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The random flux modglRFM) on a square lattice with random fldxe (— p#,p7),0<p=<1 per plaguette
has been studied by analyisis of high-precision transfer-matrix calculations, as well as the exact numerical
diagonalization in the vicinity and at the band center. Interpreting thus obtained results using the recent
findings for the Anderson bond-disorder@BD) model from Phys. Rev. B2, 12 775(2000, the importance
of chiral symmetry is further emphasized and localization properties explained in terms of the scaling associ-
ated with the central two states of the spectrum. The results support the existence of two critical states at the
band center of the infinite system. These states exhibit a different kind of critical behavior, named anomalous,
allowing one to calculate the critical exponent which has been dong@#dd.5 and 1. Some differences
between the ABD and RFM models are also discussed, the most important one being a broken symmetry at the
critical point of the former.
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The problem of a quantum particle moving in a randomdiverges asE| ™" at the band center with a critical exponent
magnetic flux has attracted considerable interest due to its, which has been calculated for the first time for 0.5 and
relation to the problem of higfi;, superconductivity,theory 1.

of the half-filled lowest Landau levélas well as its unre- The main source of difficulties in numerical studies of
SOlVed |Oca|izati0n properties W|th|n the context Of the Scal'RFM iS Very |arge§ growing approxima‘te'y exponentia”y

. . . 4 . '

ing theory of localizatior: going from the band edges toward the band cent2t>The

The model of a quantum particle hopping on a squarggandard numerical method to determine the scaling isf
lattice studied here is described by the Hamiltonian: from the finite-size scaling analysis of either the smallest
Lyapunov exponent,, of the transfer matrix of a long strip
of width M (TMM), or the logarithm of the norm of retarded
H=—> (t;clc;+tficle)+> ecle, (1)  Green’s function connecting the two far ends of the strip
(B ! (GP.* In numerical studies of systems with smal, the
exponential rise o may give a false impression of a genu-
where( . . .) denotes the nearest neighbors on a square laine continuous phase transition, as illustrated by &tial*
tice, ¢; is the destruction operator of a particle on thesite, ~ Particularly difficult is distiguishing between the scenarios
and * and T are, respectively, complex and Hermitian con{i) and (iia), because the eigenstate at a given energy with
jugation. Hoppingst; ;=exp(¢;;), where phasesp;; are very large¢ in a finite-size system looks like a critical state
chosen such that the total flux per plaquet@®, e even if it is localized in the infinite system.
(—pm,pm), is a uniformly distributed random variable, pa-  Another approach was to study the Chern number of
rametrized by & p=<1. The uniformly distributede; e eigenstates by analyzing the boundary-phase averaged Hall
(—WI/I2WI/2) represent the on-site disorder, and the randontonductance in the system with generalized periodic bound-
flux model (RFM) refers below toH with W=0 unless ex- ary conditions®® The conductance is quantized by an integer,
plicitly stated differently. the Chern number, and states with a zero Chern number are
Localization properties of the RFM remained only par-localized. The necessity of averaging the conductance over
tially understood despite a significant effort of the boundary conditions limits numerical studies to systems of
community> % and three incompatible conclusiorith smaller sizes than in other methods, although one may ex-
variations have emerged(i) all states are localized and the pect that the averaging somewhat reduces the boundary ef-
model is in the unitary classi®!® (iia) there is a critical fects due to the finite size. Sheng and Wehgve given
point at the band center of the RFRefs. 11 and 1bdue to  numerical evidence of scenariiiia) using this method. Ad-
the chiral symmetidf~2° of the model(disscussed below ditional calculations on larger systems were done by Yang
while all the other states are localize@ip) with an addi- and Bhatt? who studied the total number of states with a
tional Kosterlitz-Thouless-BerezinskiKTB) transition into  nonzero Chern numbel., as a function olL andW, and
a phase of critical states around the band center fop0 then used the scaling analysis to deterntige They found a
<1:* or (iiia) a full metal-insulator transitiofy;*2 (iiib)  critical disorder strengthyV,>0, such that for &EW<W, a
even in the presence @ufficiently weak but finiteon-site  band of states with a nonzero Chern number opens up around
disorder'? the band center. What is, however, puzzling about this result
This paper presents some further evidence that the scés that the calculated\., even deep inside the “metallic”
nario(iia) is the correct one and that the localization len§ith region, appears to grow ds$“, with «<<1, approaching 1
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o o T o T detail the behavior of\, whenM is increased, when a res-
3t —o—log E=-10 ] toration of one-parameter _scalin-g\M(E) fA[M/f(E)]V,
—o—log,, E=-15 was found for sufficiently W|de. strips, leading o~ |E| Y
A —o—1log, E=-2.0 with »=0.335£0.015. Performing analogous calculation in
M _q_1°g12E= 25 the case of RFM, however, would require about two orders
—>—log, E = -3.0 of magnitude wider sFrlps, which seems to be beyond the
2r —o—log E=-35 | present-day computational means. _
—t—log, E = 4.0 Despite thls_severe limitation, an alternative approach
from Ref. 21 will be used for calculation of of the RFM
1/M )\, (E = 0) model. The link between the two models is the chiral sym-
o 1/MA, (E=0) metry. This symmmetry of a lattice Hamiltonian suchths
can be defined as the topological property of bipartiteness of
the underlying graph whose nodes represent sites and links
represent possible hoppings described by the Hamiltonian.
1l T e On-site disorder, for instance, introduces links in the graph
10 100 1000 from each site to itself, destroying the bipartitenEsH. is
M well known that the symmetry implies that all eigenstates

come in the opposite energy pairs with simply related wave
the transfer matrix of RFM model near the band centgy.initially functlo_ns. Weg_ner, to the best of_our knowledge_, W"_is the first
increases with strip widttM but eventually starts to decrease for to real'Z% the |mp_ortance of chiral symmgtry 'n disordered
sufficiently wide strips, indicating localized behavior. systems.” Soukoulis and Economou found in their sttigf
H with realt; ; andW=0 a critical state at the band center
i using both the TMM and GF method, with results qualita-
whenW—0. Hence, numerical data from Ref. 12 seem comyjyely suggesting a diverging near the band center. As al-
patible with the conclusion that the rath, /N goes to zero a4y mentionedy has been recently obtained numerically
asN—-ce, suggesting that there is no band of nonzero Cherigo the ABD model, using TMM as well as from a finite-size
number states foany W=0 in the infinite system. This is  scaling analysigFSS related to the two states closest to the
indirectly supported by the TMM calculation of Xiet al. band center of a system on a square lattice of linearlsize
who found that the states are localized at the band center fagj,ce they become zero-energy states wherre and there-
W significantly smaller thaw . fore critical, it was conjectured in Ref. 21 that one should be
The most extensive numerical study so far of the RFMaple to apply a finite-size scaling analysis to the wigiL)
was done by Furusakr.He found the one-parameter scaling of the energy interval that they occupy in a system of size

to be obeyed fofE|>2.55, all states localized fdE|>0.1, | and from there obtain-.2® The equation determining
and gave some further evidence for the scenéi&@ and E,(L) is

against the scenaridb). Let us therefore first investigate the

scaling properties of\ y=1/AyM in the energy regiofE]| o

<0.1 and|E|<0.1. The TMM is applied and scaling of the 1:|_2f pL(€)de, )

Ay studied for the RFM in a gauge where all the complex Eal2

phases are zero along the strip of widithand length up to

2x 10 sites, the largest systems studied so far. wherep, is the average density of statd809) of the an-
Ay decreases witiM for |E|>0.11° as it is typical for ~samble of disordered systems, normalized t&4.The in-

localized states. Figure 1 showd,, for E=101, verse function oE,(L) defines formally a new length scale,

10715 ..., 1040, andM=4, ...,128. ForE~0.1, there ¢'(E), and the FSS gives that «|E| ", allowing one to

is a suddenn increase dfy, for small system sizes before calculater from Eq(2) by the exact numerical diagonaliza-

the decrease. This, previously thought of as being a finiteion of the Hamiltonian for many configurations of

size artifact® marks the beginning of a different scaling re- disorde’! The agreement found in Ref. 21 between the such

gime that is characteristic for the chiral disordered systemsbtained value o and the value obtained from the TMM

near the band center. In this regime,, increases with in- further supported the validity of this conjecture.

creasing ofM, implying the existence of some sort of ex-  Figure 2 presents the calculatétl for p=0.5 andp=1,

tended states in the infinite system. Figure 1 suggests, how’’=0, on a square lattice with periodic boundary conditions

ever, that this rise is not indefinite and that, for sufficientlyfor various everL between 20 and 90 with the number of

wide strips at any givelE, Ay reaches maximum and then configurations of disorder ranging fromx210° to 100, re-

decreases with further increaseMf and numerical evidence spectively. The power law is well obeyed for 1.5 decades

for this behavior is seen fgE|<10 3. This is very reminis- in energy, and the extracted values of the critical expoment

cent of the recent TMM calculatihfor uniformly distrib-  are given in the figure. Although the difference between

uted realt; ;  (—1/2,1/2), W=0 Anderson bond-disordered exponents is small and both are close to 1/2, the values

model (ABD), where a similar asympototic behavior was nevertheless support the conclusion thgt; <v,_o5<1/2,

found. Due to much smaller localization lengths for smallimplying also a weak dependence wofon the disorder dis-

|E| in the ABD model, it was possible to analyze in more tribution. The second inequality comes from the fact fhat

FIG. 1. Largest renormalized inverse Lyapunov expongptof
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FIG. 2. Scaling of th&' length as determined from E(P), for
p=0.5 and 1. Power law is obeyed well in both cases, and/the -0.01 0.00 0.01
are determined from two linear fits, represented in the figure by Energy
lines.

FIG. 4. Distributions of 8 individual eigenenergies, enumerated

depends ort near the band centé&t.in the ABD model this —4~3.- .- 4 closest to the band center of the ABD and RFM
dependence is much more pronoun&bdo thatv is even  Systems of siz& =40 fo_r 2% 10* configurations of disorder. Both
smaller. systems have symmetric spectrum arolhdO due to th_e chiral

We now discuss the possibility of the KTB transitiii). symmetry, but the central two states are repelled only in the RFM
Xie et al4 have found from TMM calculations thatt,, ex-  >Y>e™
hibits a scale-invariant behavior around the band center for
0<W<Wo¢(p), leading to the conclusiofiib). On the other about an order of magnitude longer than in Ref. 14. This
hand, Furusaki has given numerical evidence that the varigives more accurate values 4&fy, and it can be noted that,
ance of the conductance distribution of RFM quantum wiredor W=2.5, A, is systematicaly smaller foM =128 than
follows the one of the unitary class f#v>0 and a different for M <64, as shown in the inset, indicating clearly localiza-
one forW=E=0, emphasizing the importance of the chiral tion at the band center fal/ around 4, and thus the absence
symmetry and implying that all the states are localized forof KTB transition seen in Ref. 14.

W=>0 or [E[#0, for p=0.2. Let us now turn to the investigation of the=0 states. In

_ Figure 3 gives further evidence that there is no KTB tranthe ABD model there exists an additional symmetry among
S|_t|on _(||b) by redqmg one c_)f the calculations from Ref. 14 Lyapunov exponents &=0 due to which all of them come
with higher precision. The figure showls, at the band cen- iy gegenerate paifd This property of chiral disordered mod-
ter o_f the_RFMsz.S model for different strength&/ of the_ els, noticed by Miler and Want, is naturally expected to
on-3|te_z disorder, anl!!/l :_16’32’64'128' The !ength O,f str_|ps hold for the RFM model as well, as it was expected by the
used in the calculation is, howeverxa(® sites, which is authors. Figure 1, however, clearly shows thgi<\y_ 1,
implying that the additional symmetry at the band center is
brokenin the RFM model, in contrast to the ABD model
where the twa\’s are equal to a high accuracy.

This has its analog in the language of eigenenergies,
where the two states closest to the band center are repelled
only in the case of RFM. This important difference is shown
in Fig. 4, where the distribution of several eigenenergies
closest to the band center is presented. The power-law be-
havior shown in Fig. 2 and discussed above then suggests
that the distribution of central two states may be scale invari-

001 v o ant and thugp__.. equal to O in the case of the RFM, as
01 2 3 4 5 6 7 8 opposed to a divergence in the case of the ABD model.
w In the language of eigenstates, the additional symmetry at

FIG. 3. Scaling of the largest inverse renormalized Lyapunovthe b"?md _Center of the ABD model Q(Z)’ since gny linear
exponent at the band center, for various strengths of the on-sitgg®mbination of the twd==0 states is also an eigenstate at
disorderW. The inset shows magnified region where the KTB tran-E=0. In the RFM then the broken additional symmetry
sition (vertical dashed lineshould be expected according to Ref. means that two states closest to the band center in the infinite
14. Due to higher accuracy of the present calculation, it is clearlysystem are separated by an “infinitesimal gap,” which means
seen that the transition is absent, sidcg decreases witM, sig-  that they have, as all the other stakes 0, equal probability
naling localization. density at each of the two sublatticdsNevertheless, it is
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still possible to have two critical states Bt==*0 in the high precision TMM and exact numerical diagonalization.
infinite system, because the FSS from Ref. 21 that was usethe scenaridiia) was found to be valid in the limit of an

to intepret the scaling seen in Fig. 2 implies infinite two-dimensional square lattice, with tvemomalous
critical states at the critical poifE=*0, and all the other
E(Ey)~ &' (Ep)~|Ey "~L. states localized. Also some differences between the two chi-

ral systems with and without time-reversal symmetry are

ThUS, eigenstates that are not localized in a System ofLsize identified and discussed, most Striking of which is the broken
for |[E|=<E,(L) will not get localized wherL is increased. ~Chiral symmetry at the critical point in the absence of time-

Since these states exhibit multifractal behatfdt they will ~ reversal symmetry.

remain multifractal ag — o, and this kind of critical behav- The author is grateful to S. D. Mahanti on suggestions on
ior, present in both the ABD and RMF, we will refer to as improving the manuscript. This work is partially supported
anomalous critical by the Department of Physics and Astronomy at Michigan

In summary, the RFM model has been investigated by &tate University.
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