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Meissner effect in a bosonic ladder
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We investigate the effect of a magnetic field on a bosonic ladder. We show that such a system leads to the
one-dimensional equivalent of a vortex lattice in a superconductor. We investigate the physical properties of the
vortex phase, such as vortex density and vortex correlation functions, and show that magnetization has plateaus
for some commensurate values of the magnetic field. The lowest plateau corresponds to a true Meissner to
vortex transition at a critical fieltfl ., that exists although the system has no long-range superconducting order.
Implications for experimental realizations such as Josephson-junction arrays are discussed.
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[. INTRODUCTION ity of the magnetic field remain to be understood.
In this paper we investigate the effect of a magnetic field

The eﬁgct of a magnetic field on interact.ing partides is adirectly on the bosonic two-leg ladder. We analyze the con-
long-standing problem. A spectacular case is provided by thgequences for transport in such bosonic ladders. The plan of

type-Il superconductor, in which the magnetic field is totally ;o paper is as follows: in Sec. Il the model of the bosonic

expelled belowH. , whereas a vortex state exists fof  |3qder under magnetic field is introduced and connections
>HC1. This behavior, however, is obtained from the Landau-with the Josephson ladder are shown. In Sec. Il the model is

Ginzburg equation, and it is important to know what happen$olved and the phase diagram is obtained showing a Meiss-

when interactions and fluctuations have more drastic effectdler Phase at low field and phases with vortices above a cer-
such as in one-dimensional systems. Indeed, in a ondain threshold fieldH ;. These vortex phases are studied in

dimensional conductor af=0, although there is no long- detail in Sec. IV. We show that plateaus in the magnetization

range order, superconductivity in the sense of infinite dc ConEortﬁom,\;lnetﬁurati_valqes of tr(‘f erld_EXISft, In a way 5|m|lz;1r
ductivity can nevertheless be preséﬁbr a one-dimensional '© N€ Mott fransition In one dimension for commensurate

chain, there is no orbital effect, and this question is not rel_values of the filling. Finally the conclusions of the paper as

- (\ﬁvell as the consequences of our findings for observing the
evant. However, a system made of a finite number of COUpIevortex hase in svstems such as the Josephson-iunction ar-
chains(a laddey is still one dimensionafno long-range or- P y P J

der can exist but orbital effects of the magnetic field are rays can be found in Sec. V.
present, opening the possibility of such a transition.

Beyond its own theoretical interest the investigation of the Il. MODEL
effect of a magnetic field on ladder systems is also of direct . - . .
experimental ?elevance, due to theyvarious realizations of The Igtu_ce I—!amlltonlan of the bosonic two-leg ladder in a
such ladderé-* Fermionic ladders can be superconductingm""gnetIC field is
both from attractive §-wave) and repulsive ¢-wave inter-
actions. In the attractive case, the sys_tem is close to standafgl_ -t 2 (bi'r+ 1ypeie* aAHYP(i)bi‘p_l_ biType—ie* aA”yp(i)leyp)
superconductors where pairs of fermions can hop from one i,p=1.2
chain to the other leading to a Josephson-coupling, provided
the applied magnetic flelc_i is smaller that. the spin gap. The —MZ (bi’ryzeie*Ai(i)biyl_'_ biTYlefie*Ai(i)biyz)
system can thus be described as a bosonic ladder. Josephson- i
junction array3® provide also a very direct realization of
such a.bosonic laddef and are thus the prime candidates for + UE Nip(Nip—1)+VN 1n; 5, (1)
observing these effects. This problem of Josephson ladders ip
has been investigated previously in the clasSiead quan-
tum limit both analytically®**and numericall{? in the high- ~ where the densityy; ,=b{ b; , and the magnetic field is
field limit of half a flux quantum per plaquette for one- introduced via the Peierls substitution. In addition to their
dimensional situations. For the Josephson two-leg ladder, jtarallelt; and perpendiculdr, hopping the bosons repel via
has been shovwfi!! that a true transition exists between a an on-siteU and an interchai repulsion. An experimental
commensurate and a vortex phase, however the detailed bealization of the bosonic two-leg ladder is provided by the
havior of the vortex phase and the effects of commensurabildosephson-junction ladder. Its Hamiltonian reads
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( *)2 52 The current operators along and perpendicular to the chains
H= E 5~ —Jjcog 0 1p— B p—e*ah,(i)]  are given by
I, e*
J . jp(x)=uKe*<Hp— —A”‘p), (11)
— S cod 01— 65— " AL ()], 2) i
*
whered), , is the Josephsofsuperconductingphase and the jl(X)— sm( 01— 0,+e* A )(X). (12

particle number on the sitgp is given by
The Hamiltonian(5) is invariant under the gauge transforma-

E L tions:
njrp i ae] 0 (3)
The vector potential is given by Op(x)= Gp() + €7 1p(x), (13
A\\,p(x)_)A\l,p(X)+(9Xfp(x)’ (14
fﬁ A-di=A, (i+1)+aA (i) A, () —aA )=,
@) AL (X)—=AL(X) +Fa(x) = F1(X). (15

The linear nature of the spectrum is the signature that true
superfluidity exists in a single chain even without long-range
order! K is the Luttinger parameter, directly related to the
" compressibility of the system, and incorporating all micro-

where® is the flux of the magnetic field through a plaquette.
The low-energy properties of E¢l) are more transparent
using a “bosonized” representation of the boson operafbrs

One obtains e . . ) )
scopic interaction effects. For a simple on-site repulsion 1
<K<, with K=o being free bosons and=1 hard-core

H= > uK(wH —e*A), p)2 (&X([)p)z} bosons. For more generdbnger-rangginteractions all val-

p=12 ues ofK are in principle allowed.
t
- W—Laf dxcod 6;— O, +e* A, (x)] Ill. PHASE DIAGRAM

If one introduces the symmetric and antisymmetric

2Va fdxcos(2¢1—2¢2) combinations ¢ .= (#1* ¢,) /2 (and similar combina-
27a)? ' tions forIT andA), Eq. (5) reads®

Va
+ —zf dXdypqdypot
T
5

where ¢; and wIl;=V,6; are conjugate variables and the
boson annihilation operator is given by

t
H=H2+H3— faf dxcog 26, +e*A, (x)]

el )

wp(X=na)=7%= : (6)

2ma

fdxcos\/—d)a, (16)

(27ra

where (v=s,a)
wherea is the lattice spacing along the legs of the ladder. q
is the sound velocity of the collective density oscillations. HO= f ax
The representation makes the analogy between the boson Y 2w
chain and the Josephson ladder transparent. Indeed theth
Hamiltonian (5) can also be deduced from the Hamiltonian wi
(2) by writing co$6 =61, A p(1)]=1=[6 p—bi11p K.=K(1+[VKa/ -12
—A| p(|)]2/2 and taking the continuum limit. In that case, =K@+ muh
one has

uV
UK, (7T, = e A ()| (1)

K,=K(1-[VKa/mu])~ 2

Agdescribes an Ahronov-Bohm flux threading the system. In
the following, we assume that there is no such flux,Aso
=0. We also assume thki,> 1, so that the term caB ¢, is

/J”C irrelevant. This leads to a Hamiltonian similar to the one
(e*)?

a, (7)

(8)  derived for the Josephson ladd&! Note that this limit is
different from the one considered in Ref. 15, where the term
cos/8¢, was relevant and drove the system to a Bose pair

t,=mJ,, 9 superconductof The total and antisymmetric longitudinal
currentjs ,=j;1* j, and the current perpendicular to the lad-
V=0. (100  der are given by ¢=s,a):
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makest, naively irrelevant, perturbation theory to ordgem
t, a/(wu,) shows’8that a term

(a)

{\ © \H‘ © \}/{‘ © \}/ exists with

(b)

g
qu—w—qaf dxcosqy/26, (23

gqd/ (muy)~(t, almu,)? (24
FIG. 1. The phases of the bosonic two-leg ladder in the presence bati M v thi is all db
of a magnetic field(a) The low-field phases. Current only exists In perturbation. More generally this term is allowed by sym-

along the legs of the ladder leading to screening of the applied€ly @nd is present in the Hamiltonian even beyond pertur-
magnetic field(b) The high-field phase. Current exists both on the bation theory. The terni23) opens a gap,
legs and the rungs of the ladder leading to a vortex lattieze

shown with a vortex at every three sitet commensurable flux mu(t a (2Ka0)/ (4K o= 0%)
the vortex lattice is perfectly orderddt T=0) whereas away from Ap/q:? U, (29
commensurability the vortex system has only quasi-long-range po-
sitional order and no perfect crystalline order. provided K,>q?%/4. The expectation value of, in the
gapped phase i#,) = \2kw/q wherek=0, . .. g— 1. This
i e* corresponds to ay-fold degenerate ground state resulting
j,=uKe* \/E(Hv_ ?AV), (18)  from the breaking of the discrete translation symmetry, in

direct analogy with Mott systemi&or spin system$®?°The

e*t corresponding expectation value jof(x) is
i =——sin(\20,+€e*A,). (19
ma i e*t, |27k 2mwp x -
o S —
(1 00)——sin—=+ —= 21, (26)

H gives a simple dynamics; the behaviortf is richer.

In the absence of a magnetic fielt, is a sine-Gordon giving a periodic pattern of the transverse currents of period
Hamiltonian. Fork>Z, it develops an order in the fielh  qa as shown in Fig. 1. This pattern corresponds to a vortex
with (6,)=0 and a gap in the excitation spectrum, lattice phase pinned to the microscopic lattice vthortices

in a supercell ofy sites, leading to an average vortex density

(20) pv=p/qg. Let us finally remark that the form of the Hamil-
tonian (22) implies that the behavior of the system is peri-

This describes the locking of the relative phases by Josep odic as a function of the flux with periodicity of one flux

u 1/[2-1/(2K)]

a

a u

son coupling. This impliesj,)=—uK[(e*)?®/7a], no uantum.
perpendicular curren, =0, and
IV. VORTEX PHASES
(L0, (x)~e Pl (21 Let us now take a flux per plaguette which is an irrational

multiple of the quantum of flux. If this value is close to a

rational number with a small enough denominator we can

decomposee* ®=2m(p/q)+ 6P. The most convenient
auge choice is then A, =(27we*p)/q and A,

with ¢é;,=u/A,. In this low-field phase, there is a current
circulating only on the edges of the systésee Fig. 1 and
proportional to the applied vector potential. It is just the
Meissner current that screens the electromagnetic field. Thus, . . .

we can identify the low-field phase to a Meissner phdse. ;éﬁi)&/(i\/g)'t:géfﬂzgng the fieldP, conjugate tof,,
Let us now consider the effect of a magnetic field such that' @ ~*"* "'

the flux per plaquett® = (27/€*)p/q, wherep,q are two d “ )2
mutually prime integers. Using the gaugk,=0, A, H :J_X E(,n.p )2+E 9.0 +e
=®dx/a, we can write d) 2| KT KT a2
dx u _Sa
Ho= [ o uaKa<wHa>2+K—a<ax¢a>2} va) axcosai2n. @7
a

t 20 The deviation of the flux per plaquette from a rational value
L p X . .
- EJ dxcos( \/§0a+ —_— 5) (22 in the unit of the quantum of flux causes a commensurate-

q incommensurate transitidh=23At low deviation, the system
The Hamiltonian(22) is similar to the one describing the IS in its commensurate phas¢2( 6,)=2mk/q. This implies
Mott transition in one dimensiotf,where any commensura- )
bility can in principle give a transition depending &n In- )= —uK(e*) oP 28)
deed, even if the presence of an oscillating phase inZE3). a Ta
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and no modification of the perpendicular curré@aj, )=0 A P
and v
1
(81,00 3], (x))~e Ve (29
with £,=u/A, . 213
For a large enough deviation from rationality/&) 5® 172
>A,/q, there is a transition to a phase where theap(@6,, 113
operator is irrelevant. In this phaée,6,)/(72) is nonzero

and defines an order parameter. In the small applied field - - * -

case'” this order parameter is just the vortex dengity. In 1/3 172 2/3 /D

the general case, this order parameter measures the deviation

Spy=py— Pp/q of the vortex density from a rational value. FIG. 2. Sketch of the staircase in the magnetization of the

The average transverse current is zero in this phase. Howosonic or Josephson ladders. In the figlitg= 4, so that only the

ever, transverse current correlations have an oscillating conplateaus obtained fqu/q=0,,%,%,1 survive to the quantum fluc-

ponent that decays with a power law as tuations. Note that the width of thé and 2 plateaus is already

_ extremely reduced compared with the width of thelateau.

cog 2mpy(x—x")]
|X_X/|1/K;

(L0 (x"))~ , (30

is no Laplace force on vortices. This pathology could be
cured by putting back the band curvature.
whereK3 is the renormalized Luttinger parameter. It would  |n the classical casea vortex lattice phase is obtained
be worthwhile to check in a numerical simulation such aseach time the flux per plaquette is a rational multiple of the
Ref. 12 whether such current correlations are present. The@uantum of flux, leading to a devil’s staircase structure in the
is a pattern of transverse currents alternating along the rungsehavior of the magnetization. Here, the quantum fluctua-
of the ladder. One can identify the solitonség with vorti- tions wipe out the large fractions for Whi(Ih\z>4Ka, o)
ces surrounded by circulating curreri¢éee Fig. 1 If a vor-  only some plateaus remain as shown in Fig. 2. As quantum
tex is at positiorx, it causes a jump of 2 in 6,— 6, at this  fluctuations are reduced, more and more plateaus in the mag-
point. This enables us to write the density of these onenetization curve are formed. It is interesting to study how the
dimensional objects &% width of a magnetization plateau increases as a function of
— K, ort, . Standard renormalization-group calculations of the
1 C gap show that the width of a plateau behaves as exp
py(X)=—=0dx0,+ E
77\/5 m=— T

(—CIyt, —t%) close to the threshold. Fdr = =/e*, a vortex
_ lattice phase has been obtained in numerical simulatiotts.
xexp(im[2mpyx+\2(6,—(6,))]).  (31)  remains to be seen whether such a phase is a Luttinger liquid
. . . . or a pinned vortex lattice.
When the density of vortices ip/q, the potential-energy . - . .
term (23) can be interpreted as the coupling of the vortex *(zloze to th.e tran3|.t|on ',[he coefflc.lehg is universal and
density to a pinning potential of periogl lattice spacings. Ka=07/2. It is possible in the limitéd— 5d,(p/q) to

. . 1'23 . . -
Therefore we recover the interpretation in term of pinning ofrefermionizes** yielding an average vortex density
the vortices by the underlying microscopic lattice and the

K

analogy with the Mott transitiofi in d=1. Equation(31) e* >
gives the vortex current {pv)= 2ma VOT- D (39
. A and a vortex current
X)=———. 32
*\2
In the incommensurate phase, the application of a voltage (ia)= u(e®) (JOI—D2— ). (36)
V;—V, between the chains gives 2ma
V-V, The transition from the pinned vortex lattice state to the vor-
(Ixpa)=€" K2 (33 tex liquid state is thus continuous. The behavior of the aver-
Uafa age current as a function of flux is plotted in Fig. 3. This is
and reminiscent of the behavior of a type-ll superconductor,
however the growth of the magnetization is here quite
2T different?® from the standardB=H-+M ~1[In*(H—Hg)]
Vi—Vp=E b=— e_*]V’ (34 Jaw. At nonzero temperature, the singularities are rounded off

in a way that can be calculated following Ref. 24. In the case
which is just Faraday’s law. This completes the identificationof q=1, i.e., integer flux per plaquette, close to the transi-
of the incommensurate phase as an unpinned vortex latticéion, one can easily obtain from the refermionizatfof? the
Because of the linearization of the spectrum in Ex).there  correlation functions of the screening current:
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j detected in an experiment? Firdti; =®./ab must be
a

smaller than the spin gap. Otherwise, the magnetic field
would break the Cooper pairs before vortices are nucleated, a
situation reminiscent of type-1 superconductivity. Second, in

a standard materiala=1 A so that H, ~h/(2e*a?

=2.1x10° T making the vortex lattice unobservable. For
Josephson-junction laddes=1 wm, giving a typicalH;
=2.1x10% T which is easily achieved. In principle, the
formation of the vortex lattice in this system could be ob-
served by magnetization measurements or by resolving indi-
vidual vortices as was done for other mesoscopic systéms.
[0} The Meissner transition also affects transport properties at a
c o commensurate filling of an integer number of Cooper pairs
FIG. 3. The behavior of the screening current with For ® per island..ln this' case, a CO$@QS b te'rm is present and
<&, the system is in the Meissner phase and the screening curretﬁ,vors an insulating Stafé.The |'ntercha|n Jqsephson cou-
increases linearly withb. For ®>®_, the screening current de- piing CO_S\/EGa competes with this term makllng-the system
creases with the applied field. conducting when large enough.The application ofH
>H,., suppresses the interchain Josephson coupling turning

X the ladder insulating in the vortex phase. The Meissner tran-
2co{Za-rpV— sition is thus accompanied by a superconductor-insulator

<ja(x)ja(0)>_<ja>2~i+ %) —a, (37)  transition in this case. At incommensurate filling, the mag-
x2 @ x2 netic field still affects transport properties if there is an arti-

ficial defect in the ladder, which adds a term

— X
c)2 1 005{277;)\,5

®
<h(x)h(0)>~(3 Gt @9

V1082 b X=0)C0OS/2 (X =0) + V€088 h5(x=0)
(39)

in agreement with Eq:30) and the universal valu* =, to the Hamiltonian. In the Meissner phase, the field\&,
@ is disordered and th¥, term dominates transport. K>1

this term is irrelevant and the conductance tends at low tem-
peratures to the quantum of conductance. In the vortex phase
In conclusion we have investigated the effect of a mag-on the other hand, the field c@8¢, has quasi-long-range
netic field on a bosonic two-leg ladder. We have shown thaorder and theV; term dominates transport, leadirfipr K
a Meissner state where the magnetic field is expelled exists:2) to an insulating state at zero temperature. More gener-
below a certain critical fieldH.;, whereas a vortex phase ally, even wherK <1 or K>2 the conductance has a quali-
exists above. We have analyzed the physical properties déatively different temperature dependence in the Meissner
this vortex phase and have shown that that plateaus in thend in the vortex phases.
magnetization for commensurate values of the field exist, in
a way similar to the Mott transition in one dimension for
commensurate values of the filling. We have determined the
magnetization curve and the correlation functions in the vor- We thank P. Donohue, B. Doat; A. Georges, and J.
tex phase. Vidal for illuminating discussions. This work has been sup-
How could the Meissner and the vortex lattice phases bgorted in part by NATO Grant No. 971615.

V. CONCLUSIONS
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