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Magnetic correlation functions in SO(5) theory of high-T . superconductivity
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In this paper we present analytical calculations of a variety of magnetic correlation functions within Zhang’s
SQO(5) quantum rotor theory of highiz superconductivity. Using the spherical approach for three-dimensional
quantum rotors we derived explicit analytical formulas for variety of dynamic spin susceptibilities related to
the lattice version of the SG) nonlinear quantum-sigma model . We show in detail the frequency dependence
of these quantities for various settings of relevant control paraméileetemperature, quantum fluctuations
in normal and superconducting state. We found the results in overall qualitative agreement with basic phenom-
enology of highT. cuprates.
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[. INTRODUCTION SQ(5) theory is to introduce well-defined rotation operators,
which can transform AF into SC and vice versa. Aside from
Over a last decade neutron-scattering experiments hawbeem, the S@b) symmetry group contains as subgroups
provided a considerable insight in understanding of high- SO(3) symmetry of spin rotationgwhich is spontaneously
superconductors. Neutron measurements have shown theoken in the AF phageand the electromagnetic $2) in-
persistence of antiferromagneti&F) correlations over the variance(whose breaking defines SC phasBoth ordered
whole metallic state of cuprates demonstrating the stronghases arise once $&) is spontaneously broken and the
electronic correlations existing in these compounds. It is novcompetition between antiferromagnetism and superconduc-
well known that all the cuprates show the same generic belivity is related to the direction of the “superspin” in the
havior. Depending on charge doping they can show up afive-dimensional space. In Zhang's theory, the low-energy
antiferromagnets od-wave superconductoréSC) and the dynamics of the system is determined in terms of the Gold-
intimate connection between these two orders is believed tetone bosons and their interactions specified by th€550
be fundamental to the underlying superconducting effects. lisymmetry. The kinetic energy of the system is that of an
undoped cuprates, the magnetic interactions between tH8O(5) rigid rotor and the system is described by an(50
electrons force an antiferromagnetic arrangement of theinonlinear quantuna- model (NLQrM). The S@5) quantum
spins. These interactions must change when electrons starttotor model offers a Landau-Ginzburg-like.G) for the
move around, with the pairing of charge carriers being aigh-T. problem. However, it goes much beyond the tradi-
consequence. As a result, magnetic interactions must play dional LG theory, since it captures the dynamics. While the
important role in every theory of highz superconductivity. SO(5) symmetry was originally proposed in the context of an
The precise nature of antiferromagnetic correlations and howffective field-theory description of the highs supercon-
they influence electronic properties are the most puzzlingluctors, its prediction can also be tested within microscopic
aspects of highF; cuprate superconductors. models’™* For example, numerical evidence for approxi-
It is now widely accepted that studying dynamical spinmate S@5) symmetry of the Hubbard model came out from
susceptibility of high-temperature superconducting cupratesxact diagonalization of small-sized clust&tddoreover the
may be instrumental for the understanding of their manySQ(5) symmetry requires that collective charge excitations at
unusual properties. Among these issues, the existence bflf-filling must have the same mass as the collective spin-
resonance peaks in the superconducting state and its suppr&@gave excitations. This requirement is clearly violated in a
sion in the normal state are the most intriguing. A great deaMott insulating system, where all charge excitatidnsea-
of theoretical studies have been made to understand thgred with respect to a particle-hole symmetric poirsive a
structure of measured dynamical spin susceptibility in botHarge energy gap, while the spin-wave excitations are mass-
normal and superconducting states. A phenomenological atess. To address this issue Zhaetgal *° constructed a low-
tiferromagnetic Fermi-liquid theory has been developed. energy effective theoryfthe so-called projectedpSO(5)
Furthermore, quantum Monte Carlo simulations of a two-model, where the Mott-Hubbard gap is taken into account
dimensional Hubbard model have been performédother by means of a Gutzwiller projection, which eliminates
works calculations of susceptibilities using random-phasealouble-occupied states. It has been shown that despite the
approximation have been carried duf. symmetry-breaking effects of the projection, static correla-
Recently Zhang proposed a theory for high-cuprates, tion functions remain exactly S6) symmetric, while dy-
which uses S@®) symmetry to unify antiferromagnetism and namic breaking of S&) symmetry becomes important when
superconductivity, offering uniform description of the global quantum fluctuations are taken into account. Ultimately one
phase diagram of this class of materi&ls. that approach a should be able to compare the prediction from the(30
three-dimensional order parameter describing the AF phagieory with experimentally observed features of highsu-
(the staggered magnetizatiois combined with a complex perconductors. While the global features of the phase dia-
order parameter of a spin singlétvave SC phase creating a gram deduced from S®) theory based on spherical quan-
five-component vector called “superspin.” The main idea oftum rotors’ agree qualitatively with the general topology of
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the observed phase diagram of highsuperconductors, a wherei, j=1, ... N label lattice sitesN is the number of
systematic study of magnetic properties of the(®@heory lattice site3 andu, v=1, ... ,5mark the superspin compo-
are called for. nentsn;=(Ny,N,,N3,N4,N5); , Wherenag ;= (Ny,N3,Ny); re-

The purpose of t_he_present paper is twofold: _firstly, Wefers to antiferromagnetic antc;=(n;,Ns); superconduct-
want to study quantitatively the variety of magnetic correla-ing order parameters, respectively. In Zhang's formulation
tion functions resulting from the ) theory, thereby sub- these are treated as mutually commuting coordinates and

stantiating this theoretical framework. Secondly, our studytheir dynamics is given by their conjugate momenta,
may also provide a useful diagnostic tool for testing the basic

principles of S@5) theory by comparing the quantitative

predictions (e.g., magnetic correlation functionsvith the P

outcome of the relevant experiments. Pui=i
The outline of the remainder of the paper is as follows. In

Sec. Il we begin by setting up the quantum Hamiltonian and

the corresponding Lagrangian. In Sec. Ill we introduce the

intersite spin-spin correlation function in terms of GPDal- [n..p,]=i6,,. 2

gebra generators. We calculate static magnetic susceptibility

and, subsequently, dynamic magnetic responses. Finally, in

Sec. IV we summarize the conclusions to be drawn from ourl "€ Kinetic energy of the system, given by the first part of
work. Eq. (1), is simply that of an S) rigid rotor (n?=1, p;

-n;=0, see Ref. 1B Here,

5n’ui,

1. HAMILTONIAN AND THE EFFECTIVE LAGRANGIAN

We start from the low-energy Hamiltonian proposed by LEA"=1,iP,i — NP (3
Zhang on a discrete three-dimensional simple-cyBRSC
lattice®
are the generators of the &) algebra and_i15 corresponds
H= i E z L AV HY to a charge operatdd, whose expectation value yields the
209 = charge concentrationu( is the chemical potential measured
from the half-filling). The remainingL*” operators are ex-
_ AN N 15 pressed via total spiB=(S,,S,,S,) and so-called =" [
i2<j Iy = Vim) 2’“2 L @) =(my,m,,m,)] Operators assf%llows:

- 0 -
’7TI+ Ty 0
L=| =+ -S, 0 _ (4)
i+, S, -S, 0
. Q —i(ml—m) —i(m—m) —i(mi—m,) O]
|
Parameteu measures the kinetic energy of the rot@s  “imaginary-time” = formulation (0<7<1/kgT=g, with T

analog of moment of inertjaFurthermore,] is the stiffness  pejng the temperaturePerforming the path integration over
in the charge and spin channel, nonvanishing for neareshomenta we obtaid

neighbors of the 3DSC lattice. In the presence of®3Gym-
metry breaking, a quadratic term of the form

Dp;
Z:j 1_.[ [Dn‘]j 1_,[ [%}al_niz)a(ni‘pi)

B
xexw’ - f dr ]

0
is also allowed. The anisotropy constanselects either the
“easy plane”in the SC spacen(,ns) or an “easy sphere” in = f H [Dn]8(1— niZ)effgdr,C(n) (6)
the AF spaceif,,n;,n,), depending on the sign f.'° i

To proceed, we express the partition functiah

=Tre "*eT using the functional integral in the Matsubara with £ being the Lagrangian,

V(ni)zvz—in (ng+n%+n%) 5)

d
ip(r)-d—Tn(r)JrH(n,p)
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1 &nsc 2 &nAF 2 2 2 2 jC-HOC dn
£m=5 2 HW) +“(7 ~Ausse AN-20f)= | . |2mr
. (9n1 {9”5 fﬁ )
. X — :
+4|u,u( S Ns— — n1> exp{ Odr)\(r) N EI n(7) ||,

2 3 w 2 s a2 o ; (10
& IRLRRL B (ng+ng+ng). (@) wheren;(7) arec-number fields, which satisfy the quantum

periodic boundary conditiom;(8)=n;(0) and are taken as

continuousvariables, i.e.,—~<n;(7)<c, but constrained

The definition of the superspin variablasand the rigid  [on average, due to E@8)] to have unit length. This intro-
constraintn’=1 imply that a weaker condition also holds, duces the Lagrange multipliex(7) adding an additional

namely. guadratic term(in n; fields) to the Lagrangiari7). Introduc-
’ ing the Fourier transform of the fieldgk, ) and interac-
tion JI] ,
N 0
2_ 1 .
2 =N O =53 I nikemex—i(wnr—ken)],
P . 1 —iR: -k
Utilizing Eq. (8), the problem can be formulated then, in ‘]k:N > J(R)e Rik (11
terms of theexactly solvable spherical modé!. Therefore, Ri
with the replacement where w,=2mm/B (I=0,=1,=2,...) being the (Bose

Matsubara frequencies addRi)=J(|ri—rj|)EJij . The La-
grangian with an additional quadraticterm then reads

P YIS
[T s1—nf) 5(N Zn,), 9 S =—3 3 n

k1
BN k,m a,ﬂ a( wm)
-1 *
the global constraint in Eq6) may be implemented by using X[9o Tap(k,om)ng (K o),  (12)
the functional analog of the Dirac-delta function, where
|
- ReA (K, o) 0 0 0 ImA{(K,wm) T
0 As(K,0) 0 0 0
go(kvwm): 0 0 AZ(k’wm) 0 0 3 (13)
0 0 0 AZ(kiwm) 0
| ImA (K, 0,) 0 0 0 ReA; (K, wp,) |

with A1(k, o) andA,(k,w,,) defined as follows:

B 1
¢(>\):—fodm(r)—ﬁ|nf H [Dn;]

1
Al(k!wm) = . 2! B
2h = J+u(wmt2ip) ><exp[—2 f dr(n\(n)—L[n])|.  (16)
(14 i Jo
1
As(k, o) = In the thermodynamic limitl—o°) the method of steepest

2 ' . . . .
2N = Jgtuon—w descents is exact and the saddle paifit) =\ will satisfy

" . the condition
As a consequence of E(f), the partition function can be

written in the form Sp(N)

dx ON(T)
Z= 2—7ﬂe_N¢()‘), (15)

=0. (17

A=Xq

At criticality, corresponding order-parameter susceptibilities
where the functionp(\) is defined as become infinite. Specifically, for the SC state,
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! =0
95'(k=0,0y=0)
and for the AF state,

1
(18 N5 =5 k-0t 2xn? (20

for AF and SC critical lines, respectively. Furthermore, using
the spherical condition

1
=0. (19
22
95 (k=0,0,=0) 1 e
. . 1= 25 > 2 g5 (k,on) (2
Therefore, the corresponding Lagrange multipliers are BN gm “a
}\AFZEJ " w and the value§20), we finally arrive at the following expres-
0 Tpvk=0T o sion for the critical lines to AF and SC states. Explicitly

[oAX—J¢&
+ cotr{g( OT— 21

2\Ju(2\3—3¢)

20p—Jé— [22%=3J
cotr(g Ofgw) cotr{g( OTng 21
+2

JU(2NG—JE—w)

1- f:p@)df 3
22

whereX=AF and X=SC for antiferromagnetic and super- The neutron-scattering cross section therefore allows one to

conducting states, respectively. Furthermore, in @8) we
have introduced for convenience the density of steb&3S)
for the 3DSC(Ref. 21 defined as

1
(&)= 2 8(E=3q19), (23
q
where

Jq/J=cosq,+cosq,+cosq, . (29

Explicitly, the DOS function reads

1 [min(1,2-§) 1
== d
Et+y

> J max(—1,-2-¢)
2
T) }@(3—|§|>. (25

XK 1-

whereK (x) is the elliptic integral of the first kind an@® (x)
is the step functioR?

IIl. MAGNETIC CORRELATION FUNCTIONS

determine the structure of the spin order as well as spin dy-
namics. In the S®) theory there is an S@) spin symmetry
acting on the subspace defined by the veatgr with spin
operatorS=(S,,S,,S,) being a generator of rotation. In or-
der to identify the correspondence between spin components
and S@5)-symmetry-group generators, we may write, using
Eq. (4), the spin-spin correlation function in the “imaginary-
time” Matsubara formalism,

Gij(7—1")=(S(7)-S(7'))=(Si(7)S(7"))
H(Si(1Sy (7)) +(S,,i(1)S,,(7"))
=(Lagj(7)Lagj(7")) +{Lagj(T)Lazj(7"))
+(Lagi(7)Lgy(7"))

=3(L4zj(7)Laszj(7")), (27)
where(- - -) denotes the ensemble average according to

J 0 ons -3 ot
- IH [Dni]é(N—Ei niz)e;gdf,c(n,

o e—fgdw(n)

The method of choice for the investigation of magnetic- (28)
ordering phenomena in cuprates and the spin dynamics is ) ) ] )
magnetic neutron scattering. Among various experimenta'lt is convenient to write the Fourier transform of the function
tools neutron experiments are unique, in the sense that the(§7)1
allow the determination of the full frequency, momentum,
and temperature dependence of the spin structure function
(for simplicity we consider an isotropic magnetic sysjem

’B .
G(k,wm)ZZ fo dr(S, (- Sy(0)) el (@m—kri)

B :
1 +o . . — af af i(wynr—krj)
S0 == | dte S dR(S (1) 5(0). 32 ], dnLinLgione |

(26) (29
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Furthermore, by expressing the @Dgeneratord. “?(7) by superspin-vector components. Eq. (3)] we obtain

(2xBN)exp —i[(om+ @) 7= (K+K)ri+ (7= 7)oy +(ri—r))ql}

LEA(rLE P (7)) =
< 7 )> (BN k,k’,q mm’,n

X (N akmNakm) +{NgkmN girme)) + > expl—i[(wm+ o) T+ (0 + 0n) 7T = (k+Q)r;
q’.n

—(k'+ q’)rj]}[4X2(wm_ o) (@Wm — C')n’)<nakmnak’m’nf}qnnﬁq’n’ﬂJ (30)

The remaining four-point expectation values of the superspin components can be conveniently calculated using the following
Wick-type formula[which can be deduced from the Ed2)], namely,

J
(Nakym, N gkom,) = Ery—. B prem eXP[ﬂN 2 bakm[go 'k, wm)]aﬁbﬁkm]>
ak My 212 b=0
:BNggﬂ(kl7wm1)5k1,7k25m1,7m2 (31

with the result

(NakmNark m NegnNprqrn’) = (NakmNark m )N pgnN g n’) T (NakmNggn){Nark'm N prqrn’) T (NakmNgrarn'){Narkrm Nggn)
=(BN)?g5” (K, 0m)GEP (0, 0n) S k' Bq,—q' Bn,—n' S
+(BN)2g8E (K, wm) @5 P (K',M") S —qdr,—qr O — O v
+(BN)?95 (K, 0m) g8 P(K' M) 8y —q s —qdm, - - (32)

Explicitly, for the spin-spin correlation function, we obtain

G(k,wm)=3[G"+G(k,on)], (33

where

g'= E[ )+ = S - %S
95'(0 )+ 95" o)) = 5y 24 5 Jptuoi-w NG Ju@—J-w)

4u?
Glk,vm) == 5 % (V= 2w0) (95 (K— 0, V= 0) g X0, @) — Go (K — 0, v — 0) 95 X0, ) ]

__4_U2 (Vm_zwn)2 (34)

BN G [20—Jy g~ W U(vpy— @p)?][ 2N — Jg— W+ Ue?]

is the generic formula for the spin-spin correlation functionexperiment methodgi.e., NMR) to give local specific
in the “imaginary-time” Matsubara formalism, from which a information. For example, the uniform susceptibility is given
variety of magnetic correlators can be deduced by specifyingpy
the wave-vector and frequency dependence.
Xs=G(k=0,0,,=0) (35
A. Static susceptibility

While the neutron-scattering experiments provide func-and related to the Knight shif;=Ax(T), whereA is the
tional dependencies of dynamical susceptibilities on frecorresponding hyperfine coupling. Using formuf@4) we
guency and momentum, it is the advantage of neutronimmediately obtain

144522-5



T. A. ZALESKI AND T. K. KOPEC PHYSICAL REVIEW B 64 144522

20
) = 2 00) L
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00 01 02 03 04 05 FIG. 2. Plot of the static spin susceptibilityys vs chemical
kBT/J potential u/J and temperatur&gT/J for fixed uJ=3 andw/J=1.
Solid lines indicate the projection of the— T phase diagram.
FIG. 1. Static spin susceptibilityxs vs temperaturdgT/J for
#/J3=0.26 and several values af as indicated in the inset of the properties of the higf-, cuprates. Calculations of the dy-
figure. Arrows indicate the onset of the superconducting or antifernamical spin susceptibility allow one to test the applicability
romagnetic transition temperaturéthe chemical potential indi- of the S@5) theory for magnetic correlation in cuprates. In
cates, whether the transition is on AF or SC $|d-d'\e small inlay particu'ar, itis interesting to Verify whether the quantum ro-
shows Jy;—T dependencgfor uJ=2.0) on larger temperature tor SQ5) Hamiltonian provides the minimal model, which
scale. consists of essential physics of cuprate superconductors. To
answer this question, analytical closed-form results are

B /25)\+(3J—Jq) needed for dynamic spin responses, which are so far avail-
12 cot >N o able mainly from numerical calculations on small clusters.
—=> Ju Performing the summation over Matsubara’s frequency in
V26N +(3J—-Jy) Eq. (34) results in

2 2
s Ao B [2N—3gw
BN G0 [260+(3]—J,) + Uw?]? 12 2 u

cot
G(k,wm) =~ 2

6 (26N +(3]—J q VU(2N—Jg— W)
N 45 2 u i \2 B
g o [ 3 Jl2s (Qk‘q+§"m °°tr<§ﬂk‘q>
:6ﬂf dép(é) COtl"F(E m 2+ 5{3—5}) _1}, N 5 Qk—q[Qs_(Qk—q"_ivm)z]
(36) i \? B
Qq+ Evm cot EQq
where S\ =\ —\§". The temperature dependence xaf is + > ———+cc|, (3D
shown in Fig. 1, while temperature-doping dependence Q[ Qi q= (Qgt+ivm)e]

across the phase diagram is shown in Fig. 2. We find that the
temperature dependenceyf T) resembles that of the mag-
netic susceptibility of copper oxide describing qualitatively
the decreasing dKg(T) with lowering of the temperature.

Specifically, the theory predicts saturationyaf T) above
critical temperature in accordance with experimental find-
ings. The temperature dependencexgfT) extrapolates to
zero at zero temperature. This feature may be viewed as the
signature of the opening of a spin excitation gap at low tem-
peratures[noteworthy, ys(T) in doped YBCO indeed ex-
trapolates to zero at zero temperature, however underdoped
LaBaCuO compounds apparently extrapolate to a finite zero-
temperature valde

)

Iy
[
II[//"II/"

i
Uit
Uiy,
W

[l
(i

i
/”””,’//,//”Wf/}/ﬂ%
qin

;/I//I//Il/////////////
i
I

B. Dynamic spin susceptibility FIG. 3. Local dynamic spin susceptibilityxy”(w) (imaginary

Knowledge of thedynamicspin-spin correlation function part vs frequencyw/J and quantum fluctuation parametad.
is becoming a crucial topic for the description of the physicalLower surface fokkgT/J=0.4, upper fokkgT/J=1, respectively.
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lim —
o XEie

= P(%) Fimd(X). (39

The imaginary part of the correlation functiog’(k,)
=Im G(k,w), then reads

cotl{gﬂkq —cot%{gﬂq}

X (k,w)zm - 00 {[2Q—q

+ 0][204— ©]8(Qq— Q) _q— ©) —[2Q+ ]
X[20y_q— 0]8(Qq— Oy g+ o)}

cotk{gﬂk_q +cotr{§ﬂq}

7%
75
l" 5

NN

105%25%

5
555
g 'o,'o/

X{[2Q)_q+ 0][2Q4+ 0]8(Qq+ Qo+ ©)

<
oo
%

&

—[2Qq— 0][2Q4— 0]6(Qg+ Dy~ w)}.
FIG. 4. ImaginanfJy”(w), upper pandland real parfJy’ (o), (40)
lower pane] of the local dynamic spin susceptibility as a function
of the frequencyw/J and temperaturkgT/J for uJ=3.

1. Local spin susceptibility

where, for the sake of simplicity, we have introduced the To facilitate the comparison with other theoretical ap-
proaches, it is convenient to perform tkéntegration of the

notation
spin susceptibility over the first Brillouin zone to obtain the
] —w momentum-integrate@ocal) dynamic spin susceptibility,
Qq= \/Tq. (38

Of special interest is the imaginary part of the dynamic
correlation function, which can be obtained from the &)
by performing the analytic continuation from Matsubara’s
frequency to real frequency «,,— w+ie) with the help of

the identity

d3k
()= f Gk, ). ()

(2m)®

Performing the integration over the momenta we obtain ex-
plicitly the imaginary party” () =1m x(w),

|
\/ub‘)\( [u / J )l
&— 3 [0} 5(0*’2 2+5(3—§)
VegeoViel L m r—
X \/Ji cot 5,8 T 2+5—)\(3—§)
2+5(3—§)
1 /5>\( [ 3 /u)
—Ccoft| EB T 2+5(3—§)+ 5—)\60

The corresponding real part can be deduced from Kramersit{relation

VUSON [
X' (0)=3m—— f ~_dép(é)p

] . (42
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! n

From Eg.(42) we obtain explicitly

2 = o'x'(o)
' =R — do'——, 43
x'(w)=Rex(w) WPL O 2 (43) 1 N
T—=6777f dYp2(Y)\V28N+J(3-Y)
1
where P is the principal value of the integral. Frequency
dependence of the real and imaginary part of the dynamic B [26M+J(3-Y)
spin susceptibility(as a function of various control param- X1 coth? SN —1r. (45)
eterg is presented in Figs. 3 and 4. In particular, the imagi- X

nary part of the momentum-integrated dynamic spin suscepfemperature dependence &f,) ~* is presented in Fig. 5.
tibility exhibits a linear behavior at low energy and then We find this in qualitative agreement with experimentally
passes to the broad maximum and decays at higher energi@9served NMR relaxation rates for underdoped YBEO.

in agreement with experimental findings.
The local spin susceptibility allows one to find the NMR
relaxation rate

2. Antiferromagnetic susceptibility
Another example of interest is the antiferromagnetic dy-
namic spin susceptibility defined by E@0) by specifying
the antiferromagnetic wave vectk=Q=(m,m, 7). The

= X'() (44)  imaginary part of the antiferromagnetic spin susceptibility is
Ty 40 Bo given by xas(w)=Im[G(k=Q,w)], explicitly,
u u 26N+3J 5 26N+3J
ne(w)=4m—p| — 4——— 0| \J2—-
Xapl@)=4m Jp| 550 u @ u
B 200 +3J B 26N+3]
coth — 44— — 0’ + w?| | —coth — 4 — 0’ 0?
4 u 4 u 26N+3J
X 4 - ?
26N +3J 26N+3J u
w+ f—mr———— 0|+ | w— 4————w
u u

20N+3J
-0l w—\/2——
u

B 26N+3]
+coth — b — 0% ?
4 u

20N+3J
Ol2\/——wo
u

B 26N+3]
coth — b — 0%+ »?
4 u
X
260+3J
o+ 4T—w —|w—

Frequency dependence of real and imaginary pajtxgffor
various temperatures is depicted in Fig. 6.

IV. SUMMARY AND FINAL REMARKS

) 260 +3J

4 —w?| }. (46)
250 +3J u
4—

—w

u

antiferromagnetic and superconducting states. The theory of
magnetic correlation in highz cuprates based on $8&)
theory yields a qualitative scenario for the evolution of mag-
netic behavior, which is consistent with experiments. It
qualitatively explains the results of experimental measure-
ments[ notably the nuclear magnetic resonafiMR) relax-

In conclusion, we have calculated the momentum and engtjon rate$ with correct predictions of behavior gf(T) in
ergy dependence of the real and imaginary part of dynamicaigh temperatures. Also the energy dependence of the
spin susceptibility using the unified theory of antiferromag-momentum-integrated dynamical spin susceptibility shows
netism and superconductivity proposed for the higheu-  features that are in qualitative agreement with experimental
prates by Zhang, and based on the(®@ymmetry between findings. Another important problem is to determine the pre-
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60 4
— k,T/J=0.001
50
3 | [ e TA=0.1
e 40 - B K, T/1=0.2
L 30 =
5|8 =7 2
20 =
10 1y P
//
0 P 2=
00 O pasl

FIG. 5. Plot of the NMR relaxation rate (T) vs temperature
kgT/J for ©/J=0.2 and several values @fJ as indicated in the
inset of the figure. Arrows indicate the onset of the superconducting
or antiferromagnetic transition temperatuttee chemical potential
indicates whether the transition is on AF or SC $ide

8
cise role of anisotropywhich can be easily incorporated in _v%
our approachand bilayer couplingpresent in YBCO com- Ras 4
pound, which might be crucial, for example, to the scenario —— kgT/1=0.001 \‘
of spin-gap formatiod? Closing, we note that the 36 LI k,T/7=0.1 |
theory predicts also an existence of the resonant mode in the  k.T/J=02
superconducting state. It would be interesting to follow this °

mode by studying the so-called 7" response functions. It '30 0 0'5 1'0 1'5 20

is desirable also to study dynamical properties of the pro- ’ ’ ' ' ’

jected S@5) theory!® where quantum fluctuations may lead /]

to a breaking of thegSO(5) symmetry. However, as far as

magnetic correlations are concerned, we expect that projef- , X , ;
Jxar(w), lower pane] of the local dynamic antiferromagnetic

tion should not introduce important changes in magnetic cor-"" o~ .
relation functions because the implementation of theSPin susceptibility vs frequenay/J for different values of tempera-

Gutzwiller constraint affects the superconducting sector of'"® kgT/J as shown in the insets of the figures.

the SA5) theory. We hope to address this issue in future

work. Further studies of microscopic models of higheu- cussed here is similar to that obtained in microscopic
prates should help to clarify whether the experimentally ob-calculations, thereby allowing to check the validity of basic
served evolution of physical parameters of the model disprinciples of the S(b) theory.

FIG. 6. Imaginary [Jxar(®), upper pandl and real part
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