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Meissner effect in a bosonic ladder
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We investigate the effect of a magnetic field on a bosonic ladder. We show that such a system leads to the
one-dimensional equivalent of a vortex lattice in a superconductor. We investigate the physical properties of the
vortex phase, such as vortex density and vortex correlation functions, and show that magnetization has plateaus
for some commensurate values of the magnetic field. The lowest plateau corresponds to a true Meissner to
vortex transition at a critical fieldHc1 that exists although the system has no long-range superconducting order.
Implications for experimental realizations such as Josephson-junction arrays are discussed.
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I. INTRODUCTION

The effect of a magnetic field on interacting particles is
long-standing problem. A spectacular case is provided by
type-II superconductor, in which the magnetic field is tota
expelled belowHc1

, whereas a vortex state exists forH

.Hc1
. This behavior, however, is obtained from the Landa

Ginzburg equation, and it is important to know what happe
when interactions and fluctuations have more drastic effe
such as in one-dimensional systems. Indeed, in a o
dimensional conductor atT50, although there is no long
range order, superconductivity in the sense of infinite dc c
ductivity can nevertheless be present.1 For a one-dimensiona
chain, there is no orbital effect, and this question is not
evant. However, a system made of a finite number of coup
chains~a ladder! is still one dimensional~no long-range or-
der can exist! but orbital effects of the magnetic field ar
present, opening the possibility of such a transition.

Beyond its own theoretical interest the investigation of
effect of a magnetic field on ladder systems is also of dir
experimental relevance, due to the various realizations
such ladders.2–4 Fermionic ladders can be superconducti
both from attractive (s-wave! and repulsive (d-wave! inter-
actions. In the attractive case, the system is close to stan
superconductors where pairs of fermions can hop from
chain to the other leading to a Josephson-coupling, provi
the applied magnetic field is smaller that the spin gap. T
system can thus be described as a bosonic ladder. Josep
junction arrays5,6 provide also a very direct realization o
such a bosonic ladder7,8 and are thus the prime candidates f
observing these effects. This problem of Josephson lad
has been investigated previously in the classical9 and quan-
tum limit both analytically10,11and numerically12 in the high-
field limit of half a flux quantum per plaquette for one
dimensional situations. For the Josephson two-leg ladde
has been shown10,11 that a true transition exists between
commensurate and a vortex phase, however the detailed
havior of the vortex phase and the effects of commensura
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ity of the magnetic field remain to be understood.
In this paper we investigate the effect of a magnetic fi

directly on the bosonic two-leg ladder. We analyze the c
sequences for transport in such bosonic ladders. The pla
the paper is as follows: in Sec. II the model of the boso
ladder under magnetic field is introduced and connecti
with the Josephson ladder are shown. In Sec. III the mode
solved and the phase diagram is obtained showing a Me
ner phase at low field and phases with vortices above a
tain threshold fieldHc1. These vortex phases are studied
detail in Sec. IV. We show that plateaus in the magnetizat
for commensurate values of the field exist, in a way simi
to the Mott transition in one dimension for commensura
values of the filling. Finally the conclusions of the paper
well as the consequences of our findings for observing
vortex phase in systems such as the Josephson-junctio
rays can be found in Sec. V.

II. MODEL

The lattice Hamiltonian of the bosonic two-leg ladder in
magnetic field is

H52t i (
i ,p51,2

~bi 11,p
† eie* aAi ,p( i )bi ,p1bi ,p

† e2 ie* aAi ,p( i )bi 11,p!

2t'(
i

~bi ,2
† eie* A'( i )bi ,11bi ,1

† e2 ie* A'( i )bi ,2!

1U(
i ,p

ni ,p~ni ,p21!1Vni ,1ni ,2 , ~1!

where the densityni ,p5bi ,p
† bi ,p and the magnetic field is

introduced via the Peierls substitution. In addition to th
parallelt i and perpendiculart' hopping the bosons repel vi
an on-siteU and an interchainV repulsion. An experimenta
realization of the bosonic two-leg ladder is provided by t
Josephson-junction ladder. Its Hamiltonian reads
©2001 The American Physical Society15-1
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H5(
i ,p

F2
~e* !2

2C

]2

]u i ,p
2

2Jicos@u i 11,p2u i ,p2e* aAi ,p~ i !#

2
J'

2
cos@u i ,12u i ,22e* A'~ i !#G , ~2!

whereu j ,p is the Josephson~superconducting! phase and the
particle number on the sitej ,p is given by

nj ,p5
1

i

]

]u j ,p
. ~3!

The vector potential is given by

R A•dl5A'~ i 11!1aAi ,1~ i !2A'~ i !2aAi ,2~ i !5F,

~4!

whereF is the flux of the magnetic field through a plaquet
The low-energy properties of Eq.~1! are more transparent13

using a ‘‘bosonized’’ representation of the boson operator14

One obtains

H5 (
p51,2

E dx

2p FuK~pPp2e* Ai ,p!21
u

K
~]xfp!2G

2
t'
paE dx cos@u12u21e* A'~x!#

1
Va

p2E dx]xf1]xf21
2Va

~2pa!2E dx cos~2f122f2!,

~5!

where f i and pP i5¹xu i are conjugate variables and th
boson annihilation operator is given by

cp~x5na!5
bn

Aa
5

eiup(x)

A2pa
, ~6!

wherea is the lattice spacing along the legs of the ladderu
is the sound velocity of the collective density oscillation
The representation makes the analogy between the b
chain and the Josephson ladder transparent. Indeed
Hamiltonian~5! can also be deduced from the Hamiltoni
~2! by writing cos@ui,p2ui11,p2Ai ,p( i )#.12@u i ,p2u i 11,p
2Ai ,p( i )#2/2 and taking the continuum limit. In that cas
one has

u5A~e* !2Ji

C
a, ~7!

K5pA JiC

~e* !2
, ~8!

t'5pJ' , ~9!

V50. ~10!
14451
.

.
on
the

The current operators along and perpendicular to the ch
are given by

j p~x!5uKe* S Pp2
e*

p
Ai ,pD , ~11!

j'~x!5
e* t'
pa

sin~u12u21e* A'!~x!. ~12!

The Hamiltonian~5! is invariant under the gauge transform
tions:

up~x!→up~x!1e* f p~x!, ~13!

Ai ,p~x!→Ai ,p~x!1]xf p~x!, ~14!

A'~x!→A'~x!1 f 2~x!2 f 1~x!. ~15!

The linear nature of the spectrum is the signature that
superfluidity exists in a single chain even without long-ran
order.1 K is the Luttinger parameter, directly related to th
compressibility of the system, and incorporating all micr
scopic interaction effects. For a simple on-site repulsion
,K,`, with K5` being free bosons andK51 hard-core
bosons. For more general~longer-range! interactions all val-
ues ofK are in principle allowed.

III. PHASE DIAGRAM

If one introduces the symmetric and antisymmet
combinationsfs,a5(f16f2) /A2 ~and similar combina-
tions for P andA), Eq. ~5! reads13

H5Hs
01Ha

02
t'
paE dx cos@A2ua1e* A'~x!#

1
2Va

~2pa!2E dx cosA8fa , ~16!

where (n5s,a)

Hn
05E dx

2p FunKn~pPn2e* An!21
un

Kn
~]xfn!2G ~17!

with

Ks5K~11@VKa/pu# !21/2,

Ka5K~12@VKa/pu# !21/2.

Asdescribes an Ahronov-Bohm flux threading the system
the following, we assume that there is no such flux, soAs

50. We also assume thatKa.1, so that the term cosA8fa is
irrelevant. This leads to a Hamiltonian similar to the o
derived for the Josephson ladder.10,11 Note that this limit is
different from the one considered in Ref. 15, where the te
cosA8fa was relevant and drove the system to a Bose p
superconductor.13 The total and antisymmetric longitudina
current j s,a5 j 16 j 2 and the current perpendicular to the la
der are given by (n5s,a):
5-2
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MEISSNER EFFECT IN A BOSONIC LADDER PHYSICAL REVIEW B64 144515
j n5uKe* A2S Pn2
e*

p
AnD , ~18!

j'5
e* t'
pa

sin~A2ua1e* A'!. ~19!

Hs gives a simple dynamics; the behavior ofHa is richer.
In the absence of a magnetic field,Ha is a sine-Gordon
Hamiltonian. ForK. 1

4 , it develops an order in the fieldua
with ^ua&50 and a gap in the excitation spectrum,

Da;
u

a S t'a

u D 1/@2-1/~2K !#

. ~20!

This describes the locking of the relative phases by Jose
son coupling. This implieŝ j a&52uK@(e* )2F/pa#, no
perpendicular current̂j'&50, and

^ j'~x! j'~x!&;e2ux2x8u/ja ~21!

with ja5u/Da . In this low-field phase, there is a curre
circulating only on the edges of the system~see Fig. 1! and
proportional to the applied vector potential. It is just t
Meissner current that screens the electromagnetic field. T
we can identify the low-field phase to a Meissner phas10

Let us now consider the effect of a magnetic field such t
the flux per plaquetteF5(2p/e* )p/q, wherep,q are two
mutually prime integers. Using the gaugeAa50, A'

5Fx/a, we can write

Ha5E dx

2p FuaKa~pPa!21
ua

Ka
~]xfa!2G

2
t'
paE dx cosSA2ua1

2pp

q

x

aD . ~22!

The Hamiltonian~22! is similar to the one describing th
Mott transition in one dimension,16 where any commensura
bility can in principle give a transition depending onK. In-
deed, even if the presence of an oscillating phase in Eq.~22!

FIG. 1. The phases of the bosonic two-leg ladder in the prese
of a magnetic field.~a! The low-field phases. Current only exis
along the legs of the ladder leading to screening of the app
magnetic field.~b! The high-field phase. Current exists both on t
legs and the rungs of the ladder leading to a vortex lattice~here
shown with a vortex at every three sites!. At commensurable flux
the vortex lattice is perfectly ordered~at T50) whereas away from
commensurability the vortex system has only quasi-long-range
sitional order and no perfect crystalline order.
14451
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makest' naively irrelevant, perturbation theory to orderq in
t'a/(pua) shows17,18 that a term

Hq52
gq

paE dx cosqA2ua ~23!

exists with

gqa/~pua!;~ t'a/pua!q ~24!

in perturbation. More generally this term is allowed by sym
metry and is present in the Hamiltonian even beyond per
bation theory. The term~23! opens a gap,

Dp/q5
pu

a S t'a

pua
D (2Kaq)/(4Ka2q2)

~25!

provided Ka.q2/4. The expectation value ofua in the
gapped phase iŝua&5A2kp/q wherek50, . . . ,q21. This
corresponds to aq-fold degenerate ground state resultin
from the breaking of the discrete translation symmetry,
direct analogy with Mott systems16 or spin systems.19,20 The
corresponding expectation value ofj'(x) is

^ j'~x!&}
e* t'
pa

sinF2pk

q
1

2pp

a

x

aG , ~26!

giving a periodic pattern of the transverse currents of per
qa as shown in Fig. 1. This pattern corresponds to a vor
lattice phase pinned to the microscopic lattice withp vortices
in a supercell ofq sites, leading to an average vortex dens
r̄V5p/q. Let us finally remark that the form of the Hami
tonian ~22! implies that the behavior of the system is pe
odic as a function of the flux with periodicity of one flu
quantum.

IV. VORTEX PHASES

Let us now take a flux per plaquette which is an irration
multiple of the quantum of flux. If this value is close to
rational number with a small enough denominator we c
decomposee* F52p(p/q)1dF. The most convenien
gauge choice is then A'5(2pe* p)/q and Aa

5(dF)/(aA2). Introducing the fieldPa conjugate toua ,
pPa5]xf, Ha becomes

Ha5E dx

2p F u

K
~pPa!21

u

K S ]xua1
e* F

aA2
D 2G

2
gq

paE dx cosqA2ua . ~27!

The deviation of the flux per plaquette from a rational val
in the unit of the quantum of flux causes a commensura
incommensurate transition.21–23At low deviation, the system
is in its commensurate phase,A2^ua&52pk/q. This implies

^ j a&52uK
~e* !2dF

pa
~28!
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d
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and no modification of the perpendicular current^d j'&50
and

^d j'~x!d j'~x8!&;e2ux2x8u/ja ~29!

with ja5u/Da .
For a large enough deviation from rationality, (u/a)dF

.Dp/q , there is a transition to a phase where the cosqA2ua

operator is irrelevant. In this phase^]xua&/(pA2) is nonzero
and defines an order parameter. In the small applied fi
case,10 this order parameter is just the vortex densityrV . In
the general case, this order parameter measures the dev
drV5rV2p/q of the vortex density from a rational value
The average transverse current is zero in this phase. H
ever, transverse current correlations have an oscillating c
ponent that decays with a power law as

^ j'~x! j'~x8!&;
cos@2pr̄V~x2x8!#

ux2x8u1/Ka*
, ~30!

whereKa* is the renormalized Luttinger parameter. It wou
be worthwhile to check in a numerical simulation such
Ref. 12 whether such current correlations are present. T
is a pattern of transverse currents alternating along the ru
of the ladder. One can identify the solitons inua with vorti-
ces surrounded by circulating currents~see Fig. 1!. If a vor-
tex is at positionx, it causes a jump of 2p in u12u2 at this
point. This enables us to write the density of these o
dimensional objects as14

rV~x!5
1

pA2
]xua1 (

m52`

m5`
Cm

pa

3exp~ im@2pr̄Vx1A2~ua2^ua&!# !. ~31!

When the density of vortices isp/q, the potential-energy
term ~23! can be interpreted as the coupling of the vort
density to a pinning potential of periodq lattice spacings.
Therefore we recover the interpretation in term of pinning
the vortices by the underlying microscopic lattice and
analogy with the Mott transition16 in d51. Equation~31!
gives the vortex current

j V~x!52
] tua

pA2
. ~32!

In the incommensurate phase, the application of a volt
V12V2 between the chains gives

^]xfa&5e*
V12V2

uaKaA2
~33!

and

V12V25E'b52
2p

e*
j V , ~34!

which is just Faraday’s law. This completes the identificat
of the incommensurate phase as an unpinned vortex lat
Because of the linearization of the spectrum in Eq.~5! there
14451
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is no Laplace force on vortices. This pathology could
cured by putting back the band curvature.

In the classical case,9 a vortex lattice phase is obtaine
each time the flux per plaquette is a rational multiple of t
quantum of flux, leading to a devil’s staircase structure in
behavior of the magnetization. Here, the quantum fluct
tions wipe out the large fractions for whichq2.4Ka , so
only some plateaus remain as shown in Fig. 2. As quan
fluctuations are reduced, more and more plateaus in the m
netization curve are formed. It is interesting to study how
width of a magnetization plateau increases as a function
Ka or t' . Standard renormalization-group calculations of t
gap show that the width of a plateau behaves as
(2C/At'2t'

c ) close to the threshold. ForF5p/e* , a vortex
lattice phase has been obtained in numerical simulations.12 It
remains to be seen whether such a phase is a Luttinger li
or a pinned vortex lattice.

Close to the transition the coefficientKa* is universal and
Ka* 5q2/2. It is possible in the limitdF→dFc1(p/q) to
refermionize,21,23 yielding an average vortex density

^rV&5
e*

2pa
AF22Fc

2 ~35!

and a vortex current

^ j a&5
u~e* !2

2pa
~AF22Fc

22F!. ~36!

The transition from the pinned vortex lattice state to the v
tex liquid state is thus continuous. The behavior of the av
age current as a function of flux is plotted in Fig. 3. This
reminiscent of the behavior of a type-II superconduct
however the growth of the magnetization is here qu
different10 from the standardB5H1M;1/@ ln2(H2Hc1)#
law. At nonzero temperature, the singularities are rounded
in a way that can be calculated following Ref. 24. In the ca
of q51, i.e., integer flux per plaquette, close to the tran
tion, one can easily obtain from the refermionization21,25 the
correlation functions of the screening current:

FIG. 2. Sketch of the staircase in the magnetization of
bosonic or Josephson ladders. In the figure,Ka54, so that only the

plateaus obtained forp/q50,1
3 , 1

2 , 2
3 ,1 survive to the quantum fluc

tuations. Note that the width of the13 and 2
3 plateaus is already

extremely reduced compared with the width of the1
2 plateau.
5-4
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^ j a~x! j a~0!&2^ j a&
2;

1

x2
1S Fc

F D 2cosF2pr̄V

x

aG
x2

, ~37!

^ j'~x! j'~0!&;S Fc

F D 2 1

x2
1

cosF2pr̄V

x

aG
x2

~38!

in agreement with Eq.~30! and the universal valueKa* 5 1
2 .

V. CONCLUSIONS

In conclusion we have investigated the effect of a m
netic field on a bosonic two-leg ladder. We have shown t
a Meissner state where the magnetic field is expelled ex
below a certain critical fieldHc1, whereas a vortex phas
exists above. We have analyzed the physical propertie
this vortex phase and have shown that that plateaus in
magnetization for commensurate values of the field exist
a way similar to the Mott transition in one dimension f
commensurate values of the filling. We have determined
magnetization curve and the correlation functions in the v
tex phase.

How could the Meissner and the vortex lattice phases

FIG. 3. The behavior of the screening current withF. For F
,Fc , the system is in the Meissner phase and the screening cu
increases linearly withF. For F.Fc , the screening current de
creases with the applied field.
.
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detected in an experiment? First,Hc1
5Fc /ab must be

smaller than the spin gap. Otherwise, the magnetic fi
would break the Cooper pairs before vortices are nucleate
situation reminiscent of type-I superconductivity. Second
a standard material,a.1 Å so that Hc1

;h/(2e* a2)

.2.13105 T making the vortex lattice unobservable. F
Josephson-junction ladders,a.1 mm, giving a typicalHc1
.2.131023 T which is easily achieved. In principle, th
formation of the vortex lattice in this system could be o
served by magnetization measurements or by resolving i
vidual vortices as was done for other mesoscopic system26

The Meissner transition also affects transport properties
commensurate filling of an integer number of Cooper pa
per island. In this case, a cos 2fscos 2fa term is present and
favors an insulating state.11 The interchain Josephson cou
pling cosA2ua competes with this term making the syste
conducting when large enough.27 The application ofH
.Hc1 suppresses the interchain Josephson coupling tur
the ladder insulating in the vortex phase. The Meissner tr
sition is thus accompanied by a superconductor-insul
transition in this case. At incommensurate filling, the ma
netic field still affects transport properties if there is an a
ficial defect in the ladder, which adds a term

V1cosA2fs~x50!cosA2fa~x50!1V2cosA8fs~x50!
~39!

to the Hamiltonian. In the Meissner phase, the field cosA2fa
is disordered and theV2 term dominates transport. IfK.1
this term is irrelevant and the conductance tends at low t
peratures to the quantum of conductance. In the vortex ph
on the other hand, the field cosA2fa has quasi-long-range
order and theV1 term dominates transport, leading~for K
,2) to an insulating state at zero temperature. More ge
ally, even whenK,1 or K.2 the conductance has a qua
tatively different temperature dependence in the Meiss
and in the vortex phases.
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