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Classical generalization of the Drude formula for the optical conductivity
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A simple classical generalization of the Drude formula is derived based on the impulse response approach
and Poisson statistics. The new feature is a parameterc, which is a measure of persistence of velocity. With
negative values ofc, it is possible to mimic the infrared properties of poor metals that display a minimum in
the optical conductivity at zero frequency. The electron current in these cases reverses direction before decay-
ing to zero. Specific examples considered are Hg and its amalgams, liquid Te, and the quasicrystal
Al63.5Cu24.5Fe12. Discussion is offered on the connection with interband transitions, on the distinction between
the electron lifetime and the transport relaxation time, and on other generalizations of the Drude formula.
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I. INTRODUCTION

For a good metal the frequency dependence of the op
conductivity is given by the well-known Drude formula

s~v!5s0 /~11v2t2!, ~1!

where the dc conductivitys0 is given byn* e2t/m, n* is the
effective density of electrons, andt is a relaxation time. The
formula is rather inflexible. It requires that the frequen
dependence of the conductivity should have a maximum
zero frequency and then fall off with Lorentzian form. D
partures from this behavior have been observed, and we
be concerned in particular with those materials in wh
s~v! displays a minimum at zero frequency and a transfe
oscillator strength to higher frequencies in the form of
infrared peak. The intent of this paper is to elaborate
exceedingly simple classical generalization of the Drude
mula based on the impulse response approach and Po
statistics,1 and to show that it can accommodate some of
observed departures.

The structure of the paper is as follows. The classi
derivation is presented immediately in Sec. II. The princi
feature is the introduction of a ‘‘persistence of velocity’’ p
rameterc. Some applications of the formula are presented
Sec. III. Finally, in Sec. IV, discussion is offered on the po
sible connection with interband transitions, on the distinct
between the electron lifetime and the transport relaxa
time, and on some of the other generalizations of the Dr
formula to be found in the literature.

II. CLASSICAL DERIVATION

A. Impulse response approach

Let us adopt the conceptually simple impulse respo
approach2 to the optical conductivity. The procedure is
imagine a unit impulse of electric field applied to the ele
tron system at timet50 and then to examine the resultin
current responsej (t). The complex frequency-depende
conductivity is the Fourier transform ofj (t):

s̃~v!5E
0

`

j ~ t !exp~ ivt !dt. ~2!
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A d-function impulse of field is greater than any of the oth
forces acting on the system, and so each electron beh
initially as if it were perfectly free, givingj (0)5n* e2/m.
Since j (t) and s̃(v) are Fourier transforms of each othe
the oscillator-strength sum rule ons~v!, the real part of
s̃(v), immediately drops out:

E
0

`

s~v!dv5S p

2 D j ~0!5
vp

2

8
, ~3!

where we have introduced the plasma frequencyvp given by
vp

254pn* e2/m. Since causality has been invoked at t
outset, the Kramers-Kro¨nig relations must inevitably be sa
isfied by the real and imaginary parts of any expressions
s̃(v) that are obtained. Thus, not only is the impulse
sponse approach conceptually simple, it also has so
built-in consistency safeguards.

If the initial current decays exponentially to its equilib
rium value of zero with a relaxation timet, we have

j ~ t !/ j ~0!5exp~2t/t! ~4!

and

s̃~v!5~n* e2t/m!/~12 ivt!. ~5!

This is the standard Drude formula which we now gener
ize.

B. Poisson statistics

Let us suppose that an electron experiences collisions
are randomly distributed in time but with an average tim
interval t between collision events. The probabilitypn(0,t)
of n events in the time interval (0,t) is given by the Poisson
distribution

pn~0,t !5~ t/t!n exp~2t/t!/n!. ~6!

The probability of zero collisions is exp(2t/t). So Eq.~4!
can be seen as merely the first term in a series. Taking
count of what happens after the first and subsequent c
sions we write

j ~ t !/ j ~0!5exp~2t/t!F11 (
n51

`

cn~ t/t!n/n! G . ~7!
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N. V. SMITH PHYSICAL REVIEW B 64 155106
The coefficientcn represents that fraction of the electron
original velocity that is retained after thenth collision. It is a
memory or persistence of velocity effect. Taking the Four
transform yields

s̃~v!5
n* e2t/m

~12 ivt! F11 (
n51

`
cn

~12 ivt!nG . ~8!

This generalized Drude formula is the principal result of t
paper. There are now three possible directions in which
proceed. First, we could consider inclusion of only the fi
new term, the one whose coefficient isc1 . Second, there is a
circumstance, whose discussion is deferred until Sec. IVB
which the series of Eqs.~7! and~8! can be summed to infin
ity. Third, the series of Eq.~8! could be used as an empiric
fitting scheme using as disposable parameters as many o
coefficientscn that one is willing to tolerate. Note that th
sum rule and the Kramers-Kro¨nig relations are automaticall
satisfied for any set of realcn values. We shall proceed in th
first direction.

C. Single-scattering approximation

The key assumption upon which we now proceed is t
persistence of velocity is retained for only one collision~cn
50 for n.1!. With this truncation of the series, we hav
~dropping the subscript and writingc15c!

j ~0!/ j ~ t !5~11ct/t!exp~2t/t!. ~9!

Separating real and imaginary parts, we have for the c
ductivity

s~v!5
n* e2t/m

~11v2t2! F11
c~12v2t2!

~11v2t2! G ~10!

and

12e1~v!5
vp

2t2

~11v2t2! F11
2c

~11v2t2!G , ~11!

where, following common custom, we have expressed
imaginary part of the conductivity ase1(v), the real part of
a dielectric function.

These generalized Drude formulas have interesting
versatile properties, particularly for negative values ofc. Fig-
ure 1 shows the behavior ofj (t), s~v!, ande1(v) for values
of c50, 20.5, and21.0. For elastic collisions,c would be
^cosu&, the expectation value of cosu whereu is the scatter-
ing angle. Negative values ofc therefore imply a predomi-
nance of backscattering, and it is seen that the net cur
j (t) carried by the electron system actually reverses dir
tion before relaxing to its equilibrium value of zero. Th
effect ons~v! is to depress the dc conductivity and to sh
oscillator strength to higher frequencies. For values oc
,22/3,s(v) displays a minimum at zero frequency fo
lowed by a maximum at (vt)25(3c11)/(c21). This be-
havior first manifests itself as a shoulder, and then deve
into a well-defined maximum. For the casec521, the dc
conductivity is completely suppressed and the maximum
curs atvt51.
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The predicted behavior ofe1(v) is also interesting. For a
good metal,e1(v) at low frequencies is large and negativ
For values ofc,21/2, e1(v)21 switches sign and, for
values ofc closer to21, becomes large and positive. The
dramatic behaviors fors~v! ande1(v) are of course mutu-
ally consistent with each another as required by the Kram
Krönig relations. The generalized formulas therefore ha

FIG. 1. Persistence of velocity effects. Dependence onc of ~a!
the impulse response functionj (t), ~b! the real part of the conduc
tivity s~v!, and~c! the dielectric functione1(v). For negative val-
ues ofc, j (t) reverses sign before decaying to zero. With incre
ingly negativec, the dc conductivity is depressed,s~v! develops a
peak at nonzero frequency, ande1(v) becomes positive at low fre
quencies.
6-2
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with inclusion of only a single additional parameter, a ver
tility not present in the standard Drude formulas.

III. APPLICATIONS

A. Liquid metals

The generalized Drude formula described above was
posed originally to account for the unusual behavior of
optical properties of mercury. The optical properties of liqu
metals generally display standard Drude-like behavior w
with a reasonable value of the effective valencyn* /na ,
wherena is the atomic density.3 Exceptions are mercury an
liquid tellurium.

In the case of Hg, the early infrared data of Hodgson4,5

indicated the possibility of a weak peak ins~v! at low fre-
quencies, a possibility strongly reinforced by a complem
tary dramatic variation ine1(v). Figure 2 shows the attemp
made by the author1 to reproduce the experimental behavi
using the generalized Drude formulas. The procedure wa
to adjustn* , t, andc but with the constraint thatn* e2t(1
1c)/m must reproduce the measured dc conductivity. A r
sonable representation was found withc520.49 and
n* /na52.7. Comins3 has subsequently pushed the measu
ments further into the infrared and has confirmed the pea
s~v! and the unusual low-frequency behavior ofe1(v).

Izeki et al.6 and Hefneret al.7 have reported experimenta
results on the optical properties of expanded fluid Hg. Th
find that, as they decrease the density from its normal va

FIG. 2. Frequency dependence of the real and imaginary par
the optical conductivity of liquid mercury. The solid circles repr
sent the experimental measurements of Hodgson~Ref. 5!. The
curves are the predictions of the classical generalized Drude for
las @Eqs.~10! and ~11!# with a valuec520.49 for the persistence
of velocity parameter.
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~13.6 g cm23!, s~v! undergoes a depression of the dc co
ductivity and a transfer of oscillator strength to higher fr
quencies. Their results bear a strong resemblance to the
havior shown in Fig. 1~b! for increasingly negative values o
c. Complete suppression of the dc conductivity occurs a
density of 8 g cm23. For even lower densities,s~v! displays
a form more characteristic of a semiconductor with the ev
tual opening up of a real gap in the electron density of sta

The infrared measurements on Hg have been further
tended by Guggenheim8 with the study of its amalgams with
In, Sn, Bi, Zn, and Cd. Of these, the results on In are
most extensive since concentrations of In as high as 6
were investigated. Detailed fits of Eqs.~10! and ~11! were
made to the data. The parameter which shows the stron
variation with In concentration isc, the persistence of veloc
ity parameter. Starting atc520.5 for pure Hg,c rises and
levels off at zero for large In concentrations. Apparent
whatever agency is responsible for the strong backscatte
implied by negativec is disrupted by the addition of impurity
atoms leading to removal of the depression of the dc cond
tivity and reversion to standard Drude behavior.

In the case of liquid Te, the infrared data of Hodgso9

show departures from Drude behavior that are even stron
than those for Hg. The conductivitys~v! shows a pro-
nounced minimum atv50 followed by a maximum
('2s0) at higher frequencies. These results~not shown! are
well reproduced by Eq.~10! with a value ofc520.74. The
associated results fore1 are of positive sign, in agreemen
with the model and with the Kramers-Kro¨nig relations. As an
historical aside, it is worth noting that both Hg and liquid T
were proposed at one time by Mott10,11 as candidates for a
metal on the borderline of nonconducting behavior.

B. Quasicrystal Al63.5Cu24.5Fe12

The elemental constituents of the quasicrystal compo
Al63.5Cu24.5Fe12 are all individually good metals. Yet the
compound is a poor metal and its infrared conductivity,
reported by Homeset al.,12 is very interesting. Starting with
a very low dc conductivitys05351V21 cm21,s(v) in-
creases nearly linearly with frequency well into the near
frared and then displays a maximum withsmax
56500V21 cm21 as shown in Fig. 3.

These results are very well reproduced by Eq.~10! using
a value forc520.973 as also shown in Fig. 3. This value
c is immediately obtainable from the data by noting that t
ratio smax/s052(c21)2/8c(c11). The value oft is then
adjusted to obtain good alignment for the overall frequen
dependence. The excellent quality of the fit in Fig. 3 is
sentially identical to that obtained by Burkov, Timusk, a
Ashcroft13 using a theoretical model based on conventio
interband transitions that will be discussed immediately
low.

IV. DISCUSSION

A. Interband transitions

We have seen that our generalized Drude formula
generate an infrared peak within theintraband contribu-

of

u-
6-3



v

he

.
p

tio

n

uc

a
s
-
f

n
in
tiv
he

t

he
e
he

s
the
ple

re-
m-
po-

cle
ing
o

-
tain
t the
-
ki-

(1
ic
he
rsa-

n-

of
of

mi-
ad-

-

N. V. SMITH PHYSICAL REVIEW B 64 155106
tion to s(v). In the quasicrystal example considered abo
there is therefore no need to invoke aninterbandcontribu-
tion. Nevertheless, there is an intriguing similarity with t
results of the nearly free electron~NFE! treatment of inter-
band transitions in a quasicrystal by Burkovet al.13 It is
instructive to discuss the physics behind this similarity.

A key ingredient in the approach of Burkovet al. is the
large number of reciprocal lattice vectorsG in a quasicrystal
that haveG'2kF where kF is the Fermi wave number
Within the NFE model, an interband transition is an umkla
process in which an electron with wave vectork simulta-
neously absorbs a photon and undergoes Bragg diffrac
through a reciprocal lattice vectorG. After summation over
the multiplicity of reciprocal lattice vectors and introductio
of a phenomenological damping timet, the expression for
the interband absorption contribution to the optical cond
tivity reduces to

s i~v!5sGv2t2/~11v2t2!2, ~12!

wheresG is a coefficient involving the average value ofG
and the band gap energy.

We observe immediately a remarkable similarity. Equ
tion ~12! has precisely the same frequency dependence a
c521 limit of Eq. ~10!. On reflection, however, this simi
larity is not too surprising. Because of the multiplicity o
reciprocal lattice vectors havingG'2kF , a typical electron
with wave vectork will, on diffraction to k2G, reverse its
direction of motion. We may think of Bragg diffraction i
this circumstance as an intense form of backscatter
thereby providing a physical mechanism for large nega
values ofc. In our generalized Drude formula, however, t
strong backscattering is subsumed into the classicalintra-

FIG. 3. Optical conductivity of the quasicrystal Al63.5Cu24.5Fe12.
The experimental measurements of Homeset al. ~Ref. 12!. are
compared with the classical generalized Drude formula~dashed
curve! with a valuec520.973 for the persistence of velocity pa
rameter.
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band contribution tos(v) without need to separate it ou
into an interbandcontribution.

B. Lifetime and the transport relaxation time

A basic assumption of simple kinetic models is that t
duration of a collision is negligible in comparison with th
interval between collisions. If we further assume that t
collisions are independent of each other, we may writecn
5cn. It is then very easy to sum the series in Eqs.~7! and~8!
to infinity to obtain

j ~ t !/ j ~0!5exp~2t/tc! ~13!

and

s̃~v!5~n* e2tc /m!/~12 ivtc!, ~14!

with a transport scattering rate

1

tc
5

1

t
~12c!. ~15!

In other words, we retrieve the standard~and inflexible!
Drude equation but with a transport relaxation timetc that is
different from the average lifetime between collisionst. For
elastic collisions,c can be identified witĥcosu&, the average
value of cosu, where u is the scattering angle. Collision
with large scattering angles contribute more strongly to
resistivity. We have therefore arrived in an extremely sim
way at the intuitively obvious (12cosu) weighting factor
that enters into the scattering rate in expressions for the
sistivity based on Boltzmann-type theories. In quantu
mechanical theories based on the Kubo formalism, incor
ration of the (12cosu) weighting factor is nontrivial.
Mahan, for example, in his classic textbook on many parti
theory,14 devotes a substantial part of a chapter in gett
from a conductivity expression involving only the lifetime t
an expression incorporating the (12cosu) factor. Even in a
simpler one-particle approach, Faber15,16has shown that me
ticulous attention to subtle phase coherence within a cer
set of multiple scattering processes is essential to extrac
(12cosu) factor. As he points out, ‘‘it is curious how elabo
rate the proof of this result becomes once the traditional
netic approach to conduction is abandoned.’’

So if the summation to infinity is so easy and the
2cosu) factor is so easy to derive in our simple kinet
model, why bother to truncate after a single scattering? T
honest answer is based on empirical performance and ve
tility. Equation ~14! has the standard Drude form whose i
flexibility we are trying to escape.

C. Other generalized Drude formulas

There have been other attempts to enhance flexibility
the Drude formula. The following is a sampling of some
the approaches to found in the literature.

Recent measurements of the optical conductivity of se
conductors in the THz frequency region have exposed in
6-4
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equacies of the Lorentzian form of the simple Drude f
mula. Better fits are obtained with modified Lorentzians
the form

s̃~v!5s0 /@12~ ivt!12a#b, ~16!

where the exponents 12a and b are treated as disposab
parameters. This formula is imported from the commun
that studies dielectric relaxation in fluids and polyme
where there is a formal similarity between the Debye the
of dielectric relaxation and the Drude theory of metallic co
duction. With a50 and b51, we retrieve the standar
Drude ~Debye! result. Settingb51 and varying onlya is
called the Cole-Cole~CC! model.17 Settinga50 and vary-
ing onlyb is called the Cole-Davidson~CD! model.18 In THz
experiments on doped Si, Jeon and Grischkowsky19 report
success with the CD model. In transient photoconductiv
measurements on GaAs, on the other hand, Beard, Tu
and Schmuttenmaer20 prefer to keep botha and b in play.
They refer to this as a generalized Drude~GD! model, al-
though in the dielectrics community it is sometimes cal
the Havriliak-Negami~HN! expression.21

Another approach is to replace the simple exponen
of Eq. ~4! with a Kohlrausch stretched exponenti
exp@2(t/t)b#. In the dielectrics community, this is called th
Williams-Watts~WW! model.22 These various formulas~CC,
CD, GD, HN, and WW! imply a distribution of relaxation
times, and there is an extensive literature on what this m
mean.23–27 The formulas themselves, however, are ess
tially empirical.

Mayou28 has recently derived a generalized Drude f
mula of the CD form by considering the time evolution of
electron wave packet in a quasicrystal. At early times
electron propagation is ballistic, and at later times it becom
diffusive. Herein lies a possible rationalization for the ba
assumption of the model presented here, that persistenc
velocity is lost after only a single scattering.
f

ns
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Yet another approach is to assume the validity of the st
dard form of the Drude expression but to treat the relaxat
time as frequency dependent. In order to preserve causa
the scattering rate 1/t(v) must be treated as both frequen
dependent and complex, and there is a relationship with
complex electron self-energy. Puchkov, Basov, and Timus29

for example, have applied this approach in the analysis
infrared data on high-temperature superconductors.

D. Closing remarks

It is hoped that the classical expressions presented
will be useful to experimentalists as an alternative to
other generalizations of the Drude formula that have
peared in the literature. A midinfrared peak has been
served in a variety of materials.30–32 Indeed, it has been
pointed out33 that a peak in the conductivity at nonzero fr
quency is a generic feature of disordered conductors at
verge of the metal-insulator transition. As we have seen,
Fourier transform ofs̃(v) in such cases implies an impuls
response function or, in the language of the Kubo formalis
a current-current autocorrelation function that reverses s
before relaxing to its equilibrium value. This is perhaps t
principal finding of this work. The strength of the genera
ized Drude formula presented here lies in its ability to a
commodate this sign reversal.
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