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Classical generalization of the Drude formula for the optical conductivity
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A simple classical generalization of the Drude formula is derived based on the impulse response approach
and Poisson statistics. The new feature is a paraneetghich is a measure of persistence of velocity. With
negative values of, it is possible to mimic the infrared properties of poor metals that display a minimum in
the optical conductivity at zero frequency. The electron current in these cases reverses direction before decay-
ing to zero. Specific examples considered are Hg and its amalgams, liquid Te, and the quasicrystal
Algs CWo, F€5. Discussion is offered on the connection with interband transitions, on the distinction between
the electron lifetime and the transport relaxation time, and on other generalizations of the Drude formula.
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I. INTRODUCTION A &function impulse of field is greater than any of the other
forces acting on the system, and so each electron behaves

For a good metal the frequency dependence of the opticdfitially as if it were perfectly free, giving (0)=n*e?/m.
conductivity is given by the well-known Drude formula Since j(t) ando(w) are Fourier transforms of each other,
the oscillator-strength sum rule om(w), the real part of

o(w)=00/(1+ w?7?), (1) F(w), immediately drops out:
where the dc conductivity is given byn* e?7/m, n* is the . 2
effective density of electrons, ands a relaxation time. The f o(w)dw= (z)j(O): ﬂ, (3)
formula is rather inflexible. It requires that the frequency 0 2 8

dependence of the conductivity should have a maximum ajhere we have introduced the plasma frequengyiven by
zero frequency and then fall off with Lorentzian form. De- ,,2— 47n*e2/m. Since causality has been invoked at the

partures from this behavior have been observed, and we Sh@htset, the Kramers-Krog relations must inevitably be sat-

be concerned in .p'articular with those materials in whichigfieq by the real and imaginary parts of any expressions for
o(w) displays a minimum at zero frequency and a transfer of&(w) that are obtained. Thus, not only is the impulse re-

pscillator strength tq higher frequencies _in the form of aNsponse approach conceptually simple, it also has some
infrared peak. The intent of this paper is to elaborate aniit-in consistency safeguards.

exceedingly simple classical generalization of the Drude for- |t the initial current decays exponentially to its equilib-

mula based on the impulse response approach and Poissgim value of zero with a relaxation time we have
statistics’ and to show that it can accommodate some of the

observed departures. j(/j(0)=exp(—t/T) (4)
The structure of the paper is as follows. The classicagnd

derivation is presented immediately in Sec. Il. The principal _ . 2 i

feature is the introduction of a “persistence of velocity” pa- o(w)=(n*e“r/m/(1-iw7). ®)

rameterc. Some applications of the formula are presented inThis is the standard Drude formula which we now general-

Sec. lll. Finally, in Sec. 1V, discussion is offered on the pos-ize.

sible connection with interband transitions, on the distinction

between the electron lifetime and the transport relaxation B. Poisson statistics

time, and on some of the other generalizations of the Drude

formula to be found in the literature. Let us suppose that an electron experiences collisions that

are randomly distributed in time but with an average time
interval 7 between collision events. The probabiliby(0,t)

of n events in the time interval (0, is given by the Poisson
A. Impulse response approach distribution

Il. CLASSICAL DERIVATION

Let us adopt the.conceptually.simple impulse response p,(0)=(t/7)" exp( —t/7)/n!. (6)
approach to the optical conductivity. The procedure is to
imagine a unit impulse of electric field applied to the elec-The probability of zero collisions is expt/7). So Eq.(4)
tron system at time=0 and then to examine the resulting can be seen as merely the first term in a series. Taking ac-
current responsd(t). The complex frequency-dependent c_ount of Wh_at happens after the first and subsequent colli-
conductivity is the Fourier transform ¢ft): sions we write

. (7

1+, c,(t/7)"n!
n=1

a(w)=f:j(t)exp(iwt)dt. 2) j(1)/j(0)=exp —t/7)

0163-1829/2001/645)/1551066)/$20.00 64 155106-1 ©2001 The American Physical Society



N. V. SMITH PHYSICAL REVIEW B 64 155106

The coefficientc, represents that fraction of the electron’s 1.0
original velocity that is retained after tmh collision. It is a

memory or persistence of velocity effect. Taking the Fourier
transform yields

(a)

B n*e?r/m - Cn
o(w)=

(1-iwT7) 1+n=1 (1-iwr)"

This generalized Drude formula is the principal result of this
paper. There are now three possible directions in which to .
proceed. First, we could consider inclusion of only the first 0 &/
new term, the one whose coefficientis. Second, there is a ~

circumstance, whose discussion is deferred until Sec. IVB, in L L
which the series of Eq$7) and(8) can be summed to infin- 0 1 t/t 2 3
ity. Third, the series of E(8) could be used as an empirical

fitting scheme using as disposable parameters as many oftt 1.9

coefficientsc,, that one is willing to tolerate. Note that the ¢ =0 (Drude) (b)
sum rule and the Kramers-Kmig relations are automatically

S
. ® =
=

¢ =0 (Drude)

satisfied for any set of real, values. We shall proceed in the E
first direction. >
:qg -0.5
C. Single-scattering approximation £
The key assumption upon which we now proceed is that § 1
persistence of velocity is retained for only one collisi@p ©
=0 for n>1). With this truncation of the series, we have
(dropping the subscript and writing; = c)
j(0)/j(t)=(1+ct/T)exp —t/7). 9 0 L L
1(0)/j(t)=( T)exp—t/7) 9 0 ] s > 3

Separating real and imaginary parts, we have for the con-
ductivity

_ n*e’7/m . c(1— w?r) 10
U(w)_(1+w272) (1+ 0’7) (10 Q’b
and 3
1 wETZ 1 2c 11 é\
_ = +
El(w) (1+0)27'2) (1+w27'2) ’ ( ) =, 05
&l - .
where, following common custom, we have expressed the
imaginary part of the conductivity as (w), the real part of 0 (Drude)
a dielectric function. | |
These generalized Drude formulas have interesting anc —1.0
. ; : . . 0 1 oT 2 3
versatile properties, particularly for negative values.dfig-
ure 1 shows the behavior pft), o(w), ande;(w) for values FIG. 1. Persistence of velocity effects. Dependence ofi (a)

of c=0, —0.5, and—1.0. For elastic collisions; would be  the impulse response functigit), (b) the real part of the conduc-
(cos#), the expectation value of c@svhered is the scatter- tivity o(w), and(c) the dielectric functiore;(w). For negative val-

ing angle. Negative values a@ftherefore imply a predomi- ues ofc, j(t) reverses sign before decaying to zero. With increas-
nance of backscattering, and it is seen that the net curreingly negativec, the dc conductivity is depressedi(w) develops a
j(t) carried by the electron system actually reverses direcPeak at nonzero frequency, arg(w) becomes positive at low fre-
tion before relaxing to its equilibrium value of zero. The quencies.

effect ono(w) is to depress the dc conductivity and to shift

oscillator strength to higher frequencies. For valuescof The predicted behavior af;(w) is also interesting. For a
<-—2/3,0(w) displays a minimum at zero frequency fol- good metal,e;(w) at low frequencies is large and negative.
lowed by a maximum at¢7)?=(3c+1)/(c—1). This be- For values ofc<—1/2, ¢;(w)—1 switches sign and, for
havior first manifests itself as a shoulder, and then developgalues ofc closer to—1, becomes large and positive. These
into a well-defined maximum. For the case-—1, the dc  dramatic behaviors fos(w) and €;(w) are of course mutu-
conductivity is completely suppressed and the maximum ocally consistent with each another as required by the Kramers-
curs atwr=1. Kronig relations. The generalized formulas therefore have,
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(13.6 gcm®), o(w) undergoes a depression of the dc con-
ductivity and a transfer of oscillator strength to higher fre-
quencies. Their results bear a strong resemblance to the be-
havior shown in Fig. (b) for increasingly negative values of
c. Complete suppression of the dc conductivity occurs at a
density of 8 g cm?®. For even lower densitiesy(w) displays
a form more characteristic of a semiconductor with the even-
tual opening up of a real gap in the electron density of states.
The infrared measurements on Hg have been further ex-
tended by Guggenhefhwith the study of its amalgams with
In, Sn, Bi, Zn, and Cd. Of these, the results on In are the
most extensive since concentrations of In as high as 65%
were investigated. Detailed fits of Eq.0) and (11) were
made to the data. The parameter which shows the strongest
variation with In concentration is, the persistence of veloc-
ity parameter. Starting at=—0.5 for pure Hg,c rises and
levels off at zero for large In concentrations. Apparently,
whatever agency is responsible for the strong backscattering
implied by negative is disrupted by the addition of impurity
atoms leading to removal of the depression of the dc conduc-
tivity and reversion to standard Drude behavior.
In the case of liquid Te, the infrared data of Hodgson
fio (V) show departures from Drude behayipr that are even stronger
than those for Hg. The conductivity(w) shows a pro-

FIG. 2. Frequency dependence of the real and imaginary parts gfounced minimum atw=0 followed by a maximum
the optical conductivity of liquid mercury. The solid circles repre- (=20y) at higher frequencies. These resulist shown are
sent the experimental measurements of HodgéRef. 5. The  Well reproduced by Eq(10) with a value ofc=—0.74. The
curves are the predictions of the classical generalized Drude formssociated results far; are of positive sign, in agreement
las [Eqs. (10) and (11)] with a valuec= —0.49 for the persistence With the model and with the Kramers-Kriy relations. As an
of velocity parameter. historical aside, it is worth noting that both Hg and liquid Te

were proposed at one time by Mttt as candidates for a
with inclusion of only a single additional parameter, a versa-metal on the borderline of nonconducting behavior.
tility not present in the standard Drude formulas.
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B. Quasicrystal Algz Cu,, €15

The elemental constituents of the quasicrystal compound
A. Liquid metals AlgzClyy €, are all individually good metals. Yet the
g=ompound is a poor metal and its infrared conductivity, as

posed originally to account for the unusual behavior of thd€Ported by Homest a|_,1-2 is very InterE_SPng.ftartmg_Wlth
optical properties of mercury. The optical properties of liquid@ Very low dc conductivityoo=3510""cm o (w) in-
metals generally display standard Drude-like behavior witrfréases nearly linearly with frequency well into the near in-
with a reasonable value of the effective valenay/n,, [Tared and then displays a maximum  witforyay

_ -1 ~am-1 I
wheren, is the atomic densit}.Exceptions are mercury and ~6500€2""cm ~as shown in Fig. 3. .
liquid tellurium. These results are very well reproduced by Ed) using

In the case of Hg, the early infrared data of Hoddson a_va_lue forgz —0.973_as also shown in Fig. 3. Th_is value of
indicated the possibility of a weak peak iffw) at low fre- €18 immediately obtainable from the data by notlng that the
quencies, a possibility strongly reinforced by a complemen!@li0 Tmax/oo=—(c—1)2/&(c+1). The value ofr is then
tary dramatic variation ire;(w). Figure 2 shows the attempt adjusted to obtain good alignment for the overall frequency
made by the authdtto reproduce the experimental behavior dependence. The excellent quality of the fit in Fig. 3 is es-

using the generalized Drude formulas. The procedure was @€ntially 3identical to that obtained by Burkov, Timusk, and
to adjustn*, 7, andc but with the constraint that* e?r(1 Ashcroft® using a theoretical model based on conventional

+c)/m must reproduce the measured dc conductivity. A reainterband transitions that will be discussed immediately be-

sonable representation was found with=—0.49 and OW-
n*/n,=2.7. Comins has subsequently pushed the measure-
ments further into the infrared and has confirmed the peak in IV. DISCUSSION
o(w) and the unusual low-frequency behavioregf w).

Izeki et al® and Hefneret al.” have reported experimental
results on the optical properties of expanded fluid Hg. They We have seen that our generalized Drude formula can
find that, as they decrease the density from its normal valugenerate an infrared peak within thetraband contribu-

IIl. APPLICATIONS

The generalized Drude formula described above was pr

A. Interband transitions
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band contribution too(w) without need to separate it out
into aninterbandcontribution.
6000
B. Lifetime and the transport relaxation time
F'E A basic assumption of simple kinetic models is that the
O duration of a collision is negligible in comparison with the
a 4000 interval between collisions. If we further assume that the
- collisions are independent of each other, we may wejte
:‘g’ = q”. .It_is then very easy to sum the series in E@$.and(8)
G to infinity to obtain
3 .
S 2000 J()/j(0)=exp(—t/7¢) (13
and
Oy —» T(w)=(n*er./m)/(1-iwT,), (14
0 I I I
1 2 3 with a transport scattering rate
Frequency (eV)
1 1
FIG. 3. Optical conductivity of the quasicrystalALCu,, Fe;,. —=—(1-c). (15
The experimental measurements of Hormedsal. (Ref. 12. are e T
compared with the classical generalized Drude formidashed . . .
curve with a valuec= —0.973 for the persistence of velocity pa- _ In other words, we retrieve the stands(ﬁ_[hd inflexible
rameter. Drude equation but with a transport relaxation timehat is

different from the average lifetime between collisiond-or

tion to o(w). In the quasicrystal example considered aboveglastic collisionsg can be identified witl{cos6), the average
there is therefore no need to invoke mterbandcontribu-  value of cosd, where 6 is the scattering angle. Collisions
tion. Nevertheless, there is an intriguing similarity with the with large scattering angles contribute more strongly to the
results of the nearly free electrdNFE) treatment of inter- ~ resistivity. We have therefore arrived in an extremely simple
band transitions in a quasicrystal by Burkevall® It is  way at the intuitively obvious (% cos6) weighting factor
instructive to discuss the physics behind this similarity. ~ that enters into the scattering rate in expressions for the re-

A key ingredient in the approach of Burkat al. is the  Sistivity based on Boltzmann-type theories. In quantum-
large number of reciprocal lattice vectdgsin a quasicrystal mechanical theories based on the Kubo formalism, incorpo-
that haveG~2kr where kg is the Fermi wave number. ration of the (I-cos#) weighting factor is nontrivial.
Within the NFE model, an interband transition is an umklappMahan, for example, in his classic textbook on many particle
process in which an electron with wave vectoisimulta- theory!* devotes a substantial part of a chapter in getting
neously absorbs a photon and undergoes Bragg diffractiofiom a conductivity expression involving only the lifetime to
through a reciprocal lattice vect@. After summation over an expression incorporating the {Tos¢) factor. Even in a
the multiplicity of reciprocal lattice vectors and introduction simpler one-particle approach, Fabef has shown that me-
of a phenomenological damping time the expression for ticulous attention to subtle phase coherence within a certain
the interband absorption contribution to the optical conducset of multiple scattering processes is essential to extract the

tivity reduces to (1—cosd) factor. As he points out, “it is curious how elabo-
rate the proof of this result becomes once the traditional ki-
oi(w)=0g0??(1+ w?r?)?, (12)  netic approach to conduction is abandoned.”
So if the summation to infinity is so easy and the (1
whereo is a coefficient involving the average value ©f  — cosg) factor is so easy to derive in our simple kinetic
and the band gap energy. model, why bother to truncate after a single scattering? The

We observe immediately a remarkable similarity. Equa-honest answer is based on empirical performance and versa-

tion (12) has precisely the same frequency dependence as thiity. Equation (14) has the standard Drude form whose in-
c=—1 limit of Eqg. (10). On reflection, however, this simi- flexibility we are trying to escape.

larity is not too surprising. Because of the multiplicity of
reciprocal lattice vectors having~2kg, a typical electron
with wave vectork will, on diffraction to k— G, reverse its
direction of motion. We may think of Bragg diffraction in There have been other attempts to enhance flexibility of
this circumstance as an intense form of backscatteringhe Drude formula. The following is a sampling of some of
thereby providing a physical mechanism for large negativehe approaches to found in the literature.

values ofc. In our generalized Drude formula, however, the  Recent measurements of the optical conductivity of semi-
strong backscattering is subsumed into the classitgh-  conductors in the THz frequency region have exposed inad-

C. Other generalized Drude formulas
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equacies of the Lorentzian form of the simple Drude for- Yet another approach is to assume the validity of the stan-

mula. Better fits are obtained with modified Lorentzians ofdard form of the Drude expression but to treat the relaxation

the form time as frequency dependent. In order to preserve causality,
the scattering rate #(w) must be treated as both frequency

T(w)=0/[1-(iwT)t™%]?, (16) dependent and complex, and there is a relationship with the

where the exponents-ia and 3 are treated as disposable complex electron self-energy. Puchkov, Basov, and Tinftisk,

. o -~ for example, have applied this approach in the analysis of
parameters. This formula is imported from the communltyimcrared d%ta on highl?trt)amperaturepguperconductors. Y

that studies dielectric relaxation in fluids and polymers
where there is a formal similarity between the Debye theory D. Closing remarks
of dielectric relaxation and the Drude theory of metallic con- , . .
duction. With =0 and B=1, we retrieve the standard tis hoped that the plassmgl expressions pre;ented here
Drude (Deby® result. Settingd=1 and varying onlye is will be useful' to .experlmentallsts as an alternative to the
called the Cole-ColéCC) model'’ Settinga=0 and vary- other ge_nerallzanons of the _D_rude formula that have ap-
ing only Bis called the Cole-Davidsof€D) model® In THz peared in the I|t_erature. A m|_d|nfr3<'§red peak_has been ob-
experiments on doped Si, Jeon and Grischkowskgport Sef"ed n a3 variety of ”.‘ate”a?g-_ Inde.ed, It has been
success with the CD model. In transient photoconductivitypo'med pﬁ that a peak in the cqnductmty at nonzero fre-
measurements on GaAs, on the other hand, Beard, TurndfUeNcy is a generic feature of d|§prdered conductors at the
and Schmuttenma® prefer to keep bothr and 3 in play. verge of the metal-lnsulat_or transition. As we have seen, the
They refer to this as a generalized Drug@D) model, al- Fourier transform oi‘r(_w) in such cases implies an |mpul_se
though in the dielectrics community it is sometimes called"®SPONSe function or, in the language of the Kubo formalism,
the Havriliak-NegamiHN) expressiori: a current-current e}utocor_r('ala'tlon function t_ha_t reverses sign
Another approach is to replace the simple exponentiape_for_e fe'?‘x'r_‘g to Its _equnlbrlum value. This is perhaps the
of Eq. (4 with a Kohlrausch stretched exponential Principal finding of this work. The strength of the general-
exd —(/7)?]. In the dielectrics community, this is called the ized Drude for_mu!a presented here lies in its ability to ac-
Williams-Watts(WW) model?? These various formulaccc, ~ commodate this sign reversal.
CD, GD, HN, and WW imply a distribution of relaxation
times, and there is an extensive literature on what this might
mean®~?’ The formulas themselves, however, are essen- The author is deeply indebted to Professor Wolfgang
tially empirical. Eberhardt for the hospitality of the Forschungzentruticiu
Mayou® has recently derived a generalized Drude for-where this paper was written. He is grateful also to Professor
mula of the CD form by considering the time evolution of an Dimitri Basov for valuable communications. The work was
electron wave packet in a quasicrystal. At early times thesupported by the Alexander von Humboldt Foundation and
electron propagation is ballistic, and at later times it becomeghe Director, Office of Science, Office of Basic Energy Sci-
diffusive. Herein lies a possible rationalization for the basicences, Materials Sciences Division, of the U.S. Department
assumption of the model presented here, that persistence of Energy under Contract No. DE-AC03-76SF00098 at
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