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Effects of nonorthogonality in the time-dependent current through tunnel junctions
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A theoretical technique which allows one to include contributions from nonorthogonality of the electron
states in the leads connected to a tunneling junction is derived. The theory is applied to a single-barrier
tunneling structure and a simple expression for the time-dependent tunneling current is derived showing
explicit dependence of the overlap. The overlap proves to be necessary for a better quantitative description of
the tunneling current, and our theory reproduces experimental results substantially better compared to standard
approaches.
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Achievements in nanomaterials science is expected tetates of a particle in a one-dimensional hard-walled box
have importance in many scientific fields, including informa-with a scattering potential are given. The energy levels are,
tion technology, quantum computing, and fuel cells. In par-as expected, reproduced within the nonorthogonal represen-
ticular, tunneling phenomena have been under focus recentl{gtion (NOR) with much higher accuracy than in the orthogo-
both in magnetic heterostructures and for quantum dot syshal representatiofOR). Attempts that go beyond the transfer
tems. The purpose of this paper is to develop an improvedflamiltonian have been made, e.g., by expanding the nonor-
description of this phenomenon for general tunnel junctionsthogonal states into a new Hilbert spdte-owever, the
with possible application to the aforementioned scientificoroven success and physical transparency of the transfer
guestions. Hamiltonian approach makes it desirable to extend its appli-

To focus the discussion, we mention that conductanc&ability to more general situations where the overlap is large,
measurements on extremely small metal-insulator-metalithout making use of perturbation theory. This can indeed
(MIM) junctions were carried out by Vulleet al! showing  be achieved, which we demonstrate in this paper.

a nonlinear conductance as a function of the bias voltage for In order to overcome the inconsistencies with the transfer
low temperatures. The same behavior has been reported fbtamiltonian formalism, we develop a theoretical approach
MIM double junctiond and Ti/TiQ, tunneling barrier for time-dependent transport through tunneling systems in
systems~ The nonlinearity in the current-voltagel{/)  Which the overlap between the subsystems gives an explicit
characteristics appears for source-drain bias voltages largépntribution to the current. Technically, we will express the
than the spacing of the quasi-one-dimensional subband¥operties of the original system in terms of the operators
since different numbers of subbands become available fogonstructed of the wave functions of each subsystem. The
transport in the forward and reverse directibnn.the study  resulting model structurally resembles the transfer Hamil-
by Simmon$ the current was found to depend nonlinearly ontonian, although the physical interpretation is different. We
the voltage, roughly a¥+ yV2. have chosen the single-barrier system simply to show the

Many theoretical studies of transport in nanostructuredeatures of our approach. The main result of this paper is Eq.
with tunneling barriers rely on the transfer Hamiltorfialf ~ (6) for the time-dependent tunneling current through a single
which contains serious inconsistenct3he principle of the  barrier. This expression is applied to a MIM junction in order
transfer Hamiltonian is a division of the system into sub-to analyze the effect of overlap on the current. To our knowl-
systems. This is motivated by the fact that the physical propedge there does not exist any derivation or analysis of time-
erties of the subsystems may be different and, hence, requifiependent transport in tunneling junctions where the nonor-
different descriptions. Another motivation is that one is di- thogonality isnot disregarded.
rectly offered the possibility to generalize the approach to
any number of tunneling barriers in the system. Transfer TABLE I. The four lowest-energy levels of a 37-nm-long hard-
(tunneling between the subsystems arises due to an overlaf§@/led box with a 5.3-nm-wide and 178-meV-high scattering poten-
of the wave functions in the region of the barrier whereas thd@ located in the middie of the box. The energleseV) are com-
electron operators of the different subsystems are assumed f§ed €xact, with the overlap matrix taken into accalNDR) and

. . S ; . .~ _ignored(OR).
be anticommuting. Qualitatively this may be motivated since
the leakage of a wave function in one subsystem into the

other is exponentially small. Th&V characteristics given in Exact NOR OR

this picture also show a nonlinear structure for large bias 20.265 20.266 18.866
voltages. Quantitatively, though, the assumption of anticom- 27.781 27.862 27.342
muting operators creates serious errors in the calculations of 83.868 83.592 79.383
the current. This becomes particularly evident in the equilib- 111.088 113.793 107.176

rium situation displayed in Table I, in which the four lowest
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Let us now proceed starting with the one-particle Hamil-exponentially small. Thus, this term is negligible and we

tonian arrive at the appealing form of the Hamiltonian
p2
H=Z+V, H= 2 £peChoCpot 2 £qoCaoCan
poel qoeR

whereV is any potential describing a system of two leads

with an insulating layer in between. We introduce the two + 2, (UpgoCheCqot H.C), 3
potentialsV,,a=L,R, for the left(L) and the rightR) sub- Pgo

systems, respectivefy?"'*For instance, the left potential can 3 _ . _
be written as/, = V(x) (- x+a,) +V(a,) #(x—a, ), where wherequa—<¢p|H|¢q_) is the mixing matrix element. The
8(x) is the Heaviside function ana is a turning point for structure of the Hamiltoniari3) very much resembles the

the left subsystem. In each subsystem there are orthonormtéfl“"”lI transfer Ha”}"t"”'aﬁ- Nevertheless, the meaning of the
eigenstates] ¢y, £, ioe ., from which the corresponding gectron operators,,, ,Cy, IS altereq, now carrying mforma-'
field operator i, (t,X)= Sy, 4Cro(t) bi(X) is constructed. tion gf the. full system rathgr than jUSt. of its sgbsystqrm. This
Heret is time and x(r,o) is a vector of the spatial coordi- fact is legible from the anticommutation relati¢oy,.c,, .}
nater and the spiny. Suppose thap is the field operator of =0, . Indeed, wher® ,;— 8 we recover the transfer
the system formed by the potent\al Then, this operator can Hamiltonian with the usual interpretation of the operators
be expanded in terms af, by the trivial identity ¢(t,x) Cks - In this sense we conclude that E&) generalizes the
=2 U (t,X)+[ (L, x) — = ,4,(t1,X)]. Following Ref. 16 we conventional transfer Hamiltonian.

project ¢ onto the subsystera by The expression in Eq(3) is derived for the system in
equilibrium. It is straight forwardly applicable to the non-
equilibrium case by letting, ,— &y,(t) andv pq,— v pge(t)-

For definiteness we derive an expression for the current
ke a,- interpreted_ as. the annihilgtioNnT of a particl_e in _the statqfllqogwg?rrtr:?lig?ohh;hbﬁlrgegaf:ﬁgtgg;g?ai?nggméTlgzégnigegx_
¢« with spin projectiono. Creationc,,, of a particle in the  pressed as the rate of change of the number of particles on,
state ¢y is defined similarly. These projections are possiblesay, the left side of the junction,N_(t)) == p{Nps(t)),

to use directly for a second-quantized form of the Ham“'where<np0(t))=<cgg(t)cpg(t)>. The time development of

tonian. However, such an expansion gives an inconvenient, 'y js given by the Heisenberg equation of motion yielding
expression of the Hamiltonian with the overlap matrix ap-ine tunneling current for each spin projection

pearing explicitly. Thus, in order to proceed further, we de-
fine the operators

Ek{r(t)=f o (X)g(t,x)dXx,

J(t)=2e lm% [V o(D(Cd,(1)Cp0(1))

Cko(D) =2 O Cirglt), L
3 05 (D0 g {Cho()Cpo(1))]

T _ -1\ %=t
Cy,(1)= O..)*c., (1), 1
wherek’ runs over all states ihUR and (’),:kl, is the ele- ot (1O rgS (t 0] @
mentkk’ of the inverse of the overlap matrix of the wave Qe paJpolL

H H _ _ *
functions ¢y, i given by Oe=(dil b )= Oy BY @ iith the coefficientsV 4, =vpge+ O pgeqo describing the
limitation to the case of spin conservation we can omit th&ynneling. In Eq(4) we have identified the correlation func-

spin indices in the overlap integral. The expectation value of;g, (ct Cpo) With the lesser Green functionF s, (t,t)
go~po :

M - pao
the Hamiltonian in these operators is =i(cl,(t)Cp,(1)). This propagator is calculated within the

nonequilibrium technique of Kadanoff and BayMfor the
H:f Y Hy dx="H, +Hg+Hr, (20  Green function qua(t,t’)=(—i)<Tch(t)c$U(t’)>. From
the equation of motion foF ., (t,t") we obtain
where we have definedH,=/y Hy,dx and Hr
=3, (J¥ Hy, dx+H.c). Here, we have neglected all  Fpgu(t,t')=0p,(t,t')O ¢
expectation values that contait—>_,¢,. Furthermore, i
we nqte that from the |den't|ty/_=va+[v—va],a=L,R, +f po(t,11)Vpgo(t1) Ggo(ts,t))dty,
we find that the Hamiltonian of the leadH, 0
ZEKUEaskUCEUCkG + Ekk'Ea<¢k|(v_va)|¢k’>cluck’o’! a (5)
=L,R. The last term is a sum of terms proportional to the
integral of ¢y ¢, over (@g,») or (—=,a,) whena=L or  whereg,,=F, is the conduction electron Green function
a=R, respectively, in which domains the wave functions are(GF) satisfying the equation ig/dt—e,)g(t,t")=45(t
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—t'). The contour integration in Eq5) is brought to real

time integration by the Langreth analytical continuation ig_
rules!® and thus H
E
2
pqa(tt )= gpa—(tt )(9 %"
- :
+Jﬁvaq(r(tl)[grpo'(titl)gc?a-(tlat’) =
-2 -1 0 1 2
+0p,(t, 1) g5, (t1,t)]dt,. bias voltage (V)

The lesser, retarded, and advanced expressions of the con-FIG. 1. TheJ-V characteristics of a 1.46-nm-wide and 1.85-eV-
duction electron GF are high MIM junction (the height measured from the equilibrium
chemical potential(Ref. 19. The experimental results by Haraichi

< S [t et al. (Ref. 5 (solid-dotted-ling are compared with the computa-

Oiolt,t) =if o(ex,)exp —i t,sk(r(tl)dtl ; tions within the NOR(solid-ling), NOR with a 6% increase of the

width (dash-dotted-ling OR (dashed-ling and Simmons formula

(dotted-ling (Ref. 7). The equilibrium chemical potential is
gt t)=Fio(=txt") ex;{ _|f Sk()'(tl)dtl>! 1.75 eV and the conduction band width i#V2=40 eV.

respectively, wheref (x) is the Fermi-Dirac distribution width, and slowly varying mixing and overlap so that their
function. Before we continue the derivation we rewrite therespective values can be taken at the chemical potential,
electron operators in terms of current states, i, (t)  which are reasonable conditions for MIM junctions. In order
=c}, extiu(t)] and cy,(t)=cy, exgd—iu,(t)]. This will  to compare our theory with a realistic example we show in
explicitly show the applied voltage dependenég) of the  Fig. 1 the experimental-V characteristics from Ref. 5
current, sinceu (t) — ur(t) =eV(t). Replacing the summa- (solid-dotted ling together with that of Eq(7) in both the

tion overp andq in Eq. (4) by energy integration in terms of nonorthogonalsolid line) and orthogonaldashed lingrep-

the denS|ty of stategp,(e,) and noting that F{G{qug resentations. We have also included the corresponding result

pqU)(qugpg] 0, the time-dependent tunneling current given by the Simmons formulédotted ling.” Note that the
becomes Simmons formula and the orthogonal representation corre-
spond to the standard methods used to calculate transport.
From the figure, it stands clear that inclusion of the overlap
J,(t)=—2e Refv* - - , S k
o(t) Lro(D)Po(E1)Po( ) contributes significantly to the behavior of teV charac-

¢ teristics and the quantitative agreement is remarkably im-
XJ Virs(t)[f(er) —f(eL)] proved. The increase in the agreement with the experiments
- lies not only in the low-voltage regime but also in that the
t current rises rapidly at a certain threshold voltage, which
Xex;{ —iJ [eV(t,)+ (e —eR)]dty | dt;de deg. influences the time-dependent current. For a 6% increase in
i the barrier width our calculatioribold dash-dotted line
(6) agrees exactly with the experimental results for positive volt-
ages. The remaining discrepancy from the experimental
The mixing and the overlap are here replaced by the funcerve e, g., the observed asymmetry, is believed to stem from
tions _VLRa(t) Vo(eL,er.t) and O g=0 (e ,ep), re the lack of electron interactions in our model—for example,
spectlvely, satlsfymg \Y (Spo'vsqa-vt) Vpgo(t)  and  charging effects. Moreover, in the simple calculations pre-
Y(epe+8qe) =0 pq - The formula(6) reproduces results sented here we have merely computed the wave functions
based on the tranSfer Hamlltonlan in the limit of 0rthog0nal¢ and ¢,u , hormalized to a unit probab”r[y ﬂo% at their
subsystems, i.e., whe®,;— i - It is important to note asymptotlc distances from the barrier-—o and x—o.
the fact that the tunneling coefficienV r,=virs  For simplicity we have used a rectangular potential barrier.
+0 ger, in our formulation explicitly depends on the en-  |n conclusion, we have developed a simple and transpar-
ergies of the electrons involved in the conduction process. ent theoretical approach for time-dependent tunneling cur-
When V(t)=V and a stationary current is establishedrent through nanostructures which has a far wider applicabil-
through the barrier Eq6) reduces to ity compared to standard methods. The ability of dividing the
system into several subsystems, which then can be treated
2 individually, is preserved without loss of accuracy when the
J —2e—f Viro|Tf(e—eV)=f(e)lde. (7))  jnclusion of the overlap of the subsystems is allowed and all
attractive features of the transfer Hamiltonian approach can
This expression is given by assuming a constant density dfe kept. The nonorthogonality is reflected in the nonzero
statesp,(g,)=1/2W, where 2V is the conduction band anticommutation relations of the electron operators of differ-
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ent subsystems. A formula for the time-dependent tunnelingmple, a quantum dot. Then, a generalization to any number
current through a single-barrier structure, E6), has been of contact leads is straightforward.

derived, which shows the necessity of including the overlap J.E. wants to thank U. Lundin for helpful and encouraging
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