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Electron transport through two-dimensional quantum wires with flanges
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We report a detailed theoretical study on electron transport through a quantum wire connected to the source
and drain by flanges. Our results show that the connection flange angle affects significantly the electron
transmission through the wire. Resonant reflection and trapping are observed in our calculations. The optimal
flange angle that allows maximum transmission corresponds to this resonance condition, which is around 18°
and is essentially independent of the width or length of the wire. This angle changes by a few degrees when the
initial energy, the energy spread of the wave packet, or the length of the flange changes. Such a finding can be
used to assist the design of high-conductance quantum wires.
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The fabrication of nanostructures is currently underway aStoné and Rasavy® Szafer and Stone used a linear flange to
many research institutes around the world, with the areas afonnect different width wire¥V andW’, and compared the
study ranging from geometric considerations to quantuntesults obtained to those with no flanges. No detailed analy-
chaos. As the fabrication of these structures becomes easigis of the flange profiles was undertaken. Rasavy studied
and their properties understood, they will start to becomdwo- and three-dimensional quantum wires connected
more important in the electronic industry. If the time line Smoothly to leads. Their results gave the transmission coef-
described by Sotnis used as a guide, mainstream silicon ficients for two different quantum wire widths as a function

chip manufactures will be reaching the nanometer scale iRf effective wave number, but they did not study the effect of
approximately 10 years time. changing the flange angles on the electron transport through

Much of the research undertaken thus far has been cor‘flujal_?]tumt Vé'res'd taken in thi tes the t .
cerned with the actual manufacture of these devices and ob- ' 1€ StUdy undertaken in this paper computes the transmis-
serving fundamental quantum phenomeffar example sion coefficient and conduptance of electron transport
quantum tunneling and electron blockad®ecent efforts through quantum wires for different flange angles. The re-

h tarted to f ina th fruct 1o build b ults obtained provide theoretical guidance to the actual de-
ave started 1o focus on using In€se structures to bulid usa ?gn of high-conductance quantum wires. The general proce-
computing devices¢for example, the quantum transistor and

) . o dure used to study electron transport in nanostructures is to
single-electron devicgsand how these structures will inter- ¢\ directly the time-dependent Sétimger equation with

act with each other and their environment. For an overviewne appropriate confinement potential. The theoretical formu-

of the field see Refs. 2 and 3. lation and computational method has been reported in detail
Due to the quantum nature of the electron in these deg|sewheré! For completeness, a brief description is given

vices, the geometric shape and layout becomes increasinghglow.

important. This paper demonstrates how the connection of a The time-dependent Schiimger equation for describing

quantum wire to its environment and the shape of that contwo-dimensional electron transport in nanostructures with an

nection can affect the propagation of a single electrorexternal potential is given as

through the device. From this study an optimal flange angle

is obtained, which allows maximum transmission of the i(d(X,y,0)]dt) =Hp(X,y,t), )
electrons. An interpretation of the physics at work is also
presented. with a general solution
Although many reported experiments have flanges con-
necting the source and drain to the nanodevicsxperi- P(X,y, ) =exp(—iHL) ¥(X,y,0), )

mentally changing flange angles is difficult and very costly

because this would require a new device to be constructeghere the system Hamiltonian

for each angle. Consequently, no known experiment has been

performed that varies the flange angle while keeping the H=— (1/2m*) V2+ V(x,y),

other aspects of the device constant. The effect of the flanges

on the operation of these devices is usually considered as af? js the Laplacian operatoy)(x,y) is the interaction poten-

artifact of device construction, but this has not been studiegjal, andm* =0.066n, is the effective mass for GaA3.

in detail. To solve the time-dependent Sctieger equation, the
Theoretical study of connecting quantum wires to theChebyshev method is used to approximate the exponential

source and drain smoothly or via a flange, as discussed ioperator with a fast Fourier transform scheme to evaluate the

this paper, has partially been investigated by Szafer andction of the Laplacian operator. This has been proven to
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FIG. 1. Confinement potential and initial wave packet used in
the calculations. The wave packet has been scaled to make
visible.
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provide a highly efficient and accurate method to study sucl
two-dimensional devices:*314 00 %0

The Chebyshev method approximates the exponentie(b)
time propagator by a Chebyshev polynomial expanSion

FIG. 2. Hard-wall potential and smooth-wall potentiabith
Py, 1) =exfd —i(Emaxt Emint] cross section through 250 nnfor the same flange angle. The
N smooth-wall potential represents more realistically a physical
3 a@dn(~Fuxy0, @
tude smaller than those examined experimentally by Kane
: et all® Nevertheless, the underlying physics at work should
eigenvalues, a,(a) =2J,(«) except for ag(@)=Jo(@),  pe the same. Transmission coefficients are obtained by inte-
Jn(a) are the Bessel functions of the first kindi, are the  4rating the transmitted wave packets in the region right of
Chebyshev polynomials, and the normalized Hamiltonian ishe quantum wire. Great care was taken to ensure that nu-
defined as merical error was minimized. A detailed error analysis of
H= (L max—Emin) [2H— (Emax—Emin) ] (4)  such anumerical scheme was given in Ref. 11. We also made
sure that the final wave packet has emerged from the inter-
This propagation scheme works for arbitrarily long time action region and the calculated transmission coefficients are
steps, and it is often referred to as a long-time propagatoindependent of the propagation time.
We examine the electron wave propagation until the final Calculations were carried out using smooth-wall poten-
wave packet has emerged from the interaction region in redials as opposed to hard-wall potentidlsee Fig. 2 The
space. In momentum space, the positive and negative part geometry used in the calculations is similar to those shown
the wave function will then be well separated, representingn Kaneet al.*® and Sohret al.*’ The smooth-wall potentials
the transmission and reflection, respectively. are closer to reality as demonstrated, for example, from self-
An example confinement potentiad(x,y) is shown in  consistent calculatiotf Such smooth-wall potentials cannot
Fig. 1, together with the initial electron wave packet beforebe easily dealt with using time-independent methods, as the
entering the quantum wire. The flange shown here has aboundary conditions are difficult to implement. However, the
angle of 18° and the wire width is 46.6 nm. The amplitude oftime-dependent approach we employed in this work treats
the wave packet was scaled to be visible on the graph witthe system as an initial value problem, and thus arbitrarily
the potential. The potential walls are of finite height, but theycomplex potentials can be readily implemented. A detailed
are significantly higher than the incident energy of the in-discussion of the advantages in using the time-dependent ap-
coming electron. As a result, leakage from the potential barProach against the conventional time-independent ap-
riers is negligible. For the calculations presented in this paProaches was given in a previous pafer.
per, the potential height is typically 0.11 eV and the incident It is found that we are able to reproduce the conductance
energy typically 0.054 eV with a 5% spread, correspondingiuantization as observed experimentatly and predicted
to a temperature of approximately 3 K. theoretically®®® as shown in Fig. 3. The conductance was
Calculations were carried out for a range of flange angle§omputed using the Landauer formula
(from 5° to 85°) and wire widthgfrom 14.8 to 46.6 nm
The length of the wire was 211.7 or 106 nm, and the length G=(2€’/h)NT, 5)
of the flanges was 106 nm for the results presented in this
paper. It was found that the transmission behavior did nowhereN= Int2W/\] is the integer number of modes across
change when a longer or shorter wire was examined. Théhe quantum wire); is the Fermi wavelengtH, is the trans-
structures studied here are approximately an order of magnimission, andV is the width of the wire?®

where&pin and&y, 1y are the minimum and maximum energy
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4 FIG. 4. Conductance for different flange angles from 5° to 85°.
ol Results for three different wire widths are shown: 14.8, 23.3, 46.6,
3 e B and 46.6 nm with a smooth-wall potential.

observed, and as it moves away, a slight dip occurs. These
e effects are reflected in the conductance presented in Fig. 3 as
they relate by Eq(5).

The main focus of this work is on the behavior of electron

Conductance 2

4.1 41 82

Energy (m eV) transport in a two-dimensional nanowire with flanges of dif-

®) ferent angles. Shown in Fig. 4 are the calculated conductance
FIG. 3. (@) Conductance as the width of the wire increases and®S @ function of flange angles for three different wire widths
(b) conductance as the energy of the electron increases. and a comparison for a width of 46.6 nm between hard-wall

and smooth-wall potentials. The overall behavior is in agree-

The results shown in Fig.(8 were calculated for a wire Ment With our expectation. For example, if the flange angle
of 211.7 nm in length and flange angle of 18° with an inci-1S Small (close t00°), the structure is effectively a longer
dent energy of 0.054 eV, corresponding to a Fermi waveWire without flanges, while a large flange angteose to
length \(~21 nm. As expected from previous studies, the85°) characterizes a short wire without flanges. Conse-
conductance changes as a stepping function with respect gyently, their transmission properties should be similar. This
the wire width. The results shown in Fig(3 were calcu- is demonstrated by the results having roughly the same trans-
lated for a wire 106 nm in length, 18° of flange angle, andmission probability for small angles and large angles. The
constant width of 100 nm. Again, we obtained quantizedresults also show that a smoothed potential does not change
conductance including a diplike structure between adjacerthe overall shape of the curve. Increasing the height of the

plateaus, as observed by Csontos and®Xu. potential (from 0.109 to 0.163 e)Ydoes not alter the trans-
In our calculation, the initial electron wave function is a mission coefficients in any way.
Gaussian wave packet with a small spread in its enéagy What is interesting is the fact that the maximum transmis-

proximately 5%). As thewave packet enters the quantum sion does not occur at 45°, which this type of symmetry
wire, components of the wave packet will propagate througlargument suggests. In fact, the flange angle in the nanowire
different available channels. As the central momentum aligngabricated by Kaneet all® is approximately 45°, reflecting
with a particular channel, a slight peak in transmission isprobably the same instinctive expectation. We found that the

FIG. 5. Propagation of the
electron wave packet for a flange
angle of 18°. Top to bottom, left
to rightt=0, 0.356, 0.712, 1.068,
1.424, and 1.78 ps.
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FIG. 6. Propagation of the
electron wave packet for a flange
angle of 45°. Top to bottom, left
to rightt=0, 0.356, 0.712, 1.068,
1.424, and 1.78 ps.

(d) (e) )

maximum transmission actually occurs at around 18° regard0.027 eV} the peak transmission moved about 3° to the
less of the wire width or length. right (i.e., larger angle Likewise it was found that by vary-
By looking at the actual propagation of the wave functioning the energy spread.e., the width of the Gaussian wave
for the maximum transmission case and comparing it to theacke} in the range of 5—-20 %, corresponding to tempera-
case for a flange angle of 45°, an interesting observation i#ires about 3—14 K, the optimal flange angle changes by a
made (see Fig. 5 and Fig.)6 In the 45° case, the wave few degrees_. When the length Qf the ﬂar}ge is doupled or
function has partial reflection from the flange and the wire ad'alved, a shift of a few degrees in the optimal angle is also
expected. However, in the maximum transmission case, fePserved. _ _ _
appears as though the wave packet first reflects from the Our resul_ts follow from detglled numerical calculations,
flange and then resonantly reflects from the inlet after being"d the optimal flange angle is found to correspond to the
trapped for a short period of timén the order of 0.2 ps  resonant reflection and trapping observed in the actual propa-
Such resonance trapping allows the wave packet to readjuggtion of the wave packet. Considering the experimental
its momentum components and, as a result, enhances tigendition of Kaneet al, our study leads us to believe that if
overall transmission through the wire. With further study of Kane et al. change the flange angle in their nanowire, an
this resonance behavior, additional increase in transmissiognhanced transmission will be observed.
may be achieved, perhaps even to 100%. To accomplish this, In conclusion, this paper demonstrates that the way in
nonlinear-shaped flanges may need to be considered. which a nanowire is connected to the external electron
When the initial energy, the energy spread of the incom-source can greatly effect the transmission properties of the
ing wave packet, or the length of the flange is varied, thewire. With Fermi energy around 0.05 eV and a temperature
resonance condition changes. As a result, the optimal flangef 3 K, the optimal flange angle for maximum transmission
angle shifts slightly. For example, with double the initial en-is found to be approximately 18° with a small shift due to a
ergy (0.109 eV the peak transmission moved about 3° to thechange in the initial energy, the energy spread of the elec-
left (i.e., smaller angle Similarly with half the initial energy tron, or the length of the flange.
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