
toration of one-parameter scaling,LM(E)5L@M /j(E)#,
was found for sufficiently wide strips, leading toj;uEu2n,
with n50.33560.015. Performing analogous calculation
the case of RFM, however, would require about two ord
of magnitude wider strips, which seems to be beyond
present-day computational means.

Despite this severe limitation, an alternative approa
from Ref. 21 will be used for calculation ofn of the RFM
model. The link between the two models is the chiral sy
metry. This symmmetry of a lattice Hamiltonian such asH
can be defined as the topological property of bipartitenes
the underlying graph whose nodes represent sites and
represent possible hoppings described by the Hamilton
On-site disorder, for instance, introduces links in the gra
from each site to itself, destroying the bipartiteness.19 It is
well known that the symmetry implies that all eigensta
come in the opposite energy pairs with simply related wa
functions. Wegner, to the best of our knowledge, was the fi
to realize the importance of chiral symmetry in disorder
systems.16 Soukoulis and Economou found in their study17 of
H with real t i , j andW50 a critical state at the band cent
using both the TMM and GF method, with results qualit
tively suggesting a divergingj near the band center. As a
ready mentioned,n has been recently obtained numerica
for the ABD model, using TMM as well as from a finite-siz
scaling analysis~FSS! related to the two states closest to t
band center of a system on a square lattice of linear sizL.
Since they become zero-energy states whenL→` and there-
fore critical, it was conjectured in Ref. 21 that one should
able to apply a finite-size scaling analysis to the widthE2(L)
of the energy interval that they occupy in a system of s
L, and from there obtainn.23 The equation determining
E2(L) is

15L2E
E2/2

0

rL~e!de, ~2!

whererL is the average density of states~DOS! of the an-
samble of disordered systems, normalized to 1.22,21 The in-
verse function ofE2(L) defines formally a new length scale
j8(E), and the FSS gives thatj8}uEu2n, allowing one to
calculaten from Eq.~2! by the exact numerical diagonaliza
tion of the Hamiltonian for many configurations o
disorder.21 The agreement found in Ref. 21 between the su
obtained value ofn and the value obtained from the TMM
further supported the validity of this conjecture.

Figure 2 presents the calculatedj8 for p50.5 andp51,
W50, on a square lattice with periodic boundary conditio
for various evenL between 20 and 90 with the number
configurations of disorder ranging from 23103 to 100, re-
spectively. The power law is well obeyed for 1.5 decad
in energy, and the extracted values of the critical exponenn
are given in the figure. Although the difference betwe
exponents is small and both are close to 1/2, the val
nevertheless support the conclusion thatnp51,np50.5,1/2,
implying also a weak dependence ofn on the disorder dis-
tribution. The second inequality comes from the fact thatrL
1-2
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depends onL near the band center.15 In the ABD model this
dependence is much more pronounced,21 so thatn is even
smaller.

We now discuss the possibility of the KTB transition~iib!.
Xie et al.14 have found from TMM calculations thatLM ex-
hibits a scale-invariant behavior around the band center
0,W,WC(p), leading to the conclusion~iib!. On the other
hand, Furusaki has given numerical evidence that the v
ance of the conductance distribution of RFM quantum wi
follows the one of the unitary class forW.0 and a different
one forW5E50, emphasizing the importance of the chir
symmetry and implying that all the states are localized
W.0 or uEuÞ0, for p>0.2.

Figure 3 gives further evidence that there is no KTB tra
sition ~iib! by redoing one of the calculations from Ref. 1
with higher precision. The figure showsLM at the band cen-
ter of the RFMp50.5 model for different strengthsW of the
on-site disorder, andM516,32,64,128. The length of strip
used in the calculation is, however, 23106 sites, which is

FIG. 2. Scaling of thej8 length as determined from Eq.~2!, for
p50.5 and 1. Power law is obeyed well in both cases, and then ’s
are determined from two linear fits, represented in the figure
lines.

FIG. 3. Scaling of the largest inverse renormalized Lyapun
exponent at the band center, for various strengths of the on
disorderW. The inset shows magnified region where the KTB tra
sition ~vertical dashed line! should be expected according to Re
14. Due to higher accuracy of the present calculation, it is cle
seen that the transition is absent, sinceLM decreases withM, sig-
naling localization.
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about an order of magnitude longer than in Ref. 14. T
gives more accurate values ofLM and it can be noted that
for W>2.5, LM is systematicaly smaller forM5128 than
for M<64, as shown in the inset, indicating clearly localiz
tion at the band center forW around 4, and thus the absen
of KTB transition seen in Ref. 14.

Let us now turn to the investigation of theE50 states. In
the ABD model there exists an additional symmetry amo
Lyapunov exponents atE50 due to which all of them come
in degenerate pairs.21 This property of chiral disordered mod
els, noticed by Miler and Wang,11 is naturally expected to
hold for the RFM model as well, as it was expected by t
authors. Figure 1, however, clearly shows thatlM,lM21,
implying that the additional symmetry at the band center
broken in the RFM model, in contrast to the ABD mode
where the twol ’s are equal to a high accuracy.

This has its analog in the language of eigenenerg
where the two states closest to the band center are rep
only in the case of RFM. This important difference is show
in Fig. 4, where the distribution of several eigenenerg
closest to the band center is presented. The power-law
havior shown in Fig. 2 and discussed above then sugg
that the distribution of central two states may be scale inv
ant and thusrL→` equal to 0 in the case of the RFM, a
opposed to a divergence in the case of the ABD model.

In the language of eigenstates, the additional symmetr
the band center of the ABD model isO(2), since any linear
combination of the twoE50 states is also an eigenstate
E50. In the RFM then the broken additional symmet
means that two states closest to the band center in the infi
system are separated by an ‘‘infinitesimal gap,’’ which mea
that they have, as all the other statesEÞ0, equal probability
density at each of the two sublattices.21 Nevertheless, it is

y
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FIG. 4. Distributions of 8 individual eigenenergies, enumera
24,23, . . . ,4, closest to the band center of the ABD and RF
systems of sizeL540 for 23104 configurations of disorder. Both
systems have symmetric spectrum aroundE50 due to the chiral
symmetry, but the central two states are repelled only in the R
system.
1-3
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still possible to have two critical states atE560 in the
infinite system, because the FSS from Ref. 21 that was u
to intepret the scaling seen in Fig. 2 implies

j~E2!;j8~E2!;uE2u2n;L.

Thus, eigenstates that are not localized in a system of siL
for uEu&E2(L) will not get localized whenL is increased.
Since these states exhibit multifractal behavior,10,21 they will
remain multifractal asL→`, and this kind of critical behav-
ior, present in both the ABD and RMF, we will refer to a
anomalous critical.

In summary, the RFM model has been investigated b
a

.

16110
ed

a

high precision TMM and exact numerical diagonalizatio
The scenario~iia! was found to be valid in the limit of an
infinite two-dimensional square lattice, with twoanomalous
critical states at the critical pointE560, and all the other
states localized. Also some differences between the two
ral systems with and without time-reversal symmetry a
identified and discussed, most striking of which is the brok
chiral symmetry at the critical point in the absence of tim
reversal symmetry.

The author is grateful to S. D. Mahanti on suggestions
improving the manuscript. This work is partially supporte
by the Department of Physics and Astronomy at Michig
State University.
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