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Scaling of thermal conductivity of helium confined in pores
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We have studied the thermal conductivity of confined superfluids on a barlike geometry. We use the planar
magnet lattice model on a latti¢éx H X L with L>H. We have applied open boundary conditions on the bar
sides(the confined directions of lengtd) and periodic along the long direction. We have adopted a hybrid
Monte Carlo algorithm to efficiently deal with the critical slowing down and in order to solve the dynamical
equations of motion we use a discretization technique which introduces error®p(#})®] in the time step
ét. Our results demonstrate the consistency of scaling using known values of the critical exponents and we
obtained the scaling function of the thermal resistivity. We find that our results for the thermal resistivity
scaling function are in very good agreement with the available experimental results for pores using the
temperature scale and thermal resistivity scale as free fitting parameters.
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[. INTRODUCTION FSS theory is to study dynamical and transport properties
near a critical point. A well-suited candidate problem for this
The superfluid transition of liquid*He offers a unique study is the thermal conductivity of “He nearT, . When
opportunity for testing the finite-size scaling theory of staticT, is approached from above, the thermal conductivity of the
and dynamic critical phenomena. Recently, a sophisticatefluid diverges:®'! The precise behavior of bulk as a func-
experimental study was carried out in microgravity environ-tion of t was studied in great detail both experimentiy*
ment, the so-called confined helium experimé®HeX).  and theoretically®
Lipa et al! measured the specific heat of helium confined in  There are several recent theoretical studies of dynamical
a parallel plate geometry with a spectacular nanokelvin resceritical phenomena and dynamical scaling. Koch, Dohm, and
lution, thus, providing experimental results within a few Stauffef® presented field-theoretical and numerical studies
nanokelvin of T,. When the critical temperature is ap- of the validity of dynamic finite-size scaling for relaxational
proached, the bulk correlation lengéhof the fluid can be- dynamics in cubic geometry with periodic boundary condi-
come of the order of the confining length. CHeX approachedions above and beloW.. Quantitative agreement between
so close to the lambda point that the correlation length betheory and Monte Carlo data was obtained by them. Koch
came macroscopic in size. In this case the whole fluid acts iand Dohni’ have provided a prediction for the dynamic
a correlated way and this changes the value of global progfinite-size scaling function for the effective diffusion con-
erties, such as the specific heat, relative to their bulk valuestant of model C of Hohenberg and Halperii.
In a parallel approach, Mehta and Gasparitiave also re- Bhattacharje¥ derived an approximate form of the scaling
ported earth-bound measurements on samples with small@nction for the thermal conductivity using a decoupled-
plate spacind.. The size ofL used is these measurements ismode approximation and model Krech and Land& cal-
smaller so that the results are not significantly influenced byulated the transport coefficient of the out-of-plane magneti-
the change inT, between the top and bottom of the film zation component at the critical point, which is related to the
because of hydrostatic pressure difference which exists dutxermal conductivity of liquid*He using Monte Carlo spin
to the earth’s gravitational field. dynamics simulations of th¥Y model in three dimensions
The finite-size scaling (FSS theory and the on a simple cubic lattice with periodic boundary conditions.
renormalization-group theoty(RGT) were expected to de- They determined the critical exponent characterizing the
scribe the behavior of the system at temperature clo3g¢ to  thermal conductivity.
A testable implication of this theory is that very close to the Accurate experimental studies have been carried out not
lambda point, in a confined system with a confining length ofonly for dynamic bulk phenomena with improved resolution
sizeH, a dimensionless quantity or the ratio of two quantitiesbut also dynamic propertiés confined geometriedeeply in
having the same dimensions, is only a function of the ratio othe critical regiorf>?* Rather recently, Kahn and Ahléfs
&/H. Therefore the values of a given observabi@,H), for ~ measured the thermal conductivity of liquftHe confined in
various values oH and of the reduced temperature |1 a glass capillary array of thickness 3 mm with holesun
—T/T,|, divided by its bulk value of0(t,H=c) should be in diameter. Their results show that long cylindrical samples
a dimensionless scaling functioi(x), where x=&(t)/H. have a transition from three-dimensional to one-dimensional
The results of CHeX were in remarkable agreement withbehavior and there is no phase transition in the one-
predictions which were available prior to the experimentdimensional system. However, as measurements over a wide
based on scaling functions obtained from renormalizationfange of hole-diameter are required in order to test the finite-
group theor§8 and those obtained by combining FSS andsize scaling theory for transport properties, further experi-
the results obtained from large-scale simulations. mental studies are planr@dn order to reveal dynamical
A second equally important step toward understanding thexponents near the critical point and to study the finite-size
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scaling behavior of the thermal conductivity in such confin-model the two-component pseudomagnetization corresponds
ing geometries. To avoid the limitations imposed by theto the superfluid order parameter. In the planar magnet
earth’s gravity, this experimental efféttwill be carried out model, the third component corresponds to the particle den-
under microgravity conditions on the Low Temperature Mi-sity and it is necessary in order to study the dynamics.
crogravity Facility on International Space Station. In our calculations, we use a barlike geometry, i.eH a

In this paper we wish to study the thermal conductiwity X H XL lattice withL>H. This geometry is chosen in order
of confined helium and to calculate the scaling function asto mimic the pore geometry used in experimental studies. In
sociated with\ for a fixed geometry. Since there are alreadyour calculations, open boundary conditions are imposed in
experimental resulfs for the scaling function of for the  the H direction, and in the. direction we applied periodic
pore-like geometry, in this paper we will focus our attentionboundary conditions. In open or free boundary conditions the
to this geometry because we hope to compare with the exarder parameter is allowed to take any value at the bound-
periment. We will examine the FSS theory for the thermalaries. In our pseudospin model this means that the spins at
conductivity of helium confined in a barlike geometry, i.e., the boundary have no neighbors outside the confining space.
on anH?X L lattice with L>H. This confining geometry is We use a hybrid Monte Carlo procedtftevhich consists
similar to that of Kahn and Ahlefd because two of the di- of a combination of steps using the Metropolis update, the
mensions of a pore used in their experimental studies ar€luster updaté® and the over-relaxation algorithfi.Using
confining as is the case of the barlike geometry. We willthis hybrid algorithm, we generate approximately 3000-
consider the limit in which our results are independent of thel0 000 uncorrelated configurations from the equilibrium ca-
bar lengthL. We will apply periodic boundary conditions nonical ensemble at a given temperature. Each configuration
(BC) in the L direction because these BC approach the bulks evolved using the equations of motion for the planar mag-
limit faster. In the other two directions which are kept finite net model which are given as follovf%28
we will apply open boundary conditions. We will use the

dynamics of planar-magnet model and Monte Carlo simula- d g _&H g 2
tion to study\ (t,H). We find that\ (t,H)H ™ ™" plotted as a dt i_gx i )

function ofx=tH'” fall on the same curve for a wide range

of values ofH andt, using the known values of and . Starting from a particular initial spin configuration, we per-

This demonstrates that finite-size scaling is also valid foform numerical integration of these equations of motion. Fol-
dynamical critical properties. In addition we obtain the scal-lowing Ref. 30 we use a recently developed decomposition
ing function which fits very well the experimental data of method® where the integration is carried out to a maximum

Kahn and Ahler& using the scale of temperature and thetime t,,, (typically of the order oft,=400) with a time

thermal conductivity scale as free parameters. stepst=0.05. We made sure that this way we determined the
real-time history of every configuration within a sufficiently
Il. THE METHOD long interval of time (Gst=<t,,y,). Finally, we compute the

thermal average of a time-dependent observéhleh as the

We will first bl’lefly describe the model and the numerical thermal current-current correlation funct}oby averaging
method used and show how the thermal conductivity is compyer all the values of the observable obtained by evolving all
puted in our model. To describe the dynamics of a superfluidihe independent initial equilibrium configurations generated
we will use the planar magnet model which is classified asig the hybrid Monte Carlo procedure.
modelF (or E in the absence of an external figlly Hohen- Compared to calculating static critical properties, the
berg and Halperin” Matsubara and Matsutfahas proposed  computation of dynamical properties is far more CPU time
modelF to explain the properties of liquiHe. The problem  intensive and demands large computational resources. The
of hard core bosons can be described by a lattice gas modgbmputations described here were carried out on a dedicated
which can be mapped to the quantum antiferromagnet ifnassively parallel cluster of 64 CPUs which was designed
which the superfluid order parameter correspondS,t6S, by our group to achieve high performance to cost ratio.
while the density of the boson system corresponds tds1/2- We computed the thermal conductivity ¢hx Hx L lat-
In order to study equilibrium critical properties of a super-tices, whereH=6,8,10,12,14,20 and.=5H. The thermal
fluid one uses th&Y modef*® because the planar magnet conductivity) of liquid “He at a given temperatufecan be
model and theXY model belong to the same universality calculated using the dynamic current-current correlation
class?’ For critical dynamics of a superfluid, however, one fynctior°
needs to use the full planar magnet model in which the role
of the third component of the pseudospin is cruéfal. 1 2 (=

In the pseudospin notation, the planar magnet model takes A= T ;f dt> (j5(0)j7(1)), ()
the following form: BIXzzTJ0 |

where the out-of-plane static susceptibility

H=-12 (SSj+5/s)), D Xor=(MZ)I(kgTL3) @

where the summation is over all nearest neighb(ﬁisy is needed f(3r normalization. Trﬁcomponen‘jiz of the cur-
=(S',9,S), andJ sets the energy scale. In the usXaf  rent densityj; associated with the lattice poinis defined by
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1.5 ‘ . . . TABLE I. Calculated results for the thermal resistivity for lat-
#— - — BxBx30 ’ ticesHXH XL with L~5H andH=6.8,10,12,14. The number in
& - -4 8x8x30 LT parenthesis gives the error in the last decimal places.
o0 12x12x60 e
——o 20x20x100 /i T H=6 H=8 H=10 H=12 H=14
r 140 0.35034) 0.17811) 0.0534) 0.0334)
— 145 0.53835 0.28617) 0.14310) 0.0686) 0.0504)
E 150 0.66261) 0.47036) 0.35338 0.247131) 0.18221)
o / 1.5518 0.84%2) 0.67056) 0.61453) 0.50156) 0.45259)
¥ 1.60 0.92834) 0.82136) 0.68867) 0.65355 0.70642)
05 1 A 1.65  1.02881) 0.95164) 0.85442)
/%/ 1.70 1.11469) 0.90163) 0.988§102 0.984105
e . A2 1.80 1.21397) 1.21686) 1.12594) 1.081166)
Voo |
@
%3 1%4 15 16 17 18 19 periodic boundary conditions along the directionLointro-

T duces insignificant finite size effects due to the finite size of
L for the temperature range studied here. Our calculations are

FIG. 1. Thermal resistivityR(T,H) versus temperatures for bar- gpplicable in the region for which the correlation length is
like lattices with sizes that correspond t$=6,8,12,20 andL large but smaller tharL. We wish to explore the region
=5H. The bulkT,=1.5518 is also shown. where £(t) can become comparable and even larger tHan

but still smaller thanL. Namely our calculation should be
J7=3(S/S e, =SS e), (5)  restricted in the region where our results Rdo not to feel
the size effects due to the finitenesd.ofSinceL =5H there
where the notation+ e, denotes the nearest neighbor of thejs 5 significant region of our dimensionless paraméey/H
lattice sitei in the z |attice direction. o _where the conditior(t) <L is satisfied. Most of the experi-

Now, we would like to examine the finite-size scaling mentally probed region is covered by this region where our
hypothesis for the thermal resistiviB(t,H) =1/\(t,H), and  cgjculation is “safe.”
to compare our results with the existing experimental Npgtice in Fig. 1 that the thermal resistivity feels strong
results?® The dependence updnof the bulk thermal resis- finjte-size effects due to the bar thicknels The arrow
tivity can be described by the power law shows the bulk transition temperatufg=1.5518 obtained
from Monte Carlo simulation using the planar magnet
model?’ In bulk helium R(t) approaches zero as the bulk
transition temperatur&, is approached from above.

We wish to avoid using any adjustable parameters to ob-
tain scaling of our results. Thus, we need to examine if our
results obey scaling using the known values of the critical
exponents andr. The value ofv is accurately known from
theoretical and experimental studies of static critical proper-
ties and we shall use the value=0.6705 as determined by

R(t)=Rot", (6)

where 7 is a dynamic critical exponent. Using E), the
finite-size scaling expression for the thermal resistivity
R(t,H) is given by

R(t,H)H™"=f(tH), (7)

where the functionf(x) is universal andv=0.6705 is the

critical exponent of the correlation length.

Ill. RESULTS

Goldner and Ahler$? There is less agreement between
theory and experiment on the actual value of the dynamical
critical exponentr. Ahlers™ used a power law fit to the data

of Tam and Ahler¥ for their “Cell F” and he found the

In this section, we calculate the thermal resistivity, we
examine its scaling behavior with respectHoand then we

compare the scaling function with the experimental results,q, 545 100 size lattice

To calculate these observables with small statistical errors

TABLE II. Calculated results for the thermal resistivity for an

even with our utilization of the most recent numerical ad-

vances and with using the 64-node dedicated cluster, it re T =20
quires signinificant amount of time of high-throughput com- 1.50 0.0583)
putation. 1.52 0.15813)
Figure 1 shows some of our results for the thermal resis- 1.54 0.29427)
tivity R(T,H) as a function of temperatur€ for various 1.56 0.40848)
lattice sizes with open boundary conditions in tHedirec- 1.58 0.57279)
tion. Our results folR(T,H) for several values oH and T 1.60 0.56762)
are given in Tables | and Il. We wish to makdarge enough 1.65 0.73%76)
so that finite-size effects due toare smaller than our statis- 1.75 1.086130)

tical errors. We have found that taking=5H and applying
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FIG. 2. The universal functiofi(x) obtained for barlike geom-
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the value ofr~0.44 determined by Ahler§.In Fig. 2 we
compare our universal functiof{x) with the experimental
data obtained by Kahn and Ahlétsepresented by a solid
line. In order to do this, we used two multiplicative constants
as free fitting parameters, one multiplying the scale akis
and another the scale gf The agreement between Monte
Carlo simulation and experiment is quite satisfactory. In the
past it has been demonstratetf that the boundary condi-
tions play a significant role in defining the universal function
f(x). We believe that if we use more realistic boundary con-
ditions, such as Dirichlet boundary conditions, along ithe
direction we can reduce the number of fitting parameters to
only one.

Our results are expected to scale using the same effective
critical exponent and not with the asymptotic exponent. Us-
ing the asymptotic value of= v/2, the results of our simu-
lation also collapsgwithin our error bars on a different
scaling function. However, if we attempt to fit the scaling
curve with the experimental resistivity of Kahn and Ahlers

etry. The solid line represents the available experimental results fonve obtain a lower quality fit than that of Fig. 2.

porelike geometry. In the experimental results the resistivity scale

and the temperature scale are used as free parameters.

In summary we have calculated the thermal resistivity
R(t,H) of liquid *He in a porelike geometryon aHxH
X L lattice) applying open boundary conditions in thedi-

value 7=0.4397. On the other hand the dynamic scalingrection. We have been able to demonstrate the validity of

theory** had predicted a divergence Mwith a critical ex-
ponent given byr=v/2~0.335. However, renormalization-
group calculation’s can explain quantitatively the difference
between the experimental effective exponent0.44 and
the asymptotic exponent=»/2 in terms of non-universal

finite-size scaling theory and we obtained the thermal resis-
tivity scaling functionf (x) using known values for the criti-
cal exponents and no adjustable parameters. In addition, the
scaling functionf(x) for R(t,H) agrees rather well with ex-
perimental data using the temperature scale and thermal re-

corrections to the asymptotic critical behavior which vanishsistivity scale as free parameters.

extremely slowly ag vanishes.

Figure 2 shows a scaling plot of the thermal resistivity

scaling functionf (x) =R(t,H)t™" versus the scaled reduced
temperature parameter=tH, where the reduced tempera-
ture is taken relative to the bulk transition temperatlfe
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