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Polaron and bipolaron formation in the Hubbard-Holstein model: Role of next-nearest-neighbor
electron hopping
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The influence of next-nearest-neighbor electron hoppingn the polaron and bipolaron formation in a
square Hubbard-Holstein model is investigated within a variational approach. The results for electron-phonon
and electron-electron correlation functions show that a negative valtieimduces a strong anisotropy in the
lattice distortions favoring the formation of nearest-neighbor intersite bipolaron. The rdle efectron-
phonon and electron-electron interactions is briefly discussed in view of the formation of charged striped
domains.
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[. INTRODUCTION dimensions. In the adiabatic regime the possibility of forma-
tion of intersite bipolarons has been suggested and it has
In recent years the experimental evidence in favor of pobeen shown that their mass is significantly reduced with re-
laronic carriers in doped cuprates and in manganese oxidgPect to the on-site bipolaron.
perovskites has grown. In manganites a large amount of ex- On the other hand, accurate investigations on high-
perimental results, ranging from extended x-ray-absorptio€mperature superconducting materials have shown that
fine structur EXAFS) (Ref. 1) measurements of lattice dis- SOMe properties of cuprates compounds, such as the shape of
tortions to giant isotope shift of the Curie temperafuaad ~ the Fermi surface or the band structure, can be explained
to frequency shifts of the internal phonon modekave '””Og'yc'”_g a next-nearest-neight®tN) electron hopping
pointed out the relevance of the Jahn-Teller poIarorFerm' This term is essential for reproducing the experimen-

formatiorf beside the double and superexchange magneti@”.y observed _beh:_:\wor of the _electron band near Mhe_
effects® Also in cuprates there is strong experimental eVi_pomts of the Brillouin zone and it allows to handle the dif-

den orting a relevant role of the interaction betWee;\erences between electron and hole doped materials. The in-
ence supp 9 clusion of NNN electron hopping is expected to affect sig-

charge carriers and lattice distortions in addition to the stron ificantly the behavior of the system. For instance, it has
electron correlations. Optical experiments in the midinfraret%een shown that' may deeply modify the properties of the
frequency regioﬁ,atomic pair distribution function analysis t—j and Hubbard models and that the renormalization of the
of the neutron powder-diffraction ddtand of the EXAFS bare parameters,andt’, can be very strong also for mod-

signal§ due to the Cu—O bond distances have shown POgrate values of the electron correlatidAs.

laronic effects in doped cuprates pointing out a strong re- | this paper we investigate, within a variational ap-
sponse of the local structure to the charge state. proach, the influence of NNN transfer integral on the polaron
This large amount of experimental data has renewed thgnd bipolaron formation in the two-dimensional Hubbard-
interest in studying problems of electrons interacting withHolstein model. In particular for the single electron we use a
the lattice degrees of freedom. In literature several modelgecently proposed variational approdtivased on a linear
have been introduced to treat the electron-electetel) and  superposition of Bloch states that describe large and small
electron-phonor(e-ph) interactions in these compounti¥ polaron wave functions. This approach provides a very good
In this paper we will restrict our attention to one of the mostdescription of the polaron features in any regime of the pa-
simple and frequently considered models for the polaron aneameters of the Holstein model and it does not involve a
bipolaron formation: the Holstein-Hubbard model. The prob-truncation of the boson Hilbert space as required by all the
lem of a single tight binding electron coupled to an opticalnumerical techniques. The computational effort is very little
local phonon mode has been analyzed in several waysnvolving few variational parameters. A variational approach
Monte Carlo simulation$: numerical exact diagonalization is used also to study the ground-state bipolaron features. In
of small clusters? dynamical mean-field theory, density-  this case we use a single wave function able to interpolate
matrix  renormalization  groulf, and variational between large and small bipolaron regimes. In order to check
approache&>*’As a common result the ground-state energythe validity of the proposed wave function we compare our
and the effective mass in the Holstein model are continuougesults for the one-dimensional Hubbard-Holstein model
functions of thee-ph coupling constant and this one-body with those recently published by Bone al,'® which are
system does not have phase transiffbMepending on the the most accurate bipolaron available calculations. In the
adiabatic parameter the ground-state properties can changeost interesting regime, characterized by electron and pho-
more or less significantly but without breaking the transla-non energy scales not well separated, the difference between
tional symmetry. Recently the influence of the Hubbard rethe bipolaron ground-state energy estimations of the two
pulsion on bipolaron formation has been investigtélby ~ methods is about 0.1%: this makes us confident of the accu-
variational and exact diagonalization methods in one and tweacy of the proposed approach. Next we apply the variational
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method to the two-dimensional extended Holstein-Hubbard g
model. Mq=—"=wq. 2
In this paper we show that a negative valug ‘oinduces VN
a relevant anisotropy in the lattice displacements associat§qere N is the number of lattice sites.
to the polaron formation. A decreasing tof in the range of
parameters of physical interest, strengthens the e-ph correla-
tions along the (1,0) and (0,1) directions and reduces the
lattice displacements along tfi&,1) and (1;-1) directions. In previous paper$, we have developed a variational ap-
Moreover, a negative value of favors the mobile intersite proach based on a linear superposition of Bloch states that
bipolaron formation along the (1,0) and (0,1) directions andyepresent the large and small polaron wave functions. These
when this does not happen, the el-el effective potential showsvo wave functions are chosen as translationally invariant
a strong dependence on the spatial directions. Although thesloch states, they are obtained from localized states centered
results concern the case of only two electrons interactingn different lattice sites, just like a band state is related to
with local phonon modes, we believe that the formation ofatomic orbitals, and they provide a very accurate description
intersite bipolaron in thé1,0) direction suggests the possi- of the two asymptotic regimes of weak and straagh cou-
bility that, at physical relevant doping in the manganites andling:
cuprates, thee-ph interaction together with anisotropy can
favor the formation of charged stripes. Of course, further (@) 1 R ()
investigation is needed to support this idea in specific mate- | >:_N ; e[y (Ry)), (©)]
rials.
The paper is organized in the following way. In Sec. Il thewhere
model is introduced. In Sec. Ill the variational approach for a
single polaron is discussed. In Sec. IV the bipolaron proper- (. - (@) 5y 2 oiq R, o), =
tiesgwit%in the one-dimensional Holstein-Hubbard model ar v )(Rn»:e% g (02ae H'C']Em: A (Ru)eh s ml[0)ey
analyzed by means of a variational method and are success-
ful compared with the best available results recently pub- ®|0>ph). 4
lished by Boncaet all® Successively the variational ap-
proach is extended to study the bipolaron features within the In Egs.(3) and(4) the apexa indicates the larged=1)
two-dimensional Hubbard-Holstein model. In Sec. V the nu-and small @=s) polaron wave function|0).; and |0),,
merical results are presented and the role’ofe-ph, and  denote the electron and boson vacuum states,¢z§ﬁ)d§m)
el-el interactions is briefly discussed in view of the formationare variational parameters such thag| ¢(a)(§m)|z: 1.

: ; K
of charged striped domains. These two wave functions are characterized by different pho-

non distribution functions:

Ill. POLARON VARIATIONAL APPROACH

Il. MODEL
The two-dimensional extended Hubbard-Holstein model fD k)= ga:O/:/N _ (5)
is described by the Hamiltonian a wo+ Ep(K+q) = Ep(k)
and
H= _ti;g CiT+5,aCi,zr_t’_E, CiT+5’,<rCi,0+wOZ aga& - g - R
° ot | 0=15 3 a7 R (©)

+% E ¢ ¢ (a*eid'}ii_{-ate_id'ﬁi) -
g o q Here E,(q) is the free-electron band energy and the varia-
tional parametersb(lz”)(lfim) take into account the broadening
+U2 NN ) of thg electron wave function. In this paper we restrict the
[ sum in Eq.(4) to fifth neighbors. It is evident that the large
polaron wave function takes into account the average effect
In Eq. (1) ¢ denotes the electron creator operator atisite Of the correlation introduced by the electron redity. (5)]

whose position vector is indicated ® a:% represents the ﬁgﬁct absent in the small polaron phonon distribution func-

creation operator for phonon with wave numiogrt andt’ We have showl that these wave functions, far away
are, respectively, the tran§fer inEegraI between nearest- anfghm the two asymptotic regimes, are not orthogonal and the
next-nearest-neighbor sitesand ¢’ indicate, respectively, off-diagonal matrix elements of the Holstein Hamiltonian are
the nearest- and next-nearest-neighbaisijs the frequency not zero. This suggests that the lowest state of the system is
of the optical local phonon mod& represents the Hubbard made of a mixture of the large and small polaron solutions
interaction for electrons on the same site, anglindicates  and so justifies the idea to use a variational method to deter-
the e-ph matrix element. In the Holstein mod@hort-range  mine the ground-state energy by considering as trial state a
e-ph interaction M, assumes the form linear superposition of the wave functions describing the two
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types of previously discussed polarons. tAt=0 the com-  bipolaron wave function, but, following Toyozavaa single
parison of the numerical results with the data of the densitywave function able to interpolate between the two
matrix renormalization-grodfi and global local variationdi ~ asymptotic regimes, as shown by Romeitoal1® This ap-
methods has shown the great accuracy of the proposed aproach allows us to reduce the number of variational param-

proach. eters, it requires, to be implemented, a very little computa-

tional effort and it provides a very good description of the

V. BIPOLARON VARIATIONAL APPROACH bipolaron ground-state properties as will be shown in the
following.

A. One-dimensional case The coefficient¢ has been chosen such that it takes into

Regarding the bipolaron, the most general wave functiorccount the broadening of the electron wave function to third
of two electrons in a periodic potential interacting with the neighbors. Therefore, for any fixed relative distance between

longitudinal optical phonons and with each other through théhe centers of the two charge carriers, we introduce three
Coulomb force can be written as independent variational parameters:

(s S -
a(|Ry, —Rp,|) if [Ry[=0

1 TR s o
)= 2 e [Fnt T yg(Ry Ry ). (D o )
ek B(Rn,—RyD) if |Ry|=a

o . . KR, I R - - .
|1,/ka> is a stateathat is mgltlplled Py the factef' Rm under a Hi(Ry 'Rnl_ an): 7(|Rn1— Rn2|) if |R,|=2a
lattice vectorR, translation and is the Bloch state wave L )
number. Equatior{4), i.e., the polaron wave-function com- 5(|Rnl—Rn2|) if IRy =3a

ponent describing the charge carrier distributed around the
site Iin, is the key ingredient to build the bipolaron wave-
function componenwg(ﬁnl,ﬁnz)}. Fixed the relative dis-

0 otherwise

\
with a®+2(B8%+ y?+ 6?)=1. In this paper, to simplify the
numerical calculations, we have choseng, vy, § indepen-

tance between the centers of the two eIectrd?arsl(— an), dent 0n||§nl— §n2| for |§nl_§nz|>3a' Likewise the func-

we adopt a trial wave function for the singlet state that is L - . _
proportional to the product of two polaron wave functionsfion d(k,R, —R,,) assumes the following form:

centered orR, andR,, sites: R,
do(k) if |Rn1—Rn2| =0
|‘//I2(§nlv§n2)>: 7§(§n1_ Iinz)e% {hd(lzyﬁnl . dl(E) if |F_én1_§n2|:a
- ﬁnz)ad[e"i‘ Ro, + gid° FE”Z] da(k) i |R”1_ R”2| =2a

ds(k) otherwise,

—H.c. (R R - - - -
C}% (R, Ro, wheredg(k), d;(k), d,(k) anddy(k) are variational param-

eters. Finally we choose the following form for the function

— ﬁnz)C$1+ml’T; di( ﬁmz’ﬁnl ¥i( Rnl_ an):
2
~Ro)6L 1 (10)e®]0)pp) 7o(K) i [Rn, =Ry =0
where ¢, y, and h are variational functions. In particular, 7|2(|§ B )= 71(K) if |R”1_an|:a
= = n n - -
¥i(Rn,—Rn,) gives the weight of the bipolaron wave- oo y(K) if |Ry,—Rn,|=2a

function component with the centers of the two charge car-
riers at distance ﬁnl—ﬁnzl. For the phonon distribution
function h we assume the following form: where yo(K), y1(K), y2(K), and y5(k) are variational pa-
rameters. The  minimization of the  quantity
gwod(lz,linl— ﬁnz)/\/ﬁ (Y H| )il ¥g) has been performed by making use of a
)= = —— -—, routine based on a standard Newton algorithm.
wo+hy (K)[Ep(t,k+0) —Ep(t,K)] In Fig. 1 we plot the energy difference between the two-
r%article ground state and twice the one-particle ground state
as a function of the Hubbard repulsidh at t=wy and g

ya(k)e 74(IRy, ~Ro | otherwise,

-

hg(k,Rn, —R

)

that is able to interpolate between the asymptotic expressio

of large h;=d=1) and small ;=0 andd=1) polaron. . X .

> . =1. The comparison with the numerical results recently
Here Ey(t,q) = —2tcos@,a) is the »frge-ele»ctron band»en- published by Boncat al!® shows the accuracy of the pro-
ergy,ais the lattice constant, am#(k,R, —Rn)) andhy(k)  posed variational approach. For example, the present meth-
are variational functions. We note that we have not used ad’'s estimate of the bipolaron ground-state energy dor
linear superposition of polaron wave functions to build the=1, t=w,, andU=0 in the thermodynamic limit i€,=
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—5.4185 that is in excellent agreement with the Bonca’s re-
sult: Eq= —5.42486, the difference being about 0.1%. In Figs.
1(b) and Xc) the electron-electron correlation function

P(Ren) = (=0l Zini 1Nim, [ W= o) (Y=ol ¥i=0) is plotted
for two different values ofJ att=wy andg=1. The results
are compared with the data reported by Boetal!® The
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Q Q
(0) (b) 0.14 (c)
i ﬁ*ﬂ'
o.4f o012l o, FIG. 1. (@ The bipolaron binding energy is
plotted as function ofU for a one-dimensional
o1l lattice of 36 sites with periodic boundary condi-
o3 é’ f}f tions. The values of the parameters &rew, and
o008l g=1. The stars indicate the data kindly provided
ol by J. Bonca;(b) and (c): the electron-electron
correlation function is plotted ag=1 andt
0.08p =w, for two different values otJ: U=0 in (b)
oal iy i andU=1.5in(c). The energies are given in units
0.041 of wg. The stars represent the data kindly pro-
e # vided by J. Bonca.
o#g* ‘ﬂ'g# 0.021

B. Two-dimensional case

Here we extend the variational approach to explore the
bipolaron features for electrons interacting with longitudinal
optical phonons and with each other in a two-dimensional
lattice. As in the one-dimensional case, we adopt a trial wave

comparison shows that the used wave function provides ndtinction for the singlet state which is a boson coherent state
only an excellent estimation of the ground-state energy bumultiplied by the product of linear superpositions of Wannier
gives a high accurate description of the bipolaron groundwave functions:

state properties. In the next subsection we extend the pro-

posed approach to the two-dimensional case.

N > > > LB B N id'én id,}in B 2 > >
[R(Roy Ro))= 76(Ro, ~ Ry o2 (DllFo, - Roagle™ €00 KIS, gy Ry Ry Ry )l o
1

X 2, Xl RanyyRo, = Ro,)Cn ey, (10)er®10) o),
2

where ¢, x, 7y, andh are variational functions, Witb(g(ﬁmﬁnl—ﬁnz)=ng(Iim,ﬁnz—ﬁnl). For the phonon distribution
function we assume the following form:

R gwod(K,Rn, —Rn,)/ N
hg(K.Rn,—Rn )= = —— = = —— =
L ot hy(K)[Eb(t,K+0) = Ep(t,K) ]+ ha(K)[ Ep(t’,K+q) — Ep(t',K)]

that is able to interpolate between the asymptotic expressions2,2a we assume, in analogous way to the one-

of large h;=h,=d=1) and small fi;=h,=0 andd=1)
polaron. HereE,(t,q) = — 2t[cos@,a)+ cos@,a)], Ep(t’,q)
= —4t' cos@@)cos@ya) and d(k,R, —R,), hy(k) and
h2(IZ) are variational functions. The coefficients and y

have been chosen such that they take into account the broad-
ening of the electron wave function to next-nearest neigh-

bors, i.e., the sums in the expression|¢f;(|§nl,ﬁn2)> are
restricted to next-nearest neighbors. Furthermg¢rand y
have the bipolaron symmetry for relative distand&;:,l

~Ry,|<2y2a (fifth neighbors, while for |R, —R,|

dimensional case, the following form faf:

a if |R,|=0

A, B if Ry=05
(R, Rnl_ an) = - S
v if Ry=06'

0 otherwise

with a?+4(B°+ y?)=1 anda, B, y independent onf@nl
—Iinz). The on site, nearest neighbor and next-nearest-
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presence of a wide range of values of t&@h coupling
constant where is significantly smaller than the unity but
not negligible: here the ground-state properties are those
characteristic of an electron weakly affected by éyeh in-
teraction but a large part of the single-particle spectral
weight lies at higher energiggtermediate polaron phaSe
Decreasing the value df (t'<0), this intermediate regime
becomes more important with respect to the small and large
polaron phases: the spectral weight is equally distributed be-
tween ground and all the excited states and the polaron
ground-state features are well described by a linear superpo-
sition of|wg)> and| zp(lf)). In the weak-coupling regime, for a
fixed value of thee-ph coupling constant, decreasitigthe
mean phonon number grows, the ground-state spectral
weight and the kinetic energy decrease indicating a greater
polaron localization. The strong-coupling regime shows, in-
stead, a nonmonotonous behavior as function’ dhat can

be explained in terms of the third order of the strong-
coupling perturbation theory. In fact, at this order the small
polaron binding energy is the sum of three contributions: the
first term is —g2w,, the second and the third ones are pro-
portional, respectively, to —(t?>+t'?)/g’w, and

N
)

O =N WO 0O
LARAR R R AR RN AR RN R RR N AR

FIG. 2. The polaron ground-state enei@y, the mean phonon
number (b), the spectral weighfc), and the mean value of the 2,773 2
hopping term, in units of the bare electron kinetic enefdy are —tTth/g Lf’_)fo' t of NNN t fer int | the lattice di
reported, for a two-dimensional lattice in the thermodynamic limit e eilect o ransier integral on the lattice dis-

(N—w), at t/wy=2 for different values oft’: t'/w,=0 (solid  Placements associated to the polaron formati&R,)

line), t'/wo=—0.4 (dashed ling t'/w,=—0.6 (dotted lind, =(Z;ni(aj+m+al,,)), is particularly interesting. A nega-
t'/wo=—0.8 (dashed-dotted line The energies are given in units tive value oft’ induces a strong anisotropy in the lattice
of wy. distortions along thé1,1) and (1,0) directions as it results

) ) from Fig. 3. In the range of parameters of physical interest,
neighbor values of the functionSylg(Rnl— an) and for a fixed value of thee-ph interaction,S(1,0)/S(0,0) and
hg(k,Rn,—Ry,) have been determined variationally WhereanS(l,l)/S(O,Q) decrease in a very different way with. In

. : act, the ratioS(1,1)/S(1,0) reduces in a dramatic way indi-
for relative distances between the centers of the two chargg,iing very strong correlations between electron positions
carriers such thaiR, — R, |>2a (next-nearest neighbars and lattice displacements along the symmetry axes of the
we have used asymptotic expressions with parameters fixeztystal.
by the variational approach as in the above-introduced one- A similar trend is revealed by correlation functions of two
dimensional case. Here we take into account the polaron aridteracting electrons. We have investigated the bipolaron for-
bipolaron ground statek& 0). mation in the adiabatic regime where the retardation effect of
the e-ph interaction may favor the rise of more extended
electron bound states and in particular the mobile intersite
bipolaron formatiort®?° Figure 4a) shows the phase dia-

In Fig. 2 we plot the polaron ground-state enefgythe  gram for the transition from unbound polarons to bipolarons
mean phonon numbe, the spectral weighZ, and the po- at fixedt and U. We stress that the presence of a negative
laron kinetic energyK, in units of the bare electron kinetic NNN electron hopping extends the regiong¥alues where
energy, as a function of the-ph coupling constant, dfw,  the intersite mobile bipolaron formation is favored. In Fig.

=2, for different values of NNN transfer integrdl. At t’ 4(b) the density_density correlation functiorp(ﬁm)

=0 there is a sharp transition between the large and Sma&<¢|2inmni+m¢|1ﬂ>/<¢| ) is plotted. When the intersite
polaron solutions fol =1, wherex =g?w/4t is the ratio  pipolaron formation takes place, the probability to find the
between the small polaron binding energy and the energyyo interacting electrons along the (1,0) and (0,1) directions

gain c_)f an itinerant electron on a rigid lattice. In the We_ak'exceeds the 90% and the maximadRR,) are located at
coupling regimeK is =1 andN is =0 so that the electronis -~

slightly affected by the interaction with the phonons: its bareRm=1(*1,0),(0-1)}. When the bipolaron does not form,
mass presents weak renormalization. In the opposite regimeoth along (1,0) and (1,1) directiongR,) does not show
the polaron band collapses: the average number of phono@dly structure and the typical distance between the two par-
increases, the kinetic energy reduces, and asymptoticalfjcles is of the order of the maximum allowed separation. In
tend to the values predicted by the strong-coupling perturbathis case the behavior of the effective potential is enlighten-

tion theory N—g?, K—e 9. The ground-state spectral ing. At thezloyvest Ordef?(ﬁm)z%,o]- Ve_)ff(ﬁlim)zuam,o
weight shows a sharp transition)at=1 but it is evident the +2w025[ha(Rm)—Zth(Rm)/\/N](l+ cosqg-Ry. At t’

V. RESULTS
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If ® : O
0.5 FIG. 3. (@ dimo=S(|Rml|)/S(IRm|=0) (|Ry|
08 * t=0 indicates the modulus of the vecﬂérn in units of
& o) Frestion I ) o4 the lattice parametea) is reported att/wo=2
o t=-08 | ’ andg=2 for two different values of’; (b) d;
06 (1,1) direction . =95(1,1)/S(1,0) is reported atf w,=2 for differ-
03} T |03 ent values oft’: t'/wy=0 (solid ling), t'/wy=
ol T —0.4 (dashed ling t'/wy=—0.6 (dotted ling,
* N 0.2 t'/wy=—0.8 (dgshed-dotted line (c) _dl,O
=$5(1,1)/S(1,0) is reported at/ wy=2 for differ-
o2t <p ) ent values of): g=2 (solid line), g=2.5 (dashed
. onl 04 [ line), g=2.65 (dotted ling, g=2.75 (dashed-
o ¥ % dotted ling. The data refer to two-dimensional
o o 0 lattice in the thermodynamic limitN— ).
0 2 %5 1 2 3 - —05 )
Ra g t

=0, the superposition of the polarization clouds produces atures. In both cases the interplaytof el-ph, and el-el inter-
isotropic attractive force between the two charge carriersactions may significantly affect the physics of the system.
decreasing’, the effective potential is more attractive along Finally we want to stress that the Hamiltoniél) represents
the (1,0) direction and less attractive along (1,1) directiorone of the simplest models to take into account the el-el and
due to the anisotropy in the lattice distortions generated byph interactions and that in the case of the cuprates one
each polaron, as it results from Figich needs to consider more realistic models of electron-phonon
Finally we discuss the possible consequences of our r@nteraction, for example, models where the Cu—O hoppings
sults for the formation of striped charge distributions in theare modified by the ion displacemedfsHowever, the
Hubbard-Holstein model. First of all, sin¢é favors the for-  qstein-Hubbard model is expected to provide useful infor-

mation of NN. intersite bipolaron, we expect that the NNN i aions on the physics of these systems, at least on a quali-
electron hopping may support, for realistic values of the doptayye evel, and it can be an interesting starting point for
ing, the formation of striped structures arranged along Charétudying théir characteristic features
acteristic directions of the crystal. Furthermore we stress the In conclusion. we have investigafed within a variational
existence of an intermediate phase where small and Iargg roach the inf,luence of next-nearest-neighbor transfer in-
lpolaron prdqpertiesdcc_)exist. This prc;)?péerty of the sitngle po-tepgpral on the polaron and bipolaron forma%ion in the two-
aron, as discussed in previous pap€rsan support, in a . s

many body problem, a fil?st-order Shase transiti%% with CoeX_chmen&pnatl Hubbar,d-.HoIsteln model. It has peen shqwn that
istence of charged striped domains characterized by differert N€gative value of’ induces a relevant anisotropy in the
densities and lattice deformations. The possibility of striped@ttice displacements associated to the polaron formation and
structures, fluctuating and short-range ordered, and the evefvors the mobile intersite bipolaron presence along the (1,0)
tuality of coexistence of two types of charge carriers formingand (0,1) directions. Finally, we have discussed the rel-
striped domains have been suggested as possible scenarfyg@nce of these results for the formation of striped structures
for cuprate$>®26 There are also strong experimental evi- arranged along characteristic direction of the crystal and for
dences from EXAF$?® neutron scattering’ and x-ray the coexistence of charged domains characterized by differ-

scattering® in favor of the existence of charged striped struc-ent densities and lattice deformations.

5

o Q >§
0.2F (fo) 0.25[
a5k ON SITE PRy
BIPOLARON p-175¢ ohii _ﬁ&-—#-&
015k o5k 6 ’* FIG. 4. (a) the phase diagram fafwy=4 and
Po—o—0-0-0-0-0 * U/wy=30 on a square lattice 2010 with peri-
INTERSITE 01257 —osf aﬁr% odic boundary conditiongb) the density-density
3.5 BIPOLARON o1b i % t=0 correlation functionp(|R,|) is plotted att/w,
F0.75p & 0 t=—1.8 — — — ’ - _1-
. % | (1‘1)tdirec1ﬁoh 4, L{/wo 30 for g=3.5, ar.1dt lwg 1; (c)'
A % b & t=-1.8 Veii(|Rml), measured by twice the one-particle
UNBOUND 005} 0) i (1.0) direction potential energy, is reported atwo=4, U/w,
POLARONS L) | =30, g=2.8 for two different values of’.
2.5} (o) p-ozsp (b) H ()
K —isf
of a.1 Ay
5 . ‘ . 175 . .
-1 t 0 0 2 Rm 2 4 Rm
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