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Electron transport through two-dimensional quantum wires with flanges
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~Received 10 May 2000; revised manuscript received 5 September 2000; published 28 September 2001!

We report a detailed theoretical study on electron transport through a quantum wire connected to the source
and drain by flanges. Our results show that the connection flange angle affects significantly the electron
transmission through the wire. Resonant reflection and trapping are observed in our calculations. The optimal
flange angle that allows maximum transmission corresponds to this resonance condition, which is around 18°
and is essentially independent of the width or length of the wire. This angle changes by a few degrees when the
initial energy, the energy spread of the wave packet, or the length of the flange changes. Such a finding can be
used to assist the design of high-conductance quantum wires.
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The fabrication of nanostructures is currently underway
many research institutes around the world, with the area
study ranging from geometric considerations to quant
chaos. As the fabrication of these structures becomes e
and their properties understood, they will start to beco
more important in the electronic industry. If the time lin
described by Sohn1 is used as a guide, mainstream silic
chip manufactures will be reaching the nanometer scale
approximately 10 years time.

Much of the research undertaken thus far has been
cerned with the actual manufacture of these devices and
serving fundamental quantum phenomena~for example,
quantum tunneling and electron blockade!. Recent efforts
have started to focus on using these structures to build us
computing devices~for example, the quantum transistor an
single-electron devices! and how these structures will inte
act with each other and their environment. For an overv
of the field see Refs. 2 and 3.

Due to the quantum nature of the electron in these
vices, the geometric shape and layout becomes increas
important. This paper demonstrates how the connection
quantum wire to its environment and the shape of that c
nection can affect the propagation of a single elect
through the device. From this study an optimal flange an
is obtained, which allows maximum transmission of t
electrons. An interpretation of the physics at work is a
presented.

Although many reported experiments have flanges c
necting the source and drain to the nanodevices,4–8 experi-
mentally changing flange angles is difficult and very cos
because this would require a new device to be constru
for each angle. Consequently, no known experiment has b
performed that varies the flange angle while keeping
other aspects of the device constant. The effect of the flan
on the operation of these devices is usually considered a
artifact of device construction, but this has not been stud
in detail.

Theoretical study of connecting quantum wires to t
source and drain smoothly or via a flange, as discusse
this paper, has partially been investigated by Szafer
0163-1829/2001/64~15!/153304~4!/$20.00 64 1533
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Stone9 and Rasavy.10 Szafer and Stone used a linear flange
connect different width wiresW andW8, and compared the
results obtained to those with no flanges. No detailed an
sis of the flange profiles was undertaken. Rasavy stud
two- and three-dimensional quantum wires connec
smoothly to leads. Their results gave the transmission c
ficients for two different quantum wire widths as a functio
of effective wave number, but they did not study the effect
changing the flange angles on the electron transport thro
quantum wires.

The study undertaken in this paper computes the trans
sion coefficient and conductance of electron transp
through quantum wires for different flange angles. The
sults obtained provide theoretical guidance to the actual
sign of high-conductance quantum wires. The general pro
dure used to study electron transport in nanostructures i
solve directly the time-dependent Schro¨dinger equation with
the appropriate confinement potential. The theoretical form
lation and computational method has been reported in de
elsewhere.11 For completeness, a brief description is giv
below.

The time-dependent Schro¨dinger equation for describing
two-dimensional electron transport in nanostructures with
external potential is given as

i ~]c~x,y,t !/]t ! 5Hc~x,y,t !, ~1!

with a general solution

c~x,y,t !5exp~2 iHt !c~x,y,0!, ~2!

where the system Hamiltonian

H52 ~1/2m* ! ¹21V~x,y!,

¹2 is the Laplacian operator,V(x,y) is the interaction poten-
tial, andm* 50.066me is the effective mass for GaAs.12

To solve the time-dependent Schro¨dinger equation, the
Chebyshev method is used to approximate the expone
operator with a fast Fourier transform scheme to evaluate
action of the Laplacian operator. This has been proven
©2001 The American Physical Society04-1



uc

ti

y

e
to
na
re
rt
in

re

o
i

e
in
a
pa
n

in

le

gt
th
no
Th
gn

ane
uld
nte-
of
nu-
of
ade
ter-
are

n-

wn

elf-
t
the

he
ats
rily
led
t ap-
ap-

nce

as

ss

i
e

e
ical

BRIEF REPORTS PHYSICAL REVIEW B 64 153304
provide a highly efficient and accurate method to study s
two-dimensional devices.11,13,14

The Chebyshev method approximates the exponen
time propagator by a Chebyshev polynomial expansion15

c~x,y,t !5exp@2 i ~Emax1Emin!t#

3 (
n50

N
an~a!fn~2H̃!c~x,y,0!, ~3!

whereEmin andEmax are the minimum and maximum energ
eigenvalues, an(a)52Jn(a) except for a0(a)5J0(a),
Jn(a) are the Bessel functions of the first kind,fn are the
Chebyshev polynomials, and the normalized Hamiltonian
defined as

H̃5 ~1/Emax2Emin! @2H2~Emax2Emin!#. ~4!

This propagation scheme works for arbitrarily long tim
steps, and it is often referred to as a long-time propaga
We examine the electron wave propagation until the fi
wave packet has emerged from the interaction region in
space. In momentum space, the positive and negative pa
the wave function will then be well separated, represent
the transmission and reflection, respectively.

An example confinement potentialV(x,y) is shown in
Fig. 1, together with the initial electron wave packet befo
entering the quantum wire. The flange shown here has
angle of 18° and the wire width is 46.6 nm. The amplitude
the wave packet was scaled to be visible on the graph w
the potential. The potential walls are of finite height, but th
are significantly higher than the incident energy of the
coming electron. As a result, leakage from the potential b
riers is negligible. For the calculations presented in this
per, the potential height is typically 0.11 eV and the incide
energy typically 0.054 eV with a 5% spread, correspond
to a temperature of approximately 3 K.

Calculations were carried out for a range of flange ang
~from 5° to 85°) and wire widths~from 14.8 to 46.6 nm!.
The length of the wire was 211.7 or 106 nm, and the len
of the flanges was 106 nm for the results presented in
paper. It was found that the transmission behavior did
change when a longer or shorter wire was examined.
structures studied here are approximately an order of ma

FIG. 1. Confinement potential and initial wave packet used
the calculations. The wave packet has been scaled to mak
visible.
15330
h

al

is

r.
l
al
of
g

an
f
th
y
-
r-
-
t
g

s

h
is
t
e
i-

tude smaller than those examined experimentally by K
et al.16 Nevertheless, the underlying physics at work sho
be the same. Transmission coefficients are obtained by i
grating the transmitted wave packets in the region right
the quantum wire. Great care was taken to ensure that
merical error was minimized. A detailed error analysis
such a numerical scheme was given in Ref. 11. We also m
sure that the final wave packet has emerged from the in
action region and the calculated transmission coefficients
independent of the propagation time.

Calculations were carried out using smooth-wall pote
tials as opposed to hard-wall potentials~see Fig. 2!. The
geometry used in the calculations is similar to those sho
in Kaneet al.16 and Sohnet al.17 The smooth-wall potentials
are closer to reality as demonstrated, for example, from s
consistent calculation.18 Such smooth-wall potentials canno
be easily dealt with using time-independent methods, as
boundary conditions are difficult to implement. However, t
time-dependent approach we employed in this work tre
the system as an initial value problem, and thus arbitra
complex potentials can be readily implemented. A detai
discussion of the advantages in using the time-dependen
proach against the conventional time-independent
proaches was given in a previous paper.11

It is found that we are able to reproduce the conducta
quantization as observed experimentally19,16 and predicted
theoretically19,9,8 as shown in Fig. 3. The conductance w
computed using the Landauer formula

G5 ~2e2/h! N T, ~5!

whereN5Int@2W/l f # is the integer number of modes acro
the quantum wire,l f is the Fermi wavelength,T is the trans-
mission, andW is the width of the wire.20

n
it

FIG. 2. Hard-wall potential and smooth-wall potential~with
cross section through 250 nm! for the same flange angle. Th
smooth-wall potential represents more realistically a phys
device.
4-2
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The results shown in Fig. 3~a! were calculated for a wire
of 211.7 nm in length and flange angle of 18° with an in
dent energy of 0.054 eV, corresponding to a Fermi wa
length l f'21 nm. As expected from previous studies, t
conductance changes as a stepping function with respe
the wire width. The results shown in Fig. 3~b! were calcu-
lated for a wire 106 nm in length, 18° of flange angle, a
constant width of 100 nm. Again, we obtained quantiz
conductance including a diplike structure between adjac
plateaus, as observed by Csontos and Xu.8

In our calculation, the initial electron wave function is
Gaussian wave packet with a small spread in its energy~ap-
proximately 5%). As thewave packet enters the quantu
wire, components of the wave packet will propagate throu
different available channels. As the central momentum ali
with a particular channel, a slight peak in transmission

FIG. 3. ~a! Conductance as the width of the wire increases a
~b! conductance as the energy of the electron increases.
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observed, and as it moves away, a slight dip occurs. Th
effects are reflected in the conductance presented in Fig.
they relate by Eq.~5!.

The main focus of this work is on the behavior of electr
transport in a two-dimensional nanowire with flanges of d
ferent angles. Shown in Fig. 4 are the calculated conducta
as a function of flange angles for three different wire widt
and a comparison for a width of 46.6 nm between hard-w
and smooth-wall potentials. The overall behavior is in agr
ment with our expectation. For example, if the flange an
is small ~close to0°), the structure is effectively a longe
wire without flanges, while a large flange angle~close to
85°) characterizes a short wire without flanges. Con
quently, their transmission properties should be similar. T
is demonstrated by the results having roughly the same tr
mission probability for small angles and large angles. T
results also show that a smoothed potential does not cha
the overall shape of the curve. Increasing the height of
potential~from 0.109 to 0.163 eV! does not alter the trans
mission coefficients in any way.

What is interesting is the fact that the maximum transm
sion does not occur at 45°, which this type of symme
argument suggests. In fact, the flange angle in the nano
fabricated by Kaneet al.16 is approximately 45°, reflecting
probably the same instinctive expectation. We found that

d

FIG. 4. Conductance for different flange angles from 5° to 8
Results for three different wire widths are shown: 14.8, 23.3, 46
and 46.6 nm with a smooth-wall potential.
e

,

FIG. 5. Propagation of the
electron wave packet for a flang
angle of 18°. Top to bottom, left
to right t50, 0.356, 0.712, 1.068
1.424, and 1.78 ps.
4-3
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FIG. 6. Propagation of the
electron wave packet for a flang
angle of 45°. Top to bottom, left
to right t50, 0.356, 0.712, 1.068
1.424, and 1.78 ps.
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maximum transmission actually occurs at around 18° reg
less of the wire width or length.

By looking at the actual propagation of the wave functi
for the maximum transmission case and comparing it to
case for a flange angle of 45°, an interesting observatio
made ~see Fig. 5 and Fig. 6!. In the 45° case, the wav
function has partial reflection from the flange and the wire
expected. However, in the maximum transmission case
appears as though the wave packet first reflects from
flange and then resonantly reflects from the inlet after be
trapped for a short period of time~in the order of 0.2 ps!.
Such resonance trapping allows the wave packet to read
its momentum components and, as a result, enhances
overall transmission through the wire. With further study
this resonance behavior, additional increase in transmis
may be achieved, perhaps even to 100%. To accomplish
nonlinear-shaped flanges may need to be considered.

When the initial energy, the energy spread of the inco
ing wave packet, or the length of the flange is varied,
resonance condition changes. As a result, the optimal fla
angle shifts slightly. For example, with double the initial e
ergy~0.109 eV! the peak transmission moved about 3° to t
left ~i.e., smaller angle!. Similarly with half the initial energy
ro
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~0.027 eV! the peak transmission moved about 3° to t
right ~i.e., larger angle!. Likewise it was found that by vary-
ing the energy spread~i.e., the width of the Gaussian wav
packet! in the range of 5 – 20 %, corresponding to tempe
tures about 3 –14 K, the optimal flange angle changes b
few degrees. When the length of the flange is doubled
halved, a shift of a few degrees in the optimal angle is a
observed.

Our results follow from detailed numerical calculation
and the optimal flange angle is found to correspond to
resonant reflection and trapping observed in the actual pro
gation of the wave packet. Considering the experimen
condition of Kaneet al., our study leads us to believe that
Kane et al. change the flange angle in their nanowire,
enhanced transmission will be observed.

In conclusion, this paper demonstrates that the way
which a nanowire is connected to the external elect
source can greatly effect the transmission properties of
wire. With Fermi energy around 0.05 eV and a temperat
of 3 K, the optimal flange angle for maximum transmissi
is found to be approximately 18° with a small shift due to
change in the initial energy, the energy spread of the e
tron, or the length of the flange.
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