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Short-range correlation in the uniform electron gas: Extended Overhauser model
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We use the two-electron wave functions~geminals! and the simple screened Coulomb potential proposed by
Overhauser@Can. J. Phys.73, 683~1995!# to compute the pair-distribution functiong(r ) for a uniform electron
gas, finding the exactg(0) for this model and extending the results fromg(0) to g(r ). We find that the
short-range (r ,r s) part of thisg(r ) is in excellent agreement with quantum Monte Carlo simulations for a
wide range of electron densities. We are thus able to estimate the value of the second-order (r 2) coefficient of
the small interelectronic-distance expansion of the pair-distribution function. The coefficients of the small-r
expansion of the spin-resolvedgss8(r ) have density orr s dependencies which we parametrize in a way that
makes it easy to find their coupling-constant averages. Their spin-polarization orz dependencies are estimated
from a proposed spin-scaling relation.
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I. INTRODUCTION

The pair-distribution functiong(r ) for the uniform elec-
tron gas is related to the probability of finding a pair
electrons at a distancer from each other.@The expected num
ber of electrons in a shell of volume 4pr 2dr when another
electron is at the origin is given byng(r )4pr 2dr, wheren
5N/V is the electron density.# In recent years, much atten
tion has been devoted to this quantity,1–7 mainly because of
its relevance in density-functional theory:g(r ) is the basis of
many nonlocal8,9 and semilocal10 exchange-correlation en
ergy density functionals. A goodg(r ) for the uniform elec-
tron gas is also the starting point for building up the syste
averaged exchange-correlation hole of a many-elec
system of nonuniform density.11

After oscillations are averaged out, the long-range p
(r→`) of g(r ) is exactly described12,3 by the random-phase
approximation ~RPA!. At intermediate-interelectronic dis
tances, 0.5&r /r s&5 @where r s is the density parameter,r s

5(4pn/3)21/3#, very reliable information is available from
quantum Monte Carlo~QMC! simulations.13–16 Little is
known about the quantitative behavior ofg(r ) for r /r s

&0.5, except in the high-density limit,4,7 and except for
some estimates ofg(0), the value of the pair-distribution
function at zero-interelectronic distance.3,5,17–20@As the part
of g(r ) that is most transferable from uniform to nonunifor
densities,g(0) plays a special role in spin-density function
theory.19#

In particular, Overhauser18 presented a simple model fo
estimating the value ofg(0). Themodel takes into accoun
two-particle correlations by means of a simple screened C
lomb potential with no empirical parameter. In his wo
Overhauser finds an approximate solution for the depende
of g(0) on the electron density. His result looks realistic a
performs surprisingly well in the known high-density limit

Motivated by this result, in the present work we solve t
Overhauser model exactly, i.e., we compute the correspo
ing pair-distribution function for the uniform electron ga
Comparison of our results with recent QMC simulation16
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shows very good agreement in the range 0.5&r /r s&1. We
thus have a strong indication that the Overhauser model
tential gives accurate quantitative results also in the ‘‘u
known’’ shortest-range region 0<r /r s&0.5. In this way we
are able to present a quantitative, reliable estimate for thr s
dependence of ther 2 coefficient of the small-r expansion of
g(r ). This coefficient is important for energy density fun
tionals which include the gradient correction to ther 2 coef-
ficient of the exchange-correlation hole, while its spin res
lution ~i.e., its↑↑ and↑↓ contributions, also available in th
present treatment! is of interest for functionals based on th
Fermi hole curvature.21 Other possible applications are di
cussed at the end of this paper.

The Overhauser model is fully quantum mechanical, a
incorporates the effect of exchange on the pair-distribut
function in the zero-temperature electron gas. An interes
alternative approach22 mimics these effects by using a cla
sical pair-distribution function with a nonzero effective tem
perature.

II. UNIFORM ELECTRON GAS FROM TWO-PARTICLE
WAVE FUNCTIONS

Following Overhauser,18 we will construct the pair-
distribution function from two-electron wave functions. Th
rigorous analogs of these wave functions are perhaps
‘‘natural geminals’’ that diagonalize the two-electron dens
matrix;23,24the diagonal of this matrix is the pair density. F
a generalization of the Hartree-Fock approximation from
bitals to geminals, see Ref. 25.

If we select a pair of electrons at random in the sp
unpolarized uniform gas, there is one chance in four that t
will be in the singlet state,↑↓2↓↑, and three chances in fou
that they will be in one of the triplet states,↑↑, ↓↓, ↑↓
1↓↑. In the case of no electron-electron interaction, the c
responding two-electron spatial wave functions will be

C~r ,R!5
1

A2
eiK•R~eik•r6e2 ik•r !, ~1!
©2001 The American Physical Society02-1
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where ‘‘1 ’’ is for the singlet state and ‘‘2 ’’ is for the triplet
state, and

R5 1
2 ~r11r2!, r5r22r1 ,

K5k11k2 , k5 1
2 ~k22k1!.

We can expand the plane waves into spherical harmonic

eik•r5(
l 50

`

~2l 11!i l Pl~cosu! j l~kr !, ~2!

where Pl are Legendre polynomials andj l are spherical
Bessel functions. Then we will have

Csinglet~r ,R!5A2eiK•R(
l 50
evenl

`

~2l 11!i l Pl~cosu! j l~kr !,

C triplet~r ,R!5A2eiK•R(
l 51
odd l

`

~2l 11!i l Pl~cosu! j l~kr !.

We can define spin-resolved pair-distribution functions
the uniform electron gas,g↑↑(r ) and g↑↓(r ), corresponding
to parallel- and antiparallel-spin interactions and such t
for the unpolarized gas

g5 1
2 ~g↑↑1g↑↓!. ~3!

They can be related to the formulas just derived by sim
considerations:~i! if we select at random a pair of electron
in the uniform gas, there is a probabilityp(k) that they have
relative momentumk5uk22k1u/2, ~ii ! the probability for the
singlet state is1

4 and the probability for the triplet state is34 ,
and ~iii ! 1

3 of the triplet state contributes to the antiparalle
spin correlations and23 of it to the parallel-spin correlations
So, we simply have

g↑↓~r !5 1
2 ^uCsinglet~r !u2&1 1

2 ^uC triplet~r !u2&, ~4!

g↑↑~r !5^uC triplet~r !u2&, ~5!

where ^•••& denotes the average overp(k) and over the
solid angle. Performing the spherical average over the s
angle, we obtain

g↑↓~r !5(
l 50

`

~2l 11!^ j l
2~kr !&, ~6!

g↑↑~r !52(
l 51
odd l

`

~2l 11!^ j l
2~kr !&. ~7!

Equation~6! immediately gives the exact result for a noni
teracting gas, i.e.,g↑↓(r )51 for eachr. To obtain the non-
interactingg↑↑(r ) from Eq. ~7!, we need to average overk.
In the noninteracting electron gas, the probability distrib
tion p(k) for k5 1

2 uk22k1u can be obtained geometrically b
considering two three-dimensional vectorsk1 and k2 with
0<uk1(2)u<kF , where kF is the Fermi wave vector. The
probability p(k) is then26,27
15510
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p~k!524
k2

kF
3

236
k3

kF
4

112
k5

kF
6

, ~8!

with k ranging from 0 tokF . @p(k) vanishes at the endpoint
of its domain, maximizes around the middle, and integra
to 1.# Then we find analytically that Eq.~7! gives the correct
result for the noninteracting uniform gas. Numerically, in t
range 0<r /r s<3 and with a truncation of the infinite sum
over l at l max57, Eq. ~7! reproduces the known exchang
only g↑↑ within an accuracy of 1026.

With these simple concepts in mind, we can now proce
to compute an interacting pair-distribution function by intr
ducing a suitable electron-electron potential which descri
the interactions in a uniform electron gas. Then we just h
to replace the spherical Bessel functionsj l in Eqs.~6! and~7!
with the functionsRl solutions of the radial Schro¨dinger
equation with the chosen two-body potential. Unless this
tential is very sophisticated, such a treatment will fail
describe long-range correlations, which are mainly gover
by collective modes, and will fail to satisy the particle
conservation sum rule ongss8(r ) @Eq. ~47! of Ref. 3#.

III. SOLUTION USING THE OVERHAUSER SCREENED
COULOMB POTENTIAL

Overhauser18 proposed a simple and reasonable model
the screened Coulomb repulsionV(r ) in the uniform electron
gas. In the standard uniform-electron-gas model, a rigid p
tively charged background maintains electrical neutral
Thus Overhauser took the sphere of volumen21 as the
boundary within which the screening charge density isne
and outside of which it is zero. This is equivalent to assu
ing that the probability of finding three electrons in a sphe
of radius r s is exactly zero, an assumption which is nea
true. In fact, numerical estimates of this probability for
interacting electron gas show that it is indeed small.27 ~At
r s55 the ratio between the probabilities of finding three a
two electrons in the same sphere of radiusr s is about 1

11 ; for
larger r s this ratio is lower, and for smallerr s it is higher,
being about17 at r s50.!

Thus, for interelectronic distancesr ,r s we expect the
Overhauser potential to be close to the true potential felt
an electron moving in a uniform electron gas when anot
electron is fixed at the origin. In the regionr .r s the poten-
tial is set to zero, and so is not expected to be reliable.

We also expect to have results that become more accu
as the density decreases, since the probability of having t
electrons in the same sphere of radiusr s becomes lower and
lower. Finally, at high and intermediate densities our resu
will be much closer to the trueg(r ) for antiparallel-spin
correlations than for parallel-spin ones. When two electro
of opposite spins are in the same sphere of radiusr s , a third
electron is excluded from the sphere because of both
Pauli principle and the Coulomb repulsion. For a pair
parallel-spin electrons, only the Coulomb repulsion preve
a third electron of opposite spin from entering the sphere
radiusr s , a mechanism which becomes less efficient as
density~and thus the kinetic energy! increases.
2-2
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In atomic units, the Overhauser potential is given by

V~r !5
1

r s
S r s

r
1

r 2

2r s
2

2
3

2D ~r<r s!,

V~r !50 ~r .r s!. ~9!

Defining s5r /r s , q5krs , and ul(s)5qsRl(s), the corre-
sponding radial Schro¨dinger equation reads

F d2

ds2
2

l ~ l 11!

s2
1q22r sS 1

s
1

s2

2
2

3

2D Gul50 ~s<1!,

F d2

ds2
2

l ~ l 11!

s2
1q2Gul50 ~s.1!. ~10!

In order to findul(s), we proceed as follows. For 0<s,1,
we expandul in a power series:

ul~s!5a l (
n5 l 11

`

cn
( l )sn ~0<s,1!. ~11!

Inserting this expansion into the corresponding radial eq
tion, we find a recursion relation between the coefficie
cn

( l ) ,

cn
( l )5

r s

2
cn24

( l ) 2S 3

2
r s1q2D cn22

( l ) 1r scn21
( l )

~n1 l !~n2 l 21!
~n. l 11!,

cl 11
( l ) 51, cn

( l )50 ~n< l !. ~12!

For s.1 the solution isqs times the spherical Bessel func
tion j l with a phase shiftzl . It can be usefully written as

ul~s!5qs@ f l~qs!sin~qs2zl !1~21! l 11

3 f 2 l 21~qs!cos~qs2zl !# ~s.1!, ~13!

where f j (x) are given by

f 0~x!5x21, f 1~x!5x22,

f j 21~x!1 f j 11~x!5~2 j 11!x21f j~x!. ~14!

Equation~13! is properly normalized, since the noninterac
ing case of Eqs.~6! and ~7! is exactly recovered whenzl
50. By matchingul(s) and its first derivative ats51, we
can finda l and the phase shiftzl . They are given by

a l
2

q2
5

q2@ f l~q! f 2 l~q!1 f l 21~q! f 2 l 21~q!#2

Sl~q,r s!
21Cl~q,r s!

2
, ~15!

tan~q2zl !5~21! l
Sl~q,r s!

Cl~q,r s!
, ~16!

where

Sl5q f2 l~q!Bl1 f 2 l 21~q!Al , ~17!

Cl5 f l~q!Al2q fl 21~q!Bl , ~18!
15510
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Al5Al~q,r s!5 (
n5 l 11

`

cn
( l )~n1 l !, ~19!

Bl5Bl~q,r s!5 (
n5 l 11

`

cn
( l ) . ~20!

With eight (l max57) partial waves and the infinite sum overn
in Eqs. ~11!, ~19!, and ~20! truncated atnmax;20, we reach
accurate convergence for 0<r /r s<2.

We thus obtain smooth radial functionsRl(s,r s ,q) to re-
place the functionsj l in Eqs. ~6! and ~7!. Then we have to
average overq to obtaingss8(s,r s). We used the probability
distribution p(q) corresponding to an unpolarized noninte
acting uniform electron gas, i.e., we took Eq.~8! with kF
5(1/r s)(9p/4)1/3,

p~q!5
16

3p
q2F22S 12

p D 1/3

q1
4

9p
q3G , ~21!

with q ranging from 0 to (9p/4)1/3. Theq dependence of ou
results is rather weak, so we expect to have no signific
change if we use an interacting momentum distribution
stead of the one of Eq.~21!.

The results for the totalg(r ) are shown in Fig. 1, togethe
with the newest QMC results from Ref. 16. We findg(r ) in
accurate agreement with the QMC data for 0.5&r /r s&1 for
a wide range of electron densities. In the shortest-range
gion, r /r s&0.5, the QMC data are known to suffer larg
errors and are not so reliable.~In this region there is in fact a
significant discrepancy between the data from Ref. 16
those from Ref. 13.! We believe that forr /r s&0.5 the present
treatment provides results much closer to the trueg(r ). As
said, for r /r s.1 the results obtained with the Overhaus
potential are not reliable.

IV. SHORT-RANGE COEFFICIENTS OF THE PAIR-
DISTRIBUTION FUNCTION

The small-s expansion of the spin-resolvedg↑↓ and g↑↑
~wheres5r /r s),

FIG. 1. Pair-distribution functionsg(r ) for the uniform electron
gas computed with the Overhauser18 potential for different values of
the electron-density parameterr s . Also shown are the quantum
Monte Carlo data from Ref. 16.
2-3
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g↑↓~s,r s!5a0
↑↓~r s!1a1

↑↓~r s!s1a2
↑↓~r s!s

21O~s3!,
~22!

g↑↑~s,r s!5a2
↑↑~r s!s

21a3
↑↑~r s!s

31O~s4!, ~23!

obtained by solving the Overhauser equation, has co
cients

a0
↑↓5K a0

2

q2L , ~24!

a1
↑↓5r sK a0

2

q2L 5r sa0
↑↓ , ~25!

a2
↑↓5

r s

12
~5r s26!K a0

2

q2L 2
^a0

2&
3

13K a1
2

q2L , ~26!

a2
↑↑56K a1

2

q2L , ~27!

a3
↑↑53r sK a1

2

q2L 5
r s

2
a2

↑↑ , ~28!

where thea l are given by Eq.~15! and ^•••& means the
average overp(q) of Eq. ~21!. Equations~25! and ~28! are
the known cusp conditions,1,28 due to the dominance forr
→0 of the term 1/r in the Schro¨dinger equation.

Equation ~24! gives the value of the pair-distributio
function at zero-interelectronic distance,g(0)5a0

↑↓/2. In
Fig. 2 we compare the present result with other estimate
g(0): ~i! two approximate solutions that Overhauser18 ob-
tained from his model potential after settingq50 in the
radial Schro¨dinger equation fors<1, ~ii ! the Yasuhara17

electron-electron ladder evaluation,~iii ! the Perdew-Wang3

~PW92! formula, and~iv! the result extrapolated from QMC

FIG. 2. Pair-distribution function at zero-interelectronic distan
multiplied by the density parameterr s . The present result~exact
solution of the Overhauser model! is compared with the two Over
hauser formulas~Ref. 18! ~one and two iterations!, the Yasuhara
~Ref. 17! electron-electron ladder evaluation, the Perdew and W
~Ref. 3! ~PW92! formula, and the extrapolation from QMC da
~Ref. 16! obtained by Gori-Giorgi, Sacchetti and Bachelet~Ref. 5!
~GSB!.
15510
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data16 by Gori-Giorgi, Sacchetti, and Bachelet5 ~GSB!. The
value ofg(0) has been multiplied by the density parame
r s in order to amplify the differences between the curv
which are mainly located at low densities. We see that
first Overhauser formula, obtained from a first iteration,
quite far from the ‘‘exact’’ solution of his model presented
this work. His second formula, derived by a second iterati
is much closer to our solution~within 5% at r s52, 50% at
r s510). The Yasuhara electron-electron ladder evaluatio
the closest to our result forr s*5 ~e.g., the difference is only
0.6% atr s510). This is not surprising since both calcul
tions are more reliable at lower densities. The PW92 form
is mainly a Pade´ approximation of the Yasuhara values; it
not very accurate at densitiesr s*4, where the electron-
electron ladderg(0) goes to zero as19 r s

3/2e2AAr s, while the
PW92 Pade´ approximant goes asr s

23 . However, the PW92
formula reproduces quite accurately the Yasuhara value
metallic densities, and has the advantage of being v
simple and handy for many purposes. The extrapolated G
value is, forr s*0.7, much higher than the curve obtained
the present work, as expected from the results of Fig. 1
which our g(r ) curves always lie below the QMC data fo
r /r s&0.3.

The high-density limit of oura0
↑↓(r s) is

a0
↑↓~r s→0!5120.684r s1O~r s

2!, ~29!

which differs from the exact one,20,29 120.7317r s , by only
6.5% in the coefficient ofr s and is slightly better than the
high-density limit of the Yasuhara17 a0

↑↓ , 120.663r s .19 We
can conclude that the value ofg(0) obtained by solving the
Overhauser model is very reliable: it almost recovers
exact high-density limit, and agrees in the low-density lim
with the electron-electron ladder evaluation of Yasuhara
the latter limit, where the electrons become stric
correlated,27 a2

↑↓ anda2
↑↑ tend to zero.

Our results forg(0) can be usefully parametrized with th
following form,

a0
↑↓~r s!5~12Brs1Crs

21Dr s
31Ers

4!e2drs. ~30!

We constrain our fit to reproduce the exact high-dens
limit, in order to be as close as possible to the trueg(0).
Thus we fixB50.73172d. A best fit of the remaining four
free parameters to our result forr s<10 givesC50.081 93,
D520.012 77, E50.001 859, andd50.7524. ThenB5
20.0207. On the scale of Fig. 2, the fit error is invisible.

As far as we know, the coefficientsa2
↑↓ anda2

↑↑ , given by
Eqs. ~26! and ~27!, are presented in this work for the firs
time. The good performance ofg(0) obtained with the Over-
hauser potential, together with the agreement ofg(r ) with
the QMC data for 0.5&r /r s&1, suggest that our calculatio
of these coefficients is quantitatively reliable. In the upp
panel of Fig. 3, we reporta2

↑↓ and a2
↑↑ as a function ofr s .

While the parallel-spin part shows a predictable depende
on r s , decreasing monotonically from the noninteracti
value 1

5 (9p/4)2/3 to zero asr s increases, the↑↓ part presents
at first glance a nonintuitive dependence on the dens
However, if we consider the known high- and low-dens
behavior ofa2

↑↓ , we see that we should expect a functio
which is qualitatively similar to the one we obtained. In fa

g

2-4
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in the r s→0 limit a2
↑↓ is known to approach zero from neg

tive values,7 while in the r s→` limit we expecta2
↑↓ to ap-

proach zero asymptotically from positive values, in order
fulfill the positivity constraint ong↑↓(r ). Thus, a2

↑↓ must
have a minimum and a maximum, and must cross zero
between, as does our result.

The high-density limit of ours2 coefficients is

a2
↑↓~r s→0!520.34r s1O~r s

2!, ~31!

a2
↑↑~r s→0!5

1

5 S 9p

4 D 2/3

20.192r s1O~r s
2!. ~32!

The ↑↓ value is in excellent agreement with the exact on7

20.3356r s , while the↑↑ coefficient ofr s on the right-hand
side of Eq. ~32! is 54% smaller than the exact one,7

20.422; see also Ref. 1. As said, in the high-density limit
assumption of zero probability of having a third electron
the same sphere of radiusr s can be nearly true only fo
antiparallel-spin electrons, since in this case the Pauli p
ciple keeps the third electron away. So, oura2

↑↓ should be
very close to the true one, while the↑↑ short-range correla
tions are underestimated at higher densities in the pre
treatment@i.e., the truea2

↑↑ deviates more from the noninte
acting value1

5 (9p/4)2/3, so it is lower than our result#. How-
ever,a2

↑↑ has a very simple dependence onr s , so, as we shal

FIG. 3. Coefficients of (r /r s)
2 in the small-r expansion of the

pair-distribution function. The parallel- and antiparallel-spin con
butions are separately shown. The total coefficient for the corr
tion part, i.e.,a2

c5
1
2 (a2

↑↓1a2
↑↑)2

1
10(9p/4)2/3, is also reported. Up-

per panel: solution of the Overhauser model; lower pan
interpolation formulas including the exact high-density limits.
15510
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see, it is very easy to write an interpolation formula betwe
the high- and the low-density limits.

In the upper panel of Fig. 3 we also showa2
c , the total

(r /r s)
2 coefficient of the correlation part ofg(r ), i.e.,

1
2 (a2

↑↓1a2
↑↑) minus the noninteracting value110 (9p/4)2/3. We

find thata2
c is positive in the density range 1.94,r s,5.88,

and negative elsewhere. However, we believe that the p
tive region is a consequence of underestimating the↑↑ cor-
relations.

Our results are very well reproduced by the simple f
mulas

a2
↑↓5~2bar s1gar s

21dar s
31ear s

4!e2dar s, ~33!

a2
↑↑5

1

5 S 9p

4 D 2/3

~12bpr s1gpr s
2!e2dpr s, ~34!

where ba50.32, ga50.4069, da520.044 55, ea
50.003 064,da50.4235,bp50.016 24,gp50.002 64, and
dp50.2456.

However, as said, the↑↑ correlations are underestimate
We can use the formulas of Eqs.~33! and~34! to recover the
exact high-density limits7 by simply changing the paramete
ba anddp . The new values areba50.3356,dp50.5566. In
this way, the↑↓ coefficient is basically unchanged, while th
↑↑ is lowered because of the exact slope atr s50, and
should be much closer to the true one. The newa2 coeffi-
cients are shown in the lower panel of Fig. 3, together w
the total coefficient for the correlation part. We see that n
a2

c is always negative. Ziesche30 has proposed 1
25(9p/4)22/3a2

↑↑ as a measure of correlation strength, va
ing monotonically from 0 forr s→0 to 1 for r s→`.

V. COUPLING-CONSTANT AVERAGE

The coupling-constant average31 of the pair-distribution
function for the uniform electron gas is given by

ḡ~s,r s!5
1

r s
E

0

r s
g~s,r s8!drs8 , ~35!

wheres is kept fixed. The functionḡ is important because i
can account for the kinetic energy of correlation. Its sho
range coefficients can be computed by integrating the sim
formulas of Eqs.~30!, ~33!, and~34!:

ā0
↑↓5

1

r s
@~2Ā1B̄r s1C̄r s

21D̄r s
31Ēr s

4!e2drs1Ā#,

~36!

ā1
↑↓5

1

r s
@~2Ā11B̄1r s1C̄1r s

21D̄1r s
31Ē1r s

41F̄1r s
5!e2drs

1Ā1#, ~37!

ā2
↑↓5

1

r s
@~2Aa1Bar s1Car s

21Dar s
31Ear s

4!e2dar s1Aa#,

~38!

a-

l:
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ā2
↑↑5

1

5 S 9p

4 D 2/3 1

r s
@~2Ap1Bpr s1Cpr s

2!e2dpr s1Ap#,

~39!

where for ā0
↑↓ we obtain Ā51.696, B̄520.2763, C̄5

20.093 59,D̄50.003 837, andĒ520.002 471, and forā1
↑↓

we obtain Ā153.356, B̄1522.525, C̄1520.45, D̄15

20.106, Ē150.000 553, andF̄1520.002 47. Equation~37!
has been obtained by integratingr sa0

↑↓(r s), according to the
cusp condition. In this way, we are able to give short-ran
coefficients which exactly satisfy the modified cusp con
tion for ḡ(r ). ~In the Perdew-Wang3 model for ḡ, the cusp
condition is accurately but not exactly satisfied.! For thes2

coefficients, using the values corresponding to the ex
high-density limit formulas, we haveAa55.9313, Ba5
22.5119, Ca520.6997, Da50.036 86, Ea520.007 235,
da50.4235, Ap51.775, Bp50.0121, Cp520.004 74, and
dp50.5566.

VI. SPIN-POLARIZED GAS

The spin-polarized electron gas is characterized by
parameterz5(n↑2n↓)/n, wheren↑ andn↓ are the densities
of spin-up and -down electrons. The pair-distribution fun
tion averaged over↑↑, ↓↓, and↑↓ pairs is then

g~r ,r s ,z!5S 11z

2 D 2

g↑↑~r ,r s ,z!1S 12z

2 D 2

g↓↓~r ,r s ,z!

1
~12z2!

2
g↑↓~r ,r s ,z!. ~40!

Here we shall motivate and use an approximate spin-sca
relation for the short-range part ofg:

gss8~r ,r s ,z!5gss8@r ,r s
ss8~z!,z50#, ~41!

where r s
↑↑5r s(11z)21/3, r s

↓↓5r s(12z)21/3, and r s
↑↓

52r s /@(11z)1/31(12z)1/3#.
In the present treatment, information about the spin po

ization of the system enters when we average over the p
ability p(q). For a spin-unpolarized (z50) gas, the correc
p(q) is the one of Eq.~21!. For a fully polarized (z51) gas,
we can similarly obtainp(q) from Eq. ~8! by using the
proper relation betweenkF and r s , i.e., kF

z515(1/r s)
3(9p/2)1/3521/3kF

z50 . For a partially polarized gas (0,z
,1), we have to distinguish between the parallel- and
antiparallel-spin cases. In the parallel-spin case, we can
obtain p(q) from Eq. ~8! by usingkF↑5(11z)1/3kF

z50 for
↑↑ interactions, andkF↓5(12z)1/3kF

z50 for ↓↓ interactions.
This means that we can obtainpz

↑↑(q) andpz
↓↓(q) by rescal-

ing p(q) of Eq. ~21! as follows:

pz
↑↑~q!5~11z!21/3p@q~11z!21/3#, ~42!

pz
↓↓~q!5~12z!21/3p@q~12z!21/3#, ~43!

with q ranging from 0 to@9p/4(11z)#1/3 for the ↑↑ case
and from 0 to@9p/4(12z)#1/3 for the↓↓ case. In the case o
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a pair of antiparallel-spin electrons, we have to compute g
metrically the probability distribution for a variablek
5 1

2 uk22k1u when 0<uk1u<kF↓ and 0<uk2u<kF↑ . This
gives

pz
↑↓~k!524

k2

kF↑
3 ~ for 0<k<k2!

52
9

4

~kF↑
2 2kF↓

2 !2

kF↑
3 kF↓

3
k112

~kF↑
3 1kF↓

3 !

kF↑
3 kF↓

3
k2

218
~kF↑

2 1kF↓
2 !

kF↑
3 kF↓

3
k31

12

kF↑
3 kF↓

3
k5

~ for k2<k<k1!, ~44!

wherek65 1
2 (kF↑6kF↓). Our goal is to write a scaling rela

tion which allows us to use the results obtained for thez
50 gas. To do this, first we have to write an approxima
pz

↑↓(q) obtained by scalingp(q). A reasonable choice, hav
ing correct limits and normalization, is

pz
↑↓~q!'

2

~11z!1/31~12z!1/3
pF 2q

~11z!1/31~12z!1/3G ,

~45!

with q varying from 0 to (9p/4)1/3$@(11z)1/31(1
2z)1/3#/2%.

In order to use the results obtained for the unpolariz
gas, we now consider thatq5krs . Scalingq according to
Eqs.~42!, ~43!, and~45! can thus be approximately equiva
lent to rescalingr s . This is exact if the Overhauser radia
Schrödinger equation is changed in the same way when
replaceq with mq and when we replacer s with r s /m. In the
latter case, one also has to consider that the variabs
5r /r s is changed intos85mr /r s5ms. One can easily check
that this scaling property is satisfied by the equation with
potential set to zero (s.1), which means that it is exact a
the exchange-only level. For the case of nonzero poten
(0<s<1), the scaling condition is satisfied only by the k
netic terms and by the 1/s part of the potential. However
since for smalls the 1/s part of the potential is dominant, w
expect to obtain rather good results by applying this sca
to the short-range coefficients.

When we apply our scaling relation to the totals2 coeffi-
cient of g, we obtain

a2~r s ,z!5S 11z

2 D 2

~11z!2/3a2
↑↑@r s~11z!21/3#

1S 12z

2 D 2

~12z!2/3a2
↑↑@r s~12z!21/3#

1
~12z2!

2 F ~11z!1/31~12z!1/3

2 G2

3a2
↑↓F 2r s

~11z!1/31~12z!1/3G , ~46!
2-6
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where the functionsa2
↑↓(r s) and a2

↑↑(r s) can be either the
ones of Eqs.~33! and~34! or the ones of Eqs.~38! and~39!,
depending whether one is interested ing or in its coupling-
constant averageḡ. Equation~46! is exact~beyond the Over-
hauser model! in several limits: for exchange, for paralle
spin correlation in the high-density limit@Eq. ~10! of Ref. 7#,
and for the low-density limit. The fact that Eq.~46! is exact
for parallel-spin correlations in ther s→0 limit suggests that
the results for the short-range coefficients ofg(r ) are not
affected by the violation of the scaling relation by the part
the potential which remains finite whens→0.

For the↑↓ interactions, we have also the error due to t
use of an approximate relative-momentum distribution.
can get an idea of this error by applying our spin-scal
relation tog(0), with the result

g~r 50,r s ,z!

5~12z2!gS r 50,
2r s

~11z!1/31~12z!1/3
,z50D .

~47!

Equation ~47! is different from that of Marinescu an
Quinn32 or Perdew and Wang,3 obtained by using an
exchange-like (r s50) z dependence. The high-density lim
of g(0,r s ,z) is

g~r 50,r s→0,z!5 1
2 ~12z2!@12l~z!r s#, ~48!

where from Eq.~47!,

l~z!5
2l~z50!

~11z!1/31~12z!1/3
. ~49!

In Fig. 4 we compare our Eq.~49! with the exact
l(z)/l(0),4,19 and with the exchange-like approximation
Refs. 3 and 32, in which this ratio is 1. We see that o
scaling relation is always closer to the exactz dependence
than is the exchange-like one. The maximum error is az
51, where our ratio is 1.587 and the exact one is 1.332.~By

FIG. 4. Spin-polarization dependence ofg(0) at high density.
l(z) is defined by Eq.~48!. The scaling prediction of Eq.~49! is
compared to the exactz dependence~Refs. 4 and 19! and to the
exchange-like scaling adopted in Refs. 3 and 32.
15510
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the way, we numerically confirm the equivalence of the ex
expressions in Refs. 4 and 19 for allz.!

VII. CONCLUSIONS AND FUTURE DIRECTIONS

Our work supports and extends Overhauser’s picture
short-range correlations in the uniform electron gas of d
sity n53/4pr s

3 . When two electrons are separated by a d
tancer &r s , there is very little probability of finding a third
electron within a sphere of radiusr s about the first~espe-
cially in the strong-interaction or large-r s limit !. Thus the
short-range correlations arise from two-electron collisio
with an effective potential like that of Eq.~9!.

We have evaluated the resulting pair distributiong(r ), not
just for r 50 @Fig. 2 and Eq.~30!, which confirm the accu-
racy of the Yasuhara17 g(0)# but for all r ~Fig. 1!. We find
good agreement with quantum Monte Carlo data in the ra
0.5r s&r &r s , where this data is accurate, while our resu
are probably more reliable than the Monte Carlo data for
&0.5r s .

We have also studied the small-r expansion of the spin-
resolved pair-distribution functions, Eqs.~22! and ~23!. The

r s-dependent coefficientsa2
ss8(r s) of (r /r s)

2 from the Over-
hauser model have been extracted and then corrected fo
known high-density limit4,7 @Fig. 3 and Eqs.~33! and ~34!
with correctedba anddp#. Unlike g(0) anda2

↑↑ , oura2
↑↓ has

a nonmonotonic dependence uponr s . We have also dis-
cussed how to average the short-range coefficients ofg(r )
over the coupling constant@Eqs. ~36!–~39!#, and how to
scale them for relative spin polarizationzÞ0 @Eqs.~46! and
~47!#. In future work, we plan to use these results to make
analytic model for the uniform gasg(r ) at all r, for use in
density-functional theory. Unlike currently available mode
which fail at very small or very larger s , this new model will
be designed to work over the whole range 0,r s,`, while
satisfying more exact constraints.

Except very close to r 50, highly accurate pair-
distribution functions for the uniform electron gas can
found from quantum Monte Carlo simulations, or from th
fluctuation-dissipation theorem using33 RPA-like response
functions with the Richardson-Ashcroft34 local-field factor.
By supplementing that approach with our small-r expansions
of Eqs. ~22! and ~23!, it should be possible to find
essentially-exact spin-resolved pair distribution functio
and correlation energies. Finally, we suspect that this
proach can be applied usefully to other systems, includ
the two-dimensional electron gas.35,36
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