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Short-range correlation in the uniform electron gas: Extended Overhauser model
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We use the two-electron wave functiofgeminal$ and the simple screened Coulomb potential proposed by
OverhausefCan. J. Phys73, 683(1995] to compute the pair-distribution functiay(r) for a uniform electron
gas, finding the exaa(0) for this model and extending the results fray(0) to g(r). We find that the
short-range i(<r;) part of thisg(r) is in excellent agreement with quantum Monte Carlo simulations for a
wide range of electron densities. We are thus able to estimate the value of the second?)rdeeficient of
the small interelectronic-distance expansion of the pair-distribution function. The coefficients of the small-
expansion of the spin-resolvey],,.(r) have density org dependencies which we parametrize in a way that
makes it easy to find their coupling-constant averages. Their spin-polarizatiodependencies are estimated
from a proposed spin-scaling relation.
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[. INTRODUCTION shows very good agreement in the rangesrtf <1. We
thus have a strong indication that the Overhauser model po-
The pair-distribution functiorg(r) for the uniform elec- tential gives accurate quantitative results also in the “un-
tron gas is related to the probability of finding a pair of known” shortest-range region<9r/r;=0.5. In this way we
electrons at a distanecerom each othef . The expected num- are able to present a quantitative, reliable estimate for ¢he
ber of electrons in a shell of volumemt2dr when another dependence of the? coefficient of the smali- expansion of
electron is at the origin is given byg(r)4=r2dr, wheren ~ 9(r). This coefficient is important for energy density func-
—N/V is the electron densityIn recent years, much atten- tionals which include the gradient correction to itfecoef-
tion has been devoted to this quantity,mainly because of ficient of the exchange-correlation hole, while its spin reso-

its relevance in density-functional theogtr) is the basis of Ution (i.e., its 71 and]| contributions, also available in the
many nonlocdt® and semilocaP exchange-correlation en- present treatmehts of interest for functionals based on the

ergy density functionals. A goog(r) for the uniform elec- Fermi hole curvaturé! Other possible applications are dis-

tron gas is also the starting point for building up the s stem-CusseOI at the end of this paper.
9 9p gup y The Overhauser model is fully quantum mechanical, and

avetragedf exchq?ge-cgrrelgﬂgon hole of a many'eleCtroﬁlcorporates the effect of exchange on the pair-distribution
system of nonuniiorm density. function in the zero-temperature electron gas. An interesting

After oscillations are avefage;a out, the long-range parkjiernative approadh mimics these effects by using a clas-
(r—ee) of g(r) is exactly described by the random-phase  sjca) pair-distribution function with a nonzero effective tem-
approximation (RPA). At intermediate-interelectronic dis- perature.

tances, 0.5r/r,<5 [whererg is the density parameter,
= (4mn/3)~ 3], very reliable information is available from
quantum Monte Carlo(QMC) simulationst®>~° Little is
known about the quantitative behavior gfr) for r/rg
=0.5, except in the high-density linfit; and except for Following Overhauset® we will construct the pair-
some estimates of(0), the value of the pair-distribution distribution function from two-electron wave functions. The
function at zero-interelectronic distante!’"?°[As the part rigorous analogs of these wave functions are perhaps the
of g(r) that is most transferable from uniform to nonuniform “natural geminals” that diagonalize the two-electron density
densitiesg(0) plays a special role in spin-density functional matrix2>*the diagonal of this matrix is the pair density. For
theory!®] a generalization of the Hartree-Fock approximation from or-
In particular, Overhaus&t presented a simple model for bitals to geminals, see Ref. 25.
estimating the value afi(0). Themodel takes into account If we select a pair of electrons at random in the spin-
two-particle correlations by means of a simple screened Couinpolarized uniform gas, there is one chance in four that they
lomb potential with no empirical parameter. In his work will be in the singlet state}, | — | T, and three chances in four
Overhauser finds an approximate solution for the dependencghat they will be in one of the triplet state$;, ||, T|
of g(0) on the electron density. His result looks realistic and+ | . In the case of no electron-electron interaction, the cor-
performs surprisingly well in the known high-density limit. responding two-electron spatial wave functions will be
Motivated by this result, in the present work we solve the
Overhauser model exactly, i.e., we compute the correspond- 1
ing pair-distribution function for the uniform electron gas. W(r,R)=— eK'R(gikr+g ikr) (1)
Comparison of our results with recent QMC simulatihs

II. UNIFORM ELECTRON GAS FROM TWO-PARTICLE
WAVE FUNCTIONS

0163-1829/2001/645)/1551028)/$20.00 64 155102-1 ©2001 The American Physical Society



PAOLA GORI-GIORGI AND JOHN P. PERDEW PHYSICAL REVIEW B4 155102

where “+ " is for the singlet state and =" is for the triplet K2 K3 K5
state, and p(k)=24—-—-36—+12—, (8)
ki kg kp

R=3(ri+ry), r=ry—ryq,
with k ranging from 0 tdkg . [p(k) vanishes at the endpoints
K=kitky, k=3(kp—ky). of its domain, maximizes around the middle, and integrates
We can expand the plane waves into spherical harmonics 0 1. Then we find analytically that Eq7) gives the correct
result for the noninteracting uniform gas. Numerically, in the
range G<r/r¢<3 and with a truncation of the infinite sum

e}

ek =2 (21+1)i'P(cosh)j(kr), (2 overl at =7, Eq.(7) reproduces the known exchange-
1=0 only g;; within an accuracy of 10°.
where P, are Legendre polynomials angd are spherical With these simple concepts in mind, we can now proceed
Bessel functions. Then we will have to compute an interacting pair-distribution function by intro-

ducing a suitable electron-electron potential which describes

R - | _ the interactions in a uniform electron gas. Then we just have
W aingiel 1 R)= V26 R X (21 + 1)i'Py(cose)j (kr), to replace the spherical Bessel functigns Eqgs.(6) and(7)
e with the functionsR, solutions of the radial Schdinger

equation with the chosen two-body potential. Unless this po-

KR - | ) tential is very sophisticated, such a treatment will fail to
Wi T,R) =26 R (21 +1)i'Pi(cosh)j(kr). describe long-range correlations, which are mainly governed
pdal by collective modes, and will fail to satisy the particle-

We can define spin-resolved pair-distribution functions forconservauon sum rule o, (r) [Eq. (47) of Ref. 3.

the uniform electron gag,(r) andg; (r), corresponding
to parallel- and antiparallel-spin interactions and such thatll. SOLUTION USING THE OVERHAUSER SCREENED
for the unpolarized gas COULOMB POTENTIAL

9=3(9:1+9; ). ©) Overhauséf proposed a sir_nple gnd reaspnable model for
, ) ) the screened Coulomb repulsi®i(r) in the uniform electron
They can be related to the formulas just derived by simpleyas |n the standard uniform-electron-gas model, a rigid posi-
considerations(i) if we select at random a pair of electrons tjyely charged background maintains electrical neutrality.
in the uniform gas, there is a probabilipfk) that they have  Thus Overhauser took the sphere of volume® as the
relative momentunk= [k, —k,|/2, (i) the probability for the boundary within which the screening charge densityés
singlet state is; and the probability for the triplet state #s  and outside of which it is zero. This is equivalent to assum-
and (iii) 3 of the triplet state contributes to the antiparallel- ing that the probability of finding three electrons in a sphere
spin corr_elations and of it to the parallel-spin correlations. of radiusr is exactly zero, an assumption which is nearly
So, we simply have true. In fact, numerical estimates of this probabillqijicry for an
1 o1 2 interacting electron gas show that it is indeed sfallAt
91 1(N=3{|Vsingiel V) + 7 {| ¥ ripiet 1) [*), (4 r<=5 the ratio between the probabilities of finding three and
gﬁ(r):<|\ytriplet(r)|2>!

two electrons in the same sphere of radiyss aboutss; for
(5) : . o
larger r g this ratio is lower, and for smallers it is higher,
where (- --) denotes the average ovp(k) and over the being about; atr =0.)
solid angle. Performing the spherical average over the solid Thus, for interelectronic distances<rg we expect the
angle, we obtain Overhauser potential to be close to the true potential felt by
. an electron moving in a uniform electron gas when another
5 electron is fixed at the origin. In the regiop-r4 the poten-
g”(r)=|:20 (21+1)(ji(kr)), (6 tial is set to zero, and so is not expected to be reliable.
We also expect to have results that become more accurate

o as the density decreases, since the probability of having three
g”(r):22 (21 + 1)<j|2(kr)). (7) electrons in the same sphere of radiddecomes lower and

odd lower. Finally, at high and intermediate densities our results

=1 will be much closer to the trug(r) for antiparallel-spin

Equation(6) immediately gives the exact result for a nonin- correlations than for parallel-spin ones. When two electrons
teracting gas, i.eg; (r)=1 for eachr. To obtain the non- of opposite spins are in the same sphere of radjysa third
interactingg,;(r) from Eq.(7), we need to average over electron is excluded from the sphere because of both the
In the noninteracting electron gas, the probability distribu-Pauli principle and the Coulomb repulsion. For a pair of
tion p(k) for k= 2|k, —k,| can be obtained geometrically by parallel-spin electrons, only the Coulomb repulsion prevents
considering two three-dimensional vectdeg and k, with  a third electron of opposite spin from entering the sphere of
0=<|ky(2)|<kg, whereke is the Fermi wave vector. The radiusrg, a mechanism which becomes less efficient as the
probability p(k) is therf®2’ density(and thus the kinetic energyncreases.
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In atomic units, the Overhauser potential is given by

1(rg r2 3
V(r)=r—s ?+?—§ (rSrS),
V(r)=0 (r>ry). (9)

Defining s=r/rg, q=krg, andu,(s)=qsR(s), the corre-
sponding radial Schrdinger equation reads

> 1(+1) 1 s 3 0 L

—_— — — —_—— — = g

dSZ 32 +q rS S+ 2 2 u| (S )1
d* |(|+1)+ 2 0 (s>1) (10
— U= s>1).
ds? 2

In order to findu,(s), we proceed as follows. For0s<1,
we expandy; in a power series:

[

u(s)=a > c{s"
n=1+1

(0=s<1). (11)

Inserting this expansion into the corresponding radial equa-
tion, we find a recursion relation between the coefficients

3
| |
Ererq2 e +ree® )

) _
Cn’= (n+Dn—1-1) (n>1+1),

ci=1, c’=0 (n=I). (12)

For s>1 the solution igys times the spherical Bessel func-

tion j; with a phase shifg; . It can be usefully written as

u(s)=qs f(gs)sin(gs—z)+(—1)'**

xf_j_i(gsjcogqgs—z)] (s>1), (13
wheref;(x) are given by
fo(x)=x"1,  fi(x)=x7?,
fi_100+f2 100 =(2j +1)x " H;(x). (14)

Equation(13) is properly normalized, since the noninteract-

ing case of Eqs(6) and (7) is exactly recovered whep
=0. By matchingu,(s) and its first derivative as=1, we
can finde, and the phase shif . They are given by

af _qfi(f (@) +fioa(@f-_1(9)]?

— , 15
q° Si(a,r9)*+Ci(a,rs)? 19
S|(q,l’s)
RPN
tar(q Z|)_( 1) C|(q,r5)' (16)
where
S=qf_(q)B+f__1(qA, (17)
G=f(aA—af,_1(q)By, (18
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FIG. 1. Pair-distribution functiong(r) for the uniform electron
gas computed with the Overhau¥ipotential for different values of
the electron-density parameteg. Also shown are the quantum
Monte Carlo data from Ref. 16.

[}

A'ZA'(q’rs)=n2|+1 c(n+1),

(19

©

B=B/(qr9= > c.
n=Il+1

(20

With eight (I ,ax=7) partial waves and the infinite sum owver
in Egs.(11), (19), and(20) truncated anh,,,—20, we reach
accurate convergence for/r =<2.

We thus obtain smooth radial functiof&(s,rs,q) to re-
place the functiong, in Egs.(6) and (7). Then we have to
average oveq to obtaing,,(s,rs). We used the probability
distribution p(q) corresponding to an unpolarized noninter-
acting uniform electron gas, i.e., we took H®) with kg
=(1/r &) (9m/4)*3,

16

p(q)= ng (21)

(12) B4
2 T a+ 97 " |’
with q ranging from 0 to (9r/4)*. Theq dependence of our
results is rather weak, so we expect to have no significant
change if we use an interacting momentum distribution in-
stead of the one of Ed21).

The results for the totaj(r) are shown in Fig. 1, together
with the newest QMC results from Ref. 16. We figfr) in
accurate agreement with the QMC data for9r3r <1 for
a wide range of electron densities. In the shortest-range re-
gion, r/rg=0.5, the QMC data are known to suffer large
errors and are not so reliablgn this region there is in fact a
significant discrepancy between the data from Ref. 16 and
those from Ref. 13.We believe that for/r,=<0.5 the present
treatment provides results much closer to the g(e). As
said, forr/rg>1 the results obtained with the Overhauser
potential are not reliable.

IV. SHORT-RANGE COEFFICIENTS OF THE PAIR-
DISTRIBUTION FUNCTION

The smalls expansion of the spin-resolveyl, andg;;
(wheres=r/ry),
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0.4 - datd® by Gori-Giorgi, Sacchetti, and BacheldGSB). The
035 | ' - value ofg(0) has been multiplied by the density parameter
03 L rs in order to amplify the differences between the curves,
) which are mainly located at low densities. We see that the
w0 025 1 first Overhauser formula, obtained from a first iteration, is
5 02} quite far from the “exact” solution of his model presented in
S 015 - this work. His second formula, derived by a second iteration,
01 | Yasthara is much closer to our solutiofwithin 5% atrs=2, 50% at
R S r<=10). The Yasuhara electron-electron ladder evaluation is
0.05 this WOtk erhauser 2 the closest to our result for=5 (e.g., the difference is only
00 2 "‘ é é 10 0.6% atrs=10). This is not surprising since both calcula-

tions are more reliable at lower densities. The PW92 formula
s is mainly a Padepproximation of the Yasuhara values; it is
not very accurate at densities=4, where the electron-

FIG. 2. Pair-distribution function at zero-interelectronic distance A= .
electron laddeg(0) goes to zero a8r¥%e~As, while the

multiplied by the density parameteg. The present resulfexact ; | _3
solution of the Overhauser modiés compared with the two Over- PW92 Padeapproximant goes as; . However, the PW92

hauser formulagRef. 18 (one and two iterations the Yasuhara formula reproduces quite accurately the Yasuhara values at
(Ref. 17 electron-electron ladder evaluation, the Perdew and Wanér_‘eta”'C densities, and has the advantage of being very
(Ref. 3 (PW92 formula, and the extrapolation from QMC data simple and handy for many purposes. The extrapolated GSB

(Ref. 16 obtained by Gori-Giorgi, Sacchetti and Bach@kaf. 5  Value is, forrs=0.7, much higher than the curve obtained in
(GSB). the present work, as expected from the results of Fig. 1, in

which ourg(r) curves always lie below the QMC data for
r/rg=<0.3.

—Aall + I + I 2+O 3
91(8.Fs)=ag (rg) +ar (ry)staz (rg)s+O(s), The high-density limit of oug}!(ry) is

(22)
ahl(re—0)=1-0.684 4+ 0(r?), (29

_ _ _ which differs from the exact or€;?°1—0.731%,, by only
obtained by solving the Overhauser equation, has coeffig 5u4 in the coefficient of ¢ and is slightly better than the

g(sro=aj (rgs?+all(rgs®+0(s?), (23

cients

1=
ao —\ 5/
q2

2
(83
a§T=3rS< q—;>

2

_aET,

(24)

(29

(26)

(27)

(28)

high-density limit of the Yasuhataa}', 1—0.663.'° We
can conclude that the value gf0) obtained by solving the
Overhauser model is very reliable: it almost recovers the
exact high-density limit, and agrees in the low-density limit
with the electron-electron ladder evaluation of Yasuhara. In
the latter limit, where the electrons become strictly
correlated?” al! anda)' tend to zero.

Our results foig(0) can be usefully parametrized with the
following form,

ah'(rg)=(1—Brg+Cr2+Dr3+Erde 9. (30

We constrain our fit to reproduce the exact high-density

limit, in order to be as close as possible to the tgf@).

Thus we fixB=0.7317-d. A best fit of the remaining four

free parameters to our result fog=<10 givesC=0.081 93,

D=-0.01277,E=0.001859, andd=0.7524. ThenB=

—0.0207. On the scale of Fig. 2, the fit error is invisible.
As far as we know, the coefficients,' anda)', given by

Egs. (26) and (27), are presented in this work for the first
time. The good performance g{0) obtained with the Over-
hauser potential, together with the agreemeng(f) with
the QMC data for 0.5r/rg=<1, suggest that our calculation
of these coefficients is quantitatively reliable. In the upper
Equation (24) gives the value of the pair-distribution panel of Fig. 3, we repora}' anda)' as a function of .
function at zero-interelectronic distancg(O)zagl/Z. In  While the parallel-spin part shows a predictable dependence
Fig. 2 we compare the present result with other estimates afn rg, decreasing monotonically from the noninteracting
g(0): (i) two approximate solutions that OverhadSesb-  value(97/4)%3to zero ag ¢ increases, the | part presents
tained from his model potential after settimg=0 in the at first glance a nonintuitive dependence on the density.
radial Schrdinger equation fors<1, (ii) the Yasuhard  However, if we consider the known high- and low-density
electron-electron ladder evaluatiofiij) the Perdew-War?g behavior ofagl, we see that we should expect a function
(PW92 formula, and(iv) the result extrapolated from QMC which is qualitatively similar to the one we obtained. In fact,

where thea, are given by Eq.(15) and(---) means the
average ovep(q) of Eg. (21). Equations(25) and (28) are
the known cusp condition’s?® due to the dominance far
—0 of the term If in the Schrdinger equation.
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0.8 e - - see, it is very easy to write an interpolation formula between
: solution of Overhauser model . .
o6l . | the high- and the low-density limits.
o In the upper panel of Fig. 3 we also sh@y, the total
S o04p % S~ 1 (r/rg)? coefficient of the correlation part o(r), i.e.,
:g 0zl (a)'+a}") minus the noninteracting valug (97/4)%°. We
2 find thata$ is positive in the density range 1.94,<5.88,
% 0 and negative elsewhere. However, we believe that the posi-
° o2l tive region is a consequence of underestimating{thesor-
relations.
-0.4 Our results are very well reproduced by the simple for-
mulas
(a) fs
08 . with exact high-density limits 8y =(—Bal st yal T+ Sl St ear e, (33
N,Tn 0.6 ‘ //--«\\ ] - 1/97 2/3 o ds
£ o04pi/ Y 1 a =gl 7| (I=Bprst Ypls)e “p's, (34)
5 Y
- FAN R ] where B3,=0.32, v7,=0.4069, &,=—0.04455, e,
g of Ml =0.003 064,d,=0.4235, 8,=0.016 24, y,=0.002 64, and
S total, only correlation dp:O'2456'
0.2 ¢ ’ / i However, as said, theé] correlations are underestimated.
04 s s s . . We can use the formulas of Eq83) and(34) to recover the
0 5 10 15 20 25 30 exact high-density limitsby simply changing the parameters
(b) s Ba andd,. The new values ar8,=0.3356,d,=0.5566. In

FIG. 3. Coefficients of (/r.)? in the smallr expansion of the this way, thel | coefficient is basically unchanged, while the
. 3. s .

pair-distribution function. The parallel- and antiparallel-spin contri- Tg lsldlct))wered hbe?auset Ofthth? exact Slgﬁerglto, af?.d
butions are separately shown. The total coefficient for the correla§. ou € muc Cfoser 0 the true one. . € rencoettl- .
tion part, i.e.a5=1(a}' +a}) — & (9m/4)23 is also reported. Up- cients are shown in the lower panel of Fig. 3, together with

per panel: solution of the Overhauser model; lower panel:the total coefficient for the correlation part. We see that now

interpolation formulas including the exact high-density limits. aj is always negative. Ziescffe has proposed 1
- 5(977/4)‘2’3a£T as a measure of correlation strength, vary-

in ther—0 limit a}" is known to approach zero from nega- "9 monotonically from 0 forrs—0 to 1 forrs—ce.

tive values] while in ther,—o limit we expecta}' to ap-

proach zero asymptotically from positive values, in order to V. COUPLING-CONSTANT AVERAGE

fulfill the positivity constraint ong; (r). Thus,a" must The coupling-constant averaeof the pair-distribution

have a minimum and a maximum, and must cross zero if,ntion for the uniform electron gas is given by

between, as does our result.

The high-density limit of ous? coefficients is _ 1 (re
g(s,ry)= r—f g(s,re)drg, (39
a)!(re—0)=—0.34 -+ 0(r2), (31) s70

wheres is kept fixed. The functioy is important because it
213 can account for the kinetic energy of correlation. Its short-
a}(rs—0)= §(7> —0.192,+0(rd). (32  range coefficients can be computed by integrating the simple
formulas of Eqs(30), (33), and(34):

The 7| value is in excellent agreement with the exact 6ne,

—0.3356, while the 11 coefficient ofrg on the right-hand E(T)l:i[(_K_|_§rs+6r2+5r3+Er4)e—drs+K]'
side of Eq.(32) is 54% smaller than the exact ohe, rs s sos
—0.422; see also Ref. 1. As said, in the high-density limit the (36)

assumption of zero probability of having a third electron in

the same sphere of radiug can be nearly true only for —_
antiparallel-spin electrons, since in this case the Pauli prin- “1
ciple keeps the third electron away. So, @jt should be _
very close to the true one, while tHg short-range correla- +A], (37
tions are underestimatTer at higher densities in the present

treatmenti.e., the truea,' deviates more from the noninter- 1 2 3 4

acting valuet (97/4)%?, éo it is lower than our resyltHow- ggl:r_s[( ~AatBal s+ Car g+ Dar s+ Eqrsle st Ag,
ever,a}! has a very simple dependencerqn so, as we shall (38

1 =y < 2, 3, F 4, T 5 .-d
r—[(—A1+BlrS+C1rS+DlrS+E1rS+F1rS)e s
S
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— 1/(97\%31 N a pair of antiparallel-spin electrons, we have to compute geo-
aszg(T (= A+ Bprs+Cproe pls+ ALl metrically the probability distribution for a variablé
° 39 =3lko—ki| when O<|ki<ke and O<|k,|<ke;. This
gives

where for a}! we obtain A=1.696, B=—0.2763, C=
- D= E=— al ! k?

0.093 5.9,[1 0.003 831 ande 0.022 471, and fg&l p}l(k)=24T (for 0<k=<k_)
we obtaﬂ A;=3.356, Blz_—2.525, C,=-0.45, D;= kg1
—0.106,E,=0.000 553, andr,=—0.002 47. Equatioit37)

2 212 3 3
has been obtained by integratinga))'(r,), according to the __ 9 (ke kg " AKe TKe)

4

cusp condition. In this way, we are able to give short-range 4 kK ki kg,
coefficients which exactly satisfy the modified cusp condi- ) )

tion for g(r). (In the Perdew-Warigmodel forg, the cusp _18(kFT+kFl) K3+ 12 K5

condition is accurately but not exactly satisfieBor thes? ki kg, ki kg,

coefficients, using the values corresponding to the exact

high-density limit formulas, we haveé\,=5.9313, B,= (for k_=<ksk,), (44)

—2.5119,C,=-0.6997,D,=0.036 86, E,= —0.007 235,

wherek. = 3 (kg kg ). Our goal is to write a scaling rela-
d,=0.4235,A,=1.775, B,=0.0121, C,= — 0.004 74, and AR J J

tion which allows us to use the results obtained for the

dp=0.5566. =0 gas. To do this, first we have to write an approximate
p}(q) obtained by scalingp(q). A reasonable choice, hav-
VI. SPIN-POLARIZED GAS ing correct limits and normalization, is
The spin-polarized electron gas is characterized by the

paramete=(n;—n,)/n, wheren; andn, are the densities Ty ey 2 2q

of spin-up and -down electrons. The pair-distribution func- P (@)~ (1+§)1/3+(1_§)1/3p (1+ )Y+ (1— )13 '

tion averaged ovet 1, ||, and]| pairs is then (45)
1+7)\? —{\? with g varying from 0 to (9/4)Y{[(1+)Y*+(1
(1-2) In order to use the results obtained for the unpolarized

- , ider thaf=krg. Scali ding t
n 5 91, (Frs.0). (40) gas, we now consider that=krs. Scalingq according to

Egs.(42), (43), and(45) can thus be approximately equiva-
lent to rescalings. This is exact if the Overhauser radial
Ychrainger equation is changed in the same way when we
replaceq with g and when we replace, with rg/w. In the
oo’ _ latter case, one also has to consider that the varigble

oo (M15:)=8oor[Fs7 (£),£=0], (4D =r/rgis changed int@’ = ur/r,= us. One can easily check
where rlT: ro(1+¢)" % rél: r(1-¢)"* and fll that this scaling property is satisfied by the equation with the
=2r/[(1+ )3+ (1-)YA). potential set to zerost>1), which means that it is exact at

In the present treatment, information about the spin polarthe exchange-only level. For the case of nonzero potential
ization of the system enters when we average over the prof0=s=<1), the scaling condition is satisfied only by the ki-
ab|||ty p(q) For a Spin-unpo|arized§(: 0) gas, the correct netic terms and by the i/part of the potential. However,
p(q) is the one of Eq(21). For a fully polarized {=1) gas, since for smalk the 15 part of the potential is dominant, we
we can similarly obtainp(q) from Eq. (8) by using the €Xpect to obtain rather g(_)od results by applying this scaling
proper relation betweerke and rg, i.e., ki“‘=(1/ry) O the shortrange coefficients. .
X(97/2)3=21%E=°  For a partially polarized gas (0¢ ' When we apply.our scaling relation to the tosalcoeffi-
<1), we have to distinguish between the parallel- and th&'€nt 0fg, we obtain
antiparallel-spin cases. In the parallel-spin case, we can still

Here we shall motivate and use an approximate spin-scalin
relation for the short-range part gf

2

obtain p(q) from Eg. (8) by usingkg,=(1+ §)1’3kf::° for az(rs,g’):(ﬁ (1+ 5)2’3ay[r5(1+ o)~
11 interactions, andke = (1— )¢ ° for | | interactions. 2
This means that we can obtgi'(q) andp}'(q) by rescal- 1—¢\2
ing p(q) of Eq. (21) as follows: ‘ +(T§) (1=} [ry(1-0" 1

pil (@) =1+ Yplat+0) 7, (42) L1 (1+g)1’3+(1—g)1/~°}2

2 2

P (a)=(1-9) *pla(1-9 ™, 43
with q ranging from 0 to[ 9/4(1+ £)]*° for the 11 case xall 2r's (46)
and from 0 td 9m/4(1—¢)]¥3forthe | | case. In the case of 2@+ ¥ (1))

155102-6



SHORT-RANGE CORRELATION IN THE UNIFORM. .. PHYSICAL REVIEW B4 155102

' ' ' ' ] the way, we numerically confirm the equivalence of the exact
147 expressions in Refs. 4 and 19 for &l)
12 this work
j,, _________ VII. CONCLUSIONS AND FUTURE DIRECTIONS
‘;\ 1 Our work supports and extends Overhauser’s picture of
¥ g exact short-range correlations in the uniform electron gas of den-
08 | exchange-like E . _ 3 .
sity n=23/4xrr;. When two electrons are separated by a dis-
06 - | tancer<rg, there is very little probability of finding a third
’ . . . . electron within a sphere of radiug about the first(espe-
0 0.2 0.4 0.6 0.8 1 cially in the strong-interaction or large- limit). Thus the
¢ short-range correlations arise from two-electron collisions
with an effective potential like that of Ed9).
FIG. 4. Spin-polarization dependence g@f0) at high density. We have evaluated the resulting pair distributign), not

N({) is defined by Eq(48). The scaling prediction of Eq49) is  just for r =0 [Fig. 2 and Eq.{30), which confirm the accu-
compared to the exadt dependencéRefs. 4 and 1pand to the  racy of the Yasuhatd g(0)] but for all r (Fig. 1). We find
exchange-like scaling adopted in Refs. 3 and 32. good agreement with quantum Monte Carlo data in the range
0.5 ¢<r=rg, where this data is accurate, while our results
where the function®}'(rs) anday'(rs) can be either the are probably more reliable than the Monte Carlo datarfor
ones of Eqs(33) and(34) or the ones of Eq¥38) and(39), <0.5,.
depending whether one is interestedgiior in its coupling- We have also studied the smallexpansion of the spin-
constant averagg. Equation(46) is exact(beyond the Over- resolved pair-distribution functions, EqR2) and(23). The
hauser modelin several limits: for exchange, for parallel- r~dependent coefficientxg”'(rs) of (r/rg)? from the Over-
spin correlation in the high-density limfiEq. (10) of Ref. 7], hayser model have been extracted and then corrected for the
and for the low-density limit. The fact that E(46) is exact  ynown high-density limft’ [Fig. 3 and Eqs(33) and (34)
for parallel-spin correlations in the—0 limit suggests that |, correctedB, andd,]. Unlike g(0) anday , oura;l has
the results for the short-range coefficientsgff) are not a nonmonotonic depepndence upon We have also dis-
affected by the violation of the scaling relation by the part Ofcussed how to average the short-range coefficientg(of

the potential which remains finite whesn-0. over the coupling constarfEgs. (36)—(39)], and how to

For the1 | interactions, we have also the error due to thescale them for relative spin polarizatigr 0 [Egs. (46) and

use of an approximatg relative-momen'tum distribption. We(47)]. In future work, we plan to use these results to make an
can get an idea of this error by applying our spin-scalingynajvtic model for the uniform gag(r) at all r, for use in

relation tog(0), with the result density-functional theory. Unlike currently available models

9(r=0r¢,?) which fail at very small or very largeg, this new model will
be designed to work over the whole range <o, while
2rq satisfying more exact constraints.
=(1-{)g|r= {=0]. Except very close tor=0, highly accurate pair-

0
! 1/3 1/37
(1+H7+(1-0) distribution functions for the uniform electron gas can be

(47  found from quantum Monte Carlo simulations, or from the
fluctuation-dissipation theorem usitigRPA-like response
functions with the Richardson-Ashcréftlocal-field factor.
By supplementing that approach with our snraixpansions
of Egs. (220 and (23), it should be possible to find

Equation (47) is different from that of Marinescu and
Quinr? or Perdew and Wang,obtained by using an
exchange-like ;=0) ¢ dependence. The high-density limit

of g(0rs.0) is essentially-exact spin-resolved pair distribution functions
g(r=07—0)=41—-A[1-\({)rd] (49 and correlation energies. Finally, we suspect that this ap-
ns T2 s proach can be applied usefully to other systems, including
where from Eq.(47), the two-dimensional electron ga&>®
N = 2Me=0) (49) ACKNOWLEDGMENTS
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