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Symmetry properties of single-walled boron nitride nanotubes
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The symmetry operations for armchair, zigzag, and chiral boron nitride nandBNeNT’s) are identified.
It is found that each type belongs to a different familynohsymmorphicod groups. Armchair BN-NT’s with
even indexn are found to becentrosymmetricWe determine the numbers of Raman- and infrared-active
vibrations in single-walled BN-NT'’s. We find that, in contrast to achiral carbon nanotubes, zigzag BN-NT’s
possess almost twice the Raman- and infrared-active vibrations as armchair BN-NT'’s.
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Boron nitride nanotubes(BN-NT’s) are a recently describing achiral C-NT’s with inder can be decomposed
synthesizettype of tubular materials, combining stable in- in the following mannethe 13th family of rod grougs):
sulating properti€s® and high strengtA.Ab initio studies of
the spatiaktructureof BN-NT’s have predicted the buckling ~ 9[n]= Ly XDynX[E® Syp]
of B-N bonds, which is the formation of a concentric inner
“B cylinder” and outer “N cylinder.”*° The classification of = L1, X PngX[ES Sl
BN-NT spatial symmetries on the other hand, has been _
rather partial so far, being limited to a determination of their = L1, X[ Dnhl2=0® (Dnal 2= 4O Cny) © Cy X S,
chiralities only>® Owing to the subset relation between the (1)
plane groups of two-dimension&D) hexagonal BN and
graphite netsp3m1C p6mm, single-walled BN-NT's(here- . ) :
after, BN-NT'9 are characterized by the pair of indiceand ~ 2°Nt@l o, and vertical,o, , reflection planegsee Fig. 1
m2® as carbon nanotubd€-NT’s) do”’ (n,m=n) armchair, LTZ is the one-dimensional translation group with the primi-
(n,m=0) zigzag, and if,0<m<n) chiral. Thus, the §,m) tive trans_lationTZ:|TZ|. E is the identity operation. The
BN- and C-NT’s possess the same lattice pefigdRef. §  SCTEW aXisSy=(z—2z+T,/2,¢— ¢+ m/n) involves the lat-
and numbeN of hexagons within their unit cells. tice §mallest nonp.r|m|t|ve tran;latlon and rotation. The sub-

The profound implication of the symmetry properties of tract!on of the point grouf,, in Eq. (1) r?flects the_set
BN-NT's on physical effects can be seen in the recent worlfelat'on D”h|Z:0mDnd|ZZTz/4:Cnv for all n's. The glide
of Krdl etal.! who predicted noncentrosymmetry- and planeg is. also presented in Fig.. 1. It fulfills t.he- multiplica-
polarity-based photogalvanic effects in BN-NT’s. More spe-tion relation g=Sy,0, . The existence oh distinct glide
cifically, the direction of the induced photocurrent wasPlanes ingn] stems from the last term in E¢1). The point
shown to depend on the BN-NT chirality. As will be shown 9roup of the rod groupgo[n], is obtained by setting all
below, however, armchair BN-NT’s with even indexare translations(including the nonprlmltlve onesn g[n] equal
centrosymmetricNevertheless and in contrast to 2D and 3pto zero. From Eq(1) we obtain

centrosymmetric and polar crystalline materials, they _ _ _
(should exhibit the azimuthal photocurrents predicted in Gol N]=DpnX[E® C2n]=DngX[E®C2n]=Donn, (2)
Ref. 8. Itis the purpose of this work to complete the identi-yhereC,, = (¢— ¢+ m/n) is the rotation embedded By, .

fication of BN-NT _symmetries and determine _their_ rod The nonsymmorphic rod grodfhdescribing the if, m)-chiral
groups. The implications of symmetry on BN-NT vibrational c_NT can be decomposed as followtke fifth family of rod
spectroscopy is studied thereafter. We determine the numbe@;oupgl):

of Raman- and infrared-active vibrations in BN-NT's and
compare them to the recently reexamined numbers in [ N/d—1
C-NTs® -
L N]= L X DygX
In order to account for all the symmetries in BN-NT’s one GIN]= L1, XDy jg St
can identify those symmetry operations in the plane group -

where the reference poiat=0 denotes the crossing of hori-

p3ml which “survive” the rolling of a 2D hexagonal BN [N-1
net into the BN-NT cylinder. Of course, one has to account = L1 XDy X ESN ) 3
for various newly generated symmetry operations. Alterna- ‘ j=0

tively, one can identify the rod groups of BN-NT's asb-

groupsof C-NT rod groups? For instance, C-NT’s possess N=2(n?+m?+nm)/dg, wheredy is the greatest common
perpendiculaC, axes® BN-NT’s, on the other hand, cannot divisor of 2n+m and 2n+n.” d is the greatest common
possess such axes becays$ml do not posses€, axes. divisor of n andm. Sy,4 and Sy are screw-axis operations
Choosing to follow the second approach, let us briefly recallith the orders oN/d andN, respectively. The point group
the symmetries of C-NT’s. The nonsymmorphic rod grup of the rod group is readily obtained from E@),
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4 FIG. 2. 2D projection of various symmetries in armchair BN-
N NT's (@, B; O, N): T, is the primitive translationS,, is the screw
axis with nonprimitive translation and rotation, denotedThi2 and
S ) R v C./2, respectivelyConl =0 andSZn|Z:TZ,4 stand for the correspond-
p,,d @/ T./2 ing point-group operations, among whiety and C,, are denoted.
T/ /\ | Note theT,/4 shift betweerC,|,—o and 82n|Z:TZ,4, which coexist
> ' - Y > in all armchair BN-NT’s.
5 TZ because the screw ax®,, “survives” the symmetry lower-

O OO DY DUDUUUOY ing described abovésee Figs. 2 and)3 Consequently, the
smallestbuilding block in constructing achiral BN-NT’s is
composed of one B and one N atom, rather than of a rectan-

C, /4 g gular cell comprising two B and two N atoms, as employed

G, recently by Kimet al'? The nonsymmorphic rod group de-

scribing the (,n)-armchair BN-NT with (either odd or
FIG. 1. 2D projection of various symmetries in achiral C-NT’s even) indexn can be decomposed in the following manner:
(armchair segment, top; zigzag segment, bojtofy is the primi- arm
tive translation;S,, is the screw axis with nonprimitive translation GoMn] :ETZXCnhX [E®Syn]
and rotation, denoted by,/2 andC,/2, respectivelyg is a glide
plane; Dppl,-o and Dnd|Z:TZ,4 stand for the corresponding point- :L:TZXSZnX[E@SZn]

group operations, among whieh,, o, andC, are denoted. Note _ .
the T,/4 shift betweerD,|,—o andDygl,=7 4, Which coexist in all - CTZX [Canlz=0® (82”|Z:Tz/4ecn)@cnx Sanl;

achiral C-NT’s. (5)
N/d—1 . N—-1 .
Go[N] = X ClgXDy = BCA\XD,=Dy, (4
i=0 j=0

where Cyq=(e— ¢ +2dw/N) and Cy=(¢— ¢+27/N)
are the rotations embedded 3,4 and Sy, respectively.
Let us consider first the achiral BN-NT’s with the rotation
axis of ordern, that is, the fi,n)-armchair (Fig. 2) or
(n,0)-zigzag (Fig. 3 BN-NT's. Unlike the situation for C
C-NT’s, they do not possess the same symmetry operations, ny
owing to the lower symmetrp3m1C p6mm. More specifi-
cally, the (,n)-armchair BN-NT possessésrizontalplanes
(see Fig. 2 The lack ofC, axes(recall that there are nG,

axes inp3m1l) leads to the absence of vertical planes in this ﬁ

case. Consequently, tt@,,, and D, 4 point groups in arm- C./4 g

chair C-NT’s[see Fig. 1(top) and Eq.(1)] reduce taC,, and Gv

Son, respectively(see Fig. 2 The reverse is true for the

(n,0-zigzag BN-NT, which hawertical planes(see Fig. 3 FIG. 3. 2D projection of various symmetries in zigzag BN-NT’s

but no horizontal ones. Consequently, bdly, and D,y (@, B; O, N): T, is the primitive translationS,, is the screw axis
point groups in zigzag C-NT'ésee Fig. 1(bottom and EQ.  with nonprimitive translation and rotation, denoted By2 and
(1] reduce toC,, (see Fig. 3 Nevertheless, achiral BN- C,/2, respectivelyg is a glide plane¢,, stands for the correspond-
NT's still possess symmetries abnsymmorphicod groups  ing point-group operations, among whiefy andC,, are denoted.
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i.e., G2 n] belongs to the fourth family of rod groups. In order to determine the symmetriéat thel” point) of

The reference point=0 denotes the crossing of the hori- the BN phonon modes in armchair BN-NT’s and how many

zontal reflection planer, and then-fold rotation axisC,, (see  modes are Raman or IR active we have to associate them
arm

Fig. 2. The subtraction of the point grou, in Eq. (5)  with the irrep’s ofGg'"[n]=C,,. Recall that the character
reflects the set relatiofiyp|;-oN Sanl,-1,4=Cy for all n's.  table of Cy possesses m irrep's,' I'e, =A @B @A,

Note that while an hexagonal BN-ngadm1) does not pos- @BU@E?;HE;@EE}, The 6N phonon modes transform
sess the inversion symmetry, armchair BN-NT’s with evenaccording to the following irrep’s:

index n do possess it. In addition, let us point out that the

buckling of B-N bond$® has no effect on the spatial sym- I'ay"'=Ta"®T,

metries of BN-NT’s because the B and N atoms form two

concentric cylindersin the BN-NT’s. The point group of the =4A;92By92A,04B,
rod group is readily obtained from E¢p), ®2Efg®4E§g®2E§g®' ) '@[3—"_(_1)“71]E(infl)g

ggrm[n]zcnhx[EEBCZn]:SZnX[E@CZn]:CZnh- (6) €B4Efu€B2E2tu€B4E§u@---@[3—(—1)n71]E(in,1)u,
Similarly, the nonsymmorphic rod group describing the (11
(n,0)-zigzag BN-NT with(either odd or evenindex n can h
be decomposed in the following manner: where

Zigr 7 — . N—1 N—1
g [n] ‘CTZXCan[E@SZn]v (7) I‘grmzz Ag@ BUEB E EE@ E EJLL
j=2,4.,6,... j=1,3,5,...

namely,G %9 n] belongs to the eighth family of rod group’s.

Note that the glide planes in zigzag CN-NT'see Fig. 1  giands for the reducible representation of the B and N atom
(bottom and Eq.(1)] are preserved in zigzag BN-NT[see  ,gjtions inside the unit cell. The prefactor of 2 Fi§™
Fig. 3 and Eq.(7)]. The point group of the rod group is |efiects the two equivalent and disjoint sublattices made by
readily obtained from Ed(7), the B and N atoms in the BN-NT'S[,=A,®Ej, is the
armr .7 _ vector representation. Of these modes, the ones that trans-
Go INI=Cno X [ES Can]=Can, ® form according td",=Ay® E 1 @ E;, (the tensor representa-
Finally, let us discuss then(m)-chiral BN-NT. Since there tion) or I, are Raman or IR active, respectively. Out of the
are no C, axes in p3ml, the Dy point group in the 6N phonon modes, foufwhich transform ad’, and FRZ

(n,m)-chiral C-NT [see Eq.(3)] reduces toCy in the  =Aa ) have vanishing frequencié&Consequently, the sym-

(n,m)-chiral BN-NT. Nevertheless, chiral BN-NT's still pos- metries and numbers of optically active phonon modes in
sess the nonsymmorphic rod-group symmetries, since thgrmchair BN-NT’s are given by

screw axisSy “survives” this symmetry lowering. Conse-
quently, the nonsymmorphic rod group describing the Rama= 3Ag® 2E1 @ 4E5 =n3T =9, (12
(n,m)-chiral BN-NT can be decomposed as follows:

r&Em=A,®3E;,=nx"=4. (13
N/d—1 N—1
chr T — i — - Note that the numbers of Raman- and IR-active phonon
N]= Ly XCyX =/L; X . (9 .
G7IN] T~ 20 S Tz j:Ei,S’\' © modes found for armchair BN-NT’s are almost the same as

for armchair C-NT’s(8 Raman- and 3 IR-active modés
Thus, GE"[N] belongs to the first family of rod groups. Analogously to the treatment given above for armchair
From Eq.(9) we easily find the point group of the rod group, BN-NT’s, we would like to discuss the irrep’s @f5'9n]
=C,,, - Recall that the character table 64, possesses

o Ndo1 N-1 +3 irrep's}* Te, =A1®A,0B;®B,®E{E;. The &N
Go'IN]=Cax ,% Chua|= ,% Ch=Cy. (10 phonon modes transform according to the following reduc-
= = ible representation:

Having identified their rod-group symmetries, we would like
to find the number of optically active vibrations in BN-NT'’s. i i

Aiming at characterizing the symmetry of phonons at the N=T2%2 T, =4A,82A,0 4B, 2B, 4_216Ej'
I'(k=0)-point, we have to consider the irreducible represen- = (14)
tations (irrep’s) of the abovenonsymmorphicod groups at )

I'. As known from the theory of space groufshese irrep’s  Wherel';9=2(A,&B,® B]_1E;) andl',=A; & E;. Of these
are in a one-to-one correspondence with the irrep’s of thénodes, the ones that transform accordinglte=A,®E;
corresponding factor groups of the wave vedterO, which ~ ®E, and/orI', are Raman and/or IR active, respectively.
are isomorphic to the point groups of the rod groups,Four of the 8N phonon modes, those which transformlgs
Ga™N1=Conns G&IN]=Cony andggh[N]=CN. We have and FRZ=A2, have vanishing frequenciés.Consequently,

to analyze separately armchair, zigzag, and chiral BN-NT’sthe symmetries and numbers of optically active phonon
owing to the different point groups mentioned above. modes are given by

N—-1
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I'g9  =3A,;65E,®6E,=n4s =14, (15) In conclusion, we identified three families of rod groups
which are relevant for the description of BN-NT’s: the fourth
I'Z9=3A,®5E,=n9=8, (16)  for the armchair, the eighth for the zigzag, and the first for

N hat th b f R d IR-act h the chiral BN-NT’s. Like their carbon “ancestorgachiral,
ote that the numbers of Raman- and IR-active phonoRy,q 434 tamily; chiral, the fifth famif) all BN-NT's pos-

modes found for zigzag BN-NT'’s are almost twice as for . .
zigzag C-NT's(8 Raman- and 3 IR-active mod&r arm- sess the symmetries abnsymmorphicod groups. Contrary

chair BN-NT's [see Eqs.(12) and (13). In addition, as a to achiral C-NT's, however, armchair and zigzag BN-NT’s

result of the lowered symmetry with respect to and in con- belong 1o different rod-group families. In addition, we
trast to the situation for zigzag C-NT'sJl eight IR-active ~Snowed that armchair BN-NT's with even indexare cen-
modes are Raman active as well. trosymmetricmaterials. Nevertheless, and in contrast to 2D
Finally, let us discuss the irrep’s (ggh[N]:CN‘ Recall @nd3D centrosymm_e’Friand polar crystall_ine materie_xls, they .
that the character table of, possesseBl irrep's 1 Lo =A aref expected to exhibit tge "ﬂlﬁto%alvamc effects discussed in
N/271 * . Ref. 8. Having preserved t order screw-axis symmetry
®BoX;; "E (N is always even for BN-NTk The &N existing in C-NT’s, BN-NT’s could also serve as candidates
phonon modes transform according to the following reducf h lecti fi f high-order h i
ible representation: or the selective generation of high-or er armonics, as re
cently proposed by Alort al. for C-NT's.®
N/2—1 By utilizing the symmetries of the factor grougs,,,
Fh=T29 T ,=6AG6B® X 6E", (17)  Conp @andCy we have found that all armchair BN-NT’s have
j=1 9 Raman- and 4 IR-active phonon modes; all armchair BN-
ch_ N2~ 1 NT's have 14 Raman- and 8 IR-active phonon modes; all
where Tg"=2(AeB®X[, "E)=2T¢, andI'y=A®Ey . chiral BN-NT's have 15 Raman- and 9 IR-active phonon
Of these modes, the ones that transform according’ito  modes. Espemally and unlike the situation for achiral
=A®E; ®E; and/orT', are Raman and/or IR active, re- CN-NT’s, the numbers of Raman- and infrared-active vibra-
spectively. Four of the 8 phonon modes, those which trans- tions in zigzag BN-NT’s are almost twice as in armchair
form asI', andT'g =A have vanishing frequenmé% Con-  BN-NT's.
sequently, the symmetrles and numbers of optically active Note added in proofBN-NT spatial symmetry has re-
phonon modes are given by cen':I%/7 and independently been determined by Damnjanovic
et al.
FRaman AAGSE] ®6E, =nZd 15, (18
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