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Phase diagram of hole-doped highF. superconductors: Effects of Cooper-pair phase fluctuations
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Using the Hubbard model Hamiltonian we study spin-fluctuation exchange-induced superconductivity of
d-wave symmetry. Results are presented for the characteristic tempeFataiewhich a gap appears in the
spectral density, foffy at which Cooper-pairs are formed, fdr, at which Cooper pairs become phase
coherent, and for the superfluid density. We find that, with increasing doping, for>0.15 the phase
coherence energy becomes larger than the Cooper-pair condensation energy. Accordingly, Torenhés
x<0.15 andT. = A for the overdoped cuprates. We use our results to discuss dynamics and recent dynamical
conductivity and ultrafast nonequilibrium measurements.
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[. INTRODUCTION tude fluctuations of the superconducting order parameter
with this approximation did not give a satisfactory
For several decades spin-fluctuatigor paramagnon pseudogap behaviét.Here we focus on phase fluctuations.
theories have been quite successful in describing superfluidd’e determine the doping dependence of the relevant tem-
ity in the nearly ferromagnetic liquidHe (Ref. 1-4 and  peratures of the phase diagram, nama&f(x), T¢(x), and
unconventional superconductivity in nearly antiferromag-alsoT* at which a gap appears in the spectral density. Below
netic liquids—for ~example, the high-temperature T* we find incoherent Cooper pairépreformed pairs’)
superconductor:**In the latter system, the occurrence of a which become phase coherent only below the critical tem-
d-wave instability, the description of inelastic neutron scat-peratureT,, of the bulk. We will show that phase fluctuations
tering data, nuclear magnetic resonariibR) relaxation  contributingAF 45010 the free energy lead to a decreasing
rates, and Knight-shift measurements, as well as tunnelingyitical temperature in the underdoped regime and thus to the
angular-resolved photoemission spectroscOBRPES, the  gppearance of an optimal dopimg,;. It is shown that this
isotope exponent, and many other important physical propresult is due to the small superfluid density(T) in the
erties can be described qualitatively within the Hubbardsystem. Most importantly we calculate thahF gg
model. However, existing microscopic theories have seriou;Athase(Apcond denotes the contribution to the free en-
problems iq explaining the underdoped_ regime of the Cuurgy due to Cooper-pair formation, aldF ,screfers to the
prates andelplsgtead many phenomenological approaches haygntribution due to phase fluctuations of the Cooper pairs,
been used®® These problems are, in particular, the exiS-respectively for doping x<x,p; and vice versa forx
tence of %leo-called weak pseudogap up to rOOM> x )ot. We show that the temperature range where pre-
tempe1r7aturé,' . the occurrence.of a_strong pseudogap Clos%rmed Cooper pairs occurTf —T,), as well as the struc-
tgci)n']l'é, Fjrr:gé:mglrlg, %g;ﬂﬁ;séﬁgﬁzlsnrfgseu?gjr:goggseﬁ ture in the density of states, depends on the dispeksi@amnd
: o . ) . : thus on the appearance of a pseudogap for underdoped cu-
mentally thatT. is proportional to the superfluid density at : .
T=0 divided by the effective massi(T=0)/m, and, in prates. Furthermore, we fhow how the dynamical conductiv-
ity o(w) reflectsT, andTZ for w7<1 andw7r>1, respec-

addition, indications of a nonzero phase stiffness, for X s M
T,<T<T* on short length and time scales have been relively. Here, 7 refers to the phase-fluctuation lifetime. We
Cc

ported by Orenstein and co-workéfe’ also discuss the relaxation dynamics in pump-probe spectros-
Rather than using phenomenological models we calculat€®PY-. _ _ o .
various properties of hole-doped hidh- superconductors This paper is organized as follows: Wlt_hln the next_se_ctlon
with the help of the Hubbard Hamiltonian, yielding spin- W& present our theory for the self-consistent description of
fluctuation exchange-induced Cooper pairing @fvave the quasiparticlesdressed holgsand the pairing interaction
symmetry! "101215gince presently the origin of high; su-  [extended fluctuation-exchangéFLEX) approximatior.
perconductivity is still being debated, it is important to seeThese results are used in order to calculate the current-
how far such an explicit electronic model can explain variouscurrent correlation function and thus the superfluid density
basic properties of the cuprate superconductors. ng and the optical conductivity(w) with the help of stan-
Thus, in this paper we use an electronic theory and thelard many-body theory. Then, we use these results as a mi-
Hubbard Hamiltonian in which Cooper pairs are formed duecroscopical input for the calculation of the free-energy con-
to spin-fluctuation exchange. Recently, we have shown thatibutionsAF.,,qandAF ypascand compare our results with
this approach can also explain the important feedback of suhe XY model and Kosterlitz-Thouless theory. These results
perconductivity on the pairing potenti&l.Studies of ampli- are presented in Sec. Ill and a summary is given in Sec. IV.
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Il. THEORY o
. . . . X,(kw)=N"1> | dO[Py(k—k',Q)*P(k—k',0)]
Extending previous studies using FLEX theory and the K Jo

two-dimensional (2D) Hubbard Hamiltonian for a CuQ
10,12 0
plane; xf do’ (w,Q,0)A, (K o). (2)

Here, the plus sign holds fof, and X3 and the minus sign
=— > ti(clc T e > niin, 0 3 :
H= (o i (CioCjoT CjoCi) +U i LLTRR O X;. The kernell and the spectral functions, are given

by
whereciTU creates an electron with spinon sitei, U denotes Y ,
the on-site Coulomb interaction, amgl is the hopping inte- |(w,Q7w’)=f( @) +b(®) + fl@’)+b(() )
gral. We calculate various properties like the dynamical spin wtid—Q-0' otid+tQ-o’
susceptibility  x(q,w,x,T), the superfluid density
ng(q,w,x,T), and the superconducting gap function A, (k,w)=—7"tIm[a,(k,)/D(K,w)]
A(q,w,X,T). We taket=250 meV andU=4t yielding a
tight-binding energy dispersiofi. and
Within a conserving approximation, the one-electron self-
energy is given by the functional derivation of generating D=[wZ]*~[e(k)+&]*— 2,
functional ®, related to the free enerdywith respect to the
Green’s functiorg. FromH and the functional differentiation QPp=wZ, az=€ek)+¢ a;=do. 4

of the generating functional® with respect to G,

SD{H}/8G=3, one obtains with the help of the Dyson Here,f andb are the Fermi and Bose distribution function,
equation the Green’s function and the self-energies. Note thaespectively. For the bare tight-binding dispersion relation
this gives coupled equations for the amplitude and phasene hase(k) =2t[2— cosk,)—cosk)—u]. The band filling
¢(r) of G (see Ref. 31 and in accordance with the n=1/NZXZyny is determined with the help of tHe-dependent
Ginzburg-LandauWannie) type treatment an energy gain occupation numben,=2/”_dwf(w)A(k,®) which is cal-
due to phase coherence of Cooper pairs and due to Coopamlated self-consistentlyn=1 corresponds to half filling.
pair condensatioft*®171932Below we will show how to  The spin and charge fluctuation interactions are given by
solve these equations. Then, we will calculate the currentPs=(27) U2 Im(3xs— xs0) With xs=xso(1—Uxg) 1
current correlation function which is used as a microscopicaand  P.=(27) tU?Im(3xc—xco) and  xs=xco(l
input for the Ginzburg-Landau functional. In the Ginzburg- +U x.,) %, where

Landau functional the prefactor 8 ¢(r) is ng/m (m is the

effective masg i.e., the stiffness against phase fluctuations. (>

Thus, the energy scale of Cooper-pair phase fluctuations is  IMxsoco(d,@) =1 wdw' [flo")—f(o'+w)]
determined byng. In the underdoped regime of high: su-

perconductorsg is small and, therefore, phase fluctuations

do not cost much energy and the superconducting transition X; [A(k+0,0"+o)AK,0")
is expected to be due to disordering of the phase. In such a
case wherag/m is the only relevant energy scale one finds A (k+g,0" +w)Ai(K,w)] . (5

T.xng/m. In other words, if the phase coherence energy
gain AE a6 is the smallest, one gets from the estimateHere, A(k, @) =Aq(K,w) +As(k, ), and the real parts are
AEpnasd T=0)=kgT, the superconducting transition tem- calculated with the help of the Kramers-Kronig relation. The
peratureT.<n(0) .3 This seems to be the case for the un-subtracted terms iRs andP. remove a double counting that
derdoped cuprates, because this scaling is observe?tcurs in second order.
experimentally* Our numerical calculations are performed on a square lat-
In the FLEX, (Refs. 7-12,14, and 1%r T-matrix** ap-  tice with 256x 256 points in the Brillouin zone and with 200
proximation the dressed one-electron Green’s functions argoints on the reab axis up to 16 with an almost logarith-
used to calculate the charge and spin susceptibilities. Theggic mesh. The full momentum and frequency dependence of
susceptibilities are used in order to construct athe quantities is kept. The convolutionskrspace are carried
Berk-Schrieffer-liké® pairing interaction describing the ex- out with fast Fourier transfornf€. Note thatT? is deter-
change of charge and spin fluctuations. A self-consistent demined from the linearized gap equation and the supercon-
scription is essential and is required because the electrons diuicting state is found to haws._.-wave symmetry?
not only condense into Cooper pairs but also provide the The bulk transition temperatuig, at which phase coher-
pairing interaction. The quasiparticle self-energy componentsnce of the Cooper pairs occur is determined by the
X, (v=0,3,1) with respect to the Pauli matrices in the  Ginzburg-Landau free-energy functionalF{ng,A} where
Nambu representatiofi;®” i.e., Xo=w(1—2Z) (renormaliza- the superfluid density ng(x,T)/m is calculated self-
tion), X53= ¢ (energy shift, andX,;= ¢ (gap parametgrare consistently from the current-current correlation function and
given by from
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ng 2t
—= _2( Sv—Ss), (6) 03 underdoped
m 4 x =0.09
where we have introduced for convenience the oscillator 02Ff
strength T
S f () d (@) i T E
= o1(w)w. H
2 + H
2me’tJo o o \ |
. . . 10 20 30 40 50 60 70
Sg is the value of Eq(7) in the superconducting state. Here, @)
we utilize the f-sum rule for the real part of the conductivity
o1(w), i.e., [§oi(w) do=me’n/2m, wheren is the 3D 03} optimum doping
electron density andn denotes the effective band mass for x=015
the tight-binding band considerea(w) is calculated in the E ..l
normal and superconducting states using the Kubo = '
formula®®3° c T,
01
— 2e2 ™ - d ’ f ! .I: !+ l
o(w)=5——| do[f(0)~f(o'+w)] N | |
10 20 30 40 50 60 70
(b)
><i > i v JAK, 0 +w)AK,e)
N “% ox ™ Ty ' ’ 03 overdoped
x =0.22

+A;(K, 0"+ w)Ai(k,0")], (8)

. L 02
wherev, ;= de/Jk; are the calculated band velocities within

the CuQ plane andc is the c-axis lattice constant. Vertex
corrections have been neglected. Physically speaking, we are 01t
looking for the loss of spectral weight of the Drude peak at

»=0 that corresponds to excited quasiparticles above the

T.

superconducting condensate for temperatdresT; . Fur- “ 10 20 30 40 0 e 70

thermore, the penetration deptlfx,T) is calculated within (©) T (K)

the London theory through ~2ocng. 4t

Most importantly, using our results fory(x,T), we cal- FIG. 1. Temperature dependence of the superfluid density
culate the doping dependence of the Ginzburg-Landau-likés(x,T) calculated with the help of Eqsl)— (8) for various hole
free-energy changdF=Fg— Fy, 1012 doping concentrations. We extrapolate the results I—0. The
dashed curve ifia) illustrates the effect of Cooper-pair phase fluc-

AF=AF ¢ongt AF phase: 9) tuations according to théstatio Kosterlitz-Thouless theory. In

Ginzburg-Landau theory the superfluid density can be described as
where AF ;on=a{ns/m}Ay(x) is the condensation energy (ng)=nl(V¢(r)V¢(0)). Here, #(r) denotes the spatial depen-
due to Cooper pairing andehase:han/Zm the loss in  dence of the Cooper-pair wave function axfdthe static mean-field
energy due to phase incoherence of the Cooper paide-  value of the superfluid density for a given temperature calculated
scribes the available phase space for Cooper gaoEmal-  with the FLEX approximation. AT, <T<Tj , where Cooper pairs
ized per unit volumgand can be estimated in the strongly get phase incoherem?—0 (see Fig. 3
overdoped regime. In the BCS limit one finds=1/400. A
is the superconducting order parametef &0. Within stan-  perconducting transition temperatufg=ng for x<<0.15, but
dard (time-dependentGinzburg-Landau theofy the super- T.xAy(x) for the overdoped cuprates witk>>0.15. Note
fluid density ng can be calculated Vvia (ng)  thatT. and in particularT «ng follow also from(ng)=0,
=n2(V¢(r,t)V¢(0)), whereV ¢(r,t) reflects the changes where one averages over the phase fluctuation time.
of the spatial and time dependence of the Cooper-pair wave

fgncnon.nS t.he static mean-field value of thg superfluid den- Ill. RESULTS AND DISCUSSION
sity for a given temperature calculated with our extended
FLEX approximation. Our results forng(x,T) (normalized byn) for different

As suggested by Chakravergt all® and by Emery and  doping concentratior are shown in Fig. 1. For low tempera-
Kivelsont’ and also by Schmaliaat al® one expects that tures we find a linear behavior of the superfluid density due
for underdoped cuprates 0:3%— 0, phase fluctuations be- to the nodes in the-wave order parametér**‘?Note that
come stronger and thuSthase<AFcond.31 Using Eq.(9)  we findng(T=0)/n<1 due to strong-coupling quasiparticle
we will show that, in agreement with the experimental ob-lifetime effects and the observed characteristic change of the
servation by Uemura and co-workéfspne has for the su- nearly linear decrease of, for underdoped superconductors
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FIG. 2. Calculated crossover of the phase-stiffness energy. We FIG. 3. Phase diagram for highs superconductors resulting
find AF has8<ns/m* whereas the condensation energyqnq from a spin-fluctuation-induced Cooper pairing including their
=a{ng/m}Ay(x). Here, we estimatea=1/400. Note that phase fluctuations. The calculated valuesrigfO)/m are in good
AF phase<AF ong implies the two characteristic temperatufgs, agreement with muon-spin rotatigRef. 50. Ty denotes the tem-
where Cooper pairs are formed Bt~Ag, and To~AF ;5564 N5, perature below which Cooper pairs are formed. The dashed curve
where Cooper pairs become phase coherent. givesT.xng(T=0x). BelowT* we get a gap structure in the spec-

tral density.
to a more rounded decrease for the overdoped case for in-
creasing temperature afid—T.. This is a signature of the In a more complete picture one should not only use the
opening of the superconducting gaf(w) which is itself ~ XY-model or Kosterlitz-Thoules&T) theory*?=4547=49|n.
dependent on the quasiparticle scattering rate belpw  stead, we calculate the doping dependence of the Ginzburg-
Both effects are treated self-consistently in our FLEX theoryLandau free energy§ within the FLEX approximation di-
and no further parameter is introduced. Therefore, the imporectly. In order to avoid entropy effects on the free energy we
tant feedback effect of superconductivity on the calculatedextrapolate our calculations {b=0.
response functions of the systems is taken into account. We In Fig. 2 results are shown foAF(x). We find that
have recently shown that this feedback is needed in order tAF.,,q mainly follows the doping dependence of the mean-
explain inelastic neutron scattering and tunneling d&fur-  field transition temperatur@? which will be discussed in
thermore, this behavior ohy(x,T) gives results for the connection with Fig. 3. On the other hand, the doping depen-

London-penetration depft;™ dence ofng(0)/m determines the doping dependence of
AFphase Thus the energy costs due to phase fluctuations
)\z(x,T)oms‘1 , (10 have the opposite behavior than the energy gain due to

Cooper-pair condensation with respect to the doping concen-
in fair agreement with experimental results as discussegtation x. It is remarkable that we get from our electronic
later in more detail. For a Comparison with the CalCU'ateq:heoryacrossing of the two energy Contributiqﬁ'ﬁcondand
phase diagram for hole-doped cupragehich is shown AF . .atx=0.15 for which the largesE, is observed. The
laten we have calculated for underdoped cuprates the supegonsequence of this is that we fifigen, for underdoped
conducting bulk transition temperatuf, using ny(T)/m  cyprates and a nonmonotonic doping dependencg,of)
also calculated from Eq(6) and @=2/m)****** using  with optimal doping atx=0.15. Physically speaking, in the
Kosterlitz-Thoules¥’ theory, overdoped regime we find a largeF ,n,seWhich means that
Cooper-pair phase fluctuations are connected which a large
amount of energy. Thus the system will undergo a mean-field
transition according to a small condensation eneXy.,,,q-

In the underdoped regime of cuprate superconductors the
which is shown as a dashed line in Figail Thus, in the situation is the opposite: the energy gain due to the formation
underdoped regime one indeed finds a difference betWgen of Cooper pairs is not enough in order to reach the Meissner
andT} . Afinite value ofng(T.<T<T}) can be interpreted state of the bulk material. This is only possible at a smaller
in terms of local Cooper pairs with a strongly fluctuating temperature, where the Cooper pairs become phase coherent
phase. In the case of YB@u;Ogs_« (YBCO) this has been which is determined bAF ;;a5e aNd AF ppase< AF cong-

recently confirmed by experimefft Physically speaking, for In Fig. 3 we show the resulting doping dependence of
temperaturesT.<T<T% we find preformed pairs without Tc(X). Our results for the doping dependencemg{0)/m,
long-range phase coherence in the underdoped regime. Invéhich are in good agreement with experimental resulifs,
simple model the origin of the Cooper-pair phase fluctuationgre also displayed. In particular, we find a maximum of
is due to the occurrence of vortices which we simply treatns(0)/m for a doping concentratior=0.19. Recent experi-
within Kosterlitz-Thouless theory. It is remarkable that we ments have shown that this behavior is unique for hole-
get the characteristic temperature dependence(ed/n for ~ doped cuprate¥. The curveTe*P' describes many classes of
overdoped and underdoped superconductors as seen in euprate materials and is taken from Loram and
periment. co-workers2?**We would like to emphasize that for the un-

ﬁ2

1
KgTe(x)= 5 m Ns(Te), (11
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calculated magnitude of the gap itself is too small as com-
(a) 1 pared with pseudogap measureménté.The reason for this

is that the input dispersions(k) crossed the Fermi energy
for k=(m,0) in the Brillouin zone. Note that the result
T*(X)—=T.(x) for x=0.19 depends on the strength of the
interaction between quasiparticles and the antiferromagnetic
spin fluctuations. If we increase this coupling we will get for
increasingx (and for the overdoped cuprat&sT* — T, and
T*~T.(x) as well asT* >T(x) for further increasing cou-

pling.

(-)0.4 -03 -02 -01 00 01 02 03 04

o/t As mentioned above we get the right doping dependence
100 of the weak-pseudogap temperatdit however, the calcu-
207 (b) n,/ m | lated magnitude of the pseudogap is too small in comparison
80y . 1 with experiment. In general, the magnitude of this pseudogap
70 - T 5 L, 1 should also influence the mean-field transition temperature

60 -
50f
40
30| Tee
20 L L

0.0 0.1 0.2 0.3

Doping x

T? and thus the temperature range where preformed Cooper
pairs are formed, because less hdlaselectrong can pair if
fewer states at the Fermi level are present. In order to inves-
tigate this question in detail we perform calculations with an

appropriate energy dispersieiik) which exhibits, in accor-
dance with recent photoemission dathywave symmetry.

Furthermore, we choosgk) to be doping dependent in ac-

FIG. 4. (a)Results for the quasiparticle spectral functidfk, ) cordange with Refs. 21-23, 54, and 56. )
o for different vectors near the gap antinode=(0.14,1), In Fig. 4@ we present results for the spectral density

(0.16,1), (0.17,1), (0.19,1), and (0.20,%in units of 7). The  A(K,w) calculated within our FLEX theory in the under-
Fermi wave vector i&,=(0.18,1)r. (b) Doping dependence @ ~ doped regime from the Green's functig(k,w).* As an
andT, using a dispersion relatioa(k) in accordance with ARPES input we use for the underdoped superconductors the Fermi
data. For clarity, als@*P(x) andng(0)/m are displayedT?, refers ~ surface as observed by Marshall al> and a dispersion
to a _mean_—fie_ld transition _taking_ not into account the pseudogap i@(k) = /62(k) +A2(k) including for k=(w,0) the
the tight-binding energy dispersion. pseudogap structuf8. The results show the interplay of

, , pseudogaps and superconducting gap and the different fea-
d(_ardoped _cuprate§coc Ns y|elds*|ndee<_j better agreement tures for under- and overdoped superconductors and should
with experimental results tham; obtained fromA(x,T) be compared with ARPES-dath.Of course, ARPES can

=0 arfl_dlcrjna]rking t:e (l)nse(;[ of C(:_operd pairing witthin Ol_JtrhonIy measure occupied states, i.e., the spectral density for
mean-fie eory. As already meD loned In connection with , -4 - As an example we show in Fig(a} our calculated
Fig. 1 for temperature . <T<T. one finds preformed

Cooper pairs. Note that* depends on the dispersioak) spectral function for a doping concentration xf0.12 at
. A c T : T=100 K, wh th itude of th d i 0.1
which will be discussed in Fig. 4. For the overdoped cu- Where e magnitice of e pseudongap |

at e x>0.15. w t largely BCS-t behavior =25 meV. One sees that the spectral function does not cross
prates, 1.€., . € g€ gely BLo-lype DENAVIOL, w0 pormi level (=0). This has consequences for the Coo-
namely, T.=T¢Z «A. Hence, our electronic theory yields in

fair agreement with experimen'g the_nqnmonotonic dopingperlnpa;:gg;l(b) we present the corresponding results for
dependence of ;(x). Note, we find similar results for the T* dT btained b . . di .
doping dependence off; from determining T, using NC(X) andT(x) obtained by using as an input dispersions
ny(x,T)=0. Here, one must include the coupling betweene(k) which are for underdoped cuprates in accordance with
Cooper pairs and their phase fluctuations causing a reductidgcent angular-dependent photoemission results. To model
of T* —T, for the underdoped cuprates afigrn,. Physi- the pseudogap behavior fok=(,0) we take A(k)
cally, T.(x) increases first for increasing since one has =Ag(cosk,—cosk,)/2 for a fixed doping value. As expected,
more holes for Cooper pairingeeng(x,T) in Fig. 1], and  if for k=(m,0), where pairing is most favorable, we take
then T, decreases again, since the glue for the Cooper pairoper account of the observed pseudogapme obtains
ing, i.e., the antiferromagnetic spin fluctuations, mainly dis-smaller values foffl; andT. and for (T; —T) as well. The
appear. latter signals that the pseudogap decreases the reduction of
Also in Fig. 3 results are given for the characteristic tem-T* — T, due to Cooper-pair phase fluctuatiors?
peratureT* at which a gap appears in the spectral density Finally, note we may also estimate within Ginzburg-
A(k,w;T). Within our FLEX theory the occurrence of a Landau theory and our FLEX theory the doping concentra-
pseudogap is due to inelastic electron-electron scatteringon xo=0.06 at which superconductivity begins. Our FLEX
which leads to a loss of spectral weight at the Fermi leveltheory yields an attractive interaction essentially for two
Agreement with experimental results is fair; however, theholes at nearest-neighbor sites. From this and the probability

T (K)
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1.0 ] which determine the opening of the superconducting gap

— overdoped | A(w). However, at present it is not clear whether our FLEX

= gj ] calculations provide an explanation extremely closel (o

D osl o because the numerical convergence of E@s-(7) is very

~ osf o M(0) / W(T) slow. Further calculations should clarify this interesting is-

o 04p oo / sue.

e U=4t In Fig. 5(b) we present the FLEX results for underdoped
gf | %5555 557 0% a5 To0 superconductors. The effect of phase fluctuations can be seen
ay o owmw o from the discrepancy between experintém@ind theory. One

S0 €2 DG 04 95 WS I 0 02 10 clearly sees that no Meissner effect resultsTorT,, since
T/ T the phase correlation functiof(r) ¢(0)) becomes zero.
- The results obtained using static Kosterlitz-Thouless theory

(‘);’ (b) underdoped | (straight ling and the FLEX resultédiamonds for ng(x,T)

~  osl . ] are showrf? The pure FLEX results neglect phase fluctua-

5‘" 07| T S =k tions which is appropriate for «{7)—. Of course, in

< osf experiment ™, theary | Kosterlitz-Thouless theory we gat 2—0 at T, while in

= st - ] our full FLEX calculations we have to useng)

= ool KT theory ] =n2(Ve(r)V¢(0)) to get this. Note that folf<T,. the

< 2l \\ ] discrepancy between experimental results and our FLEX cal-
01f Te e ¥ \] culations indicates the importance of Cooper-pair phase fluc-
000 01 02 03 04 05 06 07 08 09 1.0 tuations b?|0WTc- . '

T/T Regarding the dynamical behavior of the underdoped cu-

prate superconductors we may conclude some interesting
facts using the results shown in Fighpand which may be
related to the recent dynamical conductivity measurements
linear behavior for the overdoped superconductors of(T) for by Corsoret al*In relation to the latter our th_efretlcal pure
T=T*=T, even without having included critical fluctuations. This FLEX results r_efer to the case G’f7_'>1 or>w such thgt
is in good agreement with Ref. 59. {b) we indicate the behavior Phase fluctuations are not effective and yield a “dynamical”
expected for the Meissner effect occurring only fafw=0)>0.  Meissner effecing(q,w)>0] for T.<T<T¢ . Also, the dif-
Results derived from KT theory, wherg(T)—0 at T, are also ference (\t],iory—)\gxng or, respectively, [ng(w7>1)
shown. Theory refers to pure FLEX results neglecting Cooper-pair—ng(w7<1)] gives for a given temperatufethe variation
phase fluctuations fof<T.. These should be compared with in )\*2, ng, or optical conductivity upon changing the fre-
Ns(w) results for @7)— . quency of the applied electromagnetic field. The lifetime
, . . of the phase fluctuations(x) may be calculated from our
x to find a hole one may easily get a rough estimate for the Its f T ing 7= (T/T20 ) exnl — 2CA2n.(x)/
hole density necessary to get Cooper paifing. fesults forng(x,T) using 7= (T/T4{0) exp s(%)
* 0

An important check on the validity of our results for the m* T}, Wher%C and (), are constgnts and ,>ns/m, see

superfluid densityng(x,T) is provided by the analysis of the Corsonet al™ Thus we get approximately 70.

London-penetration depthy . In agreement with experiment Finally, we note that the frequen_cy dependence does not
(see Ref. 59we calculatex for optimal doping and find a stop atT¢, but for T<T,; see the discrepancy between ex-

strong increase in(T=0) for 0.15>x—0. Clearly, the perimental and theoretical results in Figbp This also is in

characteristic behavior of the superconductors regardinegIr agreement with experimental results by Corsoal. For

electromagnetism, the Meissner effect, requires phase coh xample,Tc=33 K where the frequency dependence stops

. 26
ence of the Cooper paifén (w=0)>0. Hence, the Meiss- 2t 115 K. . . .
ner effect occurs only fof<T,, but not for T,<T<T* , Concerning the dynamics of excited superconductors in

. : general the phase diagram shown in Figs. 3 afi with
vi/h%rev Cooger Opa~|r3 g;e phase mcoherlent a(r:jti) characteristic temperaturds and T, should imply various
—Ns <t ¢(rt')ll ¢(0))= h. COUI’SEI, ?n ger;gra_rgrour; S ON€ relaxation channels for electronic excitations in highsu-
expects stll some phase correlations 10k Tc and Ns — horconductors due to photon absorpti®A? This is illus-
<ng(w7T—) for T=T,. Here,r is the lifetime of the phase

fluctuation andhg(w7) refers to a frequency-dependent mea-trated in Fig. 6. We estimate on general grounds that
surement. mocA LT L (12)

In Fig. 5 we present our calculated results for the penetra-
tion depthA(x,T). In (8) we demonstrate the remarkable since the energy change involved in the excitation is of the
agreement with experiment for the overdoped cuprites. order of(Ae'?). Note that abovd . one hage'?)=0 due to
Furthermore, in the inset @¢&) \3(T,x) in the vicinity of T,  phase-incoherent Cooper pairs. Henegdescribes dynam-
is displayed. We find a linear behavior which is indeed ob-ics only belowT.. Using data fofT;(x) we estimater, to be
served in the experiment.It is interesting that we get this of the order of picoseconds which is in agreement with Ref.
temperature dependence without critical fluctuations. In ou60. Furthermore, the energy involved in the gap structure of
FLEX theory this is due to strong-coupling lifetime effects A(k,w) and occurring aff* and thus in the corresponding

FIG. 5. Results for the penetration depttiT,x) (ngx\ ~2) for
over- and underdoped cuprates. The inségjrshows a remarkable
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‘ i ‘ " IV. SUMMARY
© T 'h(A)Mm,
= In summary, we have used as a model the Hubbard
=u Hamiltonian and the self-consistent FLEX theory extended
E LT T3 pump-probe | by including Cooper-pair phase fluctuations to calculate
=N spectroscopy some basic prope.rtles of the hoIe—dpped cuprate supercon-
ﬁ I T. il 1 ductors. We combined our results with standard many-body
. coherent fiirra::r?ilgsn theory and used this as in input for the Ginzburg-Landau
T1 Cooper-P. , energy functionaAF{ng,A}. In particular, we have calcu-
0.0 01 02 03 04 lated the superfluid density,/n, ng/m, and the critical tem-
Doping X peratureT. as a function of the doping concentration. We

found a phase diagram for hole-doped cuprates with two dif-
FIG. 6. lllustration of relaxation dynamics expected for excited ferent regions: on the overdoped side we obtain a mean-
electrons in cuprate superconductors. Timeefers to relaxation of ~ field-like transition andlr .«A(T=0), whereas in the under-
excited electrons and time to relaxation involving antiferromag- doped regime we fin@.ng(T=0). The temperature region
netic correlations characterized Ay*. If 7, refers to relaxation T.<T<T?! may be attributed to preformed Cooper pairs
tc_)wards phase-coherent Cooper pairs it_ is o_nly observed bElow without long-range phase coherence. We show that an im-
since(Ae'?)—0 for T>T. The relaxation timer, may refer to proved treatment of the weak pseudogap at room tempera-
the dynamics of phase-incoherent Cooper pairs. -
ture narrows the range where preformed pairs may be found.
The overall agreement with experiments is remarkably good
and suggests spin-fluctuation exchange as the dominant pair-
ing mechanism for superconductivity. We also investigated
the time scale of Cooper-pair phase fluctuation and find fair
T1. (13  agreement with experiments. We propose further time-
resolved experimental studies in order to find the origin of

Thus, 73(x) can be estimated to be of the order of a fewthe pseudogaps. Again, we would like to stress that we try to
hundred femtoseconds. Recently, by pump and probe spe@et various properties within a unified theoretical picture. An
troscopy such relaxations of the order of a few ps and 700 fanalysis of superconductivity in the cuprates can be per-
have been observed by Kainell al.®° formed mainly on the basis of(q,) and the pronounced

It would be interesting to check the above analysis bywave vectors); related to the peaks in lgnand the topology
further experiments, using different light frequencies and poof the Fermi surface. This sheds light on the general validity
larizations, and in particular the relaxatiog~(T*) 1. Note  of our results. Also, it has been of central significance that
different dynamics is expected faf* (x)— T, at x=0.15 we work within a conserving approximation and perform
and T*=T, and T*>T, for the overdoped cuprates. Of self-consistent calculations. We improve the numerical
course, it might be also possible like in ARPES to detect@nalysis for solving the Dyson equations for the full Green’s
excitations reflecting the energy(k,») and thus the-wave ~ function$* which contain an amplitude and a phase. As a
symmetry of the pairing. further test, we apply our theory also to electron-doped su-

Circularly polarized light might also couple to magnetic perconductors and find superconductivity of maidiyvave
excitations in the cuprates, but then spin-orbit coupling issymmetry?%® There might be general questions regarding
involved and one gets much longer relaxation times. the Hubbard model Hamiltonian and the validity of effective-

Finally, we would like to mention that we have also in- second order perturbation theory treatment. However, the
vestigated the quasiparticle spectral density below In  comparison of the results with experiments seem to support
standard FLEX theory we obtain the characteristic features ithis handling of hight . superconductivity. Also note, FLEX
SIS conductance at approximatehA 3and in SIN conduc- theory corresponds to Eliashberg theory in the case of
tance at approximately-2A and that these both disappear €lectron-phonon interactions and has the same transparency.
for T=T,.° Of course, it is of interest to see what happensThe strength of the interaction to the spin fluctuations is
for T,<T<T?* . The fingerprint of phase incoherent Cooper Presently posing a problem which needs further studies.
pairs—for example, in SIS tunneling far>T, for one su-
perconductor and* >T>T} for the other one—depends on
how much the measurement involves averaging ef*("!.

optically induced excitation, is mainl,;~T*. Then one
may estimate a corresponding relaxation time with

Tc

T*
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