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Thermal transport through a mesoscopic weak link
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We calculate the rate of thermal energy flow between two macroscopic bodies, each in thermodynamic
equilibrium at a different temperature, and joined by a weak mechanical link. The macroscopic solids are
assumed to be electrically insulating, so that thermal energy is carried only by phonons. To leading order in the
strength of the weak link, modeled here by a harmonic spring, the thermal current is determined by a product
of the local vibrational density-of-states of the two bodies at the points of connection. Our general expression
for the thermal current can be regarded as a thermal analog of the well-known formula for the electrical current
through a tunneling barrier. It is also equivalent to the thermal Landauer formula in the weak-tunneling limit.
Implications for heat transport experiments on dielectric quantum point contacts are discussed.
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I. INTRODUCTION

Mesoscopic phonon systems are relatively unexplo
compared with their electronic counterparts. An exception
the recent work on thermal conductance quantization
freely suspended one-dimensional dielectric wires, where
thermal conductance was found to bepkB

2T/6\ per transmit-
ted vibrational mode.1,2 This behavior parallels the well
known electrical conductance quantization in units
e2/2p\ per ~spin-resolved! channel in one-dimensional me
soscopic conductors.3–5 Electrical conductance quantizatio
and many other aspects of mesoscopic transport in o
dimensional Fermi liquids, as well as edge-state transpo
integral quantum Hall effect systems, can be understood w
the Landauer and Landauer-Bu¨ttiker formalisms.5,6

The conventional Landauer formula describes cha
transport in mesoscopic conductors in the limit where th
exists one or more propagating channels.7 Another important
transport regime is the weak-tunneling limit, where t
charge conductance is much less thane2/2p\ and, as shown
by Schriefferet al.,8,9 is determined by the density-of-state
~DOS! obtained from the one-particle Green’s function.

The thermal analog of the weak-tunneling limit has n
been addressed theoretically and is interesting for sev
reasons. First, a microscopic quantum description of ther
conduction through weak links is crucial for understand
energy dissipation in nanostructures such as nanoparti
nanotubes, molecular circuits, and nanometer-scale ele
mechanical systems. As we shall demonstrate, the clas
theory of thermal conduction, based on the heat equatio
entirely inapplicable to these systems at low temperatu
Second, thermal conduction through a weak link connec
to a macroscopic solid turns out to be a sensitive local pr
of the surface vibrational DOS of that solid, suggesting
possibility of an atomic-scale surface microscopy based o
scanningthermalprobe.

In this paper we calculate the rateI th of thermal energy
flow between two macroscopic bodies, each in thermo
namic equilibrium, and joined by a weak mechanical lin
The weak link may consist of one or more chemical bon
or by a narrow ‘‘neck’’ of dielectric material, both of which
can be accurately modeled by a harmonic spring of stiffn
0163-1829/2001/64~15!/155320~7!/$20.00 64 1553
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K. We obtain a general expression for the thermal curr
that can be regarded as a thermal analog of the well-kno
formula, derived by Schriefferet al.,8 for the electrical cur-
rent through a resistive barrier. Our result can also be in
preted as an application of the thermal Landauer formula2,10

in the weak-tunneling limit, with the energy-depende
phonon-transmission probability calculated microscopica

Our work is also related to the classic work of Little11 on
the thermal boundary resistance at an interface between
dielectrics, a solid-solid analog of the Kapitza resistance
tween solids and superfluid Helium caused by phonon s
tering at the interface. A tunneling-Hamiltonian approa
similar to ours has been applied to the Kapitza resista
problem by Sheard and Toombs.12 In our geometry, however
the thermal resistance comes from scattering at the w
link, and the thermal current depends on the elastic pro
ties of the link and does not vanish if the solids are identic
Heat transport in mesoscopic junctions has been studied
cently with the scattering approach in an interesting pape
Cross and Lifshitz13 ~following earlier related work by An-
gelescuet al.10!, and Leitner and collaborators have calc
lated the thermal conductance of molecules a
nanocrystals.14 Thermal transport through weak links ha
also been studied in conductors, including the tw
dimensional electron gas15,16 and one-dimensional Luttinge
liquids.17

The organization of our paper is as follows: In the ne
section we describe in detail our mesoscopic weak-l
model, and in Sec. III we define and calculate the local
brational DOS for the macroscopic solids. A general expr
sion for the thermal current is derived in Sec. IV. Some e
perimental implications are discussed in Sec. V, where
calculate the thermal conductance through a nanometer-s
junction in Si. Section VI contains a discussion of the diffe
ences between electron and phonon tunneling, and als
the role of phonon phase coherence in this work.

II. MESOSCOPIC WEAK LINK

The model we consider is as follows: Two macrosco
solidsL andR are held at fixed temperaturesTL andTR . The
two bodies are assumed to be electrically insulating, so
©2001 The American Physical Society20-1
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thermal energy is carried only by phonons. The Hamilton
of the isolated solids is~we set\51!

H05HL1HR , ~1!

where

HI [(
n

v InaIn
† aIn , I 5L,R. ~2!

The anI
† andanI are phonon creation and annihilation ope

tors for the left and right sides, satisfying

@anI ,an8I 8
†

#5dnn8d II 8 ~3!

and

@anI ,an8I 8#5@anI
† ,an8I 8

†
#50. ~4!

The vibrational modes of the isolated bodies are labeled bn
and have energiesv In . Our analysis is valid for any spec
trum v In . The mesoscopic weak-link model is illustrated
Fig. 1.

The two macroscopic solids are connected by a weak
chanical link, which we model by a harmonic spring wi
stiffnessK,

dH5 1
2 K~uL

z2uR
z !2. ~5!

Here uI
z is the normal component of the displacement fie

u(r ) at the surface of bodyI at the point of connection to th
weak link, with the local surface normal~of, say, solidL!
taken to be in thez direction. The surface displacements c
be expanded in a basis of phonon creation and annihila
operators as

FIG. 1. Weak link model. Two macroscopic dielectrics, at te
peraturesTL andTR , are joined by a harmonic spring of stiffnessK.
15532
n

-

e-

n

uI
z5(

n
~hInaIn1hIn* aIn

† !, I 5L,R ~6!

where thehIn are model-dependent complex coefficien
The hIn appropriate for the stress-free planar surface o
semi-infinite isotropic elastic continuum are given below.

As discussed above, we are interested in systems w
the mechanical interaction between the two bodies is actu
caused by one or more atomic bonds, or by a narrow ‘‘ne
of dielectric material. Our harmonic spring model correc
accounts for the longitudinal~normal to the surface! elastic
forces between the solids, but neglects any transverse or
sional interaction. Although transverse and torsional for
can be included by a straightforward generalization of o
model, they are often much smaller than the longitudi
coupling. Furthermore, we assume that the temperatures
volved are less than the normal-mode energies of the w
link, which allows us to ignore the internal degrees of fre
dom of the link itself.

The macroscopic bodies act as thermal reservoirs, and
taken to be ideal thermal conductors. In particular, they
assumed to be harmonic@see Eq.~2!#. Therefore, the therma
resistance we calculate is caused entirely by the scatterin
phonons at the junction between the reservoirs and the w
link, and by the finite transmission probability through th
link itself.

III. LOCAL VIBRATIONAL DOS

In what follows we will need thelocal vibrational DOS
~or, more precisely, local spectral density! of the bulk solids,
evaluated at the point of contact with the weak link. The
can be obtained from the retarded surface-displacement
relation functions

DI~ t ![2 iu~ t !^@uI
z~ t !,uI

z~0!#&0 ~7!

for the isolated macroscopic bodiesL andR. Here

^O&0[
Tr e2bH0O

Tr e2bH0
~8!

denotes a thermal expectation value with respect toH0. Us-
ing Eq. ~6! leads to

DI~ t !522 u~ t !(
n

uhInu2sin~v Int !. ~9!

The local DOSNI(v) is then defined in terms of the Fourie
transform of~7!,

NI~v![2
1

p
Im DI~v!. ~10!

Then we have

NI~v!5(
n

uhInu2@d~v2v In!2d~v1v In!#. ~11!

In many cases of interest the local spectral density is
algebraic function of energy at low energies,

NI~v!5const3va, ~12!

-

0-2
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THERMAL TRANSPORT THROUGH A MESOSCOPIC WEAK LINK PHYSICAL REVIEW B64 155320
wherea is a constant. For example,a51 at the planar sur-
face of a semi-infinite isotropic elastic continuum~see be-
low!. @Because the elasticity theory equations are second
der in time, the DOS as defined in Eq.~10! is different than
the thermodynamicDOS: In a uniform bulk systemN(v) is
proportional to the thermodynamic DOS divided byv. The
definition ~10!, however, is the one most relevant to t
present work.#

IV. THERMAL CURRENT

We now calculate the heat flow between the two bod
joined by the weak link. The complete system is describ
by the Hamiltonian

H5H01dH. ~13!

We define a thermal current operatorÎ th according to

Î th[] tHR5 i @H,HR#. ~14!

The expectation value ofÎ th is the energy per unit time flow
ing from the left to the right body.

Writing the interaction~5! as

dH5 1
2 K(

nn8
~ALn2ARn!~ALn82ARn8!, ~15!

where

AIn[hInaIn1hIn* aIn
† , ~16!

we find that the thermal current operator then takes the f

Î th5
iK

2 (
nn8

vRn$ARn82ALn8 ,hRnaRn2hRn* aRn
† %, ~17!

where$•,•% is an anticommutator.
The equation of motion for the density matrix in the i

teraction representation is

] tr~ t !5 i @r~ t !,dH~ t !#, ~18!

where

O~ t ![eiH 0tOe2 iH 0t. ~19!

From Eq.~18! we find that the nonequilibrium thermal cu
rent to leading order is

I th~ t !5 i E
0

t

dt8^@dH~ t8!, Î th~ t !#&0 . ~20!

Evaluating Eq.~20! leads to our principal result~with
factors of\ reinstated!

I th5
2pK2

\ E
0

`

de e NL~e!NR~e!@nL~e!2nR~e!#, ~21!

an expression analogous to the formula derived by Schrie
et al.8 for the electrical current through a tunneling barri
HerenL(e) andnR(e) are Bose distribution functions
15532
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n~e![1/~ee/kBT21! ~22!

with temperaturesTL andTR . The details leading to Eq.~21!
are given in Appendix A.

Our result~21! shows that the thermal current between
dielectric held at zero temperature and a second dielectr
temperatureT will be a power-law function ofT, in striking
contrast with nonmesoscopic thermal transport. For exam
assuming a spectral density of the form~12! leads at low
temperature to

I th}T2a12, ~23!

whereT is the temperature of the second body.
The linear thermal conductance, defined by

Gth[ lim
TL→TR

I th

TL2TR
, ~24!

is given by

Gth5
2pK2

\ E
0

`

de e NL~e!NR~e!
]n~e!

]T
. ~25!

This expression, along with Eq.~12!, shows that the linear
thermal conductance between two dielectrics held at a c
mon temperatureT, varies at low temperature as a power la
in T,

Gth}T2a11, ~26!

wherea is the exponent characterizing the power-law sp
tral density at low energies.

V. THERMAL CONDUCTANCE OF NANOMETER-SCALE
SILICON JUNCTION

In this section we give a simple application of our theo
to a structure consisting of a cylindrical neck of Si mater
connecting two semi-infinite Si crystals. The macrosco
solids act as thermal-phonon reservoirs. To be in the me
copic regime we assume the dimensions of the weak link
be smaller than the phase-coherence length of the rele
thermal phonons. The geometry of the system we conside
shown schematically in Fig. 2.

To apply our formula~25! we need the phonon spectr
density at the surface of Si, and also the effective spr
constant of the link. The spectral density at energies m
less than the Debye energy may be obtained from elast
theory. This approach, which requires a detailed consid
ation of the vibrational modes of a semi-infinite elastic co
tinuum with a stress-free planar surface, is carried out
Appendix B. We show there that the spectral density at
surface of Si~approximating it to be isotropic! is

N~e!5Ce, C'1.33108 cm2 erg22. ~27!

Then using Eq.~25! we obtain18

Gth5~8p5K2C2kB
4/15\!T3. ~28!

The longitudinal stiffness of the mechanical link, a cylind
of length l and diameterd, is
0-3
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K5
pd2

4 l
Y, ~29!

whereY is Young’s modulus. For Si,19

Y'1.331012 dyn cm22, ~30!

and assuming link dimensions ofl 510 nm andd51 nm,
we obtain

K'1.03104 erg cm22, ~31!

and a thermal conductance of

Gth5~9.5310211 erg s21 K24!T3 ~32!

5~9.5310218 J s21 K24!T3. ~33!

The result~32! is shown in Fig. 3.
Cross and Lifshitz13 have calculated the vibrational tran

mission probability~ratio of transmitted to incident vibra
tional energy flux! in a thin-plate analog of the system show
in Fig. 2. Imposing stress-free boundary conditions on
surfaces, they find that the transmission probabilityT(v)
from a reservoir to the wire~assumed infinitely long!, or the
reverse, vanishes asv in the low-frequency limit. If the
transmission probability from reservoir to reservoir, throu
a wire of finite length, is approximated asT2(v), which
neglects resonances, then the Landauer formula yields a
temperature thermal conductance proportional toT3, in
qualitative agreement with our result.

Our result~32! is valid at low temperatures only. Ther
are five reasons why our analysis becomes invalid as
temperature is increased: The first is that we have assu
the weak link to be of mesoscopic dimensions. As the te
perature increases, anharmonic interaction will eventu
make the phonon phase-coherence length smaller than
size of the link. While an estimate of the phase-cohere

FIG. 2. Cylindrical silicon junction of lengthl and diameterd.
15532
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length is beyond the scope of this work, the experiment
Schwabet al.1 suggests that in Si it is at least 1 nm at 1
The second is that our estimate of the spectral density is o
valid for temperatures much less than the Debye tempera
of Si, about 625 K. The third reason is that the leading-or
perturbation theory we have used breaks down whenGth

approaches the thermal conductancepkB
2T/6\ correspond-

ing to one propagating channel, shown as a thin dotted
in Fig. 3. The fourth reason is that we have neglected
electronic contribution toGth , which is correct only when
kBT is much less than the Si band gap. And the fifth reaso
that we have neglected the vibrational degrees of freedom
the link itself, which become important for temperatur
above its lowest internal vibrational mode energy of appro
mately 20 K. Taking all of these factors into considerati
suggests that Eq.~32! is probably not quantitatively correc
beyond about 10 K.

VI. DISCUSSION

In this paper we have studied the thermal analog of
weak-tunneling limit of charge conduction—which might b
regarded as phonon ‘‘tunneling’’—and find many similariti
to electron tunneling. There are a few important differenc
however.

Electron tunneling, as it is usually defined, involves t
passage of an electron through a classically forbidden reg
In the thermal case, a phonon of energye is never in a region
that does not support a mode at that energy.20 For example,
the harmonic spring employed in Eq.~5! can support three
propagating phonon channels, but phonons incident on
weak link are mostly reflected back into the macrosco
dielectrics. Whereas the tunneling rate of an electron~at a
fixed energy! through a forbidden region of thicknessl typi-
cally varies exponentially withl in the weak-tunneling limit,
the thickness dependence in the phonon-tunneling cas
different. In the example discussed in Sec. V, the therm
conductance varies with lengthl of the bridge as 1/l 2, be-

FIG. 3. Thermal conductance of the mesoscopic Si link sho
in Fig. 2, as a function of temperature. The solid line follows fro
Eq. ~32!. The thin dotted line is the universal thermal conductan
pkB

2T/6\ of a single propagating channel.
0-4
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cause the effective spring constant~29! of the bridge be-
comes softer with increasingl.

We have demonstrated that the classical theory of ther
conduction, based on the heat equation and on the conce
a local thermal conductivity, is entirely inapplicable to m
soscopic dielectrics. In a mesoscopic dielectric, thermal
sistance is caused by elastic scattering of phonons, whe
in an infinite, disorder-free crystal it is caused by inelas
scattering due to anharmonicity. In the example of Sec. V,
quantum result~28! is determined by themechanicalprop-
15532
al
t of

-
as

c
e

erties of the bridge material, through the elastic modulusY,
whereas the classical conductivity would be determined
the bridge material’s bulk thermal conductivityk.
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APPENDIX A: GENERAL FORMULA FOR THE THERMAL CURRENT

Evaluating~20! we find

I th~ t !5
K2

2 (
nn8mm8

E
0

t

dt8vRn Rê ˆALm~ t8!2ARm~ t8!,@ALm8~ t8!2ARm8~ t8!,„ALn8~ t !2ARn8~ t !…„hRnaRn~ t !2hRn* aRn
† ~ t !…#‰&0 ,

~A1!

and, after further simplification,

I th~ t !5
K2

2 (
nn8

E
0

t

dt8vRn Rê „$ALn8~ t !,ALn8~ t8!%1$ARn8~ t !,ARn8~ t8!%…@hRn aRn~ t !2hRn* aRn
† ~ t !,ARn~ t8!#1$hRn aRn~ t !

2hRn* aRn
† ~ t !,ARn~ t8!%„@ALn8~ t !,ALn8~ t8!#1@ARn8~ t !,ARn8~ t8!#…&0 , ~A2!

where we have used the fact that the commutators are c-numbers. The required thermal expectation values are

^$AIn~ t !,AIn~ t8!%&052uhInu2@112 nI~v In!#cosv In~ t2t8!, ~A3!

^@AIn~ t !,AIn~ t8!#&0522i uhInu2sinv In~ t2t8!, ~A4!

^@hRn aRn~ t !2hRn* aRn
† ~ t !,ARn~ t8!#&052 uhRnu2cosvRn~ t2t8!, ~A5!

and

^$hRn aRn~ t !2hRn* aRn
† ~ t !,ARn~ t8!%&0522i uhRnu2@112 nR~vRn!#sinvRn~ t2t8!. ~A6!

These lead to

I th~ t !52K2(
nn8

vRnuhRnu2E
0

t

dt8$uhLn8u
2@112 nL~vLn8!#cosvLn8~ t2t8!cosvRn~ t2t8!

1uhRn8u
2@112 nR~vRn8!#cosvRn~ t2t8!cosvRn8~ t2t8!2uhLn8u

2@112 nR~vRn!#

3sinvLn8~ t2t8!sinvRn~ t2t8!2uhRn8u
2@112 nR~vRn!#sinvRn~ t2t8!sinvRn8~ t2t8!%. ~A7!

HerenL(e) andnR(e) are Bose distribution functions@see Eq.~22!# with temperaturesTL andTR . Next we make a change o
variablest8→t2t8, take thet→` limit, and include a convergence factor to regularize the long-time behavior of the res
integrals. Finally, using the identities

E
0

`

dt cosvt cosv8t e2zt5
p

2
@d~v2v8!1d~v1v8!# ~A8!

and
0-5
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E
0

`

dt sinvt sinv8t e2zt5
p

2
@d~v2v8!2d~v1v8!#, ~A9!
of

-
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e

cal

of

i-
wherez is a positive infinitesimal, and reinstating factors
\, leads to Eq.~21!.

In Eqs. ~21! and ~25! we have introduced anenergy-
dependent DOS,

NI~e![(
n

uhInu2@d~e2\v In!2d~e1\v In!#,

~A10!

which has dimensions of (length)2/energy. In a homoge
neous elastic continuum of mass densityr and volumeV,
N(e) is equal to\2/2re times the thermodynamic DOS pe
volume,V21(nd(e2en).

APPENDIX B: SURFACE DOS OF SILICON

In this appendix we calculate the local phonon DOS at
stress-free planar surface of a semi-infinite isotropic ela
continuum, following closely the work of Ezawa,21 and use
this to estimate the DOS at the surface of Si. The substra
assumed to occupy the spacez>0. The vibrational modes
are labeled byn5(m,K ,c), wherem is a branch index tak-
ing the valuesSH , 6, 0, and R,K is a two-dimensional
wave vector in thexy plane, andc[v/uK u is a parameter
~continuous for all branches exceptm5R) with dimensions
of velocity. In contrast to Ref. 21 we shall use period
boundary conditions in thex andy directions, over a squar
of areaA.

In our analysis we will approximate Si as an isotrop
elastic continuum with longitudinal and transverse sound
locities

v l58.53105 cm s21,

v t55.93105 cm s21, ~B1!

and mass density

r52.3 g cm23. ~B2!

It will be convenient to treat the Rayleigh branch (m
5R) separately, and then consider the branches with c
tinuousc. In the Rayleigh case the displacement field is e
panded as22

u5(
K
A \

2rcRuK u @aRK fRK1aRK
† fRK* #, ~B3!

where the vibrational eigenfunctionsfRK(r ) have dimensions
of L23/2 and satisfy

E d3r fRK* •fRK85dKK 8 . ~B4!

HerecR5j v t , wherej is the root between 0 and 1 of
15532
e
ic

is

-

n-
-

j628j418~322n2!j2216~12n2!50, ~B5!

and where

n[v t /v l ~B6!

is the ratio of transverse and longitudinal bulk sound velo
ties. For Si,n50.69 andj50.88; hence

cR55.23105 cm s21. ~B7!

The z component of the vibrational eigenfunction at th
point r50 on the surface is

f R
z ~0!5A 2g3h2uK u

~g2h!~g2h12gh2!A F12S 2

11h2D G ,
~B8!

where

g[A12~cR/v l!
2 and h[A12~cR/v t!

2. ~B9!

We find that the Rayleigh branch contributes to the lo
DOS ~10! an amount~for positivev)

R branch: N~v!5
g1\v

4prcR
3

, g1'0.42. ~B10!

Note thatg1 generally depends onn, the value quoted in
~B10! corresponding to Si.

Next we consider the branches with continuousc. Here

u5(
K

E
G
dcA \

2rcuK u@
amKc fmKc1amKc

† fmKc* #,

~B11!

where the vibrational eigenfunctions have dimensions
L23/2c21/2 and satisfy

E d3r fmKc* •fm8K8c85dmm8dKK 8d~c2c8!. ~B12!

The rangeG of the c integration in Eq.~B11! is @v t ,`# for
m5SH , @v l ,`# for m56, and@v t ,v l# for them50 branch.
The contribution to the local DOS~for v>0) from these
branches is given by

N~v!5
\

2rv (
K

E
G
dcu f mKc

z ~0!u2d~v2cuK u!.

~B13!

TheSH modes are polarized in thexy plane and therefore
do not contribute to~10!. The6 modes have surface ampl
tude
0-6
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f 6
z ~0!5A uK u

4pcA F6Aa~11A6 iB !1
i

Ab
~12A7 iB !G ,

~B14!

where

A[
~b221!224ab

~b221!214ab
, ~B15!

B[
4Aab~b221!

~b221!214ab
, ~B16!

a[A~c/v l!
221 and b[A~c/v t!

221, ~B17!

are all real functions ofc. Them56 branches together con
tribute an amount

6branches: N~v!5
g2\v

4p2rv l
3

, g2'1.0. ~B18!

The value forg2, obtained by doing the integration overc in
Eq. ~B13! numerically, is valid only for the value ofn cor-
responding to Si.

The m50 branch has amplitude

f 0
z~0!5A uK u

2pcbA @2gD1 i ~12E!#, ~B19!
s,

m
en

d
.C

,

ne
si
ro
he

et

M

15532
where

D[
4b~b221!3216igb2~b221!

~b221!4116g2b2 ~B20!

and

E[
~b221!4216g2b228igb~b221!2

~b221!4116g2b2 ~B21!

are complex-valued functions ofc. This leads to a contribu-
tion

0 branch: N~v!5
g3\v

8p2rv t
3

, g3'0.59. ~B22!

As before,g3 is obtained numerically and assumes a value
n valid for Si. Combining the three contributions~B10!,
~B18!, and~B22!, yields23

N~v!5
\v

4p2r Fg1p

cR
3

1
g2

v l
3

1
g3

2v t
3G . ~B23!

Using Eq.~B23! we obtain the estimate~27!.
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