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Omnidirectional absolute band gaps in two-dimensional photonic crystals
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A plane-wave expansion method has been developed to investigate the off-plane propagation of electromag-
netic waves in a two-dimensional~2D! photonic crystal. Photonic band-structure calculations indicate that
some 2D crystal structures can support a common band gap for both polarizations and for all off-plane angles
from 0° up to 90°. The presence of such an omnidirectional absolute band gap implies that a 2D photonic
crystal can exhibit some of the functionalities of a three-dimensional crystal with a complete band gap.
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In recent years, a significant effort has been directed
wards photonic crystals—periodic dielectric materials ch
acterized by photonic band gaps~PBG’s!. A PBG can pro-
hibit the propagation of electromagnetic~EM! waves whose
frequencies fall within the band gap region.1–3 These mate-
rials are expected to find many applications in optoelectr
ics and optical communications, such as caviti
waveguides, light-emitting diodes, and most of all, a
optical integrated circuits. In principle, the full appreciatio
of the peculiar characteristics of a PBG should be best r
ized in a three-dimensional~3D! system that exhibits a com
plete band gap along all dimensions in space. This task
not been fully accomplished because of the difficulty in fa
ricating such 3D crystals with band gaps in the opti
regime.4,5 Therefore, it is of vast interest to realize as ma
functionalities of a 3D crystal as possible using lowe
dimensional structures, which are much easier to fabric
Great progress has been achieved in this regard, inclu
3D control of light in a 2D photonic crystal slab,6,7 microla-
ser operation in a cavity formed in an index-guided 2D ph
tonic crystal slab,8 and omnidirectional external reflection b
a 1D photonic crystal.9,10

The interest in 2D photonic crystals has been mainly c
centrated on the in-plane~plane of periodicity, designated a
the XY plane! propagation of EM waves. There exists
range of band gaps in various types of crystal structure
few studies have also been dedicated to the off-pl
propagation.11–15 The photonic band structures thus f
calculated11–13 correspond to an experimental configurati
where the parallel wave-vector componentkz is constant for
all frequencies, even at the long-wavelength limitv50.
More realistic configuration should be a constant incid
angle for all frequencies, and thus, differentkz for different
frequencies. Although a transfer-matrix approach has b
used14 to calculate the transmission spectra at various in
dent angles, and a total reflection was found for an off-pla
angle up to 85°, a more direct approach to view the ex
position of the band gap should be the calculations of p
tonic band structures. In this paper, we will develop an
proach for this particular task, and show the possibility
some 2D crystal structures to have an omnidirectional ab
lute band gap~by which we mean a common band gap f
both polarizations and all off-plane incident angles from
to 90°).
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To achieve a common band gap, we first need a struc
that exhibits an in-plane absolute band gap for bothE andH
polarization modes. The triangular lattice of air cylinders in
dielectric matrix is an excellent candidate.2 Consider an ex-
perimental setup with a plane EM wave incident from
onto the crystal at an off-plane angle ofu; the eigenmode in
the 2D photonic crystal has an off-plane wave-vector co
ponentkz5k0sinu wherek05v/c. Note thatkz is an invari-
ant in different regions of the crystal, either the air holes
the dielectric matrix. The EM fields possess the form o
general Bloch wave:

E~r ,z!5eik0sin uz(
G

EGeikG•r,

H~r ,z!5eik0sin uz(
G

HGeikG•r. ~1!

HerekG5k1G, with k andG being the Bloch wave vecto
and reciprocal vectors in the 2D lattice plane.

The EM fields satisfy Maxwell’s equations,

¹3E5 ik0H, ¹3H52 ik0e~r !E. ~2!

If we directly substitute Eq.~1! into the standard wave equa
tion for pure magnetic or pure electric fields, as has be
done in previous calculations,2,11–13,16–19we will have a
highly complex eigenproblem, because every matrix elem
involves the eigenvaluek0. To overcome this difficulty, we
consider the in-plane components of both electric and m
netic fields. From Eq.~2!, we have
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ExD1 ik0eEy . ~3!

In Fourier space, we have
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FIG. 1. Plots of photonic band structures for
triangular lattice of air cylinders embedded in
dielectric matrix at different off-plane incidenc
angles of EM waves: 0°~left panel!, 45° ~middle
panel!, and 90° ~right panel!. A common band
gap is represented by the cross-hatched reg
The crystal has a filling fraction of air cylinder
f 50.75, and a refractive indexn53.6 for the di-
electric.
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2(
G8

eG,G8EG8
x . ~4!

HereeG,G8 is the Fourier coefficient ofe(r ).
Equation~4! is a standard eigenproblem formulation, a

beit it involves the time-consuming diagonalization of
(4N)3(4N) matrix (N being the number of plane wave
used!. We found that it could be simplified into a (2N)
3(2N) eigenproblem by making transformations

hG,15kG
x EG

y 2kG
x EG

y , hG,25kG
x HG

y 2kG
x HG

y . ~5!

After some analytical derivations, Eq.~4! can be reduced to

S T11 T12

T21 T22D S h1

h2
D 5k0

2S h1

h2
D . ~6!

Here h1 (h2) denotes a column matrix composed of$hG,1%
($hG,2%), and the matricesTi j are defined asT11

G,G8

52P0
G,G8(kG•kG8), T21

G,G85sinuP0
G,G8(kG

x kG8
y

2kG
y kG8

x ),

T12
G,G852sinu@kG

x (P0Y2)G,G82kG
y (P0Y1)G,G8#, and

T22
G,G852kG

x @(sin2uP02I )Y1#G,G82kG
y @(sin2uP02I )Y2#G,G8,

where I is an unit matrix, Y1
G,G85kG

x eG,G8
21 , Y2

G,G8

5kG
y eG,G8

21 , andP05(sin2uI2eG,G8)
21. Whenu50, Eq.~6!

can be decoupled to the standard eigenproblem for thE
(h2) and H (h1) polarization modes of in-plane
propagation.2,18,19At u.0, these two modes are coupled
each other.

With a greatly simplified eigenproblem in hand, we c
now go ahead to calculate the photonic band structures f
2D crystal under an arbitrary incident angleu. Figure 1 dis-
plays the results for a triangular lattice of air cylinders in
dielectric matrix with a refractive index ofn53.6. The air
15310
a

cylinder has a filling fraction off 50.75, and a radius ofr
50.455a, wherea is the lattice constant. The left panel o
Fig. 1 shows the results for the in-plane propagationu
50) for bothE ~solid lines! andH ~dashed lines! polariza-
tion modes. The overlap of theE 2-3 band gap and the fa
wider H 1-2 band gap creates an absolute band gap, with
band edges lying at theG and J symmetry points, respec
tively. The absolute band gap lies at frequency 0.3
20.437(2pc/a), with a normalized size~ratio of gap width
to midgap frequency! of 11.6%. Herec is the light speed in
vacuum. At an off-plane angle ofu545°, both the upper and
lower band edges shift towards higher frequencies of 0.
and 0.450(2pc/a), respectively. Whenu continues to in-
crease and reaches 90°, the lower band edge moves upw
continuously to a frequency of 0.423(2pc/a), while the up-
per band edge downshifts to a frequency of 0.438(2pc/a).
In spite of the shift of these band edges, especially at thG
point, we still obtain a residual common band gap for
off-plane angles up to 90°. This omnidirectional absolu
band gap~shown in Fig. 1 by the crosshatched region! lies
between 0.42320.437(2pc/a), with its normalized size
(3.2%) greatly reduced relative to the in-plane gap.

The opening of an omnidirectional absolute band gap
be more clearly seen from Fig. 2, where the dependenc
the band-edge positions on the off-plane angle are plotted
two different filling fractions (f 50.75 and 0.8) and for crys
tal structures with a refractive index contrast of 3.6 and 4
respectively. Denoted by the horizontal solid (f 50.75) and
dotted (f 50.8) lines, the common band gap is found to
determined by two extreme situations withu50 and 90°.
When u is increased from 0, the lower band edge mov
monotonously towards higher frequencies, while the up
band edge first shifts upwards, and arrives at a maxim
value somewhere, then moves downwards. For the cry
with f 50.8 andn53.6, we find a common gap at 0.45
20.467(2pc/a) with a normalized size of 2.8%, a little bi
smaller than that forf 50.75. At a larger refractive index
contrast asn54.0 ~which is the refractive index of germa
nium in the infrared regime!, the common band gap become
far wider, opening at 0.37720.401(2pc/a) and 0.405
20.445(2pc/a) for f 50.75 and 0.8, with the correspondin
gap size being 6.2% and 9.4%, respectively. For this sys
a larger size of air cylinders is more competent to widen
common band gap.
8-2
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We next investigate the dependence of the common b
gap on the refractive index contrast of the above triangu
lattices. The results are displayed in Fig. 3 for a filling fra
tion of 0.75 and 0.8. The size of the common band gap
both structures increases monotonously with respect to
refractive index contrast. The opening of this gap impose
stringent limit on the refractive index contrast: It must be
strong as 3.4. Figure 3 also indicates that a smallerf is more
competent for opening the common gap when the refrac
index contrast is below 3.7. It should also be noted that w
f is reduced to 0.7, the common gap disappears even
refractive index as high asn53.6. Therefore, the presence
an omnidirectional absolute band gap can only be acc
plished in a 2D crystal with a sufficiently large refractiv
index contrast and filling fraction.

FIG. 2. Dependence of the band edges on the off-plane angl
f 50.75 and 0.8 in a triangular lattice of air cylinders in dielectr
The refractive index contrast is~a! n53.6 and ~b! n54.0. The
common band gap is indicated by the horizontal solid (f 50.75)
and dashed (f 50.8) lines.
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We finally consider a different type of crystal structure
triangular lattice of anisotropic dielectric cylinders in air.
has been shown18 that such a crystal structure with the cy
inders made of a positive uniaxial material can open an
solute band gap for the in-plane propagation. It is interest
to see whether this band gap can survive in the off-pla
propagation. The material we study here is tellurium~Te!, a
uniaxial solid with extraordinarily large refractive indice
and a very strong positive anisotropy in the infrared regim
~the ordinary and extraordinary refractive indices areno
54.8, andne56.2, respectively!. In our calculations, the ex
traordinary axis is set to be parallel to the longitudinal axis
the cylinders (z axis!, so we have principal refractive indice
as nz5ne56.2, nx5ny5no54.8. This structure has bee
shown18 to exhibit a large in-plane absolute band gap
both E and H polarization modes. The band structures a
calculated using the standard plane-wave expans
method17-19 and displayed in the left panel of Fig. 4 forf
50.4. The off-plane band structures~shown in the middle
and right panels of Fig. 4! are calculated using an approac
similar to that derived for isotropic crystal structures@see
Eqs.~1!–~6!#, with only some slight modifications.

For the in-plane propagation, we find an overlap betwe
the H 1-2 andE 4-5 band gaps, with the former complete
covered by the latter, leaving an absolute band gap betw
0.23220.280(2pc/a), and with a normalized size of 18.8%
When the EM wave propagates in a direction out of t
plane, we expect that the band edges of the absolute b
gap should shift and lead to a reduced size of the comm

FIG. 3. Dependence of the common band-gap size on the re
tive index contrast in a triangular lattice of air cylinders in dielect
at f 50.75 and 0.8.
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FIG. 4. Plots of photonic band structures for
triangular lattice of tellurium cylinders in air a
different off-plane incidence angles of EM
waves: 0° ~left panel!, 45° ~middle panel!, and
90° ~right panel!. A common band gap is repre
sented by the cross-hatched region. The telluriu
cylinder has a filling fraction off 50.4, and the
extraordinary axis is parallel to the longitudina
axis of the cylinders.
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BRIEF REPORTS PHYSICAL REVIEW B 64 153108
gap. One significant feature found in this crystal is a f
smaller reduction in the common gap for an off-plane an
up to 90°, as compared to the case of dielectric cylinder
air shown in Figs. 1 and 2. The common band gap is rep
sented in Fig. 4 by the cross-hatched region, and lies
tween 0.24220.280(2pc/a) with a size of 14.6%. The rea
son for this modest reduction is that the in-plane band ga
determined by theH 1 band~the lower band edge!, which is
well above theE 3 band. Therefore, there is some space
off-plane angle for theE 3 band to first evolve to exceed th
H 1 band, before it finally serves as the lower band edge
determines the size of the common gap. If the common b
gap is measured by theG point of theE 3 band, like in Fig.
1, an over 40% size reduction of the common gap is fou
compared to the in-plane gap, while the real size reductio
about 20%.

Now we have seen that there can exist omnidirectio
absolute band gaps in some 2D photonic crystal structu
Although these are not true 3D complete band gaps~as is
clear when we observe that the band gap in Figs. 1 –4
be closed for an infinitely largekz well beyond kz
5k0 sin90°5k0), they can still find a lot of applications
such as omnidirectional reflectors, mirrors, microcaviti
and photonic crystal fibers.20 More importantly, these
omnidirectional absolute band gaps offer a potential to mo
the functionalities of 3D photonic crystals with low
dimensional structures that are easier to fabricate. Since
EM wave withkz up to k0 ~or a propagation angle in air u
to 90°) is inhibited in our structures, and a large part of th
2D crystal structures is occupied by air, we expect light em
.
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ted from a source embedded in the air region will be larg
confined three dimensionally around the source, provid
that the light source has a configuration such that the emi
light has negligible components of large off-plane wave m
mentum withkz.k0. This can be achieved when the ligh
source has a size along thez axis larger than the wavelengt
of the emitted light. It is interesting to make a comparis
with the recently discussed9,10 1D photonic crystals that can
function as omnidirectional reflectors for external incide
light. These 1D structures only support an off-plane band
for thosekz belowk0, while all composite materials are of
refractive index larger than 1. Therefore, all homogene
wave components withkz betweenk0 andnk0 (n being the
lowest refractive index in the crystal! will leak out of the
crystal, and thus the 3D confinement cannot be achieved

In summary, we have developed a plane-wave expan
method to account for the dependence of band gaps in a
photonic crystal on the off-plane incident angle of E
waves. Omnidirectional absolute band gaps were found
some 2D crystal structures. These simple 2D structures
allow one to realize some of the functionalities of a 3D ph
tonic crystal. For example, incorporation of such 2D stru
tures into an ordinary photonic crystal plane slab may s
nificantly improve the efficiency of microlasers.8
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