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Thermal transport through a mesoscopic weak link
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We calculate the rate of thermal energy flow between two macroscopic bodies, each in thermodynamic
equilibrium at a different temperature, and joined by a weak mechanical link. The macroscopic solids are
assumed to be electrically insulating, so that thermal energy is carried only by phonons. To leading order in the
strength of the weak link, modeled here by a harmonic spring, the thermal current is determined by a product
of the local vibrational density-of-states of the two bodies at the points of connection. Our general expression
for the thermal current can be regarded as a thermal analog of the well-known formula for the electrical current
through a tunneling barrier. It is also equivalent to the thermal Landauer formula in the weak-tunneling limit.
Implications for heat transport experiments on dielectric quantum point contacts are discussed.
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[. INTRODUCTION K. We obtain a general expression for the thermal current
that can be regarded as a thermal analog of the well-known
Mesoscopic phonon systems are relatively unexploredormula, derived by Schrieffeet al.® for the electrical cur-
compared with their electronic counterparts. An exception igent through a resistive barrier. Our result can also be inter-
the recent work on thermal conductance quantization irpreted as an application of the thermal Landauer forfdla
freely suspended one-dimensional dielectric wires, where thi® the weak-tunneling limit, with the energy-dependent
thermal conductance was found to bk3T/6% per transmit-  phonon-transmission probability calculated microscopically.
ted vibrational modé? This behavior parallels the well-  Our work is also related to the classic work of Litflen
known electrical conductance quantization in units ofthe thermal boundary resistance at an interface between two
e?/2xh per (spin-resolveli channel in one-dimensional me- dielectrics, a solid-solid analog of the Kapitza resistance be-
soscopic conductors?® Electrical conductance quantization tween solids and superfluid Helium caused by phonon scat-
and many other aspects of mesoscopic transport in onéering at the interface. A tunneling-Hamiltonian approach
dimensional Fermi liquids, as well as edge-state transport i§imilar to ours has been applied to the Kapitza resistance
integral quantum Hall effect systems, can be understood witRroblem by Sheard and Toomtfsin our geometry, however,
the Landauer and LandauefBlker formalisms>© the thermal resistance comes from scattering at the weak
The conventional Landauer formula describes chargdink, and the thermal current depends on the elastic proper-
transport in mesoscopic conductors in the limit where theréies of the link and does not vanish if the solids are identical.
exists one or more propagating chanrefother important ~ Heat transport in mesoscopic junctions has been studied re-
transport regime is the weak-tunneling limit, where thecently with the scattering approach in an interesting paper by
Charge conductance is much less tbam#h and, as shown Cross and |_|1:Sh|t¥3 (fO”OWlng earlier related work by An-
by Schriefferet al.® is determined by the density-of-states gelescuet al!%), and Leitner and collaborators have calcu-
(DOS) obtained from the one-particle Green's function. ~ lated the thermal conductance of molecules and
The thermal analog of the weak-tunneling limit has nothanocrystals? Thermal transport through weak links has
been addressed theoretically and is interesting for severalso been studied in conductors, including the two-
reasons. First, a microscopic quantum description of thermalimensional electron g&s'®and one-dimensional Luttinger
conduction through weak links is crucial for understandingliquids."’
energy dissipation in nanostructures such as nanoparticles, The organization of our paper is as follows: In the next
nanotubes, molecular circuits, and nanometer-scale electr§ection we describe in detail our mesoscopic weak-link
mechanical systems. As we shall demonstrate, the classicglodel, and in Sec. lll we define and calculate the local vi-
theory of thermal conduction, based on the heat equation, rational DOS for the macroscopic solids. A general expres-
entirely inapplicable to these systems at low temperature$ion for the thermal current is derived in Sec. IV. Some ex-
Second, thermal conduction through a weak link connecte@€rimental implications are discussed in Sec. V, where we
to a macroscopic solid turns out to be a sensitive local probéalculate the thermal conductance through a nanometer-scale
of the surface vibrational DOS of that solid, suggesting thdunction in Si. Section VI contains a discussion of the differ-
possibility of an atomic-scale surface microscopy based on gnces between electron and phonon tunneling, and also of

Scanningtherma|probe_ the role of phonon phase coherence in this work.
In this paper we calculate the raktg of thermal energy
flow between two macroscopic bodies, each in thermody- Il. MESOSCOPIC WEAK LINK

namic equilibrium, and joined by a weak mechanical link.

The weak link may consist of one or more chemical bonds, The model we consider is as follows: Two macroscopic
or by a narrow “neck” of dielectric material, both of which solidsL andR are held at fixed temperaturés andTr. The

can be accurately modeled by a harmonic spring of stiffnestvo bodies are assumed to be electrically insulating, so that
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uf=§ (hpa+hial), 1=LR (6)

where theh;, are model-dependent complex coefficients.
The h,, appropriate for the stress-free planar surface of a
semi-infinite isotropic elastic continuum are given below.

As discussed above, we are interested in systems where
the mechanical interaction between the two bodies is actually
caused by one or more atomic bonds, or by a narrow “neck”
of dielectric material. Our harmonic spring model correctly
accounts for the longitudindhormal to the surfageelastic
forces between the solids, but neglects any transverse or tor-
sional interaction. Although transverse and torsional forces
can be included by a straightforward generalization of our
model, they are often much smaller than the longitudinal
coupling. Furthermore, we assume that the temperatures in-
volved are less than the normal-mode energies of the weak
link, which allows us to ignore the internal degrees of free-
dom of the link itself.

The macroscopic bodies act as thermal reservoirs, and are
L R taken to be ideal thermal conductors. In particular, they are
assumed to be harmorjisee Eq(2)]. Therefore, the thermal
resistance we calculate is caused entirely by the scattering of
phonons at the junction between the reservoirs and the weak
ink, and by the finite transmission probability through the
ink itself.

FIG. 1. Weak link model. Two macroscopic dielectrics, at tem-
peratured| andTg, are joined by a harmonic spring of stiffndss

. . oo
thermal energy is carried only by phonons. The Hamllton|ar|
of the isolated solids i$we seth=1)

Ill. LOCAL VIBRATIONAL DOS

HOZ H L + H R (1)
In what follows we will need thdocal vibrational DOS
where (or, more precisely, local spectral dengitf the bulk solids,
evaluated at the point of contact with the weak link. These
H= opahan, 1=LR 2 can be obtained from the retarded surface-displacement cor-
n relation functions
Thea/, anda,, are phonon creation and annihilation opera- Dy (t)=—16(t){[uf(t),ui(0)])o (7)

tors for the left and right sides, satisfying for the isolated macroscopic bodiesandR. Here

N 1=6. 6 ~BHo
[@ni @ ]= Snnr Oy ©) (O)p= Tre _BHO ®)
and T °
denotes a thermal expectation value with respecijoUs-
[an,an]=[a}.al,,1=0. (4)  ing Eq.(6) leads to
The vibrational r_nodes of the isolat_ed_ bodit_as are labeled by D,()==206(1)> |hyl2sinwnt). (9)
and have energies;,. Our analysis is valid for any spec- n

trum w,;,, . The mesoscopic weak-link model is illustrated in
Fig. 1.
The two macroscopic solids are connected by a weak m

The local DOSN,(w) is then defined in terms of the Fourier
et_ransform of(7),

chanical link, which we model by a harmonic spring with 1

stiffnessk, Ni(w)=-—ImD(w). (10
SH=1K(Uu?—u)2 (5  Then we have

Here uf is the normal component of the displacement field N|(w):; Wi 8(w—wn)—8(w+w,)].  (11)

u(r) at the surface of bodlat the point of connection to the

){/vekak imkb’ vyltr;hthz_loc?l su_rrfﬁce ncf)rmad()jf_, slay, SOI'd:‘) In many cases of interest the local spectral density is an
axen 1o be in the direction. 1ne€ surtace displaceéments Ca.nalgebraic function of energy at low energies,
be expanded in a basis of phonon creation and annihilation

operators as N,(w)=consX o, (12
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wherea is a constant. For example,=1 at the planar sur- n(e)=1/(ekeT—1) (22)
face of a semi-infinite isotropic elastic continuuisee be- . . .
low). [Because the elasticity theory equations are second oVith témperature§, andTg. The details leading to E¢21)

der in time, the DOS as defined in EQ) is different than &€ given in Appendix A.
the thermodynami®OS: In a uniform bulk systerhl() is Our result(21) shows that the thermal current between a

proportional to the thermodynamic DOS divided by The dielectric held at zero temperature and a second dielectric at

definition (10), however, is the one most relevant to the €MPeratureél will be a power-law function off, in striking
present work. contrast with nonmesoscopic thermal transport. For example,

assuming a spectral density of the fofi2) leads at low
IV. THERMAL CURRENT temperature to
- Lo T2472, (23
We now calculate the heat flow between the two bodies
joined by the weak link. The complete system is describedvhereT is the temperature of the second body.

by the Hamiltonian The linear thermal conductance, defined by
H=Hy+ oH. (13 I
0 ) Gp= lim ——, (24)
We define a thermal current operatgy according to T—Tg' L 'R
A ) is given by
lih=3dHr=1[H,Hg]. (14
, o o 27K?2 (= an(e)
The expectation value df;, is the energy per unit time flow- Gth:T de e N (€)Ng(€) 0T (25
ing from the left to the right bodly. 0
Writing the interaction() as This expression, along with E¢12), shows that the linear
thermal conductance between two dielectrics held at a com-
SH= %KE (ALn—Ar) ALy —Agy ), (15) mon temperatur&, varies at low temperature as a power law
nn’ inT,
where Gy T2+, (26)
An=hpa,+hial, (16)  wherea is the exponent characterizing the power-law spec-

, tral density at low energies.
we find that the thermal current operator then takes the form

iK V. THERMAL CONDUCTANCE OF NANOMETER-SCALE

Ith_? 2 an{ARn’_ALn’ ahRnaRn_ hgna;n}! (17) SILICON JUNCTION
" In this section we give a simple application of our theory
where{-,-} is an anticommutator. to a structure consisting of a cylindrical neck of Si material
The equation of motion for the density matrix in the in- connecting two semi-infinite Si crystals. The macroscopic
teraction representation IS solids act as thermal-phonon reservoirs. To be in the mesos-
) copic regime we assume the dimensions of the weak link to
ap()=i[p(1),8HV ], (18 pe smaller than the phase-coherence length of the relevant

thermal phonons. The geometry of the system we consider is
shown schematically in Fig. 2.
O(t)=eHotoe Hot, (19 To apply our formula(25) we need the phonon spectral
i . density at the surface of Si, and also the effective spring
From Eq.(18) we find that the nonequilibrium thermal cur- constant of the link. The spectral density at energies much

where

rent to leading order is less than the Debye energy may be obtained from elasticity
. theory. This approach, which requires a detailed consider-

Ith(t):if dt’([SH(t'),T(t)1)o. (20)  ation of the vibrational modes of a semi-infinite elastic con-

0 tinuum with a stress-free planar surface, is carried out in

) o . Appendix B. We show there that the spectral density at the
EVaIUa“ng Eq(ZO) leads to our prInCIpa| I’eSUI([WIth surface of Si(approximating it to be isotropjds
factors of# reinstategl

, N(e)=Ce, C~1.3x10° cnferg 2. (27)
2mK2 (=
'“":WTJO deeN ()Np(e)[n (€)—nr(e)], (2)  Then using Eq(25) we obtairt?
Gy=(87°K2C?k3/150) T2, (28)

an expression analogous to the formula derived by Schrieffer

et al® for the electrical current through a tunneling barrier. The longitudinal stiffness of the mechanical link, a cylinder
Heren, (€) andng(€) are Bose distribution functions of lengthl and diameted, is
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FIG. 2. Cylindrical silicon junction of lengthand diameted.
K= W—sz (29)
41 7
whereY is Young's modulus. For SP
Y~1.3x 10" dyncm 2, (30

and assuming link dimensions #10 nm andd=1 nm,
we obtain

K~1.0<10* ergcm 2, (31)

and a thermal conductance of
Gp=(9.5x10" ! ergs 1K 4T3 (32
=(9.5x10 18 Js 1K 4TS, (33

The result(32) is shown in Fig. 3.
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FIG. 3. Thermal conductance of the mesoscopic Si link shown
in Fig. 2, as a function of temperature. The solid line follows from
Eq. (32). The thin dotted line is the universal thermal conductance
wkéT/Gﬁ of a single propagating channel.

length is beyond the scope of this work, the experiment of
Schwabet al! suggests that in Si it is at least 1 nm at 1 K.
The second is that our estimate of the spectral density is only
valid for temperatures much less than the Debye temperature
of Si, about 625 K. The third reason is that the leading-order
perturbation theory we have used breaks down widgn
approaches the thermal conductand%T/Gﬁ correspond-

ing to one propagating channel, shown as a thin dotted line
in Fig. 3. The fourth reason is that we have neglected any
electronic contribution tdG,, which is correct only when
kgT is much less than the Si band gap. And the fifth reason is
that we have neglected the vibrational degrees of freedom of
the link itself, which become important for temperatures
above its lowest internal vibrational mode energy of approxi-
mately 20 K. Taking all of these factors into consideration
suggests that Eq32) is probably not quantitatively correct
beyond about 10 K.

VI. DISCUSSION

Cross and Lifshit? have calculated the vibrational trans-
mission probability(ratio of transmitted to incident vibra- In this paper we have studied the thermal analog of the
tional energy fluxin a thin-plate analog of the system shown weak-tunneling limit of charge conduction—which might be
in Fig. 2. Imposing stress-free boundary conditions on allregarded as phonon “tunneling”—and find many similarities
surfaces, they find that the transmission probabilify) to electron tunneling. There are a few important differences,
from a reservoir to the wiréassumed infinitely long or the  however.
reverse, vanishes as in the low-frequency limit. If the Electron tunneling, as it is usually defined, involves the
transmission probability from reservoir to reservoir, throughpassage of an electron through a classically forbidden region.
a wire of finite length, is approximated & (w), which  In the thermal case, a phonon of enetgig never in a region
neglects resonances, then the Landauer formula yields a lowhkat does not support a mode at that enéfgyor example,
temperature thermal conductance proportional Ty in  the harmonic spring employed in E5) can support three
qualitative agreement with our result. propagating phonon channels, but phonons incident on the

Our result(32) is valid at low temperatures only. There weak link are mostly reflected back into the macroscopic
are five reasons why our analysis becomes invalid as thdielectrics. Whereas the tunneling rate of an eleci@na
temperature is increased: The first is that we have assumdiked energy through a forbidden region of thickneksypi-
the weak link to be of mesoscopic dimensions. As the temeally varies exponentially within the weak-tunneling limit,
perature increases, anharmonic interaction will eventuallghe thickness dependence in the phonon-tunneling case is
make the phonon phase-coherence length smaller than tliferent. In the example discussed in Sec. V, the thermal
size of the link. While an estimate of the phase-coherenceonductance varies with lengthof the bridge as 17, be-
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cause the effective spring constai29) of the bridge be- erties of the bridge material, through the elastic modifus

comes softer with increasirlg whereas the classical conductivity would be determined by
We have demonstrated that the classical theory of thermahe bridge material’s bulk thermal conductiviky

conduction, based on the heat equation and on the concept of

a local _thermal cpnductivity, is entire_:ly i_nappli_cable to me- ACKNOWLEDGMENTS

soscopic dielectrics. In a mesoscopic dielectric, thermal re-
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APPENDIX A: GENERAL FORMULA FOR THE THERMAL CURRENT

Evaluating(20) we find

K?2 t
(D=~ E , Jodt,anRd{ALm(t,)_ARm(t’)y[ALm’(t’)_ARm’(t’)v(ALn’(t)_ARn’(t))(hRnaRn(t)_h;zna;ln(t))]DOv
(A1)

and, after further simplification,

K? t
Ith(t) = ? 2 fodt,an RQ({ALn'(t)vALn’(t/)}+{ARn’(t):ARn’(t,)})[hRn aRn(t)_ h;n a;n(t)uARn(t,)]'*'{hRn aRn(t)

— Do @fn(1) Arn(t )AL (1), ALy (1) ]+ [Age (1), Arer (1) D)o, (A2)

where we have used the fact that the commutators are c-numbers. The required thermal expectation values are

(AR, ARt )}o=2lhip[1+2 N (w)5)]cosw p(t—t'), (A3)
(A1), An(t")])o=—2i |hp|*sinwp(t—t'), (Ad)
([hrn@rn(t) = ak(1), Ary(t')1)o=2 [Ng|?cOS@RA(t—1), (A5)

and
({hrnarn(t) ~ h&naka(1), Arn(t')})o= = 2i[Ngo|’[1+2 Nr(wrn) ISiNwRA(t—t'). (A6)

These lead to

t
l(D)=2K?Y, ('-’RnlhRn|2J’0dt,{| hin | [1+2 N0 (@) ]COSw o (t—t")COSwrA(t—t")
nn’

+ gy |1+ 2 Np(wry) ]COSwRA(t—t')COS®Ry (t—t) =[Ny [ [ 1+ 2 NR(wRn) ]

X S|n a)Ln/(t—t’)Sin (I)Rn(t_t,)_ |hRn/|2[l+ 2 nR(a)Rn)]Sin an(t—t’)Siannr(t—t')}. (A?)

Heren, (€) andng(€) are Bose distribution functiorisee Eq(22)] with temperature§, andTg. Next we make a change of
variablest’ —t—t’, take thet— oo limit, and include a convergence factor to regularize the long-time behavior of the resulting
integrals. Finally, using the identities

J’ dtCOSwtCOSw’te‘5t=g[5(w—w’)+5(w+w’)] (A8)
0

and
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j dtsinwtsinw’te_§t=g[5(w—w')—5(w+w')], (A9)
0

where( is a positive infinitesimal, and reinstating factors of £-8¢4+8(3—212)E2-16(1—1%) =0, (B5)
i, leads to Eq(21).

In Egs. (21) and (25 we have introduced aenergy  and where
dependent DOS,

v=uv./v, (B6)
Ni(e)=> [l [8(e—hwn)—8et+hwn)], is the ratio of transverse and longitudinal bulk sound veloci-
n ties. For Si,y=0.69 and¢é=0.88; hence

(A10)

which has dimensions of (lengthienergy. In a homoge-
neous elastic continuum of mass dengityand volumeV,
N(e) is equal tofi?/2pe times the thermodynamic DOS per
volume, V™IS, 8(e—e,).

Cr=5.2x10° cms ™. (B7)

pointr=0 on the surface is
— ) (y—n+2ynP)A 1+7° }

In this appendix we calculate the local phonon DOS at the yom(y=mt2ym) (B8)
stress-free planar surface of a semi-infinite isotropic elastic
continuum, following closely the work of Ezavfdand use Where
this to estimate the DOS at the surface of Si. The substrate is
assumed to occupy the spaze 0. The vibrational modes y=V1-(cr/v)® and n=\1-(cr/vy? (B9
are labeled byn=(m,K,c), wherem s a branch index tak-
ing the valuesS,, =, 0, and R,K is a two-dimensional
wave vector in thexy plane, andc=w/|K| is a parameter
(continuous for all branches except=R) with dimensions

The z component of the vibrational eigenfunction at the
27°7°|K| 2
APPENDIX B: SURFACE DOS OF SILICON fé(O): 1—
(

We find that the Rayleigh branch contributes to the local
DOS (10) an amountfor positive )

of velocity. In contrast to Ref. 21 we shall use periodic Rbranch: N(w)= 9uf e g,~0.42. (B10)
boundary conditions in the andy directions, over a square Ampcd
of areaA.

In our analysis we will approximate Si as an isotropic Note thatg; generally depends om, the value quoted in

elastic continuum with longitudinal and transverse sound ve(B10) corresponding to Si. _ _
locities Next we consider the branches with continuausiere

v,=8.5x10° cms %, % A

u= z ch M[ach fke T achmec:|1
v=5.9x10° cms?, (B1) (B12)
and mass density where the vibrational eigenfunctions have dimensions of
L~32c~12 and satisfy

p=2.3 gcm 3, (B2)
It will be convenient to treat the Rayleigh branc_:m( f d3r % fnrkr o = Ommr Ok 1 8(c—C¢'). (B12)
=R) separately, and then consider the branches with con-

tinuousc. In the Rayleigh case the displacement field is ex-—pq rangel’ of the c integration in Eq.(B11) is [v,,%] for
panded & m=Sy, [v;,%] for m==, and[v,,v,] for them=0 branch.

7 The contribution to the local DO%or w=0) from these
u=2, 3\ [~ [ark fre+aky fax ], (B3)  branches is given by
K 2pcglK|

h
where the vibrational eigenfunctiofigc(r) have dimensions N(w)==— 2, f dc|fZxc(0)]?8(w—c|K]).
of L =32 and satisfy 2pw K Jr (B13

f d3r iy - frir = Ok - (B4) The S, modes are polarized in they plane and therefore

do not contribute tq10). The = modes have surface ampli-
Herecg= ¢ vy, whereé is the root between 0 and 1 of tude

155320-6



THERMAL TRANSPORT THROUGH A MESOSCOPIC WEAK LINK

+Ja(l+A+iB)+ i—(l—AIiB) ,

(0= \ s
= 47c A

VB
(B14)
where

_(B*~1)*~4ap

A= (B 1)+ 2ap’ (819
2_

g AVaB(B-1) (816

(B*—1)*+4aB
a=\(c/lv)?—1 and B=(clvy)’—1, (B17)

are all real functions of. Them= = branches together con-

tribute an amount

gzhw

4772pv|3”

*branches: N(w)= g,~1.0. (B19g)

The value forg,, obtained by doing the integration ovemn
Eqg. (B13) numerically, is valid only for the value of cor-
responding to Si.

The m=0 branch has amplitude

_ ] IK]|

fa(0)= 2mCcBA

[-yD+i(1-E)], (B19)

PHYSICAL REVIEW B4 155320

where
_AB(BP-1)°-16yBA(BA-1)
b= 1678 (B20
and
2_ 4 202 __ Q; 2_ 2
Ez(ﬁ 1)"=16y°p“—8iyB(B°—1) (B21)

(F7-1)"+16)°67

are complex-valued functions of This leads to a contribu-
tion

ggﬁw

2 37
8m“pu;

0 branch: N(w)= g;~0.59. (B22

As before g3 is obtained numerically and assumes a value of
v valid for Si. Combining the three contribution®10),
(B18), and(B22), yields’®

ho
41°p

N(w)= (B23)

g17m 0Oz O3
"3 T 3T 53

CR 7 Uy

Using Eq.(B23) we obtain the estimate7).
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