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Low-density approach to the Kondo-lattice model
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We propose an approach to ttferromagnetit Kondo-lattice model in the low-density region, where the
model is thought to give a reasonable framework for manganites with perovskite structure exhibiting the
colossal magnetoresistance effect. Results for the temperature-dependent quasiparticle density of states are
presented. Typical features can be interpreted in terms of elementary spin-exchange processes between itinerant
conduction electrons and localized moments. The approach is exact in the zero-bandwidth limit for all tem-
peratures and &= 0 for arbitrary bandwidths, fulfills exact high-energy expansions, and reproduces correctly
second-order perturbation theory in the exchange coupling.
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I. INTRODUCTION A. Magnetic semiconductors

Prototypes are the europium chalcogenidesX E{X
=0,S,Se, Te? which are known to exhibit a spectacular tem-

of itinerant electrons in a partially filled energy band with hera¢yre dependence of the band states. The redshift of the
guantum mechanical spirfenagnetic momenjdocalized at optical absorption edge upon coolfigfrom T=T, to T

certain lattice sites. Characteristic model properties result. 5  is que to a corresponding shift of the lower conduction
from an interband exchange interaction between the two Suljag edge. There is clear evidence that in these materials the

systems. exchangel is positive, typically of order some tenths of eV.

On the one hand, the energy band structure is modified bype 6y pling can therefore be classified as weak to interme-
the magnetic state of the spin systétemperature depen- diate.

dences, band splittings, band deformatjpnghile, on the

other, the magnetic state of the spin system is affected by the

itinerant electrons because the KLM does not incorporate a B. Semimagnetic semiconductors

dil’ect eXChange betWeen the moments. The model Hamil- In Systems like CﬂanxTe and HgiXF%(Se random'y

tonian consists of two parts distributed MA* or F€* ions provide localized magnetic

moments which influence, via the exchange mechanlsm

H=Hs+Hs:. (D) the band states of the I1-VI semiconductors CdTe and HgSe.

For moderate doping, the moments do not order collec-

tively so that a striking temperature dependence, such as that

of the magnetic semiconductors (Ey cannot be expected.

He=>, TijCiTaCjU- 2 However, an anomalous magnetic field dependence of opti-

ijo cal transitions and therewith of the band structure is
observef (“giant Zeeman splitting). From the appropriate

wherec/, (c;,) is the creationannihilatior) operator of a experimental dataJ>0 can be concluded. The coupling
band electron specified by the lower indic&g.are the hop- st be classified as weak.

ping integrals. The second term in Ed) is an interband
exchange term with coupling strenglhwritten as an intra-

The Kondo-lattice mod&l(KLM ) describes the interplay

Hs is the kinetic energy of itinerant band electrons,

atomic interaction between the conduction electron sgin C. Local-moment metals
and the localized magnetic moment represented by the spin In ferromagnetic metals such as the rare earth element Gd,
operators; : the magnetism is due to strictly localized électrons while

the conductivity properties are determined by itinerant
(5d,6s) electrons. Thel =0 moment of Gd is found to be
Hsr= _‘]Z oS ) 7.63ug.° 7ug stem from the exactly half-filled #shell. The

excess moment of 0.6 originates from an induced spin
According to the sign of the exchange couplifica parallel  polarization of thea priori nonmagnetic conduction bands,
(J>0) or an antiparallel [<0) alignment of itinerant and indicating a weak or intermediate couplidg-0.° Many of
localized spins is favored with remarkable differences in thehe recent research activities have been focused on the tem-
physical properties. The parallel¥0) orientation is often perature dependence of the induced exchange splitting. Is it
referred to as the ferromagnetic Kondo-lattice modelcollapsing forT— T, or does it persist even in the paramag-
(FKLM), alternatively known as the-f or s-d model. The netic phase”?” The J-induced correlation and quasiparticle
applications of the KLM are manifold. effects in the valence and conduction bands of (&d
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equivalently Dy or Thlead to highly complex and therefore tion from a magnetic state for smdll| to a nonmagnetic
controversial photoemission d&ta, the interpretation of Kondo state for largeJ| characterized by a screening of the
which is far from settledsee the review in Ref.)AVhile the  local moments by the conduction electron spins. The mag-
magnetic ordering of the semiconductors and insulatorsetic state is due to the RKKY interaction, which as an effect
(class A has to be explained via special superexchang®f second order< J?) is independent of the sign df How-
mechanisms, which is beyond the field of application of theever, the Kondo screening is of course absentlfs, i.e.,
FKLM, it is commonly accepted that the collective magne-for all the subclasses discussed above. For most of the
tism of the local-moment metals is caused by the Rudermarheavy-fermion systems, the RKKY coupling favors an anti-
Kittel-Kasuya-YosidaRKKY) interaction. The latter is also ferromagnetic ordering of the local moments. In
based on the exchange interactidanThe FKLM therefore  CeCy_,Au, the competitive behavior of the RKKY and
provides, at least in a qualitative manner, a self-consisterondo screening tendencies can be observed by varying the
description of magnetic and electronic properties of materialgoncentratiorx.?® CeCy (x=0) is nonmagnetic because of
such as G&:'° perfect Kondo screening, while for>0.1 the RKKY com-
ponent dominates, causing antiferromagnetic ordering up to
x=1(CeCuyAu) with increasing Nel temperatureT, for
increasingx.

Since the discovery of the colossal magnetoresistance J<0 does not necessarily lead to antiferromagnetism. The
(CMR),***?the manganese oxides with perovskite structuregompound CeSiis ferromagnetic for 1.6 x<1.852 with a
T:-xDyMnO; (T=La,Pr,Nd; D=Sr, Ca, Ba, Pb) have at- strongly reduced magnetic moment. The Curie temperature
tracted great scientific interest. The prototypesof the ferromagnetic Kondo systerd<0) CeNiPt, _, first
La; ,(Ca,Sr)MnO; have long been known for the “double increases betweer=0 andx=0.5 from 5.8 K &=0) to
exchange” mechanisit.Replacing in L"Mn3* Oz atriva-  about 8.6 K k=0.5), and then decreases rapidly, and disap-
lent L& ion by a divalent alkali-earth ion (€&,SP*)  pears eventually at=0.5527 The magnetic moment per Ce
requires an additional electron from the manganese for thgn diminishes steadily with increasingbecause of increas-
binding. The result is a homogeneous valence mixture of théhg Kondo screening and disappears completely=a6.95.
manganese ion (M ,Mn;"). The three 8-t,, electrons of The above-presented list documents the rich variety of
Mn“** are considered as more or less localized, forming applications for the KLM. Since the many-body problem of
local S=3/2 spin. The fourth electron in M# is of 3d-e;  the Hamiltonian(1) has not been solved exactly up to now,
type and is itinerant. It is assumed that it interacts via in-approximations must be tolerated. Most of the recent theo-
trashell Hund's rule couplingdouble exchange modél  retical papers aiming at the CMR materials assume classical
with the S=3/2 spins. The manganites are bad electrical conspinsS— ,22-**mainly in order to be able to apply dynami-
ductors. It has therefore to be assumed that the intraatomizal mean field theoryDMFT) to the FKLM problem. The
couplingJ>0 is much stronger than the hopping matrix el- merits of DMFT, e.g., with respect to the Hubbard model, are
ement|t| (J>|t]). Theoretical estimates for the bandwidth indisputable, but the assumption of classical spins in the
yield W=1-2 eV!® !’ experimental data propos&/ KLM appears very problematic. Several important features,
=3-4 eV!19 The exchange coupling is not very well  such as, e.g., magnon emission and absorption by the itiner-
known; theJ=1 eV of Refs. 15 and 20 is sometimes ques-ant electrons, are excluded from the very beginning. The
tioned as being too smait.In any case, the manganites be- importance of such effects has been discussed in detail in
long to the strongly coupled FKLM which cannot be treatedRef. 10. Conclusions such as thaffat O the spins of the,
perturbatively with respect td. The FKLM will certainly be  electrons are oriented parallel to thg, spins® are correct
unable to reproduce all the details of the rich phase diagraranly for S—oo. For any finite spin, there is a considerable
of La;_,CaMnO;, according to which the ground state is amount of| spectral weight overlapping with states even
antiferromagnetic fox=0 and 1 and ferromagnetic for ~ for very largeJ. Recently, a DMFT-based approach to the
~0.2-0.4, with paramagnetic regions and phase separatiod_M with quantum spins has been proposgdavyhich uses a
in between? Nevertheless, the FKLM is thought to give a fermionization of the local spin operators. The theory is re-
reasonable framework for at least a qualitative understandingtricted toS=1/2 but retains the quantum nature of the spins.
of the interesting physics of the manganités® Band splitting, which occurs already for relatively low inter-
action strengths, can be related to distinct elementary excita-
tions, namely, magnon emission and absorption by the itin-
erant electron and the formation of magnetic polarons. The

The above subclasses are all characterized by a ferromagesults, which are in remarkable agreement with those from
netic exchange interactioi™>0. The original Kondo-lattice the moment conserving decoupling approddhCDA) in
model?* however, refers ta)<0, favoring an antiparallel Ref. 10, confirm the importance of the quantum nature of the
alignment of conduction electron spin and localized spinspins.

This situation is obviously realized in the heavy-fermion sys-  For various reasons, the above-mentioned theGriéare
tems, which are to be found especially among Ce compoundsest justified for weak and intermediate couplilgsn this

and which have provoked intensive research activities bepaper, we propose an approximate scheme that mainly aims
cause of their extraordinary physical properties. Dorfiach at the strong coupling regimel W, whereW is the band-
was the first to point out that there should be a phase transwidth) but is nevertheless perturbationally correct up to order

D. Manganite perovskites

E. Heavy fermions
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J2. The idea is to construct a self-energy ansatz that interpoe(k) are the Bloch energies
lates between exactly known limiting cases and reproduces
the correct high-energy expansion of the self-energy. To

demonstrate the method as clearly as possible, we restrict our
consideration to the low-concentration region, performing a

detailed calculation for a single electron in an otherwiseAn illustrative quantity that we are going to discuss in the
empty conduction band. The theory is outlined in Sec. I1,following is the quasiparticle density of staté3-DOS:

while Sec. Il is a discussion of the results.

1 .
e(k)=1 IE, T;elk (=R, (12)

1 .
po(E)=—— 2 IMG,(E+i07). (13
Il. THEORY fimN ¥
A. The many-body problem For the general case neithBy,(E) nor G, (E) can be de-
termined exactly. However, some rigorous statements are

The model Hamiltonian(1l) defines a nontrivial many- possible and will now be listed.

body problem, the exact solution of which is known only for
a small number of special cases. For practical reasons, it is

sometimes more convenient to use the second quantized B. Zero-bandwidth limit

form of the exchange interactigB): The final goal of our study is to arrive at a self-energy
1 formula that is credible first of all in the strong coupling limit
Hom— =3 1 +S % te). 4 (JS_>W). That means, in particular, that_our approach has to
stm 2 JEU (2oSNjoS; -0 Cjo) @ satisfy the exactly solvable zero-bandwidth ¢ase

Here we have used the abbreviations Tij—Tod;, e(k)—ToVk. (14)

njl,zc;r(,cj(,, Z,=06,— 06, , S/=S+iz,S/. (5  The conduction band is shrunk to dkfold degenerate level
To. The localized spin system, however, is further on consid-
ered as collectively ordered far<T, by any direct or indi-
rect exchange interaction. The latter is not a part of the
REM. The localized magnetizatio(S”) therefore enters the
calculation as an external parameter. With Ed), the hier-
archy of equations of motion for the single-electron Green
functionG;;(E), following from Eq.(7), decouples exactR?

The first term in Eq.(4) describes an Ising-like interaction
between thez components of the localized and itinerant
spins. The second term refers to spin exchange process
between the two subsystems.

If we are mainly interested in the conduction electron
properties, then the single-electron Green function

Gija(E)=<<Cia;CjTU>>E (6) The result is a four-pole function
is of primary interest. Its equation of motion reads _ ‘ aj,
Gi‘ivﬁ‘O)(E)=jEl T (15)
= io

% (Edin=Tim) Gmjo(E) with spin-independent poles at

1 -T.-1 =T.+ 1 +
=118 = 532 jo(E) +Fijo(E)] (D) F1o=To~ 25 Bpr=To+2J(S+1), (19
where the two types of interaction term in Ed) lead to the E3p=To— 3J(S+1), E4=To+3JS (17)
spin-flip function The j=1,2 excitations[Eq. (16)] refer to singly occupied
Fo . (E)=((S ’c. . :c! 8 sites; more strictly, they appear when the test electron is
imjolB)={(S " "’>>E ® brought to a site where no other conduction electron is
and the Ising function present. It then orients its spin parall&(,) or antiparallel
% (E,,) to the local spin. These excitations are bound to spin-
lim,jo(E) = ((SCmo i Co) e - (9 dependent spectral weights

The two higher Green functions on the right-hand side of Eq.
(7) prevent a direct solution of the equation of motion. A .=
formal solution for the Fourier-transformed single-electron 7 25+1
Green function

{S+1+m,+A_,—(S+1){n_,)}, (18

1
a2(r:m{s_ m(,_A,,,._S<n,,,.>}. (19)

Gka’(E)=<<Ck(r;Clo’>>E= _ _ (10)
E=e(k)=210(B) Here we have abbreviated

defines the in general complex self-enegy,(E) by the

ansatz M, =2,(S"), (20

<<[HSf1Cko']* ;CE0>>E=2ka’(E)Gk0(E)- (11) AO':<S|0-Ci1-—o'ci0>+20'<32ni0'>' (21)
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The mixed correlation functiom , can be derived via the For finite bandwidth, the special case mentioned is that of
spectral theorem from the Ising and spin-flip functid8s a ferromagnetically saturated semiconduct@uO at
and(9). Exploiting the equation of motiof¥), this can even T=0).1931:33-39n this situation, arj electron has no chance
be expressed in terms of the single-electron Green functiorfor a spin flip, the corresponding quasiparticle density of
statesp;(E) is therefore only rigidly shifted compared to the

11 free DOS and the self-energy is a constant:

+ oo
Do== }k) LO dEf_(E)[E—e(k)]ImG,,(E)

22 S{TOOE) =3O E) = - 13 (@27)

wheref_(E)=(1+e#E-#))~1 s the Fermi function 4 is _ _ _
the chemical potential Similarly, for the spin-dependent '€l Spectrum is more complicated sincel @lectron has
particle numbers several possibilities to exchange its spin with the antiparallel,

localized spins. The spin-flip functiai®) does not vanish as
1 1 +oo in the T case. Nevertheless, the problem is exactly solvable,
(Ng)=— TN Ek: Jl dEf_(E)IMGy,(E). (23)  resulting in a wave-vector-independent self-energy:

The expectation values in the spectral weights,, are, o 1 JGO(E+ %JS)
therefore, all self-consistently determinable by the required  =(T="=9)(E)=>Jg 1+ .
single-electron Green function itself. - %JGo( E+ %JS)

The two other poles;, and E,, are bound to double (28)
occupancies of the lattice site. The test electron enters a si
that is already occupied by another electron with opposit
spin. The corresponding spectral weights

o(E) is the free propagator:

1 1 1
1 GoB)= 2 VB = 2 gmig @
a30':28+1{s<n—0'>_A—0'}’ (24)
The reason for the wg\ele-vector independence of the self-
energy can be traced backo the lack of a directHeisen-
Y4055+ 1 {(S+D){n_p)+4_5}, 29 ber@ggxchange term in the model Hamiltoniél). Ttherefore
3(T=0"=9(E) does not contain magnon energiés (q)

vanish in the limit of zero band occupation. It may be con- hich come into play when the excited electron flips its

sidered a shortcoming .Of the KLM that t_he excitation ener'spin by magnon emission. Neglecting the exchange between
gies (17) do not contain the Coulomb interaction energy. \no |ocal-moment spin§ may be considered as theo(q)

Switching on a Hubbard interactiod leads to an additive _ 5 . .. aq 5 consequence, the electronic self-energy be-

Eg”r?i Uhlgr i?qaeﬁsi(\alvse”v\allﬁilliﬁe’ Higgtggg itshe:feciﬁ?gzu'g]r:as comes wave-vector independent. No problem arises in calcu-
9 gles. lating the limit (h=0,T=0) with the inclusion of a Heisen-

exact ansatz in the zero-bandwidth limit, it is not so obviou ola i

by what type of Coulomb interaction the KLM should besggrgen deexnccheag?fhehesJelljf%enSejz. r'légen é%trr;e wave-vector
extendedthe correlated KLMRef. 30] when aiming at one P gy reapp '
of the subclasses described in the Introduction. To avoid this

ambiguity we restrict our following consideration to the low- D. Second-order perturbation theory
density limit (»—0), where the self-energy of the zero-  conventional diagrammatic perturbation theory for the
bandwidth KLM reads according to Eq€.6)—(19) Kondo-lattice model does not work because of the lack of
012 L Wick’s. theorem._ A fertile alternative .is the .Mori
E(W=°)(E)n:> 2J9°8(S+1)— 3 Im,(E-To) 26 formalism? %" which allows for a systematic expansion of
o E—To— 2J(m,+1) ' the electronic self-energy of the KLM with respect to the

powers ofd. That has successfully been done previously for
This rigorous result will be exploited later for testing our the weakly coupled Hubbard model by use of the modified

approximate theory. perturbation theory of Refs. 38 and 39. In the case of the
KLM, the first-order term is just the mean field resgiltm,,,
C. Ferromagnetically saturated semiconductor while in the second order one finfi§qg. (3.12 in Ref. 39

There is another very instructive limiting case that can be 0 12
treated exactly. It concerns a single electron in an otherwise s @)(E S
empty conduction band interacting with a ferromagnetically kr(B) =
saturated local moment systeml'=£0). In the zero-
bandwidth limit(Sec. 11 B for the | spectrum, all the spec- +(85 4 5Sé>(1)G(k92q( E+ %ng)}. (30)
tral weights(19), (24), and (25 disappear, except fod;
=1.In the| spectrum the levelg,, andE,, survive with (- - -y means mean field averaging, while thelependent
the weightsa;| =1/(2S+ 1) anda, =2S/(25+1). spin operator is defined as usual,

D {(sgspWe,(E~ £m,)
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=Ei Ste IR (a=+,—,2). (32)
(SSf1 is a shorthand notation:
85 =Si—(Sp. (32

In the following we are interested in the local self-energy
3 (E)=(1N)=,Z,(E) only, which we find with Eq(30)
up to orderJ? in the limit n—0 to be

2 ,(E)
== 3Im,+ 3 #{S(S+1)—m,(m,+1)}Go(E)

+0(J3°%). (33

E. High-energy expansions

For controlling unavoidable approximations, the spectra
momentsM (" of the spectral densitg,(E)

1
Sk(r(E) == ; Im Gk(r(E) (34)
are of great importance:
1+
MﬁQZ%J’ dE E"S,,(E). (35

In principle, they can be calculated rigorously via the
equivalent expression

MZ=([[[cxg H]- -

n-fold

aH] i’Clttr] +>'

(36)

PHYSICAL REVIEW B54 155109

CO=MD - e(k), (40)
Cc=M@— (M2, (41)
C=MP-2MIMD+ (M3, (42)

Using the definition(36), the moments of the KLM can be
explicitly calculated by the use of the model Hamiltonian
(1). After tedious but straightforward manipulations, one
finds in the low-density limit i—0), for the first four mo-
ments,

MQ=1, 43
M= e(k)— 3 Im,, (44)
MP)=e?(k)—JIm,e(k)+ I S(S+1)-m,], (45

M (3)

oy =€3(k) = 3 Im,€°(k) + § JH{A, (k) +B(k) +2€(k)
X[S(S+1)=m ]} + § I¥{S(S+1)(1-m,) —m,}.
(46)

A,(k) andB(k) are related to spin-correlation functions:

U(k Z eIk (Rij— R)T <Si_0'S(T> (47)

1 )
B(k)= .2, e RR)T (S7ST). (49
Inserting these expressions into E@E)—(42) we get for the
first three self-energy coefficients

There is a close connection between the spectral moments

and the high-energy behavior of the Green function:

Ske(E")
Gyo(E)= f dE=

M (n)

Enof dE'( )sk<,<E> ﬁE

En+l

(37

Because of the Dyson equation

EGk(E)=fi+[€(k) + 2y (E) G, (E) (39

an analogous expansion holds for the self-energy:
> c(m

_ ko
So(B)= 2 o

(39

The coefficientsC{™ turn out to be simple functions of the
moments up to ordem+1:

CI=—3JIm,, (49)
cl=—132[S(S+1)—m,(m,+1)], (50)

C2)=— 5 I A,(K) +B(Kk) — e(k)m]
+ 2 33(1+m,)[S(S+1)—m,(m,+1)]. (51)

They determine the high-energy behavior of the self-
energy(39).

F. Interpolation formula

We want to construct an approximate expression for the
electronic self-energy of the low-density KLM, which fulfills
the zero-bandwidth limit26) for all temperature§ and ar-
bitrary coupling strengthg, as well as the exad=0 result
(27) and (28) for arbitrary bandwidths and couplings. Fur-
thermore, it should reproduce the correct high-enéstypong
coupling behavior(39) and in addition also the weak cou-
pling result(33). Guided by the nontrivial {=0,T=0) re-
sult (28), we start with the following ansatz for the local
self-energy:
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a(,Go( E—3J m(,)

3, (E)=—3Im,+ 3 J
? *7 1-b,Go(

1
- E‘Jmo'

. (52
)

PHYSICAL REVIEW B64 155109
cHV=1J%,, (60)

C?=13%,(To+ 3 Im,+b, ), (61)

a, andb, are at first unknown parameters. It is easy tocan be compared to the exact expressions following from

recognize that this ansatz reproduces the exact (2ijtand

(28) of ferromagnetic saturation, if=0,n=0,
a,=(1-2,)S, b;=3J,
and the zero-bandwidth limi®26), if

b, arbitrary, (53

6(k)—)TOVk,
a,=S(S+1)—my(m,+1), (54

b,=b_,=3J.
We note that Eq(54) agrees with Eq(53) for T=0.

By Eg. (52), we concentrate from the very beginning on
the local part of the self-energy. As already stated above, the

Egs. (49 -(51):
CO=—1Jm,, (62
cW=135(S+1)—m,(m,+1)], (63)

C?=332(To+ £ 3(1+m,) ) [S(S+1)—m,(m,+1)].
(64)

Cc? is identically fulfilled. Agreement for the two other co-
efficients is achieved by setting

a,=S(S+1)—my (m,+1), (65)

b,=3J=b_,. (66)

wave-vector dependence of the self-energy is mainly due tghese are the same expressions as found ir(%.for the
magnon energied w(q) appearing at finite temperature in special zero-bandwidth limit.

magnon emission and absorption processes by the band elec-|nserting Eqgs.(65) and (66) into Eq. (52) yields a self-
tron. However, the neglect of a direct Heisenberg exchanggnergy result that is exact fdr=0 (m,=z,S) but arbitrary
between the localized spins in the KLM can be interpreted agandwidthsw and exchange couplingk It fulfills the zero-

thew(g)—0 limit.
We fix the parametera, and b, in the ansatz52) by

equating it to the high-energy expansit89). For this pur-

bandwidth limit for all couplings) and all temperatures. It
obeys the high-energy behavior which is important for the
strong coupling regime. Furthermore, comparison with Eq.

pose, we first develop Ed52) in terms of powers of the (33) shows that the approach fits second-order perturbation
inverse energy. That requires the respective high-energy exheory, thus being reliable in the weak coupling regime also.

pression of the mean field propaga®g(E— 3Jm,), which
is exactly known:

1 M
GO(E— EJm"):g‘oW’ (55)
o1 1 n
M(P:N; (e(k)+§JmU) . (56)

From Eq.(52) it then follows that

Jm, J%a, & MM = “oMmm P
D e mE:o EM+1 pgo b"ngo Nl
= imr 2 22004
277 E|4Y T %
1)1 2 1 (1 1 (0)\2 3
+—1=2%a,[MB+b (M2 +O(1ED).
E2 |4
(57)
The local self-energy coefficients thus derived,
C(m)zl 2 c(m) (58)
T N . ko 1
CO=—1im,, (59

We believe that Eq(52) together with Eqs(65) and (66)
represents a trustworthy approach to the low-density self-
energy of the Kondo-lattice model. In the next section we
present a numerical evaluation.

IIl. RESULTS

We have evaluated our theory for a sc lattice using the
respective Bloch density of statd8-DOS) in the tight-
binding approximatiod? The center of gravityT, of the
Bloch band is chosen as energy zero. Figure 1 shows the
temperature-dependent quasiparticle density of sjatés)
for a strongly coupled systend €2.0 eVS=7/2W=1 eV).

The electronic spectrum gets its temperature dependence ex-
clusively through the local-moment magnetizatior=|m,|
=[(S%|, which must be considered as an external parameter.
m=3.5 meansT=0 K (ferromagnetic saturationwhile m

=0 occurs at tor =T, . The Q-DOS for each spin direction
consists of two subbands separated by an energy of the order
of 3J(2S+1). They originate from the two atomic levels
E,, andE,, in the zero-bandwidth limi{16).

A special case is ferromagnetic saturation, for whichithe
spectrum consists only of the undeformed low-energy band
[p1(E)=po(E+ 1J9]. The electron has no chance to ex-
change its spin with the perfectly aligned local-spin system.
The spin-flip terms in the exchange interactid therefore
do not work; only the Ising-like paffirst term in Eq.(4)] is
important for a rigid shift of the excitation spectrum. The
spectrum is more complicated becausgelectron can, even
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FIG. 1. Quasiparticle density of states as a function of energy FIG. 2. Same as in Fig. 1 but with enlarged vertical scale.

for various values of magnetization. Full line for spin up and dotted ) o o )
line for spin downJ=2, S=7/2, andW=1. lattice site. The actual quantization axis is then the localized

spin (S=7/2), to which the electron can orient its spin par-

at T=0 K, exchange its spin with the ferromagnetically satu-allel (“spin up” in the local frame or antiparallel(“spin
rated spin system. One possibility is to emit a magnon, theredown” in the local frame. The excitation energy for a par-
with reversing its own spin and becoming &lectron. Such allel alignment roughly amounts te 3JS, and for an anti-
a spin-flip excitation is, of course, possible only if there are ferromagnetic alignment te- J(S+ 1). The lower quasipar-
states within reach on which the originalelectron can land ticle subband consists of states belonging to the situation
after the spin flip. That is the reason why the low-enefgy where the band electron appears in the local frame as a spin
subband occupies the same energy region ag$ thand. up electron. This may happen directly or after emitting/

The | electron has another possibility to exchange its spirabsorbing a magnon. In the upper subband the electron has
with the ferromagnetically saturated moment system by reentered the local frame as a spin down electron. This is im-
peated magnon emission and reabsorption. In a certain sengessible for & electron aff =0 K, when all localized spins
the electron propagates through the lattice dressed by a viare parallel alignedi=S). While the excitation energies
tual cloud of magnons. For the parameters chosen in Fig. Bre almost temperature independent, the probability for the
this gives rise even to the formation of a stable quasiparticleelectron to be in the local frame as a spin up or as a spin
which we call the magnetic polardft® The polaron states down particle strongly depends on temperature. That mani-
form, atT=0 K, the upper| quasiparticle subband. It goes fests itself in the spectral weight of the respective quasipar-
without saying that polaron formation is impossible for the ticle subband, which therefore is temperature and spin de-
electron in a saturated moment system. Therefore no upp@endent. There remains a small probability that the band
quasiparticle subband appears in the spectrum. This electron is not trapped by the localized spin, but rather
changes for finite temperatures. propagates with high mobility through the spin lattice. In

For T>0 (m<3.5) the | spectrum too becomes more such a case the effective quantization axis is no longer the
structured because the localized spin system is no longédecal spin but rather the direction of the global magnetization
perfectly aligned. The system now contains magnons thatS?). Figure 2 shows the Q-DOS for the same parameters as
can be absorbed by the electron. Even polaron formation in Fig. 1 but on a finer scale. One recognizes two tiny satel-
becomes possible. The spectral weight of the ugpguasi-  lites which emerge from the two main peaks with increasing
particle subband rises with increasing temperature, i.e., intemperature(decreasing magnetizatiom). The | satellite
creasing magnon density. Figure 1 illustrates that the temhas a lower energy than the satellite. This can be under-
perature dependence of the Q-DOS mainly affects thetood as follows. The origingl electron will predominantly
spectral weights of the subbands and not so much their penter the low-energy part of the spectrum by emitting a mag-
sitions. This is a typical feature of the strong coupling regimenon, thereby reversing its own spin. In case of being not
JS>W. In such a situation, the band electron mobility is trapped by a local spin, it then moves a$ alectron through
rather poor; it stays for a relatively long time at the samethe spin lattice. On the other hand, an origihalectron has
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FIG. 3. Quasiparticle density of stat@s the positive half of the
frame and imaginary part of the self-energn the negative half of
the frame as functions of energy for various values of magnetiza-
tion. Full line for spin up and dotted line for spin dowd=2, S

=3/2, andW=1.
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DOS and Im. Self-energy

Real and Imaginary parts of Self-energy

FIG. 5. Real and imaginary parts of the self-energy as a function
of energy for different values of magnetization. For imaginary part,
full line for spin up and dotted line for spin down. For real part,
dashed line for spin up and dash-dotted line for spin down. Imagi-

to absorb a magnon in order to enter the high-energy part afary part of the self-energy is multiplied by a factor of 5 for better

the spectrum and propagate then ag aelectron. With de-

clarity. J=2, S=3/2, andW=1.

creasing magnetization the two satellites collapse mean-
field-like. In the strong coupling regime £ W) pictured in

Figs. 1 and 2 the satellites have only very small spectral
weights, nevertheless representing interesting physics.
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The parameters used in Figs. 3, 4, andJ5=@ eV.W
=1,S=23/2) should be typical for the manganites. It is some-
times claimed'*that because of the strong couplidi§ the
itinerant electron €,) spin is oriented al =0 K in any case
parallel to the localizedtgy) spin. According to the exact
m= S=3/2 part of Fig. 3, this can be strictly ruled out for the
FKLM. In the papers mentioned the assumption of full po-
larization is an artifact due to the restriction to classical spins
(S—x). The temperature dependence of the Q-DOS is of
course very similar to th&=7/2 case in Fig. 1. Even the
satellites that describe the free electron propagation after
emitting/absorbing a magnon appd&ig. 4). However, be-
cause of the smaller distance between the two main peaks
[~1J(2S+1)] the mean field shift of the satellites is not so
clearly visible as for the higher spin in Fig. 1.

The imaginary part of the self-energy is directly related to
quasiparticle damping and lifetime, respectively. Figure 3
demonstrates that the polaron stat@gper part of the spec-
trum) represent quasiparticles with almost infinite lifetimes
since ImX, ,(E) is zero in this region. Fof =0 K, this is an
exact result. At ferromagnetic saturation the wholespec-

Density of States

FIG. 4. Quasiparticle density of states as a function of energyirtum consists of stable states. It turns out that in the strong
for various values of magnetization. Full line for spin up and dottedcoupling regime discussed here, even for finite temperatures,
line for spin downJ=2, S=3/2, andW=1.

only the states of the mean field satellites have finite life-
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1 05 0" 05 '1 for different values of coupling constatFull line for spin up and

Ener dotted line for spin downm=1.5 (ferromagnetic saturationS
& =3/2, andW=1.

FIG. 6. Quasiparticle density of stat@s the positive half of the

frame and imaginary part of the self-energy the negative half of 5 =0 4 eV. Our results for the weakly coupled FKLM are
the frame as a function of energy for different values of magneti- very similar to those presented in Ref. 10.

zation. Full line for spin up and dotted line for spin down. Imagi-

nary self-energy is multiplied by a factor of 5 for better clarily.

=0.2,S=3/2, andW=1.
IV. CONCLUSIONS

times. The sharp peak of I, (E) always falls in the band We have presented an approach to the ferromagnetic
gap, which is provoked by a divergence of the real part of th§,nqo.-jattice model in the low-density limitn(—0). The
self-energy(Fig. 5. It has therefore no direct influence on yheqry uses an interpolation formula for the electronic self-
the lifetime of the quasiparticles. _ energy which fulfills a maximum number of limiting cases. It
Up to now we have only discussed the FKLM in the ron-0qyces the nontrivial rigorous special case of a single
strong coupling regime. As demonstrated in Sec. Il D, OUlyactron in an otherwise empty conduction band a0 (fer-
interpolating approach is correct in the weak coupling region,; yaqnetically saturated semicondugfand that for arbi-
too. Figure 6 shows, as an example, the Q-DOSJ00.2 {141y pandwidths and coupling constants. It is exact in the
eV, W=1 eV, andS=3/2. The tendency to the two-subband ;¢4 pandwidth limit for all temperatures and all exchange
struc_ture can be re_cognlzed for Weak_ couplings also. Th%ouplings. It obeys the high-energy expansion of the self-
physical interpretation of the responsible elementary Pr%nergy, guaranteeing therewith the right strong coupling be-
cesses is the same as in the strong coupling case discuss&g{,ior' as well as perturbation theory of second order
above. ForT=0 all T states represent stable quasiparticles . 32 for the weak-coupling side. All exact criteria available
and the corresponding imaginary part of the self-energy vang,, the ferromagnetic Kondo-lattice model known to us are
ishes. With increasing demagnetization of the local momen&orrectly reproduced by the present low-density approach.
system, In&(E) becomes finite indicating finite lifetimes  girong correlation effects due to interband exchange ap-
of 1 quasiparticles due to magnon absorption, which is impear in the quasiparticle density of states. A rather weak cou-
possible aflT =0 because of ferromagnetic saturation. Mag-p“ng J/W a|ready pro\/okes a distinct temperature depen-
non emission by electrons, however, is always possible. It dence in the electronic structure, mainly due to spin
should be pointed out that the upper part of thepectrum exchange processes between the localized magnetic mo-
obviously consists, at low temperature, of stable polarorments and itinerant band electrons. Magnon emission/
states. absorption processes compete with polaronlike quasiparticle
It is surprising that very small couplings are already suf-formation. These facts demonstrate that the assumption of
ficient to create a pseudogap in the quasiparticle spectrunelassical spins $—=), very often used for the simplified
According to Fig. 7, which shows the exatt=0—p,(E) treatment of the modéP, suppresses just the essentials of the
for various exchange couplings the gap is opened already Kondo-lattice model. A necessary extension of the theory
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presented has to include finite band occupations, which cer-

tainly requires additional approximations. The—~0 ap-
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