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Vortex wandering among splayed columnar defects
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~Received 11 May 2001; published 21 September 2001!

We investigate the scaling properties of single flux lines in a random pinning landscape consisting of splayed
columnar defects. Such correlated defects can be injected into type II superconductors by inducing nuclear
fission or via direct heavy ion irradiation. The result is often very efficient pinning of the vortices which gives,
e.g., a strongly enhanced critical current. The wandering exponentz and the free energy exponentv of a single
flux line in such a disordered environment are obtained analytically from scaling arguments combined with
extreme-value statistics. In contrast to the case of point disorder, where these exponents are universal, we find
a dependence of the exponents on details in the probability distribution of the low lying energies of the
columnar defects. The analytical results show excellent agreement with numerical transfer matrix calculations
in two and three dimensions.
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I. INTRODUCTION

Pinning of vortex lines to defects in superconducto
plays an extremely important role in determining th
properties.1 Motion of flux lines in response to an applie
current induces a voltage and hence dissipation. Only if
flux lines remain pinned will the linear resistance be tru
zero and the material exhibit superconductivity. By introdu
ing controlled disorder it is possible to significantly impro
the critical currents, temperatures, and fields. A particula
efficient strategy is to bombard the sample with heavy io
to produce linear damage tracks which form optimal pinn
centers for the vortex lines.2 When these columnar defec
are parallel the vortices will, below a critical temperatu
become localized in a Bose glass phase that replaces
Abrikosov vortex lattice of the clean system.3 Further im-
provements were suggested to occur for splayed colum
defects,4 where the angle mismatch between neighbor
columns should lead to increased barriers for variable ra
hopping and therefore an even stronger enhancement o
critical current in the splay glass phase. Even more impor
is perhaps the suppression of vortex motion due to for
entanglement that is created by the splay.

There are several ways in which splayed configuration
columnar defects can be produced. A narrow approxima
Gaussian angle distribution can be produced by placin
thin metal foil in front of the sample during irradiation t
defocus the beam of heavy ions as they enter the sam
Another interesting approach is to induce fission in some
the nuclei in the material. The fission products will then
apart in opposite directions creating damage tracks wit
more isotropic distribution of angles. Lastly, heavy ion irr
diation can be applied at different discrete angles to cre
several families of parallel columnar defects. In this way
has been possible to increase critical currents by more
an order of magnitude in many cases.5

The theoretical understanding of the Bose glass, occur
for parallel columnar defects, rests to a large extent on
mapping of the vortex line problem to a quantum mechan
system of (211)-dimensional bosons in a random potenti
with imaginary time playing the role of thez axis parallel to
0163-1829/2001/64~14!/144512~10!/$20.00 64 1445
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the external magnetic field. With randomly splayed defec
however, the disorder develops long range correlations
space and ‘‘time,’’ and this analogy is less useful. In fa
splay disorder leads to logarithmically divergent phase fl
tuations in the boson order parameter.6 The properties ofin-
dividual flux lines in such disordered environments are ju
beginning to be investigated.7

In this paper we focus on the scaling properties of a sin
flux line in a sample with many randomly tilted column
defects. We consider the flux line as it enters the superc
ducting sample on one side at some arbitrary but fixed p
tion ~taken to be the origin!, and leaves on the opposite
Physically, this fixing of the starting position could be due
e.g., surface pinning as in the experimental setup of Fig
below. The wandering and energetics of the flux line can
characterized by two exponents defined by the follow
relations:

^r2~z!&;z2z, ~1a!

FIG. 1. Experimental setup that would allow measurement
the wandering exponentz. Parallel columnar defects of varyin
depth are introduced from the bottom of the sample in order
provide a strong pinning mechanism to fix the entry positions of
flux lines. Splayed columnar defects are introduced from the o
side, and the relative transverse distance between the starting
and the exit point of the flux line could then be measured, e.g.
double sided decoration experiments, or using magneto-optical
aging. A similar setup could also be used to investigate the vo
wandering in point disordered samples.
©2001 The American Physical Society12-1
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DF2~z!;z2v, ~1b!

wherer is the transverse position,z is the distance traverse
parallel to the magnetic field,F is the free energy,DF5F

2F̄, the overbar denotes a disorder average, and^•••& a
thermal average.

These problems, usually referred to as directed polym
in random media~DPRM!, have received much attention i
recent years,8 with interesting connections to many oth
very different physical systems. The problem can, e.g.,
mapped to the noisy Burgers equation describing a rando
stirred turbulent fluid, or equivalently, the Kardar-Pari
Zhang~KPZ! model of surface growth. Without disorder,
flux line subject only to thermal fluctuations will make
diffusionlike random walk as it wanders from the bottom
the top of the sample withz5 1

2 and v50. Point disorder
tends to increase the transverse wandering of the flux
leading to a nontrivial universal exponentz. 1

2 . @In (111)
dimensions the exponents are known to be exactlyz52/3
andv51/3, in (211) we havez'5/8 andv'1/4.8# In this
case statistical tilt symmetry ensures thatv52z21 for ar-
bitrary d. The fact thatv.0 suggests that energy barrie
become arbitrarily large for largez, so that the system is
governed by a zero temperature fixed point, where ther
fluctuations are irrelevant on long length scales. Parallel
lumnar disorder, on the other hand, tends to localize the
line, i.e., to reduce its transverse fluctuations. However
search of ever lower pinning energies it will still wander wi
nontrivial exponents.9 At zero temperature the exponents d
pend on the low energy details in the disorder distributi
e.g.,z5v5n/(d1n) for bounded distributions of the form
Eq. ~4! below, while at finite temperature the wandering
slightly sub-ballistic, withur (z)u;z/( ln z)g,g5112/d, where
d is the number of dimensions perpendicular toz.9 For
splayedcolumnar defects one might expect an enhancem
of this wandering since the flux lines try to follow the ra
domly tilted defects.

The path a flux line takes inside a superconductor is
easy to measure experimentally. What can be measured i
positions at which the flux line enters and leaves the su
conductor, e.g., using double-sided decoration experime
In Fig. 1 we propose an experimental setup which wo
allow the end pointsr (z) of the flux line to be measured fo
several different disorder realizations of varying heightz,
using a single piece of superconductor. Short parallel colu
nar defects on one side of the sample provide a set of kn
starting points for the vortices as they enter the forest
splayed columnar defects and traverse the sample. At
magnetic field it should be possible to approximately ma
entry and exit points via double-sided flux decorations.10 The
variable length parallel defects simulate the effect of vary
sample thickness.

Apart from the intrinsic interest in the behavior of a sing
flux line in a disordered superconductor, the physics o
single vortex in the presence of splay is relevant for und
standing properties at low magnetic fields, where the fl
density is low. It affects, e.g., the constitutive relationB(H)
just above theHc1 line, where a balance between magne
field, pinning energy, and repulsive interactions givesB
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;(H2Hc1)
b, with b5dz/(12v).11,7 This relation was re-

cently measured in experiments in a (111) dimensional ge-
ometry for samples with point disorder,12 confirming the pre-
diction b51. Furthermore, the nonlinear current-volta
(I -V) characteristics at low temperatures and currents is
termined by the depinning of single flux lines from the d
fects. If we assume that the free energybarriers scale in the
same way as the sample-to-sample free energyfluctuations,
an excitation of lengthz, and widthl;zz would cost pinning
energyDE;zv but gainJlz due to the Lorenz force from
the current densityJ, so that the free energy barrier to ove
come isDF(J,z)5k1zv2k2Jz11z. Optimizing with respect
to z gives DF(J)5AJ2m, where m5v/(z112v). Ther-
mally activated creep over the free energy barriers then g
rise to an electric fieldE; exp$2@J0(T)/J#m%, with J0(T)
5(A/T)1/m. Finally, the study of single flux lines also allow
estimates of entanglement lengths of interacting vortic
which may shed light on the still mysterious properties of t
splay glass phase.

While the single vortex pinning from point disorder an
parallel columnar defects has received much attention,
case with splayed columnar disorder has only been addre
quite recently,7 and only for the special case of a ‘‘nearly
isotropic distribution of splay angles. There it was argu
that, for very wide angle distributions, the problem wou
reduce to a flux line in a disorder landscape with long ran
spatial transverse correlations but no correlations along
magnetic field. Explicitly, the Fourier transform of the diso
der correlator for general splayed configurations
D(k' ,kz)5D0f (kz /v0k')/v0k' , for smallk' ,kz , wherev0
is the characteristic width of the distribution of slope
‘‘Nearly isotropic’’ splay refers to the limitv0→` ~keeping
D0 /v0 fixed!, giving D(k' ,kz)}1/k' , while a truly isotro-
pic distribution would giveD(k' ,kz)}1/Ak'

2 1kz
2. Neglect

of the kz dependence is at least plausible in the casez,1,
since the width grows asv0;@ length#12z under renormal-
ization and therefore would diverge to infinity on larg
length scales. Subject to these assumptions, the flux
problem can then be mapped to a noisy Burgers equa
with spatially correlated noise,7 for which the universal
results13 z53/(31d) and v5(32d)/(31d) have been
conjectured. In this approach, however, higher order corr
tion functions of the disorder are neglected.

Here we consider splayed columnar defects for gen
angle distributions using a real space approach, simila
spirit to Ref. 9 for parallel columnar defects. This leads to
rather different physical picture, where the important feat
is that the flux line keeps following columnar pins wit
lower and lower energy~and smaller and smaller slopes!. We
find new exponents that depend on the tail of the distribut
of the energies of the columns. The sensitivity to low en
gies suggests that higher correlation functions of the dis
der, which were missing in the previous treatment, may
important. The predictions forz and v of the different ap-
proaches are compared in Table I. We have been abl
confirm the results of the real space approach using num
cal transfer matrix calculations in (111) and (211)
dimensions.
2-2
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VORTEX WANDERING AMONG SPLAYED COLUMNAR DEFECTS PHYSICAL REVIEW B64 144512
In Sec. II we use a combination of scaling arguments a
extremal statistics to derive analytic expressions for the w
dering and energy exponents. We also discuss crossove
fects and other complications, such as inhomogeneities o
columnar defects~fragmentation!, and the influence of tem
perature. Section III describes our numerical work. We int
duce a model well suited for transfer matrix calculations
superconductors containing splayed columnar defects,
cuss finite size effects, and present our results. In Sec. IV
review some open questions.

II. ANALYTIC ARGUMENTS

A. The model

The Hamiltonian of the flux line consists of an elas
energy and an interaction with the disorder

H5E
0

Lz
dzH g

2 S dr

dzD
2

1U@r ~z!,z#J , ~2!

where r is the transversed-dimensional position,z the dis-
tance parallel to the magnetic field, andg is the line tension.
Splayed columnar defects are distributed throughout the
tem, giving a disorder potentialU(r ,z)5( iUi(r2viz2r i

0),
with random slopesvi and random potential wellsUi . The
r i

0’s are the positions where the columns cross the planz
50. We are interested in the low-temperature regime wh
the flux line is tightly bound to the defects. The bindin
energy per length of a flux line pinned to a column is then3,4

e i5(g/2)vi
21ui , whereui'Ui(0)1cT2/(2gbi

2), bi being
the radius of the defects, andc a constant of order unity.

The probability distributionP(e) of the binding energies
depends on details of the injection process in the mate
Below we will need information about the low energy tails
this distribution. Given the probability distributionsPu(u) of
the depths andPv(v) of the slopes, which we assume to b
independent, we get for the probability of having total ene
per lengthe the expression

TABLE I. Summary of wandering and energy exponents
some selected values ofn and for other kinds of disorder. Th
parametern characterizes the low-energy tail of the pinning ener
distribution @see Eq.~4!#.

d51 d52

z v z v

Splayed columnar defects (n50) 1/2 0 1/2 0
Splayed columnar defects (n51) 3/4 1/2 2/3 1/3
Splayed columnar defects (n52) 5/6 2/3 3/4 1/2
1/k'-correlator7 3/4 1/2 3/5 1/5
Parallel columns (n51)9 1/2 1/2 1/3 1/3
Point disorder 2/3 1/3 ;5/8 ;1/4
Splay with fragmentation 3/4 1/2 ;5/8? ;1/4?
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P~e!5E duE ddvPu~u!Pv~v!dS e2u2
g

2
v2D

5E ddvPuS e2
g

2
v2D Pv~v!. ~3!

In any realistic case the potential distribution will b
bounded, and for convenience we will use

Pu~u!5H nun21

Dn
, if 0<u<D,

0, otherwise.

~4!

A uniform bounded distribution is perhaps the most natu
choice and corresponds ton51, while the limitn→0 gives
a delta function, i.e., all columns have the same depth. In
general casen.0. We have further chosen the energy sc
such that zero corresponds to the deepest possible pin
assume a continuous symmetric distributionPv(v) of the
slope of the columnar defects, with a finite value forv→0
and a characteristic widthv0. Low energies turn out to be th
most important ones, and we find

P~e!de}S e

D D nS e

~g/2!v0
2D d/2

de

e
, 0,e&

g

2
v0

2 ,D, ~5!

i.e., a power law behaviorP(e);ea21 with

a5
d

2
1n. ~6!

Under the assumptions made above this relation should
in the tail even in the presence of weak correlations betw
Pu(u) andPv(v).

A complication may arise from the fact that the defec
are not necessarily uniform along their extension. Since
heavy ions creating the damage tracks lose energy to
material as they travel through it, there may be a system
dependence of the diameter and angle onz. The tracks
formed by low-energy ions are furthermore often fra
mented. We will neglect these effects for now and return
them in the discussion below. With a good model of the
processes it should be possible to extend the arguments g
below to take into account these facts. In practiceP(e) could
have several regimes with an approximate power law beh
ior, leading to crossovers between different scaling regim
before the asymptotic result determined by Eq.~6!, is
reached~see below!.

B. Scaling theory from extremal statistics

As a flux line travels through the sample at low tempe
ture it seeks out pins with lower and lower energy. At a giv
distancez the flux line has had a chance to find the optim
columnar pin within a region of sizel d3z, with l;zz. In this
region there are on averageN5r l d pins, wherer is the areal
density perpendicular toz. For a given length scalel the
physics will be dominated by the pin with lowest ener
among theseN pins. The typical energyeopt

typ per unit length
of this optimal column can then be estimated using ar
ments of extremal statistics14 if N is large enough, i.e., for
large z. Upon introducing the probability that a pin has a
energylessthane,

r

2-3
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F~e!5E
2`

e

P~e8!de8}
ea

Dn~gv0
2/2!d/2

, ~7!

we have

Prob~eopt.e!5@12F~e!#N→e2NF(e), for N large.
~8!

For a typical energy of the optimal column we ha
NF(eopt

typ);1, i.e.,

eopt
typ;N21/a;z2zd/a. ~9!

The total energy of the whole optimal path will then scale

Etyp;E
0

z

eopt
typ~z8!dz8;z12zd/a;zv. ~10!

Thus we have obtained the relation

v512zd/a ~11!

between the energy exponent and the wandering expon
Note the dependence@througha and Eq.~6!# on the detailed
behavior ofPu(u) at low energies.

Now we will turn to the determination ofz itself. Assum-
ing that the flux line is mostly localized along the colum
with lowest energy, we only need to know how the slopevopt
of the optimal pin encountered decreases withz. The prob-
ability of vopt is, for largeN, given by

Pvopt
~vopt!d

dvopt5NE dePuS e2
g

2
vopt

2 D
3Pv~vopt!e

2NF(e)ddvopt. ~12!

A simple calculation shows thatvopt
typ;A2eopt

typ/g;N21/2a

;z2zd/2a for eopt
typ&gv0

2/2, and for the typical value of the
endpointr (z) of the flux line at distancez we then obtain

r typ~z!;E
0

z

vopt
typ~z8!dz8;z12zd/2a;zz. ~13!

Thus z51/(11d/2a)52a/(2a1d), and via Eq.~11!, v
5(2a2d)/(2a1d). From Eq.~6! we then obtain our fina
result

z5
d/21n

d1n
, ~14a!

v5
n

d1n
. ~14b!

Remarkably, these exponents satisfy for alld andn the rela-
tion v52z21 valid for systems obeying statistical ti
symmetry,8 even though strictly speaking, there isno exact
tilt symmetry in the present case.

Since 0,n,`, we always have1
2 <z<1 and 0<v<1.

For a uniform bounded disorder distribution (n51) we get
z53/4,v51/2 in (111)D andz52/3,v51/3 in (211)D,
leading to an enhanced wandering compared to point di
der. If all splayed column well depths are identical,n→0
14451
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giving z5 1
2 andv50. This means that theT50 fixed point

becomes marginal and thermal fluctuations~as well as point
disorder! could become important. Ford→` the exponents
smoothly attain their thermal valuesz5 1

2 ,v50. If Pu(u) is
replaced by a Gaussian distribution~thus allowing arbitrarily
low pinning energies! we find z5v51, described by then
→` limit, but in this case there may also be logarithm
corrections. A distribution with power-law tailsPu(u)
;uuu2n21, u,21, would give z51 and v511d/n. In
Table I we summarize the exponents found for splayed
lumnar defects and compare them with the exponents
other kinds of disorder. Comparing with the results found
Ref. 7 for a disorder distribution with long range transver
correlationsD(k);1/k' the exponents agree for the spec
cased51,n51, but disagree in general.

Another interesting quantity to look for is how often th
flux line changes direction. Let us define the total number
intercolumn jumps the flux line has made up tillz asnz . The
turning probability in an infinitesimal interval@z,z1dz# is
given by the number of new columns explored times
probability of any of them being lower in energy than th
current energydnz;F(eopt

typ)dN;dN/N, which gives

nz; ln N~z!; ln z. ~15!

From this follows that the spacing alongz between two turns
increases asDz;z on average.

C. Crossover effects and scaling regimes

The results above hold asymptotically for largez and de-
pend only on the parametern in the pinning energy distribu-
tion. Realistic pinning energy distributions can be expec
to be more complicated than the simple form Eq.~4! used
above and this may lead to various crossover effects betw
different scaling regimes, depending on the energy sc
probed at a given length scale. This may effectively lead t
z-dependent parametern, and may also disrupt the relatio
vopt

typ;Aeopt
typ, and hence the relationv52z21 over certain

length scales, although asymptotically the behavior sho
be that of the previous section.

For the bounded distributions used above, Eq.~4!, the
asymptotic behavior sets in wheneopt

typ&min$D,gv0
2/2%, or, us-

ing N(z);1/F(eopt
typ),

N~z!@maxH S D

g

2
v0

2D n

,S g

2
v0

2

D
D d/2J , ~16!

where N(z) is the number of columns explored up tillz.
Finally, we expect behavior typical of parallel columnar d
fects when z!a' /v0, where a'5r21/d. As v0→0 this
crossover scale diverges as expected.

D. Fragmented columnar defects

In some cases the columnar defects created by the
irradiation ~or fission fragments! are highly nonuniform
along their axis~see Fig. 2!.15 This fragmentation depend
2-4



th
o

ec
a
s
g
n
o

o

p

of
hi
th

th
e
ss
s

h
e

, o

ted
-
r is

he
to

ly
or-

nts.
ld
the
ad-
16
in
hors
for

ly
do

ed
n-

-
r-
.

les

low
zed
sed
ra-
re

e-
n
se
n-
ery
m-
ious
en-
ing
se. If
no

ct
wo

ap
io

VORTEX WANDERING AMONG SPLAYED COLUMNAR DEFECTS PHYSICAL REVIEW B64 144512
on, e.g., the kinetic energy and the type of ions used. In
subsection we discuss the influence of this fragmentation
the flux line wandering.

We first consider the stability of the results derived in S
II B. With fragmentation the energy of a flux line pinned to
columnar defect will be subject to two kinds of disorder. A
before there is a randomz-independent part constant alon
the columns, given by Eq.~4!. We assume that fragmentatio
superimposes a random short range correlated energy m
lation along the columns with zero mean.

Let us now consider a segment of a flux line pinned t
defect over a lengthDz@a, wherea is the microscopic size
of the fragments. The fluctuation in the average energy
unit length then gets a contribution;e f5 fAa/Dz from the
fragmentation, wheref is the root mean square strength
the disorder. Fragmentation should be relevant only if t
energy exceeds the fluctuations in the constant part of
energy. The density of columns with energy less than
energy isr,5rF(e f), and their mean transverse distancl
'(r,)21/d. The mean longitudinal distance between cro
ings ~or close encounters! of these low energy columns i
then Dz* ' l /v* , where thev* is the maximum typical
slope,v* ;A2e f /g;A2 f /g(a/Dz)1/4. Introducing the mean
transverse spacing of defectsa'5r21/d we find

Dz* ;
a'

v0

~gv0
2/2!Dn/d

f 11n/d S Dz

a D (11n/d)/2

. ~17!

Fragmentation can only be important ifDz* ,Dz, i.e., on
large length scales ifn,d, and otherwise on short lengt
scales, with the crossover scale given by the requirem
Dz* 'Dz,

Dzcrossover'aS a'

v0a

~gv0
2/2!Dn/d

f 11n/d D 2/(12n/d)

. ~18!

What happens when the fragmentation dominates, i.e.
long length scales forn,d or on short length scales forn

FIG. 2. Illustration of a couple of fragmented columnar defe
~left! and a flux line which fluctuates back and forth between t
crossing columnar defects at finite temperature~right!. The entropic
contribution to the free energy from the crossing points, which
pear randomly along the defects, act very similar to fragmentat
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.d? Although the disorder along the columns is correla
only over the microscopic scalea of the fragments the prob
lem still has long ranged correlations in that the disorde
restricted to the tracks of the columns. There are~at least!
two possible scenarios. If the pointlike contribution to t
disorder from many columnar fragments is strong enough
completely delocalize the flux line, this would presumab
lead to a crossover to the physics dominated by point dis
der, with a corresponding change in the critical expone
However, if the fragmentation is weak, the flux line cou
remain pinned to the best fragmented column available in
region explored, occasionally making excursions to take
vantage of favorable fluctuations in the disorder. In Ref.
the depinning of a flux line from a single columnar defect
the presence of point disorder was studied. These aut
found a transition from a localized to a delocalized state
d.1 as a function of disorder strength, while the cased
51 was marginal with the flux line pinned by an arbitrari
weak attractive column. In analogy with these results we
not expect the first scenario to be realized ford51, whereas
in higher dimensions either scenario isa priori possible and
a phase transition between the two cannot be excluded.

We now take a closer look at the second scenario ofweak
fragmentation. The flux line will then effectively see splay
columnar defects with a Gaussian distribution of pinning e
ergies with variance; f 2a/Dz, that explicitly depends on the
distancez ~recall thatDz;z). Repeating the extremal statis
tics calculation of Sec. II B for this choice of pinning ene
gies leads toeopt

typ; fAa/Dz up to logarithmic corrections
The typical optimal slope isvopt

typ;A2eopt
typ/g again ignoring

logarithms. The total energy of the flux line then sca
as Etyp(z);z1/2, and the endpoint position asr typ(z);z3/4,
so that

z53/4, ~19a!

v51/2, ~19b!

when weak fragmentation dominates.

E. Finite temperature

We have assumed thus far that temperature was
enough to be ignored and the problem could be analy
solely in terms of energetics. As the temperature is increa
entropy becomes more important. At relatively low tempe
tures the main contribution will come from regions whe
two or more columns come closer thanl T'T/A2gDU,
whereDU is the energy difference between a columnar d
fect and the surrounding material. The flux line will the
gain entropy by fluctuating back and forth between the
columns4 ~see Fig. 2!. Since these crossing points occur ra
domly along the splayed columns the situation becomes v
similar to that of fragmented columnar defects at zero te
perature. Therefore, we expect the argument of the prev
subsection to apply, i.e., temperature will be important wh
ever fragmentation would be important, and the wander
and energy exponents should be the same as for that ca
the temperature is increased even further the flux line will

s

-
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longer be pinned to individual defects, but rather collectio
of them. In this case the situation becomes far more com
cated, and beyond the scope of the present paper.

III. TRANSFER MATRIX CALCULATIONS

To check the analytic arguments in Sec. II, we have p
formed numerical transfer matrix calculations. Usually tra
fer matrix calculations of directed polymers are perform
on a model defined on a regular lattice, but for the pres
problem it is difficult to account for the varying splay angl
using this approach. Instead we have developed a mode
an irregular random lattice defined by a particular configu
tion of randomly splayed columnar defects.

A. Model

The disorder landscape consists ofN splayed columnar
defects embedded randomly in a system of sizeLd3Lz . The
transverse positions of the columnar defects are given b

r i~z!5r i
01viz, ~20!

where ther i
0 are distributed uniformly in the planez50, and

the vi ’s are chosen randomly with some distributio
P(v)ddv. We also assign a random energy costuiP@0,D# to
each column, with probabilityPu(u)du from Eq. ~4!. Peri-
odic boundary conditions are employed so that we alw
haver i(z)P@2L/2,1L/2#d. In addition we use a discretiza
tion in thez direction with lattice constantaz51.

A flux line enters the system atR05(0,0) and leaves a
someR5(r ,Lz). The model is defined by restricting the p
sitions of the flux line to the columnar defects. The spa
between pins is excluded, except to allow jumps from o
column to another~see Fig. 3!. The flux line can then be
parametrized by the sequence$ i z%z50

Lz of columns visited as it
traverses the sample from bottom to top. The actual pa
vortex takes is given byr i z

(z)5r i z
0 1vi z

z, and the total en-

ergy of the flux line is given by

FIG. 3. Discretization used for transfer matrix calculations
111 dimensions. At each step the flux line has the possibility
jump to any one of the other columnar pins at the next constaz
section. A similar picture obtains in 211 dimensions.
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z50

Lz21

DEi z11 ,i z
~z!, ~21!

whereDEi j (z) is the energy of the~straight! line segment
betweenr i(z11) andr j (z). We take

DEi j ~z!5
g

2
@r i~z11!2r j~z!#21ui , ~22!

where the first term is the elastic energy~the distance appear
ing in brackets is understood to be the shortest distance u
the periodic boundary conditions! and the second is a ran
dom site energy of columni, consistent with the continuum
model Eq.~2!. More elaborate forms could be used but w
presumably not change any universal properties. Fragme
tion of the columnar defects is modeled below by add
an uncorrelated uniformly distributed termf i(z)P@0,f #
to Eq. ~22!.

B. Recursion relations

The partition function for the flux line now obeys th
recursion relation

Zi~z11!5(
j 51

N

e2bDEi j (z)Zj~z!, ~23!

whereb51/T is the inverse temperature, and we use un
such thatkB51. At zero temperature this reduces to an o
timization problem for the total energy of the path

Ei~z11!5min
j

$Ej~z!1DEi j ~z!%. ~24!

The sum in Eq.~23! and minimization in Eq.~24! are over
all possible columns, thus jumps between columns are
limited to just nearest neighbors, but instead restricted by
elastic line tension. These relations are easily iterated o
computer, and averages are then calculated from

^O~z!&5

(
i

Oi~z!Zi~z!

(
i

Zi~z!

. ~25!

The free energy is given byF(z)52T ln Z(z), whereZ(z)
5( iZi(z). ~At zero temperature the free energy is of cour
equal to the energy.! The overbar denotes the quenched a
erage over different disorder realizations.

C. Finite size scaling

In a system of finite transverse sizeL, we expect that the
mean square fluctuations of the end point will obey

^r2~z!&5L2C~z/L1/z!, ~26!

while the free energy fluctuations satisfy

o
-
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VORTEX WANDERING AMONG SPLAYED COLUMNAR DEFECTS PHYSICAL REVIEW B64 144512
FIG. 4. Example of the optimal paths with variable endpoints
a particular disorder realization in 111 dimensions. The light gray
lines represent the randomly splayed columns with random ene
given by Eq.~4! with n51. The solid lines are the optimal paths
the end point is restricted to a given position. The thickest line is
optimal path among all of them, i.e., without any restrictions. T
upper panel shows the corresponding energies as a function o
point position.
14451
DF2~z!5L2x f ~z/L1/z!, ~27!

wherex5v/z. For small arguments the functionsC and f
should become power laws, such that the right hand s
become independent ofL. In the opposite limit of large ar-
gumentsC(x)→d/12, and f (x);x2.17 The crossover hap
pens at some value ofx5xc , i.e., forz5xcL

1/z. Thus, when
^r2&/L2 andDF2/L2x are plotted againstz/L1/z, the data for
different L should collapse onto a single curve~at least for
large enoughz).

D. Results and discussion

The recursion relations~23! and~24! were solved numeri-
cally and averaged over 2000–10 000 disorder realization
get small error bars. Figure 4 shows an example of the o
mal path~corresponding toT50) of a flux line for a particu-
lar disorder realization. The number of defects were taken
beN5Ld so that the mean spacing between defects is un
The line tension is set to unity, equivalent to measuring
energies in units ofg. We further choose the distribution o
tilts P(v) uniform in @2v0 ,1v0#d. Apart from the shape of
the tail of the pinning potential, given by the exponentn, the
asymptotic behavior on long length scales should be in
pendent ofD and v0. However, these values will influenc
the length scales where the system crosses over to
asymptotic regime. Since the system sizes possible to s
numerically are limited, care must be taken in choosing
values of these parameters to reduce crossover effects,
erwise inaccurate results can easily be obtained. The ana
of Sec. II C suggests that the crossover length scales
minimized whengv0

2/2'D. With this in mind we usually put
v051/2,D50.125 and sometimesv051/4,D50.03.

The inset of Fig. 5~a! shows the mean square position
fluctuations as a function ofz for d51 and n51 at zero
temperature. Note that the curves saturate for largez, consis-

ies

e

nd
y visible
led
ent 2
FIG. 5. ~a! Scaling collapse according to Eq.~26! of mean square fluctuations of the end point position of a flux line in 111 dimensions
for different system sizes atT50. The topmost curve corresponds to the largest system, etc. The statistical errors are small and hardl
in the figures here and below. A clear power law behavior with exponent 2z53/2 ~dashed line! is observed. The inset shows the unresca
data, i.e.,r2 vs z. ~b! Scaling collapse of the energy fluctuations of the optimal path. The dashed line is a power law with exponv
51. The inset shows the unrescaled data, i.e.,DF2 vs z.
2-7
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FIG. 6. ~a! Scaling collapse of mean square fluctuations of the endpoint position of a flux line in 211 dimensions for different system
sizes atT50. A power law behavior with exponent 2z54/3 ~dashed line! is observed. The inset shows the unrescaled data, i.e.,r2 vs z. ~b!
Scaling collapse of the energy fluctuations of the optimal path. The dashed line is a power law with exponent 2v52/3. The inset shows the
unrescaled data, i.e.,DF2 vs z.
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tent with expectations from Eq.~26!. The main part of the
figure shows a scaling collapse of the same data using
theoretical value ofz53/4. In Fig. 5~b! we show a scaling
collapse of the energy fluctuations usingv51/2. Here there
are clearly visible corrections to scaling for smallz, and no
power-law behavior is observed for the smallest syst
sizes. However, asL is increased, the range over which sc
ing occurs increases. In Figs. 6~a! and 6~b! we show similar
results ford52 andn51, where Eq.~14! predictsz52/3
andv51/3, and again the agreement is excellent.

To test the dependence of the exponents on the tail of
pinning energy distribution we calculate the mean square
sitional fluctuations@Fig. 7~a!# and the energy fluctuation
@Fig. 7~b!# for several different values ofn. For largez the
data is accurately described by power laws with expone
14451
he

-

e
o-

ts

given by Eq.~14!. It is also possible to collapse the data f
different system sizes in each of these cases in a similar
to Fig. 5.

In Fig. 8 we show results for fragmented splayed colu
nar defects. In~a! we plot the positional fluctuations ford
51,n50, for increasing strengths of the fragmentationf.
Sincen,d fragmentation should be relevant, and already
small values off we see deviations from thef 50 result,
wherez51/2. As f is increased furtherz increases and sta
bilizes to a larger value. For large values off a power-law fit
givesz'3/4 in agreement with Eq.~19!. In ~b! we plot the
same quantity ford52. For these parameters the scali
crosses over to that of point disorder withz'5/8. Thus, frag-
mentation seems to lead to pointlike wandering ford52,
while the results ford51 are consistent with the secon
FIG. 7. ~a! Mean square positional fluctuations for several different pinning energy distributions, Eq.~4!, parametrized byn. Power-law
fits ~not shown! to the straight parts of the curves give exponents that agree with Eq.~14! to within 1%.~b! Energy fluctuations for different
n.
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FIG. 8. Positional fluctuations for fragmented splayed columnar defects in~a! 111 dimensions and~b! 211. As the strength of the
fragmentation increases the wandering exponent changes fromz51/2 to a larger value. The dashed lines are power laws with expon
z53/4 andz55/8, respectively.
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weak fragmentation scenario of Sec. II D. Forn.d weak
fragmentation should be irrelevant, and we do find that
exponents for homogenous columns, Eq.~14!, are much
more stable for smallf than they are forn,d. For largef the
behavior is still dominated by fragmentation on short len
scales. An accurate verification of the crossover scale,
~18!, is very difficult with the limited system sizes we hav
studied, and has not been attempted.

Finally, we explore the influence of finite temperature
Fig. 9. As proposed in Sec. II E the scaling shows stro
resemblance to that of fragmented columnar defects, c
pare Fig. 8. In~111! dimensions@Fig. 9~a!# a powerlaw fit
gives z'0.7520.8, which is consistent with 3/4, the valu
for fragmented columnar defects. In (211) dimensions@~b!#
we get insteadz'0.620.65, consistent with the value fo
point disorderz'5/8.
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IV. FUTURE DIRECTIONS

Our results indicate that the values of the wandering a
energy exponents depend sensitively on the low-energy p
erties of the pinning energy distribution. In experiments o
might therefore expect these exponents to depend on
method of sample preparation. A detailed comparison w
experiments would require information about the pinning e
ergy distribution of the columnar defects for the particu
samples studied. In case the columnar defects are fragme
~andn,d) this dependence should disappear and univer
ity be restored. The prospect of having a phase transi
between the two fragmentation scenarios of Sec. II D is
teresting and deserves further study.

In this paper we have focused our attention on the pr
erties of single flux lines in superconductors with splay
th
FIG. 9. Positional fluctuations for different temperatures in~a! 111 dimensions and~b! 211. The dashed lines are power laws wi
exponentsz53/4 andz55/8, respectively.
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columnar defects. At high vortex densities, i.e., at high m
netic fields, interactions between vortices can no longer
neglected and the problem becomes significantly more c
plicated. It would be interesting, although not easy, to exte
both the analytic arguments and the transfer matrix calc
tions to the case of many interacting vortex lines. We
however, expect that the sensitivity to the low energy tails
the pinning energy distribution should go away as the vor
density is increased, since the low-energy pins will all
occupied in this case.
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