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Polaron and bipolaron formation in the Hubbard-Holstein model: Role of next-nearest-neighbor
electron hopping

G. De Filippis, V. Cataudella, G. Iadonisi, V. Marigliano Ramaglia, C. A. Perroni, and F. Ventriglia
INFM, Unità di Napoli, Dipartimento di Scienze Fisiche, Universita` di Napoli I-80126 Napoli, Italy

~Received 9 March 2001; published 19 September 2001!

The influence of next-nearest-neighbor electron hoppingt8 on the polaron and bipolaron formation in a
square Hubbard-Holstein model is investigated within a variational approach. The results for electron-phonon
and electron-electron correlation functions show that a negative value oft8 induces a strong anisotropy in the
lattice distortions favoring the formation of nearest-neighbor intersite bipolaron. The role oft8, electron-
phonon and electron-electron interactions is briefly discussed in view of the formation of charged striped
domains.
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I. INTRODUCTION

In recent years the experimental evidence in favor of
laronic carriers in doped cuprates and in manganese o
perovskites has grown. In manganites a large amount of
perimental results, ranging from extended x-ray-absorp
fine structure~EXAFS! ~Ref. 1! measurements of lattice dis
tortions to giant isotope shift of the Curie temperature2 and
to frequency shifts of the internal phonon modes,3 have
pointed out the relevance of the Jahn-Teller pola
formation4 beside the double and superexchange magn
effects.5 Also in cuprates there is strong experimental e
dence supporting a relevant role of the interaction betw
charge carriers and lattice distortions in addition to the str
electron correlations. Optical experiments in the midinfra
frequency region,6 atomic pair distribution function analysi
of the neutron powder-diffraction data7 and of the EXAFS
signals8 due to the Cu–O bond distances have shown
laronic effects in doped cuprates pointing out a strong
sponse of the local structure to the charge state.

This large amount of experimental data has renewed
interest in studying problems of electrons interacting w
the lattice degrees of freedom. In literature several mod
have been introduced to treat the electron-electron~el-el! and
electron-phonon~e-ph! interactions in these compounds.9,10

In this paper we will restrict our attention to one of the mo
simple and frequently considered models for the polaron
bipolaron formation: the Holstein-Hubbard model. The pro
lem of a single tight binding electron coupled to an optic
local phonon mode has been analyzed in several w
Monte Carlo simulations,11 numerical exact diagonalizatio
of small clusters,12 dynamical mean-field theory,13 density-
matrix renormalization group,14 and variational
approaches.15–17As a common result the ground-state ener
and the effective mass in the Holstein model are continu
functions of thee-ph coupling constant and this one-bod
system does not have phase transition.18 Depending on the
adiabatic parameter the ground-state properties can ch
more or less significantly but without breaking the trans
tional symmetry. Recently the influence of the Hubbard
pulsion on bipolaron formation has been investigated19,20 by
variational and exact diagonalization methods in one and
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dimensions. In the adiabatic regime the possibility of form
tion of intersite bipolarons has been suggested and it
been shown that their mass is significantly reduced with
spect to the on-site bipolaron.

On the other hand, accurate investigations on hi
temperature superconducting materials have shown
some properties of cuprates compounds, such as the sha
the Fermi surface or the band structure, can be explai
introducing a next-nearest-neighbor~NNN! electron hopping
term.21 This term is essential for reproducing the experime
tally observed behavior of the electron band near theM
points of the Brillouin zone and it allows to handle the d
ferences between electron and hole doped materials. Th
clusion of NNN electron hopping is expected to affect s
nificantly the behavior of the system. For instance, it h
been shown thatt8 may deeply modify the properties of th
t2 j and Hubbard models and that the renormalization of
bare parameters,t and t8, can be very strong also for mod
erate values of the electron correlations.22

In this paper we investigate, within a variational a
proach, the influence of NNN transfer integral on the polar
and bipolaron formation in the two-dimensional Hubbar
Holstein model. In particular for the single electron we us
recently proposed variational approach15 based on a linear
superposition of Bloch states that describe large and sm
polaron wave functions. This approach provides a very go
description of the polaron features in any regime of the
rameters of the Holstein model and it does not involve
truncation of the boson Hilbert space as required by all
numerical techniques. The computational effort is very lit
involving few variational parameters. A variational approa
is used also to study the ground-state bipolaron features
this case we use a single wave function able to interpo
between large and small bipolaron regimes. In order to ch
the validity of the proposed wave function we compare o
results for the one-dimensional Hubbard-Holstein mo
with those recently published by Boncaet al.,19 which are
the most accurate bipolaron available calculations. In
most interesting regime, characterized by electron and p
non energy scales not well separated, the difference betw
the bipolaron ground-state energy estimations of the
methods is about 0.1%: this makes us confident of the ac
racy of the proposed approach. Next we apply the variatio
©2001 The American Physical Society05-1
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method to the two-dimensional extended Holstein-Hubb
model.

In this paper we show that a negative value oft8 induces
a relevant anisotropy in the lattice displacements associ
to the polaron formation. A decreasing oft8, in the range of
parameters of physical interest, strengthens the e-ph cor
tions along the (1,0) and (0,1) directions and reduces
lattice displacements along the~1,1! and (1,21) directions.
Moreover, a negative value oft8 favors the mobile intersite
bipolaron formation along the (1,0) and (0,1) directions a
when this does not happen, the el-el effective potential sh
a strong dependence on the spatial directions. Although th
results concern the case of only two electrons interac
with local phonon modes, we believe that the formation
intersite bipolaron in the~1,0! direction suggests the poss
bility that, at physical relevant doping in the manganites a
cuprates, thee-ph interaction together with anisotropy ca
favor the formation of charged stripes. Of course, furth
investigation is needed to support this idea in specific m
rials.

The paper is organized in the following way. In Sec. II t
model is introduced. In Sec. III the variational approach fo
single polaron is discussed. In Sec. IV the bipolaron prop
ties within the one-dimensional Holstein-Hubbard model
analyzed by means of a variational method and are succ
ful compared with the best available results recently p
lished by Boncaet al.19 Successively the variational ap
proach is extended to study the bipolaron features within
two-dimensional Hubbard-Holstein model. In Sec. V the n
merical results are presented and the role oft8, e-ph, and
el-el interactions is briefly discussed in view of the formati
of charged striped domains.

II. MODEL

The two-dimensional extended Hubbard-Holstein mo
is described by the Hamiltonian

H52t (
i ,d,s

ci 1d,s
† ci ,s2t8 (

i ,d8,s

ci 1d8,s
† ci ,s1v0(

qW
aqW

†
aqW

1
gv0

AN
(

i ,s,qW
ci ,s

† ci ,s~aqWe
iqW •RW i1aqW

†
e2 iqW •RW i !

1U(
i

ni ,↑ni ,↓ . ~1!

In Eq. ~1! ci
† denotes the electron creator operator at siti,

whose position vector is indicated byRW i , aqW
† represents the

creation operator for phonon with wave numberqW , t and t8
are, respectively, the transfer integral between nearest-
next-nearest-neighbor sitesdW and dW 8 indicate, respectively
the nearest- and next-nearest-neighbors,v0 is the frequency
of the optical local phonon mode,U represents the Hubbar
interaction for electrons on the same site, andMq indicates
the e-ph matrix element. In the Holstein model~short-range
e-ph interaction! Mq assumes the form
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v0 . ~2!

HereN is the number of lattice sites.

III. POLARON VARIATIONAL APPROACH

In previous papers,15 we have developed a variational a
proach based on a linear superposition of Bloch states
represent the large and small polaron wave functions. Th
two wave functions are chosen as translationally invari
Bloch states, they are obtained from localized states cent
on different lattice sites, just like a band state is related
atomic orbitals, and they provide a very accurate descrip
of the two asymptotic regimes of weak and stronge-ph cou-
pling:

uckW
(a)

&5
1

AN
(

n
eikW•RW nuckW

(a)
~RW n!&, ~3!

where

uckW
(a)

~RW n!&5e(
qW

[ f
qW
(a)

(kW )aqWeiqW •RW n2H.c.](
m

fkW
(a)

~RW m!cn1m
† ~ u0&el

^ u0&ph). ~4!

In Eqs.~3! and ~4! the apexa indicates the large (a5 l )
and small (a5s) polaron wave function,u0&el and u0&ph

denote the electron and boson vacuum states, andfkW
(a)(RW m)

are variational parameters such that(mufkW
(a)(RW m)u251.

These two wave functions are characterized by different p
non distribution functions:

f qW
( l )

~kW !5
gv0 /AN

v01Eb~kW1qW !2Eb~kW !
~5!

and

f qW
(s)

~kW !5
g

AN
(

i
eiqW •RW iufkW

(s)
~RW i !u2. ~6!

Here Eb(qW ) is the free-electron band energy and the var
tional parametersfkW

(a)(RW m) take into account the broadenin
of the electron wave function. In this paper we restrict t
sum in Eq.~4! to fifth neighbors. It is evident that the larg
polaron wave function takes into account the average ef
of the correlation introduced by the electron recoil@Eq. ~5!#
effect absent in the small polaron phonon distribution fun
tion.

We have shown15 that these wave functions, far awa
from the two asymptotic regimes, are not orthogonal and
off-diagonal matrix elements of the Holstein Hamiltonian a
not zero. This suggests that the lowest state of the syste
made of a mixture of the large and small polaron solutio
and so justifies the idea to use a variational method to de
mine the ground-state energy by considering as trial sta
linear superposition of the wave functions describing the t
5-2
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types of previously discussed polarons. Att850 the com-
parison of the numerical results with the data of the dens
matrix renormalization-group14 and global local variational16

methods has shown the great accuracy of the proposed
proach.

IV. BIPOLARON VARIATIONAL APPROACH

A. One-dimensional case

Regarding the bipolaron, the most general wave funct
of two electrons in a periodic potential interacting with t
longitudinal optical phonons and with each other through
Coulomb force can be written as

uckW&5
1

N (
n1 ,n2

eikW•[(RW n1
1RW n2

)/2]] uckW~RW n1
,RW n2

!&. ~7!

uckW& is a state that is multiplied by the factoreikW•RW m under a
lattice vectorRW m translation andkW is the Bloch state wave
number. Equation~4!, i.e., the polaron wave-function com
ponent describing the charge carrier distributed around
site RW n , is the key ingredient to build the bipolaron wav
function componentuckW(RW n1

,RW n2
)&. Fixed the relative dis-

tance between the centers of the two electrons (RW n1
2RW n2

),
we adopt a trial wave function for the singlet state that
proportional to the product of two polaron wave functio
centered onRW n1

andRW n2
sites:

uckW~RW n1
,RW n2

!&5gkW~RW n1
2RW n2

!e(
qW

$hqW~kW ,RW n1

2RW n2
!aqW@eiqW •RW n11eiqW •RW n2#

2H.c.%(
m1

fkW~RW m1
,RW n1

2RW n2
!cn11m1 ,↑

† (
m2

fkW~RW m2
,RW n1

2RW n2
!cn21m2 ,↓

† ~ u0&el^ u0&ph)

where f, g, and h are variational functions. In particula
gkW(RW n1

2RW n2
) gives the weight of the bipolaron wave

function component with the centers of the two charge c
riers at distanceuRW n1

2RW n2
u. For the phonon distribution

function h we assume the following form:

hqW~kW ,RW n1
2RW n2

!5
gv0d~kW ,RW n1

2RW n2
!/AN

v01h1~kW !@Eb~ t,kW1qW !2Eb~ t,kW !#
,

that is able to interpolate between the asymptotic express
of large (h15d51) and small (h150 andd51) polaron.
Here Eb(t,qW )522t cos(qxa) is the free-electron band en
ergy,a is the lattice constant, andd(kW ,RW n1

2RW n2
) andh1(kW )

are variational functions. We note that we have not use
linear superposition of polaron wave functions to build t
15510
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bipolaron wave function, but, following Toyozawa,23 a single
wave function able to interpolate between the tw
asymptotic regimes, as shown by Romeroet al.16 This ap-
proach allows us to reduce the number of variational para
eters, it requires, to be implemented, a very little compu
tional effort and it provides a very good description of t
bipolaron ground-state properties as will be shown in
following.

The coefficientf has been chosen such that it takes in
account the broadening of the electron wave function to th
neighbors. Therefore, for any fixed relative distance betw
the centers of the two charge carriers, we introduce th
independent variational parameters:

fkW~RW m ,RW n1
2RW n2

!55
a~ uRW n1

2RW n2
u! if uRW mu50

b~ uRW n1
2RW n2

u! if uRW mu5a

g~ uRW n1
2RW n2

u! if uRW mu52a

d~ uRW n1
2RW n2

u! if uRW mu53a

0 otherwise

with a212(b21g21d2)51. In this paper, to simplify the
numerical calculations, we have chosena, b, g, d indepen-
dent onuRW n1

2RW n2
u for uRW n1

2RW n2
u>3a. Likewise the func-

tion d(kW ,RW n1
2RW n2

) assumes the following form:

d~kW ,RW n1
2RW n2

!55
d0~kW ! if uRW n1

2RW n2
u50

d1~kW ! if uRW n1
2RW n2

u5a

d2~kW ! if uRW n1
2RW n2

u52a

d3~kW ! otherwise,

whered0(kW ), d1(kW ), d2(kW ) andd3(kW ) are variational param-
eters. Finally we choose the following form for the functio
gkW(RW n1

2RW n2
):

gkW~RW n1
2RW n2

!55
g0~kW ! if uRW n1

2RW n2
u50

g1~kW ! if uRW n1
2RW n2

u5a

g2~kW ! if uRW n1
2RW n2

u52a

g3~kW !e2g4(kW )uRW n1
2RW n2

u otherwise,

where g0(kW ), g1(kW ), g2(kW ), and g3(kW ) are variational pa-
rameters. The minimization of the quantit
^ckWuHuckW&/^ckWuckW& has been performed by making use of
routine based on a standard Newton algorithm.

In Fig. 1 we plot the energy difference between the tw
particle ground state and twice the one-particle ground s
as a function of the Hubbard repulsionU at t5v0 and g
51. The comparison with the numerical results recen
published by Boncaet al.19 shows the accuracy of the pro
posed variational approach. For example, the present m
od’s estimate of the bipolaron ground-state energy forg
51, t5v0, andU50 in the thermodynamic limit isE05
5-3
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FIG. 1. ~a! The bipolaron binding energy is
plotted as function ofU for a one-dimensional
lattice of 36 sites with periodic boundary cond
tions. The values of the parameters aret5v0 and
g51. The stars indicate the data kindly provide
by J. Bonca;~b! and ~c!: the electron-electron
correlation function is plotted atg51 and t
5v0 for two different values ofU: U50 in ~b!
andU51.5 in ~c!. The energies are given in unit
of v0. The stars represent the data kindly pr
vided by J. Bonca.
re
s
n

n
b
nd
pro-

the
al

nal
ave
tate
ier
25.4185 that is in excellent agreement with the Bonca’s
sult: E0525.4246, the difference being about 0.1%. In Fig
1~b! and 1~c! the electron-electron correlation functio
r(RW m)5^ckW50u( ini ,↑ni 1m,↓uckW50&/^ckW50uckW50& is plotted
for two different values ofU at t5v0 andg51. The results
are compared with the data reported by Boncaet al.19 The
comparison shows that the used wave function provides
only an excellent estimation of the ground-state energy
gives a high accurate description of the bipolaron grou
state properties. In the next subsection we extend the
posed approach to the two-dimensional case.
io

o
gh
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B. Two-dimensional case

Here we extend the variational approach to explore
bipolaron features for electrons interacting with longitudin
optical phonons and with each other in a two-dimensio
lattice. As in the one-dimensional case, we adopt a trial w
function for the singlet state which is a boson coherent s
multiplied by the product of linear superpositions of Wann
wave functions:
uckW~RW n1
,RW n2

!&5gkW~RW n1
2RW n2

!e(
qW

$hqW (kW ,RW n1
2RW n2

)aqW [eiqW •RW n11eiqW •RW n2] 2H.c.%(
m1

fkW~RW m1
,RW n1

2RW n2
!cn11m1 ,↑

†

3(
m2

xkW~RW m2
,RW n1

2RW n2
!cn21m2 ,↓

† ~ u0&el^ u0&ph),

where f, x, g, and h are variational functions, withxkW(RW m ,RW n1
2RW n2

)5fkW(RW m ,RW n2
2RW n1

). For the phonon distribution
function we assume the following form:

hqW~kW ,RW n1
2RW n2

!5
gv0d~kW ,RW n1

2RW n2
!/AN

v01h1~kW !@Eb~ t,kW1qW !2Eb~ t,kW !#1h2~kW !@Eb~ t8,kW1qW !2Eb~ t8,kW !#
e-

est-
that is able to interpolate between the asymptotic express
of large (h15h25d51) and small (h15h250 andd51)
polaron. HereEb(t,qW )522t@cos(qxa)1 cos(qya)#, Eb(t8,qW )
524t8 cos(qxa)cos(qya) and d(kW ,RW n1

2RW n2
), h1(kW ) and

h2(kW ) are variational functions. The coefficientsf and x
have been chosen such that they take into account the br
ening of the electron wave function to next-nearest nei
bors, i.e., the sums in the expression ofuckW(RW n1

,RW n2
)& are

restricted to next-nearest neighbors. Furthermoref and x

have the bipolaron symmetry for relative distancesuRW n1

2RW n2
u<2A2a ~fifth neighbors!, while for uRW n1

2RW n2
u

ns

ad-
-

.2A2a we assume, in analogous way to the on
dimensional case, the following form forf:

fkW~RW m ,RW n1
2RW n2

!55
a if uRW mu50

b if RW m5dW

g if RW m5dW 8

0 otherwise

with a214(b21g2)51 anda, b, g independent on (RW n1

2RW n2
). The on site, nearest neighbor and next-near
5-4
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neighbor values of the functionsgkW(RW n1
2RW n2

) and

hqW(kW ,RW n1
2RW n2

) have been determined variationally where
for relative distances between the centers of the two cha
carriers such thatuRW n1

2RW n2
u.A2a ~next-nearest neighbors!

we have used asymptotic expressions with parameters fi
by the variational approach as in the above-introduced o
dimensional case. Here we take into account the polaron
bipolaron ground state (kW50).

V. RESULTS

In Fig. 2 we plot the polaron ground-state energyE, the
mean phonon numberN, the spectral weightZ, and the po-
laron kinetic energyK, in units of the bare electron kineti
energy, as a function of thee-ph coupling constant, att/v0
52, for different values of NNN transfer integralt8. At t8
50 there is a sharp transition between the large and s
polaron solutions forl.1, wherel5g2v0/4t is the ratio
between the small polaron binding energy and the ene
gain of an itinerant electron on a rigid lattice. In the wea
coupling regimeK is .1 andN is .0 so that the electron is
slightly affected by the interaction with the phonons: its ba
mass presents weak renormalization. In the opposite reg
the polaron band collapses: the average number of pho
increases, the kinetic energy reduces, and asymptotic
tend to the values predicted by the strong-coupling pertu
tion theory (N→g2, K→e2g2

). The ground-state spectra
weight shows a sharp transition atl.1 but it is evident the

FIG. 2. The polaron ground-state energy~a!, the mean phonon
number ~b!, the spectral weight~c!, and the mean value of th
hopping term, in units of the bare electron kinetic energy~d!, are
reported, for a two-dimensional lattice in the thermodynamic lim
(N→`), at t/v052 for different values oft8: t8/v050 ~solid
line!, t8/v0520.4 ~dashed line!, t8/v0520.6 ~dotted line!,
t8/v0520.8 ~dashed-dotted line!. The energies are given in unit
of v0.
15510
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presence of a wide range of values of thee-ph coupling
constant whereZ is significantly smaller than the unity bu
not negligible: here the ground-state properties are th
characteristic of an electron weakly affected by thee-ph in-
teraction but a large part of the single-particle spec
weight lies at higher energies~intermediate polaron phase15!.
Decreasing the value oft8 (t8,0), this intermediate regime
becomes more important with respect to the small and la
polaron phases: the spectral weight is equally distributed
tween ground and all the excited states and the pola
ground-state features are well described by a linear supe
sition of uckW

( l )
& anduckW

(s)
&. In the weak-coupling regime, for a

fixed value of thee-ph coupling constant, decreasingt8 the
mean phonon number grows, the ground-state spec
weight and the kinetic energy decrease indicating a gre
polaron localization. The strong-coupling regime shows,
stead, a nonmonotonous behavior as function oft8 that can
be explained in terms of the third order of the stron
coupling perturbation theory. In fact, at this order the sm
polaron binding energy is the sum of three contributions:
first term is2g2v0, the second and the third ones are pr
portional, respectively, to 2(t21t82)/g2v0 and
2t2t8/g3v0

2.
The effect of NNN transfer integral on the lattice di

placements associated to the polaron formation,S(RW m)
5^( ini(ai 1m1ai 1m

† )&, is particularly interesting. A nega
tive value of t8 induces a strong anisotropy in the lattic
distortions along the~1,1! and ~1,0! directions as it results
from Fig. 3. In the range of parameters of physical intere
for a fixed value of thee-ph interaction,S(1,0)/S(0,0) and
S(1,1)/S(0,0) decrease in a very different way witht8. In
fact, the ratioS(1,1)/S(1,0) reduces in a dramatic way ind
cating very strong correlations between electron positi
and lattice displacements along the symmetry axes of
crystal.

A similar trend is revealed by correlation functions of tw
interacting electrons. We have investigated the bipolaron
mation in the adiabatic regime where the retardation effec
the e-ph interaction may favor the rise of more extend
electron bound states and in particular the mobile inter
bipolaron formation.19,20 Figure 4~a! shows the phase dia
gram for the transition from unbound polarons to bipolaro
at fixed t and U. We stress that the presence of a negat
NNN electron hopping extends the region ofg values where
the intersite mobile bipolaron formation is favored. In Fi
4~b! the density-density correlation functionr(RW m)
5^cu( ini ,↑ni 1m,↓uc&/^cuc& is plotted. When the intersite
bipolaron formation takes place, the probability to find t
two interacting electrons along the (1,0) and (0,1) directio
exceeds the 90% and the maxima ofr(RW m) are located at
RW m5$(61,0),(0,61)%. When the bipolaron does not form
both along (1,0) and (1,1) directionsr(RW m) does not show
any structure and the typical distance between the two
ticles is of the order of the maximum allowed separation.
this case the behavior of the effective potential is enlight
ing. At the lowest order@f(RW m)5dm,0#, Ve f f(RW m)5Udm,0

12v0(qW@hqW
2(RW m)22ghqW(RW m)/AN#(11 cosqW•RW m). At t8

t

5-5
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FIG. 3. ~a! dm,05S(uRW mu)/S(uRW mu50) (uRW mu
indicates the modulus of the vectorRW m in units of
the lattice parametera) is reported att/v052
and g52 for two different values oft8; ~b! d1,0

5S(1,1)/S(1,0) is reported att/v052 for differ-
ent values oft8: t8/v050 ~solid line!, t8/v05
20.4 ~dashed line!, t8/v0520.6 ~dotted line!,
t8/v0520.8 ~dashed-dotted line!; ~c! d1,0

5S(1,1)/S(1,0) is reported att/v052 for differ-
ent values ofg: g52 ~solid line!, g52.5 ~dashed
line!, g52.65 ~dotted line!, g52.75 ~dashed-
dotted line!. The data refer to two-dimensiona
lattice in the thermodynamic limit (N→`).
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ffer-
50, the superposition of the polarization clouds produces
isotropic attractive force between the two charge carrie
decreasingt8, the effective potential is more attractive alon
the (1,0) direction and less attractive along (1,1) direct
due to the anisotropy in the lattice distortions generated
each polaron, as it results from Fig. 4~c!.

Finally we discuss the possible consequences of our
sults for the formation of striped charge distributions in t
Hubbard-Holstein model. First of all, sincet8 favors the for-
mation of NN intersite bipolaron, we expect that the NN
electron hopping may support, for realistic values of the d
ing, the formation of striped structures arranged along ch
acteristic directions of the crystal. Furthermore we stress
existence of an intermediate phase where small and l
polaron properties coexist. This property of the single p
laron, as discussed in previous papers,24 can support, in a
many body problem, a first-order phase transition with co
istence of charged striped domains characterized by diffe
densities and lattice deformations. The possibility of strip
structures, fluctuating and short-range ordered, and the e
tuality of coexistence of two types of charge carriers form
striped domains have been suggested as possible scen
for cuprates.25,8,26 There are also strong experimental e
dences from EXAFS,8,26 neutron scattering,27 and x-ray
scattering28 in favor of the existence of charged striped stru
15510
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tures. In both cases the interplay oft8, el-ph, and el-el inter-
actions may significantly affect the physics of the syste
Finally we want to stress that the Hamiltonian~1! represents
one of the simplest models to take into account the el-el
e-ph interactions and that in the case of the cuprates
needs to consider more realistic models of electron-pho
interaction, for example, models where the Cu–O hoppi
are modified by the ion displacements.10 However, the
Holstein-Hubbard model is expected to provide useful inf
mations on the physics of these systems, at least on a q
tative level, and it can be an interesting starting point
studying their characteristic features.

In conclusion, we have investigated within a variation
approach the influence of next-nearest-neighbor transfer
tegral on the polaron and bipolaron formation in the tw
dimensional Hubbard-Holstein model. It has been shown
a negative value oft8 induces a relevant anisotropy in th
lattice displacements associated to the polaron formation
favors the mobile intersite bipolaron presence along the (1
and (0,1) directions. Finally, we have discussed the
evance of these results for the formation of striped structu
arranged along characteristic direction of the crystal and
the coexistence of charged domains characterized by di
ent densities and lattice deformations.
le
FIG. 4. ~a! the phase diagram fort/v054 and
U/v0530 on a square lattice 10310 with peri-
odic boundary conditions;~b! the density-density

correlation functionr(uRW mu) is plotted at t/v0

54, U/v0530 for g53.5, andt8/v0521; ~c!

Ve f f(uRW mu), measured by twice the one-partic
potential energy, is reported att/v054, U/v0

530, g52.8 for two different values oft8.
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