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Analytical expressions for the charge-charge local-field factor and the exchange-correlation kernel
of a two-dimensional electron gas
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We present an analytical expression for the static many-body local field f@ctégq) of a homogeneous
two-dimensional electron gas, which reproduces diffusion Monte Carlo data and embodies the exact
asymptotic behaviors at both small and large wave numbdtis allows us to also provide a closed-form
expression for the exchange and correlation kelkgg{r), which represents a key input for density functional
studies of inhomogeneous systems.
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The static charge-charge response functigiiq) of a  with
paramagnetic electron gaEG) can be written in terms of

the Lindhard functiornyy(q) by means of the spin-symmetric A — 1 1 Ko )
many-body local field5, (q) through the relationship * fs\/E k)’

Xo(a) whereke= \2n=\2/r g is the Fermi wave number,

xc(d)= 10 1= G () Txo(a) (1) =\/#naj3 is the usual EG density parameter with the

Bohr radius,«xo=7r2/2 is the compressibility of the ideal
ThusG, (q) is a fundamental quantity for the determination gas in units ofa3/Ryd, while « is the compressibility of the
of many properties of a general electron system. By definiinteracting system. By making use of the thermodynamic
tion G . (q) is meant to represent the effects of the exchangejefinition of x we can write
and correlation hole surrounding each electron in the fluid
and is therefore a key input in the density functional theory Ko \/5 ri d?e.(rs) 1 dey(rg)
(DFT) of the inhomogeneous electron gamd in studies of -ty a2 1. dr.
quasiparticle propertiessuch as the effective mass and the s
effective Landeg facton in the electronic Fermi liquid. wheree.(ry) is the correlation energy per particle. Once this
For what concerns DFT calculations, a common approxifunction is known, it is possible to calculate, . For the
mation to the unknown exchange-correlation energy funcpresent purpose.(rs) can be taken from the Monte Carlo
tional E, n] appeals to its second functional derivative data of Ref. 4.
The asymptotic behavior o5, (q) at largeq is also

_ L PEN] known exactly>®
Kae(nr=r')=———+—- , 2
on(ryon(r’) -

1 )

. q
limG.(q)=C.j—+B+, (7)
g—o F

wheren is the average local density of the EG. The local
field factor and the exchange-correlation kernel are simplyvhereC_ is proportional to the difference in kinetic energy

related in Fourier transform by between the interacting and the ideal gas,
~ d ig-r C t_to k I’S d 8
= —I1q- — = = — — —
Kxc(Q)zf dre Kxc(r)—_UqG+(Q), (3) + 2'77'[‘162 F 2\/5 drs[rsfc(rs)]- ( )

whered is the dimensionality of the system ang is the ~ MoreoverB, =1-g(0), g(0) being the value of the pair-
Fourier transform of the Coulomb potentief/r. In what ~ correlation function at the origin. F@(0) we use the simple
follows we shall only consider the case of two spatial dimen-€Xpression
sions, withd=2 andvq=27re2/q. The corresponding three-

dimensional case was discussed in Ref. 3. 9(0)= 172 9)
A number of exact asymptotic properties of the static lo- 1+1.372+ 0.08305’
cal field factor in two dimensions are readily proven. In par-

which has been derivécby an interpolation between the
result of a lowrg expansion, including the second order di-
rect and exchange contributions to the energy in the para-

ticular,

lim G+(q)=A+i (4) magnetic state, and the result of a partial-wave phase-shift

q—0 Ke analysis near Wigner crystallization. This interpolation for-
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mula is in excellent agreement with many-body calculations 16 L e T
based on the ladder approximatioh. 14+ 1 F <
In this work we fit the values oG, (q) originally ob- 12 1 .
tained by the diffusion Monte Carl®MC) method in Ref. 1| 41 F -
10 in such a way as to obtain analytical expressions for botk"+ 08F = 41 F .
XC(q) andK,.(r). Our formula forG, (q) reads 0.6 [ . - -
0.4 . o
B or10 . oz L rs=1.0 i | =2.0 i
G+(q):A+q — +(1—er5/10)e7q /4 0 I 1 1 I 1 1 1 I
\/1+ (A+ ers/qu/B+)2 1.6 T T T T T T T T
_ _ 1.4 E - 4
+Cq(l—e @) +P, (e 7, (10) 12| I ]
1 - - - -
whereq=q/ke and P.(q) is the polynomial R(q)=g,q? g; 08 F 41 4
+ 040"+ 960° + ga0®. 06 1t -
Some comments are needed in order to appreciate th 04 rso 1 T <100 1
correct physics which has been incorporated in @q). (i) 0.2 ¢ 1 K s
Our functional form embodies the exact asymptotic behav- o0 PE— ('5 é 0 o P— é ;3 o

iors already introduced in Eq&4) and(7). (i) The exponen-
tial factor e''° ensures thaiG, (q) rapidly reaches the
asymptotic behavior given by E7), a fact that is borne out FIG. 1. The local field facto6 . (q) for various values of s as
by the DMC data ar¢=10. (jii) In the high-density limit computed according to E¢10), in comparison with the DMC data
(r¢—0) the term in square brackets tends to a two-of Ref. 10.
dimensional Hubbard-like terdt,while the second and third

terms tend to zerdiv) The introduction of the high-degree

polynomial P.(q) serves to reproduce the rich structure at Kyo(r)=M;

alke ake

5@ (r exd —B ., ker/(A, st
()+M H—B.ker/(A,e's0)]

! ) S o 2
intermediate wave number which is exhibited By (q) as k2 Ker
compared to the three-dimensional case. Cken? Ckena
The only free parameters are contained in the last term in +Mge™ (ke + M e (k)
Eq. (10) and are fitted so as to minimize the differences from 4
the DMC numerical results. For practical reasons it proves i E M oFon(@s Ker) (12)

useful to have a continuous parametrization of the coeffi-
cients of the polynomiaP_ (q), which is at least valid in the

range Gsr¢=10. We therefore propose the following: Where M= —4m2C, Ir., M,=—22B./r., M,
=—4\2A, (1-€/rs, Mg=y2C./rg and M
0.1598+ 0.8931r/10)%-9218 + s 4 +17s 5n

3
a.(r)= =—229g,/rs. The functionF,(«,x) is given by
19T T 87031 J10)0%218 ne "

1.6 T T T T

9,(rs)=0.5824r/10)>—0.4272r J10),
14
04(rs) =0.296(r J/10)— 1.003r J/10)°+ 0.9466r/10)>,
1.2

ge(rs)=—0.0585r./10)2,

gs(rg)=0.0131r4/10)2. (1)

G,(9)

0.8
In Fig. 1 we compare the fit given by Eq4.0) and(11) with

the DMC data forrg=1,2,5, and 10. In Fig. 2 we show the 0.6
local field factorG . (q) as from Eq.(10) for various values

of rg: the evolution from the low~ regime to the high= 0.4
one is clear. The fact that the highest pealkGin(q) occurs
atr =5 is due to the behavior € , (r): this is a function 0.2
that increases up tos=3.5, reaches a maximum and then
decreases. Thus, the value®f atr=5 is larger than that 0 : . . .
0 2 4 6 8 10
atr,=10. ok

We turn next to the evaluation d&,.(r). From Eqgs.(3)
and(10) the expression of the exchange-correlation kernel in - FIG. 2. The local field facto6..(q) as from Eq.(10) for vari-
real spacdin Ryd) is readily obtained as ous values of .
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Fa(a,x)= f dyy'Jo(xy)e™ ™’ oal ]
0 :

1+n

2 lFl

1+n X2 r=1.0
2 ) o

7 Y.
13

whereI'(z) is Euler's Gamma function andF,(a;b;z) is
Kummer’s function. In practice the functidf,(«,Xx) can be
obtained via the recursive relation

1
_ _a—(1+n)/21-(

Kye() (Ryd)

dF,(a,Xx)

Fn+2(ayx):_ da ’
N
16052

2
X
+ X2 1( 8_>
& FIG. 3. The exchange-correlation kerigl(r) as from Eq(12)

wherel (2) is the modified Bessel function of order It is ~ foF various values of ;.

also useful to recall thatdly(z)/dz=1,(z) and that : . . . -
d1.(2)/dz=1o(2) 1 ,(2)/z. state, incorporating the known asymptotic behaviors and giv

ing an accurate description of the available quantum Monte
. . . Carlo data. We have obtained from it an analytic expression
for various values of ; as from Eq.(12) (without the first of the exchange-correlation kernel for density-functional cal-

term,_wh|ch contains a two-dlmen5|on_él fl_mCt'on)‘ It is culations on inhomogeneous two-dimensional electronic sys-
pleasing to note that no long-range oscillations are present i

foms.
K,(r). Notice that theM, term in Eqg.(12) diverges for

Ker—0. This work was partially supported by MURST through

In conclusion, we have presented an analytic parametrizahe PRIN 1999 program. We are grateful to Dr. S. Moroni for
tion of the local field factor entering the dielectric responsefruitful discussions and for providing us with the results of
of the two-dimensional electron gas in the paramagnetithe Diffusion Monte Carlo study.

Fz(a,x):

2
(4a—X2)IO<g—a)

e X2/8a' (14)

In Fig. 3 we show the exchange-correlation kendgl(r)
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