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Analytical expressions for the charge-charge local-field factor and the exchange-correlation kerne
of a two-dimensional electron gas
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We present an analytical expression for the static many-body local field factorG1(q) of a homogeneous
two-dimensional electron gas, which reproduces diffusion Monte Carlo data and embodies the exact
asymptotic behaviors at both small and large wave numberq. This allows us to also provide a closed-form
expression for the exchange and correlation kernelKxc(r ), which represents a key input for density functional
studies of inhomogeneous systems.
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The static charge-charge response functionxC(q) of a
paramagnetic electron gas~EG! can be written in terms o
the Lindhard functionx0(q) by means of the spin-symmetri
many-body local fieldG1(q) through the relationship

xC~q!5
x0~q!

12vq@12G1~q!#x0~q!
. ~1!

ThusG1(q) is a fundamental quantity for the determinatio
of many properties of a general electron system. By defi
tion G1(q) is meant to represent the effects of the excha
and correlation hole surrounding each electron in the fl
and is therefore a key input in the density functional the
~DFT! of the inhomogeneous electron gas1 and in studies of
quasiparticle properties~such as the effective mass and t
effective Lande` g factor! in the electronic Fermi liquid.2

For what concerns DFT calculations, a common appro
mation to the unknown exchange-correlation energy fu
tional Exc@n# appeals to its second functional derivative

Kxc(n̄,ur2r 8u)[
d2Exc@n#

dn~r !dn~r 8!
U

n̄

, ~2!

where n̄ is the average local density of the EG. The loc
field factor and the exchange-correlation kernel are sim
related in Fourier transform by

K̃xc~q![E ddre2 iq•rKxc~r !52vqG1~q!, ~3!

where d is the dimensionality of the system andvq is the
Fourier transform of the Coulomb potentiale2/r . In what
follows we shall only consider the case of two spatial dime
sions, withd52 andvq52pe2/q. The corresponding three
dimensional case was discussed in Ref. 3.

A number of exact asymptotic properties of the static
cal field factor in two dimensions are readily proven. In p
ticular,

lim
q→0

G1~q!5A1

q

kF
~4!
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with

A15
1

r sA2
S 12

k0

k D , ~5!

wherekF5A2pn5A2/r saB is the Fermi wave number,r s

5ApnaB
2 is the usual EG density parameter withaB the

Bohr radius,k05pr s
4/2 is the compressibility of the idea

gas in units ofaB
2/Ryd, whilek is the compressibility of the

interacting system. By making use of the thermodynam
definition of k we can write

k0

k
512

A2

p
r s1

r s
4

8 Fd2ec~r s!

drs
2

2
1

r s

dec~r s!

drs
G , ~6!

whereec(r s) is the correlation energy per particle. Once th
function is known, it is possible to calculateA1 . For the
present purposeec(r s) can be taken from the Monte Carl
data of Ref. 4.

The asymptotic behavior ofG1(q) at large q is also
known exactly:5,6

lim
q→`

G1~q!5C1

q

kF
1B1 , ~7!

whereC1 is proportional to the difference in kinetic energ
between the interacting and the ideal gas,

C15
t2t0

2pne2
kF52

r s

2A2

d

drs
@r sec~r s!#. ~8!

MoreoverB1512g(0), g(0) being the value of the pair
correlation function at the origin. Forg(0) we use the simple
expression

g~0!5
1/2

111.372r s10.0830r s
2

, ~9!

which has been derived7 by an interpolation between th
result of a low-r s expansion, including the second order d
rect and exchange contributions to the energy in the p
magnetic state, and the result of a partial-wave phase-s
analysis near Wigner crystallization. This interpolation fo
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mula is in excellent agreement with many-body calculatio
based on the ladder approximation.8,9

In this work we fit the values ofG1(q) originally ob-
tained by the diffusion Monte Carlo~DMC! method in Ref.
10 in such a way as to obtain analytical expressions for b
K̃xc(q) andKxc(r ). Our formula forG1(q) reads

G1~ q̄!5A1q̄F er s/10

A11~A1er s/10q̄/B1!2
1~12er s/10!e2q̄2/4G

1C1q̄~12e2q̄2
!1P1~ q̄!e2a1q̄2

, ~10!

where q̄5q/kF and P1(q̄) is the polynomial P1(q̄)5g2q̄2

1g4q̄41g6q̄61g8q̄8.
Some comments are needed in order to appreciate

correct physics which has been incorporated in Eq.~10!. ~i!
Our functional form embodies the exact asymptotic beh
iors already introduced in Eqs.~4! and~7!. ~ii ! The exponen-
tial factor er s/10 ensures thatG1(q) rapidly reaches the
asymptotic behavior given by Eq.~7!, a fact that is borne ou
by the DMC data atr s510. ~iii ! In the high-density limit
(r s→0) the term in square brackets tends to a tw
dimensional Hubbard-like term,11 while the second and third
terms tend to zero.~iv! The introduction of the high-degre
polynomial P1(q) serves to reproduce the rich structure
intermediate wave number which is exhibited byG1(q) as
compared to the three-dimensional case.12

The only free parameters are contained in the last term
Eq. ~10! and are fitted so as to minimize the differences fro
the DMC numerical results. For practical reasons it pro
useful to have a continuous parametrization of the coe
cients of the polynomialP1(q), which is at least valid in the
range 0<r s<10. We therefore propose the following:

a1~r s!5
0.159810.8931~r s/10!0.9218

110.8793~r s/10!0.9218
,

g2~r s!50.5824~r s/10!220.4272~r s/10!,

g4~r s!50.2960~r s/10!21.003~r s/10!5/210.9466~r s/10!3,

g6~r s!520.0585~r s/10!2,

g8~r s!50.0131~r s/10!2. ~11!

In Fig. 1 we compare the fit given by Eqs.~10! and~11! with
the DMC data forr s51,2,5, and 10. In Fig. 2 we show th
local field factorG1(q) as from Eq.~10! for various values
of r s : the evolution from the low-r s regime to the high-r s
one is clear. The fact that the highest peak inG1(q) occurs
at r s55 is due to the behavior ofC1(r s): this is a function
that increases up tor s.3.5, reaches a maximum and the
decreases. Thus, the value ofC1 at r s55 is larger than that
at r s510.

We turn next to the evaluation ofKxc(r ). From Eqs.~3!
and~10! the expression of the exchange-correlation kerne
real space~in Ryd! is readily obtained as
15310
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Kxc~r !5M1

d (2)~r !

kF
2

1M2

exp@2B1kFr /~A1er s/10!#

kFr

1M3e2(kFr )2
1M4e2(kFr )2/4

1 (
n51

4

M5,2nF2n~a1 ,kFr !, ~12!

where M1524pA2C1 /r s , M2522A2B1 /r s , M3

524A2A1(12er s/10)/r s , M45A2C1 /r s and M5,n

522
3
2 gn /r s . The functionFn(a,x) is given by

FIG. 1. The local field factorG1(q̄) for various values ofr s as
computed according to Eq.~10!, in comparison with the DMC data
of Ref. 10.

FIG. 2. The local field factorG1(q) as from Eq.~10! for vari-
ous values ofr s .
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Fn~a,x!5E
0

`

dyynJ0~xy!e2ay2

5
1

2
a2(11n)/2GS 11n

2 D 1F1S 11n

2
;1;2

x2

4a D ,

~13!

whereG(z) is Euler’s Gamma function and1F1(a;b;z) is
Kummer’s function. In practice the functionFn(a,x) can be
obtained via the recursive relation

Fn12~a,x!52
dFn~a,x!

da
,

F2~a,x!5
Ap

16a5/2F ~4a2x2!I 0S x2

8a D
1x2I 1S x2

8a D Ge2x2/8a, ~14!

whereI n(z) is the modified Bessel function of ordern. It is
also useful to recall thatdI0(z)/dz5I 1(z) and that
dI1(z)/dz5I 0(z)2I 1(z)/z.

In Fig. 3 we show the exchange-correlation kernelKxc(r )
for various values ofr s as from Eq.~12! ~without the first
term, which contains a two-dimensionald function!. It is
pleasing to note that no long-range oscillations are prese
Kxc(r ). Notice that theM2 term in Eq. ~12! diverges for
kFr→0.

In conclusion, we have presented an analytic parametr
tion of the local field factor entering the dielectric respon
of the two-dimensional electron gas in the paramagn
ys

ns

15310
in

a-
e
ic

state, incorporating the known asymptotic behaviors and g
ing an accurate description of the available quantum Mo
Carlo data. We have obtained from it an analytic express
of the exchange-correlation kernel for density-functional c
culations on inhomogeneous two-dimensional electronic s
tems.
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FIG. 3. The exchange-correlation kernelKxc(r ) as from Eq.~12!
for various values ofr s .
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