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Vortex charge in mesoscopic superconductors
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The electric charge density in mesoscopic superconductors with circular symmetry, i.e., disks and cylinders,
is studied within the phenomenological Ginzburg-Landau approach. We found that even in the Meissner state
there is a charge redistribution in the sample which makes the sample edge become negatively charged. In the
vortex state there is a competition between this Meissner charge and the vortex charge which may change the
polarity of the charge at the sample edge with increasing magnetic field. It is shown analytically that in spite
of the charge redistribution the mesoscopic sample as a whole remains electrically neutral.
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[. INTRODUCTION rupole frequency which is very sensitive to the local charge
density*?

The idea of “an electric charge associated with a vortex” In the present paper we investigate this phenomenon in
was proposed many years ago. In fact, it arised from Lonmesoscopic superconductors. All previous papers on this
don’s prediction that in superconductors with a nonuniformsubject dealt with bulk superconductors. A mesoscopic
distribution of the superconducting current an electric field issample has a typical size which is comparable to the coher-
associated. This phenomenon is similar to the hydrostatic ence length §) and the magnetic field penetration depkl) (
Bernoulli effect and leads to the appearance of an electroThe behavior of such structures in an external magnetic field
static potential difference inside the sample. This Bernoulli(H) is strongly influenced by the sample sh&}é and may
potential compensates at each point of the superconductégad to various superconducting states and different phase
the kinetic shift of the chemical potential of the electrons,transitions between them. Jumps in magnetization were ob-
which is associated with the kinetic energy of the superconserved when the applied magnetic field or temperaftyrés
ducting condensate, so that the electrochemical potential ofaried!®
the electrons remains constant in space. lvanchenko and A number of earlier works studied the geometry-
Omel'yanchuR predicted, for bulk superconductors in an ex- dependent magnetic response of mesoscopic superconduct-
ternal magnetic field, that an electrical polarization is in-ors: (i) disk-shaped samplé8;?* (ii) infinitely long
duced by this Bernoulli effect. They also calculated the po-cylinders?>?*and(iii) ringlike structure®?®and more com-
larization moment of a superconductor, the quadrupolelicated geometrie¥. Theoretical studies of mesoscopic su-
moment for a sphere, and the dipole moment for a distortegerconductors are based on the phenomenological Ginzburg-
sphere. When the vortex exists in the bulk of a supercontandau(GL) theon/® which successfully describes meso-
ductor the Bernoulli potential creates an additional forcescopic samples in a widel-T region. In particular, it has
which balances the inertial and Lorentz forces acting on thdeen shown that in mesoscopic sampldisks or cylinders
vortex? surrounded by a vacuum or an insulator two kinds of super-

Interest in this subject reappeared when Khomskii andconducting states can exist. First, there is a circular symmet-
Freimutl? showed that the vortex in a high-temperature su+ic state with a fixed value of angular momentum, called
perconductoi(HTS) can accumulate a finite electric charge. giant vortex. The observed magnetization jumps correspond
This effect occurs because of the difference of the chemicab first-order phase transitions between giant vortices with
potential in the superconducting condensate versus the nodifferent angular momentu?:’ Second, in samples with a
mal state(vortex core. Such a change in chemical potential sufficiently large radius multivortex structutésan nucleate
(which is similar to the above Bernoulli effeatesults in a  which are the analog of the Abrikosov flux line lattice in a
redistribution of the electrons in the region near the vortexbulk superconductor. These states can be represented as a
and culminates in a charging of the vortex core. Later themixture of giant vortex states with different angular momen-
same effect was predicted for a single Abrikosov vortex in aum. For multivortex states it is also possible to introduce an
type-Il bulk superconductbr and very recently for the flux effective total angular momentum, which is nothing else than
line lattice in a bulk superconductdRecently, the vortex the number of vortices in the disk, i.e., the vorticity. With
charge was also studied for other superconducting systemehanging the magnetic field there is a second-order phase
such as the Bose liquitlunconventional superconducting transition between the multivortex and the giant vortex
materials: with hole superconductiiyand chiralp-wave  state!®1%2°
superconductorS- At last, at the end of 2000 the first experi- It is expected that the charge distribution in such meso-
mental evidence of vortex core charge was obtained irscopic samples may be appreciably altered due to the pres-
HTS’s by high-resolution measurements of the nuclear quadence of a boundary. Furthermore, screening currents near the
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boundary of the sample will also lead to a redistribution of .1 . R .

charge and consequently even in the Meissner state there will J= o (P VY=gV yr) - 4] °A. (5)

be a nonuniform distribution in the sample. In a certain

sense, this case can be viewed as a vortex turned inside oyfgre r=(p,2) is the three-dimensional position in space.

i.e_., with its_ core at infinity. In the presence of vortices therep e to the circular symmetry of the sample, we use cylindri-
will be an interplay between the Meissner charge and thgg) coordinatesp is the radial distance from the disk center,
previously studiet®®vortex charge which is unique for me- s the azimuthal angle, and thexis is taken perpendicular
soscopic samples. to the disk plane, where the disk lies between—d/2 and

. The present paper is organized as.follows. In. Sec. Il W&,_ 4/2. Ford— o we obtain the cylinder geometry. All dis-
give the necessary theoretical formalism on which our NUiances are measured in units of the coherence leigth

merical results are based. In Sec. lll we investigate the_, ; 577 /% —om :
charge distribution in both the Meissner state and the giar\sefé{orzrgolg#t(i; ini;n/;seéhethmeas;gfg:‘heeﬂg Of?ggr ?r}]aghe
’ c2

vortex states. Then the charge distribution in the multivortex 5 . X
state is discussed for thin diskSec. IV). In Sec. V we =ch/2eg?=k\2H;, where H is the thermodynamical

. ! . - ritical field, and the superconducting current ip
summarize our results and briefly discuss a possibility OcmHC/2w§, andk=\/¢ is the GL parameter.

their experimental detection. In the Appendix we present the .
proof of electrical neutrality in a mesoscopic superconductor Equations(3)—(5) have to be supplemented by boundary

of general shape. conditions fory(r) andA(r). For the superconducting con-
densate it can be written As

IIl. THEORETICAL APPROACH - SN

_ _ , _ n-(—iV—-A)yls=0, 6)
We consider a mesoscopic superconducting sample of cir- .
cular symmetry with radiu® and thicknessl surrounded by wheren is the unit vector normal to the sample surface. The
an insulating medium. The external magnetic figl ~boundary condition for the vector potential has to be taken
—(0,0H) is uniform and directed normal to the supercon-far away from the superconductor where the magnetic field
ductor plane. The starting point of our analysis is that thé?@comes equal to the external applied field
rotating motion of Cooper pairs around the vortex core leads
to a spatial redistribution of charge carriers, which generate R _l =
: S Al -=5Hpe,, Y

the electrostatic potentraf 2

o(N) = o[ ¥(N]?—1], (1) wheree, denotes the azimuthal direction.
The free energy of the superconducting state, measured in
where (r) is the dimensionless superconducting order paFo=H2V/8 units, is determined by the expression
rameter normalized so that(r)|? is measured in units of
the Cooper pair density in a bulk superconductor. The am- F= E(f dv[—|¢/|2+ %|¢|4+|—i§¢—ﬂ¢|2

plitude ¢, is different in different approaches. We ugg \%

=|a|/2e as proposed in Ref. 8. A 3-times smaller valpg

=|al|/6e was used in Ref. 5. From the theory in Ref. 6 it +k2[R(r)—H]? } @)
follows approximately thateo=(|a|/27%€)(dT./dIn ), ’

where dTC./dIn epwln(th/kBTc%l—lQ. Thus' gll ap-  ith the magnetic field
proaches yield an electrostatic potential of a similar magni-
tude.

The distribution of the corresponding charge denq(tE/)
is obtained from the Poisson equati®n

h(r)=VxA(r).

Here we will consider three different geometries for the
superconductor(l) an infinitely long cylinder(ll) a thin disk
with finite thicknessd<\, &, and(lll) an infinitely thin disk,

) ) 1o s ) i.e.,d—0. In all three cases the superconducting order pa-

The Cooper pair density)(r)|* is determined from a ameter does not depend anin case | it obviously follows
solution of the system of two coupled nonlinear GL equa-from the sample geometry. In cases Il and 11l it was fotind

tions for the superconducting order paramet#r,), and the ¢ the dependence ¢{r) onzis very slow. This allows us

4mq(r)=—V2e(r). 2

magnetic fieldor vector potentiaA(r)] to averagey/(r) over the sample thickness and to solve the
. problem for the two-dimensional problem for the order pa-
(—iV=A2y=y— > (3 rametery(p, ). However, the magnetic field in case Il has a

z dependence, which is responsible for the demagnetization

KVXVXA=], (4)  effect. For both cases | and Il we solve the problem numeri-

. cally by the method proposed in Ref. 17. For thin meso-
where the density of the superconducting curreig given  scopic disks we use the results of Refs. 18 and 31 which
by allowed us to solve the problem semianalytically.
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Ill. CHARGE IN THE MEISSNER AND THE GIANT R . R )
VORTEX STATES l,= fo pdpfi(p), l= fo pdpfi(p), (11
First, we consider the situation with a fixed value of the
vorticity L. The giant vortex state has cylindrical symmetry A=H(1+2v)—1. (12

and consequently the order parameter can be written as

(p)=Tf(p)exp(L 6). For a thin disk(case Il) the order pa-
rameter i

HereM(a,b,y) is the Kummer functiotf and the value of
is determined by the nonlinear equation, which results from
the boundary conditio6):

|2 1/2 -
w<p,0>=(—Aﬁ) fLlp)exp(iL o), © ey LA
M Tkl o M ek r 2] =0,
where (13
f(p)= Hp? L/Zex _Hp? i~ L+1HP2 Here ®=HR? is the magnetic flux through the disk in the
LiP 2 4 ' "2 ) absence of any flux expulsion. Using E@8)—(12) we can
(10 derive explicitly the charge distribution
|
I (H\" Hp? Hp?| Hp? Hp? Hp?
— I (L-1) __ 2n12| _ _ _r _ _r
q(p) 4A|1(2) P ex;{ 5 LM v,L+1; 5 5 (2L+1)M v,L+1; 5 M v,L+1; >
2v Hp? Hp?\2 ) Hp? 4y Hp?
+mM —V+1,L+2,T + T M —V,L+1,T +m|\/| —V,L+1,T
XM —v+1L+2H—p2 + 2v° M?2 —v+lL—i—2Hp2 — 2viv+1)
' "2 (L+1)2 ' "2 (L+1)(L+2)
Hp2 Hp2
XM —v,L-i—l,T)M —v+2,L+3,T) , (14

where the charge density is measured in unitqjg#2/
(16mm* eg?) =(ag/32mréYe (ag=h2/me?~0.053 nm is
the Bohr radius Notice thatgy depends only on the mate-
rial. For example, for Al[£=250 nm (Ref. 15] we have
qo/e=1.3x10"* nm 3, whereas for HTS materials
(é=1 nm) it results ingqg/e=5.3x10 % nm~3,

A. Meissner state

First, we study the Meissner state, i.e50. The radial
dependences of the Cooper pair densiy the correspond-
ing distribution of the potentiakp(p) [see Eq.(1)]), the

note that for simplicity we write “positive charge” instead of
“charge of the same sign as is the sign of the dominant
charge carriers.” In the cylinder the Cooper pair density de-
creases with increasing field, while both the screening super-
conducting current and the charge polarization monotonously
increase. The behavior for the disks is more complicated. For
small fields the picture is very similar to the one of the cyl-
inder. But for fields where the Meissner state becomes meta-
stable[i.e., H/H:,>0.32 for the parameters used in Fig.
1(b)] the screening charge becomes maximal. The positive
charge is pulled further towards the center of the disk and the
screening charge region expands. Notice that now the maxi-

charge density|(p), and the density of superconducting cur- mum of the positive charge decreases with field and also at

rentj(p) are shown in Figs. (®-1(c) for the cases of cyl-

the surface its absolute value decreases. For a cylinder, at

inder, finite disk, and very thin disk, respectively, having thefixed field but with increasing [Fig. 1(d)] its charge distri-

same radiuR=4.0¢ for different values of the applied field.

bution behaves similar as for fixed and increasing mag-

Figure Xd) shows these dependences for the same cylinderetic field[see Fig. 1a)].

at the fieldH =0.52H ., but for different« values. Due to the

Notice that even fo. =0 when no vortex is present in-

finite radial size of the samples, all distributions are inhomo-side the superconductor, there is still a nonuniform charge
geneous along the radius of the sample. The Cooper padistribution. This charge redistribution can be characterized
density is maximum at the center and decays towards thby two quantities:(i) the distancep™ which separates the
sample edge. As a result, in the center of the sample there ositive and negative charge regions @imgthe total screen-

a region of positive charge while near the edge a negativeng chargeQ_ ., which is defined by the integral over the
“screening” chargeqs., is created. To avoid confusion let us regionV_ occupied by the negative charge:
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FIG. 1. The radial dependences of the Cooper pair defgity)|?, the charge densitg(p), and the supercurrent densitgp) in the
Meissner state fofa) an infinitely long cylinder withx=1.0, (b) a finite thickness disk witll/¢é=0.2, k=1.0, (c) a very thin disk for
different magnetic fields, andd) an infinitely long cylinder with different Ginzburg-Landau parameterat the magnetic fieldH
=0.5H,. All samples have the same radiRéé=4.0.

Q- ser=2md f( )PQScr(p)dp-
p_

The dependences of (H) are shown in Figs. @)—2(c)

(19

Fig. 2(c) the open squares refer to the magnetic field region
where theL =0 state is metastabl¢he crossed circles will
be explained beloy Notice thatp* decreases with increas-
ing field and this decrease is more pronounced for thinner

for the cylinder, finite disk, and thin disk, respectively. In disks. The magnetic field dependences of the absolute value
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FIG. 2. The position of the boundary between the regions of F!G- 3. The absolute value of the negative charge inside the
negative and positive charges inside the sample as a function of ttR&MPle as a function of the external magnetic field(&@ran infi-
external magnetic field fofa) an infinitely long cylinder withx  Nitely long cylinder with«=1.0, (b) a finite-thickness disk with
=1.0, (b) a finite-thickness disk withl/£=0.2, k=1.0, and(c) a d/¢=0.2, k=1.0, and(c) a thin disk. The dependences for the
thin disk. Thep* (H) dependences for the Meissner state are showdVeissner state are shown by the solid line and for the vortex state
by the solid line and for the vortex state by the dashed lines. Th&Y the dashed lines.

dash-dotted curves represent the position of zero current. ) ) ) ) )
notice that the linear screening charge density has approxi-

|Q_| of the screening charge is shown in Figé)3-3(c) for mately the same maximum values for all considered geom-
the same geometries. The screening chddgg increases etries. The total screening charge is determined by the coher-
with magnetic field, but for the disk cases a local maximumence length¢ and the sample thicknesis For example, for a

is reached. This local maximum is reached for fields wheralisk with d=0.2¢ (case 1) we obtain for the screening

p* starts to decrease more strongly. From Figa)-33(c) we  charge|Q_ ¢.,|=3X27&%qod=(d/¢?)x 10 2 enm at the
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field H=0.6H.,. For an Al disk =250 nm) it gives Of areas where the charge changes its sign does not increase
|Q_ <] =8%10"° e. For strongly type-Il superconductors with L: it equqls 2 for small fields and increases to 3 for
which have a very small coherence lengttas well as for ~igher magnetic fields.

sufficiently thick samples this induced charge can be madtteh
orders of magnitude larger: for a HTS disk=€1 nm) with

the same sizel=0.2¢ it increases up to 210 3 e. This
value and the corresponding linear screening charge densi
are of the same order of magnitude as the previous estimat
for the vortex charge in bulk superconductdfé:!?

By direct integration ofj(p) over the sample surface we
find that the total charge per unit of sample lendih IV. VORTEX CHARGE IN THE MULTIVORTEX STATE

=$d6f5pa(p)dp=0; i.e., there is charge neutrality overthe -, ¢ ficiently large radial size of the superconductor the
whole sample. But this fact can be easy generalized analyttjiant vortex state can break up into multivortidés?° To
cally for_ states with any vorticity. The proof is given in the explain the physics we limit ourselves to the case of a thin
Appendix. disk. It was showt?"?°that the order parameter of the mul-
tivortex state in general can be viewed as a superposition of
giant vortex states with differert; :

As a conclusion of this section, we found that the value of
e screening charge also depends on the radial size of the
sample but less strongly than @gnandd. For example, in-
reasing the radius of a thin digkase Il) from R=4.0¢ to
=8.0¢ we obtain a chargéQ_ | which is 3(5) times
%Q‘rger for the states with=0 (L=1).

B. Giant vortex state

The same dependences as in Figa)41(d) are shown in L
Figs. 4a)—4(d) for samples in the.=1 vortex state. In this W(p)= >, CLfL(p)expiL;0), (16)
state|#(p)|?=0 in the center of the vortex core located in L=o
the center of the sample. Notice that for a cylinder the charge ) ,
distribution almost does not change with magnetic field. TheVhereL is now the value of the effective total angular mo-

is that th | field aff h - Jnentum which equals the number of vortices in the disk. For
reason is that the external field affects the Cooper pair de Hisks with not so large a radiy¢3—5)¢] the order param-

sity only near the sample edge region. This is different for . : o
. o eter of the multivortex state is the superposition of only two
the disk geometry, where large demagnetization effects . . :
) : Con 3tates and is described by the expresSion
strongly influence the penetration of the magnetic field in the
disk which changes the vortex structure. The vortex core is .
negatively charged and at small fields the positive charge z/f(p)=CL1le(p)exp(iL10)+CszLZ(p)exp(iLze),
outside the vortex extends up to the border of the sample. (17)
The dependences of the positipfi(H) and the size of the
charge pileugQ_|(H) for theL=1 state are shown in Figs. where
2(a)—2(c) and 3a)—3(c).
With increasing external magnetic field the screening cur-
rent at the sample surface increases and makes the region C, =
near the border of the sample negatively charged. In this case Ly
there exist twap*, whereq(p*)=0. The core of the vortex
is negatively charged with total char¢@_ ,|. Around this
core there is a ring of positive charge which compensates the
charge of the vortex core and the surface charge. Near the C.=
surface a ring of negative screening charge exists with total
charge|Q_ <. The size of the latter increases with increas-
ing magnetic field. For disk$Q_ s, reaches a local maxi- 2md (R
mum after which it decreases in the large magnetic field AL_:L pdpft (p),
region; this is the region where tHe=1 state is unstable Voo !
[see the circles with crosses in Figch.
Next we investigated the charge distribution for the vortex 2d

1/2
_ALlALZBLl+ ZALZALl’LZBLZ (18)
AL AL =AY ’

1/2
- ALZALIBLZ—'_ 2AL1AL1 ’LZBLl)

ALAL—4AE |

R
states withL>1 and We.|lmlt(.9d ourgelves to tﬁe t_hln disk AL L= Tf pdpffl(p)ffz(p),
case. From Eq(14) one finds immediately thaj=0 in the 0
center of the disk wheh=2. Consequently, the charge dis-
tribution in the vortex core has a ring shape. To illustrate this 2md (R
we show in Figs. &) and 5b) the same dependences as in BL= ~ s pdpffi(p), (29

Fig. 4(c) but now forL=2 and 3, respectively. With the
exception of the core region the charge distribution for the
giant vortex states is qualitatively similar to the case1, andf_(p) and A, are determined by Eq¢10) and (12),

and the charge on the sample surface changes sign with inespectively. The charge density distribution is then given by
creasing external magnetic field. Notice also that the numbethe expression
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explicit expression is rather lengthy and is therefore not
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SN given here.
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a/q,

Il

FIG. 6. The charge density distribution for tffe2) saddle-point
state at the fieldd=0.3H., for a thin disk withR/£=4.0. The
bottom contour plot shows the distribution of the Cooper pair den-
sity.

with different vorticity L and describe the penetration of flux
into the disk. Due to the transitions between the diffedent
states with increasingor decreasingexternal field, some
giant vortex states are never realizBdr example, such
states forL=0 and 1 correspond to the crossed circles in
Figs. 2c¢) and 30)].

As an example, we consider a thin disk wiRi£=4.0.
The charge densitg(x,y) distributions over the disk for the
different kinds of multivortex states are shown in Figs. 6 and
7. In Fig. 6 this distribution is given for the saddle point state
(1:2) at the fieldH=0.32H., and the contour plot of the
distribution of the Cooper pair density|? for this state is
shown at the bottom of the figure. The dark regions on the
| 4|2 contour plot correspond to low Cooper pair density. The
same distributions for the stable multivortex stdigl) at the
field H=0.79, are shown in Fig. 7. In general, the charge
profiles are complicated enough, but nevertheless, one can
see regions of negative charge located at the vortex core and
positive charge near the edge of the sample. Using Egs.

[4(p)|?, the charge densitg(p), and the supercurrent densjtip)
in the giant vortex state witfe) L=2 and(b) L=3 for a thin disk
with R/¢£=4.0 and for different applied magnetic fields.

Earlier analyses have shoWri**3that there exist two kinds
of multivortex states(i) stable configurations which corre-
spond to a minimum of the free energy afiid states which

correspond to saddle points of the free energy. The latter F|G. 7. The same as in Fig. 6 but for the (0:4}ltivortex state
ones correspond to the energy barrier states between staias disk withR/¢=4.0 at the fieldd=0.73H,.
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(17)—(19) it is easy to prove that also in the multivortex state Poles(IUAP-VI), the “Onderzoeksraad van de Universiteit

the disk is electrically neutral as a whalsee also the Ap- Antwerpen,” and the ESF program on “Vortex Matter.” We

pendix. are grateful to Yu. V. Medvedev for bringing Ref. 3 to our
attention.

V. CONCLUSIONS

We studied theoretically the redistribution of electrical APPENDIX: PROOF OF ELECTRICAL NEUTRALITY
charge in circulamesoscopisuperconducting samples with IN'A MESOSCOPIC SAMPLE
d|ffe_rent shapes, i.e., disks and cylinders. Th_e theory applies Using Egs.(1) and (2) and the Gauss theorem the total
for intermediate temperatures where the Glnzburg-LandaH ar

o geQ can be expressed as

theory still gives reasonable results and where the share oP
superconducting electrons is already of order unity so that
the screening by normal electrons may be neglected. Previ- ||

— 2 2\ |2
ously, it was predicted that theortex corein bulk type-Il Q="gme VV |[¢(r)lFdv
samples is negatively charged. We found that in mesoscopic
samples, in contrast to the bulk ones, even in the Meissner la| (=, - —_—
statewith no vorticesinside the sample, there existan- -y SV|¢/(r)| ds
uniform chargedistribution. Due to the finite radial size, a
region near the sample edge becomes negatively charged la| [ - o o
while the interior of the sample has a corresponding positive -y L (O)Vip(r)y+(r)V* (r)]dS
charge. This charge redistribution is a consequence of the meJs
screening currents near the sample edge which makes it be- laf
have like a vortex which is turned inside out. When vortices =— — | n- [PV —iA)y(r)
are inside the sample there is a superposition of the vortex 8mels
charge and this Meissner charge. Because of this interplay .. .
between vortex charge, which is positive near the sample +(r)(V+iA)y*(r)]dS, (A1)

surface, and the Meissner charge, which is negative at the

sample surface, the charge at the sample @#i@@ges sign  From the boundary conditio(6) and its complex conjugate

as a function of the applied magnetic field. These effectst follows immediately thatQ=0. Notice that this result is
become more pronounced with decreasing sample thicknesgery general; it is valid for any vortex configuratiqthe

We also proved analytically that there is only a redistributiongiant vortex states and the multivortex opesd arbitrary

of charge and that the total sample charge is neutral as lorghape of the superconducting sample as long as the boundary
as the boundary conditiof®) is satisfied. condition (6) is satisfied.

Finally, let us briefly discuss the possibility of experimen-  For a superconductor in contact with a normal metal or
tal detection of the above screening charge. Recently, thior a surface enhancement of superconductiVitye have
vortex charge in a high-temperature YBaCuO superconthe more general boundary conditfBn
ductor was detected by the nuclear magnetic resonance
(NMR) method? The detection of vortex charge in type-Il .
superconductors by the method of scanning tunneling mi- ﬁ'(—iﬁ—ﬁ)¢|szl¢|s- (A2)
croscopy (STM) has been discussed in detail by Blatter b

6 : L
et al” An alternative approach was proposed by Mishdfov The phenomenological parameteis a surface extrapolation

using a transport measurement in a layered metal-insulator-ngth which is the effective penetration depth of the order
superconductor system. As we have seen, the calculated var

. . rameter into the surrounding medium. The das& cor-
ues of the screening charge for mesoscopic samples are -
) . responds to surface enhancement of superconductityd
the same order of magnitude as the vortex charge estlmat?

] 8 e opposite casb>0 corresponds to the superconductor-
for bulk type-Il superconductofs,®and, consequently, they normal metal boundary. In these cases the sample should

are in the limits of accuracy of the above experimental tech-have the finite total charge
niques. On the other hand, some experience in the prepara-
tion and measurement of mesoscopic disks made from

normal® and (Ref. 35 HTS materials also exists. Therefore, || _

we believe that the NMR and STM methods can be used to Q= 477ebfs| Y(r)|*ds=

probe the vortex electric charge in mesoscopic samples.

ag - 5
167T§2bejs| w(r)as
(A3)
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