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Magnetic correlation functions in SO„5… theory of high-Tc superconductivity
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In this paper we present analytical calculations of a variety of magnetic correlation functions within Zhang’s
SO~5! quantum rotor theory of high-Tc superconductivity. Using the spherical approach for three-dimensional
quantum rotors we derived explicit analytical formulas for variety of dynamic spin susceptibilities related to
the lattice version of the SO~5! nonlinear quantum-sigma model . We show in detail the frequency dependence
of these quantities for various settings of relevant control parameters~like temperature, quantum fluctuations!
in normal and superconducting state. We found the results in overall qualitative agreement with basic phenom-
enology of high-Tc cuprates.

DOI: 10.1103/PhysRevB.64.144522 PACS number~s!: 74.20.Mn, 74.25.Dw, 75.10.Jm
a
-

on
o
b
a

d
.
t

he
r

y

o
lin

in
te
n
e
p
e
t

ot
l a
d
o

as

d
a

a

a
o

rs,
m

ps

e
uc-

e
rgy
ld-

an

di-
he
an

pic
i-
m

at
in-
a

ss-

nt
s
the

la-

n
ne

dia-
n-
of
I. INTRODUCTION

Over a last decade neutron-scattering experiments h
provided a considerable insight in understanding of highTc

superconductors. Neutron measurements have shown
persistence of antiferromagnetic~AF! correlations over the
whole metallic state of cuprates demonstrating the str
electronic correlations existing in these compounds. It is n
well known that all the cuprates show the same generic
havior. Depending on charge doping they can show up
antiferromagnets ord-wave superconductors~SC! and the
intimate connection between these two orders is believe
be fundamental to the underlying superconducting effects
undoped cuprates, the magnetic interactions between
electrons force an antiferromagnetic arrangement of t
spins. These interactions must change when electrons sta
move around, with the pairing of charge carriers being
consequence. As a result, magnetic interactions must pla
important role in every theory of high-Tc superconductivity.
The precise nature of antiferromagnetic correlations and h
they influence electronic properties are the most puzz
aspects of high-Tc cuprate superconductors.

It is now widely accepted that studying dynamical sp
susceptibility of high-temperature superconducting cupra
may be instrumental for the understanding of their ma
unusual properties. Among these issues, the existenc
resonance peaks in the superconducting state and its sup
sion in the normal state are the most intriguing. A great d
of theoretical studies have been made to understand
structure of measured dynamical spin susceptibility in b
normal and superconducting states. A phenomenologica
tiferromagnetic Fermi-liquid theory has been develope1

Furthermore, quantum Monte Carlo simulations of a tw
dimensional Hubbard model have been performed.2 In other
works calculations of susceptibilities using random-ph
approximation have been carried out.3–7

Recently Zhang proposed a theory for high-Tc cuprates,
which uses SO~5! symmetry to unify antiferromagnetism an
superconductivity, offering uniform description of the glob
phase diagram of this class of materials.8 In that approach a
three-dimensional order parameter describing the AF ph
~the staggered magnetization! is combined with a complex
order parameter of a spin singletd-wave SC phase creating
five-component vector called ‘‘superspin.’’ The main idea
0163-1829/2001/64~14!/144522~10!/$20.00 64 1445
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SO~5! theory is to introduce well-defined rotation operato
which can transform AF into SC and vice versa. Aside fro
them, the SO~5! symmetry group contains as subgrou
SO~3! symmetry of spin rotations~which is spontaneously
broken in the AF phase! and the electromagnetic SO~2! in-
variance~whose breaking defines SC phase!. Both ordered
phases arise once SO~5! is spontaneously broken and th
competition between antiferromagnetism and supercond
tivity is related to the direction of the ‘‘superspin’’ in th
five-dimensional space. In Zhang’s theory, the low-ene
dynamics of the system is determined in terms of the Go
stone bosons and their interactions specified by the SO~5!
symmetry. The kinetic energy of the system is that of
SO~5! rigid rotor and the system is described by an SO~5!
nonlinear quantums model (NLQsM). The SO~5! quantum
rotor model offers a Landau-Ginzburg-like~LG! for the
high-Tc problem. However, it goes much beyond the tra
tional LG theory, since it captures the dynamics. While t
SO~5! symmetry was originally proposed in the context of
effective field-theory description of the high-Tc supercon-
ductors, its prediction can also be tested within microsco
models.9–14 For example, numerical evidence for approx
mate SO~5! symmetry of the Hubbard model came out fro
exact diagonalization of small-sized clusters.15 Moreover the
SO~5! symmetry requires that collective charge excitations
half-filling must have the same mass as the collective sp
wave excitations. This requirement is clearly violated in
Mott insulating system, where all charge excitations~mea-
sured with respect to a particle-hole symmetric point! have a
large energy gap, while the spin-wave excitations are ma
less. To address this issue Zhanget al.16 constructed a low-
energy effective theory@the so-called projected,pSO(5)
model#, where the Mott-Hubbard gap is taken into accou
by means of a Gutzwiller projection, which eliminate
double-occupied states. It has been shown that despite
symmetry-breaking effects of the projection, static corre
tion functions remain exactly SO~5! symmetric, while dy-
namic breaking of SO~5! symmetry becomes important whe
quantum fluctuations are taken into account. Ultimately o
should be able to compare the prediction from the SO~5!
theory with experimentally observed features of high-Tc su-
perconductors. While the global features of the phase
gram deduced from SO~5! theory based on spherical qua
tum rotors17 agree qualitatively with the general topology
©2001 The American Physical Society22-1
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the observed phase diagram of high-Tc superconductors, a
systematic study of magnetic properties of the SO~5! theory
are called for.

The purpose of the present paper is twofold: firstly,
want to study quantitatively the variety of magnetic corre
tion functions resulting from the SO~5! theory, thereby sub-
stantiating this theoretical framework. Secondly, our stu
may also provide a useful diagnostic tool for testing the ba
principles of SO~5! theory by comparing the quantitativ
predictions ~e.g., magnetic correlation functions! with the
outcome of the relevant experiments.

The outline of the remainder of the paper is as follows.
Sec. II we begin by setting up the quantum Hamiltonian a
the corresponding Lagrangian. In Sec. III we introduce
intersite spin-spin correlation function in terms of SO~5! al-
gebra generators. We calculate static magnetic susceptib
and, subsequently, dynamic magnetic responses. Finall
Sec. IV we summarize the conclusions to be drawn from
work.

II. HAMILTONIAN AND THE EFFECTIVE LAGRANGIAN

We start from the low-energy Hamiltonian proposed
Zhang on a discrete three-dimensional simple-cubic~3DSC!
lattice,8

H5
1

2u (
i

(
m,n

Li
mnLi

mn

2(
i , j

Ji j ni•nj2V~ni !22m(
i

L i
15, ~1!
re

ra
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where i, j 51, . . . ,N label lattice sites (N is the number of
lattice sites! andm, n51, . . . ,5mark the superspin compo
nentsni5(n1 ,n2 ,n3 ,n4 ,n5) i , wherenAF,i5(n2 ,n3 ,n4) i re-
fers to antiferromagnetic andnSC,i5(n1 ,n5) i superconduct-
ing order parameters, respectively. In Zhang’s formulat
these are treated as mutually commuting coordinates
their dynamics is given by their conjugate momenta,

pm i5 i
]

]nm i
,

@nm ,pn#5 idmn . ~2!

The kinetic energy of the system, given by the first part
Eq. ~1!, is simply that of an SO~5! rigid rotor (ni

251, pi

•ni50, see Ref. 18!. Here,

Li
mn5nm i pn i2nn i pm i ~3!

are the generators of the SO~5! algebra andLi
15 corresponds

to a charge operatorQ, whose expectation value yields th
charge concentration (m is the chemical potential measure
from the half-filling!. The remainingLmn operators are ex-
pressed via total spinS5(Sx ,Sy ,Sz) and so-called ‘‘p ’’ @p
5(px ,py ,pz)# operators as follows:
L5F 0

px
†1px 0

py
†1py 2Sz 0

pz
†1pz Sy 2Sx 0

Q 2 i ~px
†2px! 2 i ~py

†2py! 2 i ~pz
†2pz! 0

G . ~4!
r

Parameteru measures the kinetic energy of the rotors~an
analog of moment of inertia!. Furthermore,J is the stiffness
in the charge and spin channel, nonvanishing for nea
neighbors of the 3DSC lattice. In the presence of SO~5! sym-
metry breaking, a quadratic term of the form

V~ni !5
w

2 (
i

~n2i
2 1n3i

2 1n4i
2 ! ~5!

is also allowed. The anisotropy constantw selects either the
‘‘easy plane’’ in the SC space (n1 ,n5) or an ‘‘easy sphere’’ in
the AF space (n2 ,n3 ,n4), depending on the sign ofw.19

To proceed, we express the partition functionZ
5Tre2H/kBT using the functional integral in the Matsuba
st

‘‘imaginary-time’’ t formulation (0<t<1/kBT[b, with T
being the temperature!. Performing the path integration ove
momenta we obtain17

Z5E )
i

@Dni #E )
i

FDpi

2p Gd~12ni
2!d~ni•pi !

3expH 2E
0

b

dtF ip~t!•
d

dt
n~t!1H~n,p!G J

5E )
i

@Dni #d~12ni
2!e2*0

bdtL(n) ~6!

with L being the Lagrangian,
2-2
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L~n!5
1

2 (
i

FuS ]nSC

]t D 2

1uS ]nAF

]t D 2

24um2nSC
2

14iumS ]n1

]t
n52

]n5

]t
n1D G

2(
i , j

Ji j ni•nj2
w

2 (
i

~n2i
2 1n3i

2 1n4i
2 !. ~7!

The definition of the superspin variablesni and the rigid
constraintni

251 imply that a weaker condition also hold
namely,

(
i 51

N

ni
25N. ~8!

Utilizing Eq. ~8!, the problem can be formulated then,
terms of theexactlysolvable spherical model.20 Therefore,
with the replacement

)
i

d~12ni
2!→dS N2(

i
ni

2D , ~9!

the global constraint in Eq.~6! may be implemented by usin
the functional analog of the Dirac-delta function,
14452
dS N2(
i

ni
2D 5E

c2 i`

c1 i`F dl

2p i G
3expF E

0

b

dtl~t!S N2(
i

ni
2~t! D G ,

~10!

whereni(t) arec-number fields, which satisfy the quantu
periodic boundary conditionni(b)5ni(0) and are taken as
continuousvariables, i.e.,2`,ni(t),`, but constrained
@on average, due to Eq.~8!# to have unit length. This intro-
duces the Lagrange multiplierl(t) adding an additional
quadratic term~in ni fields! to the Lagrangian~7!. Introduc-
ing the Fourier transform of the fieldsn(k,vm) and interac-
tion Ji j ,

ni~t!5
1

bN (
k

(
l 52`

`

ni~k,vm!exp@2 i ~vmt2k•r i !#,

Jk5
1

N (
Ri

J~Ri !e
2 iRi•k, ~11!

where vm52pm/b ( l 50,61,62, . . . ) being the ~Bose!
Matsubara frequencies andJ(Ri)5J(ur i2r j u)[Ji j . The La-
grangian with an additional quadraticl term then reads

L1l(
i

ni
25

1

bN (
k,m

(
a,b

na~k,vm!

3@g0
21#ab~k,vm!nb* ~k,vm!, ~12!

where
g0~k,vm!5F ReA1~k,vm! 0 0 0 ImA1~k,vm!

0 A2~k,vm! 0 0 0

0 0 A2~k,vm! 0 0

0 0 0 A2~k,vm! 0

Im A1~k,vm! 0 0 0 ReA1~k,vm!

G , ~13!
t

ies
with A1(k,vm) andA2(k,vm) defined as follows:

A1~k,vm!5
1

2l2Jk1u~vm12im!2
,

~14!

A2~k,vm!5
1

2l2Jk1uvm
2 2w

.

As a consequence of Eq.~6!, the partition function can be
written in the form

Z5E dl

2p i
e2Nf(l), ~15!

where the functionf(l) is defined as
f~l!52E
0

b

dtl~t!2
1

N
lnE )

i
@Dni #

3expF2(
i
E

0

b

dt~ni
2l~t!2L@n# !G . ~16!

In the thermodynamic limit (N→`) the method of steepes
descents is exact and the saddle pointl(t)5l0 will satisfy
the condition

df~l!

dl~t!
U

l5l0

50. ~17!

At criticality, corresponding order-parameter susceptibilit
become infinite. Specifically, for the SC state,
2-3
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T. A. ZALESKI AND T. K. KOPEĆ PHYSICAL REVIEW B 64 144522
1

g0
11~k50,vm50!

50 ~18!

and for the AF state,

1

g0
22~k50,vm50!

50. ~19!

Therefore, the corresponding Lagrange multipliers are

l0
AF5

1

2
Jk501

w

2
,

r-

ic
s
nt
th
m
ti

14452
l0
SC5

1

2
Jk5012xm2 ~20!

for AF and SC critical lines, respectively. Furthermore, usi
the spherical condition

15
1

bN (
q,m

(
a

g0
aa~k,vm! ~21!

and the values~20!, we finally arrive at the following expres
sion for the critical lines to AF and SC states. Explicitly
15E
2`

`

r~j!djF 3

cothS b

2
A2l0

X2Jj2w

u
D

Au~2l0
X2Jj2w!

12

cothFb

2
SA2l0

X2Jj

u
12m D G1cothFb

2
SA2l0

X2Jj

u
22m D G

2Au~2l0
X2Jj!

G ,

~22!
e to
dy-

-
ents
ng
-

n

whereX5AF and X5SC for antiferromagnetic and supe
conducting states, respectively. Furthermore, in Eq.~22! we
have introduced for convenience the density of states~DOS!
for the 3DSC~Ref. 21! defined as

r~j!5
1

N (
q

d~j2Jq /J!, ~23!

where

Jq /J5cosqx1cosqy1cosqz . ~24!

Explicitly, the DOS function reads

r~j!5
1

p3Emax(21,222j)

min(1,22j)

dy
1

A12y2

3K FA12S j1y

2 D 2GQ~32uju!, ~25!

whereK (x) is the elliptic integral of the first kind andQ(x)
is the step function.22

III. MAGNETIC CORRELATION FUNCTIONS

The method of choice for the investigation of magnet
ordering phenomena in cuprates and the spin dynamic
magnetic neutron scattering. Among various experime
tools neutron experiments are unique, in the sense that
allow the determination of the full frequency, momentu
and temperature dependence of the spin structure func
~for simplicity we consider an isotropic magnetic system!,

S~q,v!5
1

6pE2`

1`

dte2 ivt(
Ri

eiq•Ri^Si~ t !•S0~0!&.

~26!
-
is

al
ey
,
on

The neutron-scattering cross section therefore allows on
determine the structure of the spin order as well as spin
namics. In the SO~5! theory there is an SO~3! spin symmetry
acting on the subspace defined by the vectornAF with spin
operatorS5(Sx ,Sy ,Sz) being a generator of rotation. In or
der to identify the correspondence between spin compon
and SO~5!-symmetry-group generators, we may write, usi
Eq. ~4!, the spin-spin correlation function in the ‘‘imaginary
time’’ Matsubara formalism,

Gi j ~t2t8!5^Si~t!•Sj~t8!&5^Sx,i~t!Sx, j~t8!&

1^Sy,i~t!Sy, j~t8!&1^Sz,i~t!Sz, j~t8!&

5^L43,i~t!L43,j~t8!&1^L42,i~t!L42,j~t8!&

1^L32,i~t!L32,j~t8!&

53^L43,i~t!L43,j~t8!&, ~27!

where^•••& denotes the ensemble average according to

^•••&5

E )
i

@Dni #dS N2(
i

ni
2D . . . e2*0

bdtL(n)

E )
i

@Dni #dS N2(
i

ni
2De2*0

bdtL(n)

.

~28!

It is convenient to write the Fourier transform of the functio
~27!,

G~k,vm!5(
r i

E
0

b

dt^Sr i
~t!•S0~0!&ei (vmt2kr i )

53(
r i

E
0

b

dt^L r i

ab~t!L0
ab~0!&ei (vmt2kr i ).

~29!
2-4
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Furthermore, by expressing the SO~5! generatorsLab(t) by superspin-vector components@cf. Eq. ~3!# we obtain

^Li
ab~t!L j

a8b8~t8!&5
1

~bN!4 (
k,k8,q

(
m,m8,n

H ~2xbN!exp$2 i @~vm1vm8!t2~k1k8!r i1~t2t8!vn1~r i2r j !q#%

3~^nakmnak8m8&1^nbkmnbk8m8&!1(
q8,n

exp$2 i @~vm1vn!t1~vm81vn8!t82~k1q!r i

2~k81q8!r j #%@4x2~vm2vn!~vm82vn8!^nakmnak8m8nbqnnbq8n8&#J ~30!

The remaining four-point expectation values of the superspin components can be conveniently calculated using the f
Wick-type formula@which can be deduced from the Eq.~12!#, namely,

^nak1m1
nbk2m2

&5S ]

]bak1m1

]

]bbk2m2

expH bN (
k,a,b,m

bakm@g0
21~k,vm!#abbbkm* J D

b50

5bNg0
ab~k1 ,vm1

!dk1 ,2k2
dm1 ,2m2

~31!

with the result

^nakmna8k8m8nbqnnb8q8n8&5^nakmna8k8m8&^nbqnnb8q8n8&1^nakmnbqn&^na8k8m8nb8q8n8&1^nakmnb8q8n8&^na8k8m8nbqn&

5~bN!2g0
aa8~k,vm!g0

bb8~q,vn!dk,2k8dq,2q8dn,2n8dm,2m8

1~bN!2g0
ab~k,vm!g0

a8b8~k8,m8!dk,2qdk8,2q8dm,2ndm8,2n8

1~bN!2g0
ab8~k,vm!g0

a8b~k8,m8!dk,2q8dk8,2qdm,2n8dm8,2n . ~32!

Explicitly, for the spin-spin correlation function, we obtain

G~k,vm!53@G 81G~k,vm!#, ~33!

where

G 85
2u

bN (
q,n

@g0
44~q,vn!1g0

33~q,vn!#5
8u

bN (
q,n

1

2l2Jq1uvn
22w

5
4u

N (
q

cothS b

2
A2l2Jq2w

u D
Au~2l2Jq2w!

,

G~k,nm!52
4u2

bN (
q,n

~nm22vn!2@g0
44~k2q,nm2vn!g0

33~q,vn!2g0
43~k2q,nm2vn!g0

43~q,vn!#

52
4u2

bN (
q,n

~nm22vn!2

@2l2Jk2q2w1u~nm2vn!2#@2l2Jq2w1uvn
2#

~34!
on
a
in

nc
re
on

n

is the generic formula for the spin-spin correlation functi
in the ‘‘imaginary-time’’ Matsubara formalism, from which
variety of magnetic correlators can be deduced by specify
the wave-vector and frequency dependence.

A. Static susceptibility

While the neutron-scattering experiments provide fu
tional dependencies of dynamical susceptibilities on f
quency and momentum, it is the advantage of neutr
14452
g

-
-
-

experiment methods~i.e., NMR! to give local specific
information. For example, the uniform susceptibility is give
by

xs[G~k50,vm50! ~35!

and related to the Knight shiftKs5Axs(T), whereA is the
corresponding hyperfine coupling. Using formula~34! we
immediately obtain
2-5
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xs5
12

N (
q

Au

cothS b

2
A2dl1~3J2Jq!

u D
A2dl1~3J2Jq!

2
12u2

bN (
q,n

4vn
2

@2dl1~3J2Jq!1uvn
2#2

5
6b

N (
q

Fcoth2S b

2
A2dl1~3J2Jq!

u D 21G
56bE djr~j!Fcoth2S b

2
Adl

u
A21

J

dl
$32j% D 21G ,

~36!

wheredl5l2l0
AF . The temperature dependence ofxs is

shown in Fig. 1, while temperature-doping depende
across the phase diagram is shown in Fig. 2. We find that
temperature dependence ofxs(T) resembles that of the mag
netic susceptibility of copper oxide describing qualitative
the decreasing ofKs(T) with lowering of the temperature.

Specifically, the theory predicts saturation ofxs(T) above
critical temperature in accordance with experimental fin
ings. The temperature dependence ofxs(T) extrapolates to
zero at zero temperature. This feature may be viewed as
signature of the opening of a spin excitation gap at low te
peratures@noteworthy, xs(T) in doped YBCO indeed ex
trapolates to zero at zero temperature, however underdo
LaBaCuO compounds apparently extrapolate to a finite z
temperature value#.

B. Dynamic spin susceptibility

Knowledge of thedynamicspin-spin correlation function
is becoming a crucial topic for the description of the physi

FIG. 1. Static spin susceptibilityJxs vs temperaturekBT/J for
m/J50.26 and several values ofuJ as indicated in the inset of th
figure. Arrows indicate the onset of the superconducting or anti
romagnetic transition temperatures~the chemical potential indi-
cates, whether the transition is on AF or SC side!. The small inlay
shows Jxs2T dependence~for uJ52.0) on larger temperature
scale.
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properties of the high-Tc cuprates. Calculations of the dy
namical spin susceptibility allow one to test the applicabil
of the SO~5! theory for magnetic correlation in cuprates.
particular, it is interesting to verify whether the quantum r
tor SO~5! Hamiltonian provides the minimal model, whic
consists of essential physics of cuprate superconductors
answer this question, analytical closed-form results
needed for dynamic spin responses, which are so far av
able mainly from numerical calculations on small clusters

Performing the summation over Matsubara’s frequency
Eq. ~34! results in

G~k,vm!5
12u

N (
q

cothS b

2
A2l2Jq2w

u D
Au~2l2Jq2w!

1
12

N (
q
H S Vk2q1

i

2
nmD 2

cothS b

2
Vk2qD

Vk2q@Vq
22~Vk2q1 inm!2#

1

S Vq1
i

2
nmD 2

cothS b

2
VqD

Vq@Vk2q
2 2~Vq1 inm!2#

1c.c.J , ~37!

r-

FIG. 2. Plot of the static spin susceptibilityJxs vs chemical
potentialm/J and temperaturekBT/J for fixed uJ53 andw/J51.
Solid lines indicate the projection of them2T phase diagram.

FIG. 3. Local dynamic spin susceptibilityJx9(v) ~imaginary
part! vs frequencyv/J and quantum fluctuation parameteruJ.
Lower surface forkBT/J50.4, upper forkBT/J51, respectively.
2-6
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where, for the sake of simplicity, we have introduced t
notation

Vq5A2l2Jq2w

u
. ~38!

Of special interest is the imaginary part of the dynam
correlation function, which can be obtained from the Eq.~37!
by performing the analytic continuation from Matsubara
frequency to real frequency (inm→v1 i«) with the help of
the identity

FIG. 4. Imaginary@Jx9(v), upper panel# and real part@Jx8(v),
lower panel# of the local dynamic spin susceptibility as a functio
of the frequencyv/J and temperaturekBT/J for uJ53.
14452
lim
«→01

1

x6 i«
5PS 1

xD7 ipd~x!. ~39!

The imaginary part of the correlation functionx9(k,v)
5Im G(k,v), then reads

x9~k,v!5
p

2N (
q

cothFb2 Vk2qG2cothFb2 VqG
VqVk2q

$@2Vk2q

1v#@2Vq2v#d~Vq2Vk2q2v!2@2Vq1v#

3@2Vk2q2v#d~Vq2Vk2q1v!%

1
p

2N (
q

cothFb2 Vk2qG1cothFb2 VqG
VqVk2q

3$@2Vk2q1v#@2Vq1v#d~Vq1Vk2q1v!

2@2Vk2q2v#@2Vq2v#d~Vq1Vk2q2v!%.

~40!

1. Local spin susceptibility

To facilitate the comparison with other theoretical a
proaches, it is convenient to perform thek integration of the
spin susceptibility over the first Brillouin zone to obtain th
momentum-integrated~local! dynamic spin susceptibility,

x~v!5E d3k

~2p!3
G~k,v!. ~41!

Performing the integration over the momenta we obtain
plicitly the imaginary partx9(v)5Im x(v),
x9~v!53p
Audl

J
E

2`

`

djr~j!rF j2
Audl

J
vSA u

dl
v12A21

J

dl
~32j!D G

3

S 2A21
J

dl
~32j!1A u

dl
v D 2

A21
J

dl
~32j!

H cothS 1

2
bAdl

u
A21

J

dl
~32j!D

2cothF1

2
bAdl

u
SA21

J

dl
~32j!1A u

dl
v D G J . ~42!

The corresponding real part can be deduced from Kramers-Kro¨nig relation
2-7
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x8~v!5Rex~v!5
2

p
PE

0

`

dv8
v8x9~v8!

v822v2
, ~43!

where P is the principal value of the integral. Frequen
dependence of the real and imaginary part of the dyna
spin susceptibility~as a function of various control param
eters! is presented in Figs. 3 and 4. In particular, the ima
nary part of the momentum-integrated dynamic spin susc
tibility exhibits a linear behavior at low energy and the
passes to the broad maximum and decays at higher ene
in agreement with experimental findings.

The local spin susceptibility allows one to find the NM
relaxation rate

1

T1
5 lim

v→0

x9~v!

bv
. ~44!
e
ic
g

14452
ic

-
p-

ies,

From Eq.~42! we obtain explicitly

1

T1

56p
Ax

J
E dYr2~Y!A2dl1J~32Y!

3H coth2Fb

2
A2dl1J~32Y!

x
G21J . ~45!

Temperature dependence of (T1T)21 is presented in Fig. 5
We find this in qualitative agreement with experimenta
observed NMR relaxation rates for underdoped YBCO.23

2. Antiferromagnetic susceptibility

Another example of interest is the antiferromagnetic d
namic spin susceptibility defined by Eq.~40! by specifying
the antiferromagnetic wave vectork[Q5(p,p,p). The
imaginary part of the antiferromagnetic spin susceptibility
given byxAF9 (v)[Im@G(k5Q,v)#, explicitly,
xAF9 ~v!54p
u

J
rS u

2J
vA4

2dl13J

u
2v2D 5 QSA2

2dl13J

u
2v D

3

cothS b

4
UA4

2dl13J

u
2v21v2U D 2cothS b

4
UA4

2dl13J

u
2v22v2U D

Uv1A4
2dl13J

u
2v2U1Uv2A4

2dl13J

u
2v2U S 4

2dl13J

u
2v2D

2QS v2A2
2dl13J

u
D QS 2A2dl13J

u
2v D

3

cothS b

4
UA4

2dl13J

u
2v21v2U D 1cothS b

4
UA4

2dl13J

u
2v22v2U D

Uv1A4
2dl13J

u
2v2U2Uv2A4

2dl13J

u
2v2U S 4

2dl13J

u
2v2D 6 . ~46!
y of

g-
It
re-

the
ws
ntal
re-
Frequency dependence of real and imaginary part ofxAF9 for
various temperatures is depicted in Fig. 6.

IV. SUMMARY AND FINAL REMARKS

In conclusion, we have calculated the momentum and
ergy dependence of the real and imaginary part of dynam
spin susceptibility using the unified theory of antiferroma
netism and superconductivity proposed for the high-Tc cu-
prates by Zhang, and based on the SO~5! symmetry between
n-
al
-

antiferromagnetic and superconducting states. The theor
magnetic correlation in high-Tc cuprates based on SO~5!
theory yields a qualitative scenario for the evolution of ma
netic behavior, which is consistent with experiments.
qualitatively explains the results of experimental measu
ments@notably the nuclear magnetic resonance~NMR! relax-
ation rates# with correct predictions of behavior ofxs(T) in
high temperatures. Also the energy dependence of
momentum-integrated dynamical spin susceptibility sho
features that are in qualitative agreement with experime
findings. Another important problem is to determine the p
2-8
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cise role of anisotropy~which can be easily incorporated i
our approach! and bilayer coupling~present in YBCO com-
pound!, which might be crucial, for example, to the scena
of spin-gap formation.24 Closing, we note that the SO~5!
theory predicts also an existence of the resonant mode in
superconducting state. It would be interesting to follow t
mode by studying the so-called ‘‘p-p ’’ response functions. It
is desirable also to study dynamical properties of the p
jected SO~5! theory,16 where quantum fluctuations may lea
to a breaking of thepSO(5) symmetry. However, as far a
magnetic correlations are concerned, we expect that pro
tion should not introduce important changes in magnetic c
relation functions because the implementation of
Gutzwiller constraint affects the superconducting sector
the SO~5! theory. We hope to address this issue in futu
work. Further studies of microscopic models of high-Tc cu-
prates should help to clarify whether the experimentally
served evolution of physical parameters of the model d

FIG. 5. Plot of the NMR relaxation rate 1/(T1T) vs temperature
kBT/J for m/J50.2 and several values ofuJ as indicated in the
inset of the figure. Arrows indicate the onset of the superconduc
or antiferromagnetic transition temperatures~the chemical potentia
indicates whether the transition is on AF or SC side!.
e

14452
he
s

-

c-
r-
e
f

e

-
-

cussed here is similar to that obtained in microsco
calculations, thereby allowing to check the validity of bas
principles of the SO~5! theory.

g

FIG. 6. Imaginary @JxAF9 (v), upper panel# and real part
@JxAF8 (v), lower panel# of the local dynamic antiferromagneti
spin susceptibility vs frequencyv/J for different values of tempera
ture kBT/J as shown in the insets of the figures.
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