
PHYSICAL REVIEW B, VOLUME 64, 153408
Symmetry properties of single-walled boron nitride nanotubes
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The symmetry operations for armchair, zigzag, and chiral boron nitride nanotubes~BN-NT’s! are identified.
It is found that each type belongs to a different family ofnonsymmorphicrod groups. Armchair BN-NT’s with
even indexn are found to becentrosymmetric. We determine the numbers of Raman- and infrared-active
vibrations in single-walled BN-NT’s. We find that, in contrast to achiral carbon nanotubes, zigzag BN-NT’s
possess almost twice the Raman- and infrared-active vibrations as armchair BN-NT’s.
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Boron nitride nanotubes~BN-NT’s! are a recently
synthesized1 type of tubular materials, combining stable i
sulating properties2,3 and high strength.4 Ab initio studies of
the spatialstructureof BN-NT’s have predicted the buckling
of B-N bonds, which is the formation of a concentric inn
‘‘B cylinder’’ and outer ‘‘N cylinder.’’3,5 The classification of
BN-NT spatial symmetries, on the other hand, has bee
rather partial so far, being limited to a determination of th
chiralities only.2,6 Owing to the subset relation between t
plane groups of two-dimensional~2D! hexagonal BN and
graphite nets,p3m1#p6mm, single-walled BN-NT’s~here-
after, BN-NT’s! are characterized by the pair of indicesn and
m,2,6 as carbon nanotubes~C-NT’s! do:7 (n,m5n) armchair,
(n,m50) zigzag, and (n,0,m,n) chiral. Thus, the (n,m)
BN- and C-NT’s possess the same lattice periodTz ~Ref. 6!
and numberN of hexagons within their unit cells.

The profound implication of the symmetry properties
BN-NT’s on physical effects can be seen in the recent w
of Král et al.,8 who predicted noncentrosymmetry- an
polarity-based photogalvanic effects in BN-NT’s. More sp
cifically, the direction of the induced photocurrent w
shown to depend on the BN-NT chirality. As will be show
below, however, armchair BN-NT’s with even indexn are
centrosymmetric. Nevertheless and in contrast to 2D and 3
centrosymmetric and polar crystalline materials, th
~should! exhibit the azimuthal photocurrents predicted
Ref. 8. It is the purpose of this work to complete the iden
fication of BN-NT symmetries and determine their ro
groups. The implications of symmetry on BN-NT vibration
spectroscopy is studied thereafter. We determine the num
of Raman- and infrared-active vibrations in BN-NT’s an
compare them to the recently reexamined numbers
C-NT’s.9

In order to account for all the symmetries in BN-NT’s on
can identify those symmetry operations in the plane gro
p3m1 which ‘‘survive’’ the rolling of a 2D hexagonal BN
net into the BN-NT cylinder. Of course, one has to acco
for various newly generated symmetry operations. Alter
tively, one can identify the rod groups of BN-NT’s assub-
groupsof C-NT rod groups.10 For instance, C-NT’s posses
perpendicularC2 axes;10 BN-NT’s, on the other hand, canno
possess such axes becausep3m1 do not possessC2 axes.
Choosing to follow the second approach, let us briefly rec
the symmetries of C-NT’s. The nonsymmorphic rod grou10
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describing achiral C-NT’s with indexn can be decompose
in the following manner~the 13th family of rod groups11!:

G@n#5LTz
3Dnh3@E% S2n#

5LTz
3Dnd3@E% S2n#

5LTz
3@Dnhuz50% ~Dnduz5Tz/4

*Cnv! % Cnv3S2n#,

~1!

where the reference pointz50 denotes the crossing of hor
zontal,sh , and vertical,sv , reflection planes~see Fig. 1!.
LTz

is the one-dimensional translation group with the prim

tive translationTz5uTzu. E is the identity operation. The
screw axisS2n5(z→z1Tz/2,w→w1p/n) involves the lat-
tice smallest nonprimitive translation and rotation. The su
traction of the point groupCnv in Eq. ~1! reflects the set
relation Dnhuz50ùDnduz5Tz/4

5Cnv for all n’s. The glide

planeg is also presented in Fig. 1. It fulfills the multiplica
tion relation g5S2nsv . The existence ofn distinct glide
planes inG@n# stems from the last term in Eq.~1!. The point
group of the rod group,G0@n#, is obtained by setting al
translations~including the nonprimitive ones! in G@n# equal
to zero. From Eq.~1! we obtain

G0@n#5Dnh3@E% C2n#5Dnd3@E% C2n#5D2nh , ~2!

whereC2n5(w→w1p/n) is the rotation embedded inS2n .
The nonsymmorphic rod group10 describing the (n,m)-chiral
C-NT can be decomposed as follows~the fifth family of rod
groups11!:

G@N#5LTz
3Dd3F (o

j 50

N/d21

SN/d
j G

5LTz
3D13F (o

j 50

N21

SN
j G . ~3!

N52(n21m21nm)/dR , wheredR is the greatest common
divisor of 2n1m and 2m1n.7 d is the greatest common
divisor of n and m. SN/d and SN are screw-axis operation
with the orders ofN/d andN, respectively. The point group
of the rod group is readily obtained from Eq.~3!,
©2001 The American Physical Society08-1
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G0@N# 5 (o
j 50

N/d21

CN/d
j 3Dd 5 (o

j 50

N21

CN
j 3D15DN , ~4!

where CN/d5(w→w12dp/N) and CN5(w→w12p/N)
are the rotations embedded inSN/d andSN , respectively.

Let us consider first the achiral BN-NT’s with the rotatio
axis of order n, that is, the (n,n)-armchair ~Fig. 2! or
(n,0)-zigzag ~Fig. 3! BN-NT’s. Unlike the situation for
C-NT’s, they do not possess the same symmetry operati
owing to the lower symmetryp3m1#p6mm. More specifi-
cally, the (n,n)-armchair BN-NT possesseshorizontalplanes
~see Fig. 2!. The lack ofC2 axes~recall that there are noC2
axes inp3m1) leads to the absence of vertical planes in t
case. Consequently, theDnh and Dnd point groups in arm-
chair C-NT’s@see Fig. 1~top! and Eq.~1!# reduce toCnh and
S2n , respectively~see Fig. 2!. The reverse is true for the
~n,0!-zigzag BN-NT, which hasvertical planes~see Fig. 3!,
but no horizontal ones. Consequently, bothDnh and Dnd
point groups in zigzag C-NT’s@see Fig. 1~bottom! and Eq.
~1!# reduce toCnv ~see Fig. 3!. Nevertheless, achiral BN
NT’s still possess symmetries ofnonsymmorphicrod groups

FIG. 1. 2D projection of various symmetries in achiral C-NT
~armchair segment, top; zigzag segment, bottom!: Tz is the primi-
tive translation;S2n is the screw axis with nonprimitive translatio
and rotation, denoted byTz/2 andCn/2, respectively;g is a glide
plane; Dnhuz50 and Dnduz5Tz/4

stand for the corresponding poin
group operations, among whichsh , sv andCn are denoted. Note
theTz/4 shift betweenDnhuz50 andDnduz5Tz/4

, which coexist in all
achiral C-NT’s.
15340
s,

s

because the screw axisS2n ‘‘survives’’ the symmetry lower-
ing described above~see Figs. 2 and 3!. Consequently, the
smallestbuilding block in constructing achiral BN-NT’s is
composed of one B and one N atom, rather than of a rec
gular cell comprising two B and two N atoms, as employ
recently by Kimet al.12 The nonsymmorphic rod group de
scribing the (n,n)-armchair BN-NT with ~either odd or
even! index n can be decomposed in the following manne

G arm@n#5LTz
3Cnh3@E% S2n#

5LTz
3S2n3@E% S2n#

5LTz
3@Cnhuz50% ~S2nuz5Tz/4

*Cn! % Cn3S2n#;

~5!

FIG. 2. 2D projection of various symmetries in armchair BN
NT’s (d, B; s, N!: Tz is the primitive translation;S2n is the screw
axis with nonprimitive translation and rotation, denoted byTz/2 and
Cn/2, respectively;Cnhuz50 andS2nuz5Tz/4

stand for the correspond
ing point-group operations, among whichsh and Cn are denoted.
Note theTz/4 shift betweenCnhuz50 andS2nuz5Tz/4

, which coexist
in all armchair BN-NT’s.

FIG. 3. 2D projection of various symmetries in zigzag BN-NT
(d, B; s, N!: Tz is the primitive translation;S2n is the screw axis
with nonprimitive translation and rotation, denoted byTz/2 and
Cn/2, respectively;g is a glide plane;Cnv stands for the correspond
ing point-group operations, among whichsv andCn are denoted.
8-2
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i.e., G arm@n# belongs to the fourth family of rod groups.11

The reference pointz50 denotes the crossing of the hor
zontal reflection planesh and then-fold rotation axisCn ~see
Fig. 2!. The subtraction of the point groupCn in Eq. ~5!
reflects the set relationCnhuz50ùS2nuz5Tz/4

5Cn for all n’s.

Note that while an hexagonal BN-net (p3m1) does not pos-
sess the inversion symmetry, armchair BN-NT’s with ev
index n do possess it. In addition, let us point out that t
buckling of B-N bonds3,5 has no effect on the spatial sym
metries of BN-NT’s because the B and N atoms form t
concentric cylinders5 in the BN-NT’s. The point group of the
rod group is readily obtained from Eq.~5!,

G 0
arm@n#5Cnh3@E% C2n#5S2n3@E% C2n#5C2nh . ~6!

Similarly, the nonsymmorphic rod group describing t
(n,0)-zigzag BN-NT with~either odd or even! index n can
be decomposed in the following manner:

G zig@n#5LTz
3Cnv3@E% S2n#; ~7!

namely,G zig@n# belongs to the eighth family of rod groups.11

Note that the glide planes in zigzag CN-NT’s@see Fig. 1
~bottom! and Eq.~1!# are preserved in zigzag BN-NT’s@see
Fig. 3 and Eq.~7!#. The point group of the rod group i
readily obtained from Eq.~7!,

G 0
arm@n#5Cnv3@E% C2n#5C2nv . ~8!

Finally, let us discuss the (n,m)-chiral BN-NT. Since there
are no C2 axes in p3m1, the Dd point group in the
(n,m)-chiral C-NT @see Eq. ~3!# reduces toCd in the
(n,m)-chiral BN-NT. Nevertheless, chiral BN-NT’s still pos
sess the nonsymmorphic rod-group symmetries, since
screw axisSN ‘‘survives’’ this symmetry lowering. Conse
quently, the nonsymmorphic rod group describing t
(n,m)-chiral BN-NT can be decomposed as follows:

G ch@N#5LTz
3Cd3F (o

j 50

N/d21

SN/d
j G5LTz

3F (o
j 50

N21

SN
j G . ~9!

Thus, G ch@N# belongs to the first family of rod groups.11

From Eq.~9! we easily find the point group of the rod grou

G 0
ch@N#5Cd3F (o

j 50

N/d21

CN/d
j G5 (o

j 50

N21

CN
j 5CN . ~10!

Having identified their rod-group symmetries, we would li
to find the number of optically active vibrations in BN-NT’s
Aiming at characterizing the symmetry of phonons at
G(k50)-point, we have to consider the irreducible repres
tations ~irrep’s! of the abovenonsymmorphicrod groups at
G. As known from the theory of space groups,13 these irrep’s
are in a one-to-one correspondence with the irrep’s of
corresponding factor groups of the wave vectork50, which
are isomorphic to the point groups of the rod grou
G 0

arm@n#5C2nh , G 0
zig@n#5C2nv , andG 0

ch@N#5CN . We have
to analyze separately armchair, zigzag, and chiral BN-NT
owing to the different point groups mentioned above.
15340
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In order to determine the symmetries~at theG point! of
the 6N phonon modes in armchair BN-NT’s and how ma
modes are Raman or IR active we have to associate t
with the irrep’s ofG 0

arm@n#5C2nh . Recall that the characte
table of C2nh possesses 4n irrep’s,14 GC2nh

5Ag% Bg% Au

% Bu% Œ(j 51
n21$Ejg

6
% Eju

6 %. The 6N phonon modes transform
according to the following irrep’s:

G6N
arm5Ga

arm
^ Gv

54Ag% 2Bg% 2Au% 4Bu

% 2E1g
6

% 4E2g
6

% 2E3g
6

% •••% @31~21!n21#E(n21)g
6

% 4E1u
6

% 2E2u
6

% 4E3u
6

% •••% @32(21!n21]E(n21)u
6 ,

~11!

where

Ga
arm52S Ag% Bu% (o

j 52,4,6, . . .

N21

Ejg
6

% (o
j 51,3,5, . . .

N21

Eju
6 D

stands for the reducible representation of the B and N a
positions inside the unit cell. The prefactor of 2 inGa

arm

reflects the two equivalent and disjoint sublattices made
the B and N atoms in the BN-NT’s.Gv5Au% E1u

6 is the
vector representation. Of these modes, the ones that tr
form according toG t5Ag% E1g

6
% E2g

6 ~the tensor representa
tion! or Gv are Raman or IR active, respectively. Out of t
6N phonon modes, four~which transform asGv and GRz

5Ag) have vanishing frequencies.15 Consequently, the sym
metries and numbers of optically active phonon modes
armchair BN-NT’s are given by

GRaman
arm 53Ag% 2E1g

6
% 4E2g

6 ⇒nRaman
arm 59, ~12!

G IR
arm5Au% 3E1u

6 ⇒nIR
arm54. ~13!

Note that the numbers of Raman- and IR-active phon
modes found for armchair BN-NT’s are almost the same
for armchair C-NT’s~8 Raman- and 3 IR-active modes!.9

Analogously to the treatment given above for armch
BN-NT’s, we would like to discuss the irrep’s ofG 0

zig@n#
5C2nv . Recall that the character table ofC2nv possessesn
13 irrep’s,14 GC2nv

5A1% A2% B1% B2% Œ(j 51
n21Ej . The 6N

phonon modes transform according to the following red
ible representation:

G6N
zig5Ga

zig
^ Gv54A1% 2A2% 4B1% 2B2% (o

j 51

N21

6Ej ,

~14!

whereGa
zig52(A1% B1% Œ(j 51

n21Ej ) andGv5A1% E1. Of these
modes, the ones that transform according toG t5A1% E1
% E2 and/or Gv are Raman and/or IR active, respective
Four of the 6N phonon modes, those which transform asGv
and GRz

5A2, have vanishing frequencies.15 Consequently,
the symmetries and numbers of optically active phon
modes are given by
8-3
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GRaman
zig 53A1% 5E1% 6E2⇒nRaman

zig 514, ~15!

G IR
zig53A1% 5E1⇒nIR

zig58. ~16!

Note that the numbers of Raman- and IR-active phon
modes found for zigzag BN-NT’s are almost twice as
zigzag C-NT’s~8 Raman- and 3 IR-active modes!9 or arm-
chair BN-NT’s @see Eqs.~12! and ~13!. In addition, as a
result of the lowered symmetry with respect to and in co
trast to the situation for zigzag C-NT’s,all eight IR-active
modes are Raman active as well.

Finally, let us discuss the irrep’s ofG 0
ch@N#5CN . Recall

that the character table ofCN possessesN irrep’s,14 GCN
5A

% B% +( j 51
N/221Ej

6 (N is always even for BN-NT’s!. The 6N
phonon modes transform according to the following red
ible representation:

G6N
ch 5Ga

zig
^ Gv56A% 6B% (o

j 51

N/221

6Ej
6 , ~17!

where Ga
ch52(A% B% +( j 51

N/221Ej
6)52GCN

and Gv5A% E1
6 .

Of these modes, the ones that transform according toG t

5A% E1
6

% E2
6 and/or Gv are Raman and/or IR active, re

spectively. Four of the 6N phonon modes, those which tran
form asGv and GRz

5A have vanishing frequencies.15 Con-
sequently, the symmetries and numbers of optically ac
phonon modes are given by

GRaman
ch 54A% 5E1

6
% 6E2

6⇒nRaman
zig 515, ~18!

G IR
ch54A% 5E1

6⇒nIR
zig59. ~19!

Note that the numbers of Raman- and IR-active phon
modes found for chiral BN-NT’s are almost the same as
chiral C-NT’s ~14 Raman- and 6 IR-active modes!.9
.
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In conclusion, we identified three families of rod group
which are relevant for the description of BN-NT’s: the fourt
for the armchair, the eighth for the zigzag, and the first f
the chiral BN-NT’s. Like their carbon ‘‘ancestors’’~achiral,
the 13th family; chiral, the fifth family10! all BN-NT’s pos-
sess the symmetries ofnonsymmorphicrod groups. Contrary
to achiral C-NT’s, however, armchair and zigzag BN-NT
belong to different rod-group families. In addition, w
showed that armchair BN-NT’s with even indexn are cen-
trosymmetricmaterials. Nevertheless, and in contrast to 2
and 3D centrosymmetricandpolar crystalline materials, they
are expected to exhibit the photogalvanic effects discusse
Ref. 8. Having preserved theNth-order screw-axis symmetry
existing in C-NT’s, BN-NT’s could also serve as candidate
for the selective generation of high-order harmonics, as
cently proposed by Alonet al. for C-NT’s.16

By utilizing the symmetries of the factor groupsC2nh ,
C2nv andCN we have found that all armchair BN-NT’s have
9 Raman- and 4 IR-active phonon modes; all armchair B
NT’s have 14 Raman- and 8 IR-active phonon modes;
chiral BN-NT’s have 15 Raman- and 9 IR-active phono
modes. Especially and unlike the situation for achir
CN-NT’s,9 the numbers of Raman- and infrared-active vibr
tions in zigzag BN-NT’s are almost twice as in armcha
BN-NT’s.

Note added in proof.BN-NT spatial symmetry has re-
cently and independently been determined by Damnjano´
et al.17
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