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Vortex charge in mesoscopic superconductors
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The electric charge density in mesoscopic superconductors with circular symmetry, i.e., disks and cylinders,
is studied within the phenomenological Ginzburg-Landau approach. We found that even in the Meissner state
there is a charge redistribution in the sample which makes the sample edge become negatively charged. In the
vortex state there is a competition between this Meissner charge and the vortex charge which may change the
polarity of the charge at the sample edge with increasing magnetic field. It is shown analytically that in spite
of the charge redistribution the mesoscopic sample as a whole remains electrically neutral.
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I. INTRODUCTION

The idea of ‘‘an electric charge associated with a vorte
was proposed many years ago. In fact, it arised from L
don’s prediction that in superconductors with a nonunifo
distribution of the superconducting current an electric field
associated.1 This phenomenon is similar to the hydrosta
Bernoulli effect2 and leads to the appearance of an elec
static potential difference inside the sample. This Berno
potential compensates at each point of the supercondu
the kinetic shift of the chemical potential of the electron
which is associated with the kinetic energy of the superc
ducting condensate, so that the electrochemical potentia
the electrons remains constant in space. Ivanchenko
Omel’yanchuk3 predicted, for bulk superconductors in an e
ternal magnetic field, that an electrical polarization is
duced by this Bernoulli effect. They also calculated the p
larization moment of a superconductor, the quadrup
moment for a sphere, and the dipole moment for a disto
sphere. When the vortex exists in the bulk of a superc
ductor the Bernoulli potential creates an additional fo
which balances the inertial and Lorentz forces acting on
vortex.4

Interest in this subject reappeared when Khomskii a
Freimuth5 showed that the vortex in a high-temperature
perconductor~HTS! can accumulate a finite electric charg
This effect occurs because of the difference of the chem
potential in the superconducting condensate versus the
mal state~vortex core!. Such a change in chemical potenti
~which is similar to the above Bernoulli effect! results in a
redistribution of the electrons in the region near the vor
and culminates in a charging of the vortex core. Later
same effect was predicted for a single Abrikosov vortex i
type-II bulk superconductor6,7 and very recently for the flux
line lattice in a bulk superconductor.8 Recently, the vortex
charge was also studied for other superconducting syste
such as the Bose liquid,9 unconventional superconductin
materials: with hole superconductivity10 and chiralp-wave
superconductors.11 At last, at the end of 2000 the first exper
mental evidence of vortex core charge was obtained
HTS’s by high-resolution measurements of the nuclear qu
0163-1829/2001/64~14!/144511~10!/$20.00 64 1445
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rupole frequency which is very sensitive to the local cha
density.12

In the present paper we investigate this phenomenon
mesoscopic superconductors. All previous papers on
subject dealt with bulk superconductors. A mesosco
sample has a typical size which is comparable to the co
ence length (j) and the magnetic field penetration depth (l).
The behavior of such structures in an external magnetic fi
~H! is strongly influenced by the sample shape13,14 and may
lead to various superconducting states and different ph
transitions between them. Jumps in magnetization were
served when the applied magnetic field or temperature~T! is
varied.15

A number of earlier works studied the geometr
dependent magnetic response of mesoscopic supercon
ors: ~i! disk-shaped samples,16–22 ~ii ! infinitely long
cylinders,23,24and~iii ! ringlike structures25,26and more com-
plicated geometries.27 Theoretical studies of mesoscopic s
perconductors are based on the phenomenological Ginzb
Landau ~GL! theory28 which successfully describes mes
scopic samples in a wideH-T region. In particular, it has
been shown that in mesoscopic samples~disks or cylinders!
surrounded by a vacuum or an insulator two kinds of sup
conducting states can exist. First, there is a circular symm
ric state with a fixed value of angular momentum, call
giant vortex. The observed magnetization jumps corresp
to first-order phase transitions between giant vortices w
different angular momentum.16,17 Second, in samples with a
sufficiently large radius multivortex structures18 can nucleate
which are the analog of the Abrikosov flux line lattice in
bulk superconductor. These states can be represented
mixture of giant vortex states with different angular mome
tum. For multivortex states it is also possible to introduce
effective total angular momentum, which is nothing else th
the number of vortices in the disk, i.e., the vorticity. Wi
changing the magnetic field there is a second-order ph
transition between the multivortex and the giant vort
state.18,19,29

It is expected that the charge distribution in such me
scopic samples may be appreciably altered due to the p
ence of a boundary. Furthermore, screening currents nea
©2001 The American Physical Society11-1
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YAMPOLSKII, BAELUS, PEETERS, AND KOLÁČEK PHYSICAL REVIEW B 64 144511
boundary of the sample will also lead to a redistribution
charge and consequently even in the Meissner state there
be a nonuniform distribution in the sample. In a certa
sense, this case can be viewed as a vortex turned inside
i.e., with its core at infinity. In the presence of vortices the
will be an interplay between the Meissner charge and
previously studied5,6,8 vortex charge which is unique for me
soscopic samples.

The present paper is organized as follows. In Sec. II
give the necessary theoretical formalism on which our
merical results are based. In Sec. III we investigate
charge distribution in both the Meissner state and the g
vortex states. Then the charge distribution in the multivor
state is discussed for thin disks~Sec. IV!. In Sec. V we
summarize our results and briefly discuss a possibility
their experimental detection. In the Appendix we present
proof of electrical neutrality in a mesoscopic superconduc
of general shape.

II. THEORETICAL APPROACH

We consider a mesoscopic superconducting sample of
cular symmetry with radiusR and thicknessd surrounded by
an insulating medium. The external magnetic fieldHW
5(0,0,H) is uniform and directed normal to the superco
ductor plane. The starting point of our analysis is that
rotating motion of Cooper pairs around the vortex core le
to a spatial redistribution of charge carriers, which gener
the electrostatic potential5,6,8

w~rW !5w0@ uc~rW !u221#, ~1!

wherec(rW) is the dimensionless superconducting order
rameter normalized so thatuc(rW)u2 is measured in units o
the Cooper pair density in a bulk superconductor. The a
plitude w0 is different in different approaches. We usew0
5uau/2e as proposed in Ref. 8. A 3-times smaller valuew0
5uau/6e was used in Ref. 5. From the theory in Ref. 6
follows approximately thatw05(uau/2p2e)(dTc /dln eF),
where dTc /dln eF'ln(\vD /kBTc);1–10. Thus all ap-
proaches yield an electrostatic potential of a similar mag
tude.

The distribution of the corresponding charge densityq(rW)
is obtained from the Poisson equation30

4pq~rW !52¹W 2w~rW !. ~2!

The Cooper pair densityuc(rW)u2 is determined from a
solution of the system of two coupled nonlinear GL equ
tions for the superconducting order parameter,c(rW), and the
magnetic field@or vector potentialAW (rW)#

~2 i¹W 2AW !2c5c2cucu2, ~3!

k2¹W 3¹W 3AW 5 jW, ~4!

where the density of the superconducting currentjW is given
by
14451
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1

2i
~c* ¹W c2c¹W c* !2ucu2AW . ~5!

Here rW5(rW ,z) is the three-dimensional position in spac
Due to the circular symmetry of the sample, we use cylind
cal coordinates:r is the radial distance from the disk cente
u is the azimuthal angle, and thez axis is taken perpendicula
to the disk plane, where the disk lies betweenz52d/2 and
z5d/2. Ford→` we obtain the cylinder geometry. All dis
tances are measured in units of the coherence lengtj
5\/A2m* uau (m* 52m is the mass of the Cooper pair!, the
vector potential in c\/2ej, the magnetic field inHc2

5c\/2ej25kA2Hc , where Hc is the thermodynamica
critical field, and the superconducting current inj 0
5cHc/2pj, andk5l/j is the GL parameter.

Equations~3!–~5! have to be supplemented by bounda
conditions forc(rW) andAW (rW). For the superconducting con
densate it can be written as28

nW •~2 i¹W 2AW !cuS50, ~6!

wherenW is the unit vector normal to the sample surface. T
boundary condition for the vector potential has to be tak
far away from the superconductor where the magnetic fi
becomes equal to the external applied fieldH:

AW ur→`5
1

2
HreW u , ~7!

whereeW u denotes the azimuthal direction.
The free energy of the superconducting state, measure

F05Hc
2V/8p units, is determined by the expression

F5
2

V H E dVF2ucu21
1

2
ucu41u2 i¹W c2AW cu2

1k2@hW ~rW !2HW #2G J , ~8!

with the magnetic field

hW ~rW !5¹W 3AW ~rW !.

Here we will consider three different geometries for t
superconductor:~I! an infinitely long cylinder,~II ! a thin disk
with finite thicknessd&l,j, and~III ! an infinitely thin disk,
i.e., d→0. In all three cases the superconducting order
rameter does not depend onz. In case I it obviously follows
from the sample geometry. In cases II and III it was foun17

that the dependence ofc(rW) on z is very slow. This allows us
to averagec(rW) over the sample thickness and to solve t
problem for the two-dimensional problem for the order p
rameterc(r,u). However, the magnetic field in case II has
z dependence, which is responsible for the demagnetiza
effect. For both cases I and II we solve the problem num
cally by the method proposed in Ref. 17. For thin mes
scopic disks we use the results of Refs. 18 and 31 wh
allowed us to solve the problem semianalytically.
1-2
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III. CHARGE IN THE MEISSNER AND THE GIANT
VORTEX STATES

First, we consider the situation with a fixed value of t
vorticity L. The giant vortex state has cylindrical symmet
and consequently the order parameter can be written
c(rW )5 f (r)exp(iLu). For a thin disk~case III! the order pa-
rameter is31

c~r,u!5S 2L
I 2

I 1
D 1/2

f L~r!exp~ iLu!, ~9!

where

f L~r!5S Hr2

2 D L/2

expS 2
Hr2

4 D M S 2n,L11,
Hr2

2 D ,

~10!
-
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I 15E
0

R

rdr f L
4~r!, I 25E

0

R

rdr f L
2~r!, ~11!

L5H~112n!21. ~12!

HereM (a,b,y) is the Kummer function32 and the value ofn
is determined by the nonlinear equation, which results fr
the boundary condition~6!:

S L2
F

2 D M S 2n,L11,
F

2 D2
nF

L11
M S 2n11,L12,

F

2 D50.

~13!

Here F5HR2 is the magnetic flux through the disk in th
absence of any flux expulsion. Using Eqs.~9!–~12! we can
derive explicitly the charge distribution
q~r!54L
I 2

I 1
S H

2 D L

r2(L21)expS 2
Hr2

2 D H L2M2S 2n,L11,
Hr2

2 D2
Hr2

2
~2L11!M S 2n,L11,

Hr2

2 D FM S 2n,L11,
Hr2

2 D
1

2n

L11
M S 2n11,L12,

Hr2

2 D G1S Hr2

2 D 2FM2S 2n,L11,
Hr2

2 D1
4n

L11
M S 2n,L11,

Hr2

2 D
3M S 2n11,L12,

Hr2

2 D1
2n2

~L11!2
M2S 2n11,L12,

Hr2

2 D2
2n~n11!

~L11!~L12!

3M S 2n,L11,
Hr2

2 D M S 2n12,L13,
Hr2

2 D G J , ~14!
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where the charge density is measured in units ofq05\2/
(16pm* ej4)5(aB/32pj4)e (aB5\2/me2'0.053 nm is
the Bohr radius!. Notice thatq0 depends only on the mate
rial. For example, for Al@j.250 nm ~Ref. 15!# we have
q0 /e.1.3310213 nm23, whereas for HTS material
~j.1 nm! it results inq0 /e.5.331024 nm23.

A. Meissner state

First, we study the Meissner state, i.e.,L50. The radial
dependences of the Cooper pair density„or the correspond-
ing distribution of the potentialw(r) @see Eq.~1!#…, the
charge densityq(r), and the density of superconducting cu
rent j (r) are shown in Figs. 1~a!–1~c! for the cases of cyl-
inder, finite disk, and very thin disk, respectively, having t
same radiusR54.0j for different values of the applied field
Figure 1~d! shows these dependences for the same cylin
at the fieldH50.52Hc2 but for differentk values. Due to the
finite radial size of the samples, all distributions are inhom
geneous along the radius of the sample. The Cooper
density is maximum at the center and decays towards
sample edge. As a result, in the center of the sample the
a region of positive charge while near the edge a nega
‘‘screening’’ chargeqscr is created. To avoid confusion let u
er

-
air
e
is
e

note that for simplicity we write ‘‘positive charge’’ instead o
‘‘charge of the same sign as is the sign of the domin
charge carriers.’’ In the cylinder the Cooper pair density d
creases with increasing field, while both the screening su
conducting current and the charge polarization monotonou
increase. The behavior for the disks is more complicated.
small fields the picture is very similar to the one of the c
inder. But for fields where the Meissner state becomes m
stable @i.e., H/Hc2.0.32 for the parameters used in Fi
1~b!# the screening charge becomes maximal. The posi
charge is pulled further towards the center of the disk and
screening charge region expands. Notice that now the m
mum of the positive charge decreases with field and als
the surface its absolute value decreases. For a cylinde
fixed field but with increasingk @Fig. 1~d!# its charge distri-
bution behaves similar as for fixedk and increasing mag
netic field @see Fig. 1~a!#.

Notice that even forL50 when no vortex is present in
side the superconductor, there is still a nonuniform cha
distribution. This charge redistribution can be characteriz
by two quantities:~i! the distancer* which separates the
positive and negative charge regions and~ii ! the total screen-
ing chargeQ2,scr which is defined by the integral over th
regionV2 occupied by the negative charge:
1-3
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FIG. 1. The radial dependences of the Cooper pair densityuc(r)u2, the charge densityq(r), and the supercurrent densityj (r) in the
Meissner state for~a! an infinitely long cylinder withk51.0, ~b! a finite thickness disk withd/j50.2, k51.0, ~c! a very thin disk for
different magnetic fields, and~d! an infinitely long cylinder with different Ginzburg-Landau parameterk at the magnetic fieldH
50.52Hc2. All samples have the same radiusR/j54.0.
In

ion

-
ner
alue
Q2,scr52pdE
(r2)

rqscr~r!dr. ~15!

The dependences ofr* (H) are shown in Figs. 2~a!–2~c!
for the cylinder, finite disk, and thin disk, respectively.
14451
Fig. 2~c! the open squares refer to the magnetic field reg
where theL50 state is metastable~the crossed circles will
be explained below!. Notice thatr* decreases with increas
ing field and this decrease is more pronounced for thin
disks. The magnetic field dependences of the absolute v
1-4
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VORTEX CHARGE IN MESOSCOPIC SUPERCONDUCTORS PHYSICAL REVIEW B64 144511
uQ2u of the screening charge is shown in Figs. 3~a!–3~c! for
the same geometries. The screening chargeQscr increases
with magnetic field, but for the disk cases a local maximu
is reached. This local maximum is reached for fields wh
r* starts to decrease more strongly. From Figs. 3~a!–3~c! we

FIG. 2. The position of the boundary between the regions
negative and positive charges inside the sample as a function o
external magnetic field for~a! an infinitely long cylinder withk
51.0, ~b! a finite-thickness disk withd/j50.2, k51.0, and~c! a
thin disk. Ther* (H) dependences for the Meissner state are sho
by the solid line and for the vortex state by the dashed lines.
dash-dotted curves represent the position of zero current.
14451
e

notice that the linear screening charge density has appr
mately the same maximum values for all considered geo
etries. The total screening charge is determined by the co
ence lengthj and the sample thicknessd. For example, for a
disk with d50.2j ~case II! we obtain for the screening
chargeuQ2,scru.332pj2q0d.(d/j2)31022 e nm at the

FIG. 3. The absolute value of the negative charge inside
sample as a function of the external magnetic field for~a! an infi-
nitely long cylinder withk51.0, ~b! a finite-thickness disk with
d/j50.2, k51.0, and~c! a thin disk. The dependences for th
Meissner state are shown by the solid line and for the vortex s
by the dashed lines.
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YAMPOLSKII, BAELUS, PEETERS, AND KOLÁČEK PHYSICAL REVIEW B 64 144511
field H50.6Hc2. For an Al disk (j.250 nm) it gives
uQ2,scru.831026 e. For strongly type-II superconductor
which have a very small coherence lengthj as well as for
sufficiently thick samples this induced charge can be m
orders of magnitude larger: for a HTS disk (j.1 nm! with
the same sized50.2j it increases up to 231023 e. This
value and the corresponding linear screening charge de
are of the same order of magnitude as the previous estim
for the vortex charge in bulk superconductors.5,6,8,12

By direct integration ofq(r) over the sample surface w
find that the total charge per unit of sample lengthQ
5rdu*0

Rrq(r)dr50; i.e., there is charge neutrality over th
whole sample. But this fact can be easy generalized ana
cally for states with any vorticity. The proof is given in th
Appendix.

B. Giant vortex state

The same dependences as in Figs. 1~a!–1~d! are shown in
Figs. 4~a!–4~d! for samples in theL51 vortex state. In this
stateuc(r)u250 in the center of the vortex core located
the center of the sample. Notice that for a cylinder the cha
distribution almost does not change with magnetic field. T
reason is that the external field affects the Cooper pair d
sity only near the sample edge region. This is different
the disk geometry, where large demagnetization effe
strongly influence the penetration of the magnetic field in
disk which changes the vortex structure. The vortex cor
negatively charged and at small fields the positive cha
outside the vortex extends up to the border of the sam
The dependences of the positionr* (H) and the size of the
charge pileupuQ2u(H) for theL51 state are shown in Figs
2~a!–2~c! and 3~a!–3~c!.

With increasing external magnetic field the screening c
rent at the sample surface increases and makes the re
near the border of the sample negatively charged. In this c
there exist twor* , whereq(r* )50. The core of the vortex
is negatively charged with total chargeuQ2,vu. Around this
core there is a ring of positive charge which compensates
charge of the vortex core and the surface charge. Near
surface a ring of negative screening charge exists with t
chargeuQ2,scru. The size of the latter increases with increa
ing magnetic field. For disks,uQ2,scru reaches a local maxi
mum after which it decreases in the large magnetic fi
region; this is the region where theL51 state is unstable
@see the circles with crosses in Fig. 3~c!#.

Next we investigated the charge distribution for the vor
states withL.1 and we limited ourselves to the thin dis
case. From Eq.~14! one finds immediately thatq50 in the
center of the disk whenL>2. Consequently, the charge di
tribution in the vortex core has a ring shape. To illustrate t
we show in Figs. 5~a! and 5~b! the same dependences as
Fig. 4~c! but now for L52 and 3, respectively. With the
exception of the core region the charge distribution for
giant vortex states is qualitatively similar to the caseL51,
and the charge on the sample surface changes sign wit
creasing external magnetic field. Notice also that the num
14451
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of areas where the charge changes its sign does not incr
with L: it equals 2 for small fields and increases to 3 f
higher magnetic fields.

As a conclusion of this section, we found that the value
the screening charge also depends on the radial size o
sample but less strongly than onj and d. For example, in-
creasing the radius of a thin disk~case III! from R54.0j to
R58.0j we obtain a chargeuQ2,scru which is 3 ~5! times
larger for the states withL50 (L51).

IV. VORTEX CHARGE IN THE MULTIVORTEX STATE

For sufficiently large radial size of the superconductor
giant vortex state can break up into multivortices.18–20 To
explain the physics we limit ourselves to the case of a t
disk. It was shown19,20 that the order parameter of the mu
tivortex state in general can be viewed as a superpositio
giant vortex states with differentL j :

c~rW !5 (
L j 50

L

CL j
f L j

~r!exp~ iL ju!, ~16!

whereL is now the value of the effective total angular m
mentum which equals the number of vortices in the disk. F
disks with not so large a radius@(3 –5)j# the order param-
eter of the multivortex state is the superposition of only tw
states and is described by the expression31

c~rW !5CL1
f L1

~r!exp~ iL 1u!1CL2
f L2

~r!exp~ iL 2u!,
~17!

where

CL1
5S 2LL1

AL2
BL1

12LL2
AL1 ,L2

BL2

AL1
AL2

24AL1 ,L2

2 D 1/2

, ~18!

CL2
5S 2LL2

AL1
BL2

12LL1
AL1 ,L2

BL1

AL1
AL2

24AL1 ,L2

2 D 1/2

,

ALi
5

2pd

V E
0

R

rdr f Li

4 ~r!,

AL1 ,L2
5

2pd

V E
0

R

rdr f L1

2 ~r! f L2

2 ~r!,

BLi
5

2pd

V E
0

R

rdr f Li

2 ~r!, ~19!

and f Li
(r) and LLi

are determined by Eqs.~10! and ~12!,
respectively. The charge density distribution is then given
the expression
1-6
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FIG. 4. The same as in Fig. 1 but for the single-vortex state~with L51).
not
q~r,u!52CL1

2 F f L1
82~r!1 f L1

~r! f L1
9 ~r!1

1

r
f L1

~r! f L1
8 ~r!G

12CL2

2 F f L2
82~r!1 f L2

~r! f L2
9 ~r!1

1

r
f L2

~r! f L2
8 ~r!G

12CL1
CL2

cos@~L12L2!u#F f L1
9 ~r! f L2

~r!
14451
12 f L1
8 ~r! f L2

8 ~r!1 f L1
~r! f L2

9 ~r!1
1

r
@ f L1

8 ~r! f L2
~r!

1 f L1
~r! f L2

8 ~r!#2
~L12L2!2

r2
f L1

~r! f L2
~r!G , ~20!

where the prime denotes the derivative with respect tor. The
explicit expression is rather lengthy and is therefore
given here.
1-7
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Earlier analyses have shown19,31,33that there exist two kinds
of multivortex states:~i! stable configurations which corre
spond to a minimum of the free energy and~ii ! states which
correspond to saddle points of the free energy. The la
ones correspond to the energy barrier states between s

FIG. 5. The radial dependences of the Cooper pair den
uc(r)u2, the charge densityq(r), and the supercurrent densityj (r)
in the giant vortex state with~a! L52 and~b! L53 for a thin disk
with R/j54.0 and for different applied magnetic fields.
14451
er
tes

with different vorticityL and describe the penetration of flu
into the disk. Due to the transitions between the differenL
states with increasing~or decreasing! external field, some
giant vortex states are never realized@for example, such
states forL50 and 1 correspond to the crossed circles
Figs. 2~c! and 3~c!#.

As an example, we consider a thin disk withR/j54.0.
The charge densityq(x,y) distributions over the disk for the
different kinds of multivortex states are shown in Figs. 6 a
7. In Fig. 6 this distribution is given for the saddle point sta
~1:2! at the fieldH50.32Hc2 and the contour plot of the
distribution of the Cooper pair densityucu2 for this state is
shown at the bottom of the figure. The dark regions on
ucu2 contour plot correspond to low Cooper pair density. T
same distributions for the stable multivortex state~0:4! at the
field H50.75Hc2 are shown in Fig. 7. In general, the charg
profiles are complicated enough, but nevertheless, one
see regions of negative charge located at the vortex core
positive charge near the edge of the sample. Using E

ty

FIG. 6. The charge density distribution for the~1:2! saddle-point
state at the fieldH50.32Hc2 for a thin disk withR/j54.0. The
bottom contour plot shows the distribution of the Cooper pair d
sity.

FIG. 7. The same as in Fig. 6 but for the (0:4) multivortex state
in a disk withR/j54.0 at the fieldH50.75Hc2.
1-8
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~17!–~19! it is easy to prove that also in the multivortex sta
the disk is electrically neutral as a whole~see also the Ap-
pendix!.

V. CONCLUSIONS

We studied theoretically the redistribution of electric
charge in circularmesoscopicsuperconducting samples wit
different shapes, i.e., disks and cylinders. The theory app
for intermediate temperatures where the Ginzburg-Lan
theory still gives reasonable results and where the shar
superconducting electrons is already of order unity so
the screening by normal electrons may be neglected. Pr
ously, it was predicted that thevortex corein bulk type-II
samples is negatively charged. We found that in mesosc
samples, in contrast to the bulk ones, even in the Meiss
statewith no vorticesinside the sample, there exists anon-
uniform chargedistribution. Due to the finite radial size,
region near the sample edge becomes negatively cha
while the interior of the sample has a corresponding posi
charge. This charge redistribution is a consequence of
screening currents near the sample edge which makes i
have like a vortex which is turned inside out. When vortic
are inside the sample there is a superposition of the vo
charge and this Meissner charge. Because of this inter
between vortex charge, which is positive near the sam
surface, and the Meissner charge, which is negative at
sample surface, the charge at the sample edgechanges sign
as a function of the applied magnetic field. These effe
become more pronounced with decreasing sample thickn
We also proved analytically that there is only a redistribut
of charge and that the total sample charge is neutral as
as the boundary condition~6! is satisfied.

Finally, let us briefly discuss the possibility of experime
tal detection of the above screening charge. Recently,
vortex charge in a high-temperature YBaCuO superc
ductor was detected by the nuclear magnetic resona
~NMR! method.12 The detection of vortex charge in type-
superconductors by the method of scanning tunneling
croscopy ~STM! has been discussed in detail by Blatt
et al.6 An alternative approach was proposed by Mishono34

using a transport measurement in a layered metal-insula
superconductor system. As we have seen, the calculated
ues of the screening charge for mesoscopic samples a
the same order of magnitude as the vortex charge estim
for bulk type-II superconductors,5,6,8 and, consequently, the
are in the limits of accuracy of the above experimental te
niques. On the other hand, some experience in the prep
tion and measurement of mesoscopic disks made f
normal15 and~Ref. 35! HTS materials also exists. Therefor
we believe that the NMR and STM methods can be use
probe the vortex electric charge in mesoscopic samples.
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APPENDIX: PROOF OF ELECTRICAL NEUTRALITY
IN A MESOSCOPIC SAMPLE

Using Eqs.~1! and ~2! and the Gauss theorem the tot
chargeQ can be expressed as

Q52
uau
8peEV

¹2uc~rW !u2dV

52
uau
8peES

¹W uc~rW !u2dSW

52
uau
8peES

nW •@c* ~rW !¹W c~rW !1c~rW !¹W c* ~rW !#dS

52
uau
8peES

nW •@c* ~rW !~¹W 2 iAW !c~rW !

1c~rW !~¹W 1 iAW !c* ~rW !#dS. ~A1!

From the boundary condition~6! and its complex conjugate
it follows immediately thatQ[0. Notice that this result is
very general; it is valid for any vortex configuration~the
giant vortex states and the multivortex ones! and arbitrary
shape of the superconducting sample as long as the boun
condition ~6! is satisfied.

For a superconductor in contact with a normal metal
for a surface enhancement of superconductivity31 we have
the more general boundary condition28

nW •~2 i¹W 2AW !cuS5
i

b
cuS . ~A2!

The phenomenological parameterb is a surface extrapolation
length which is the effective penetration depth of the ord
parameter into the surrounding medium. The caseb,0 cor-
responds to surface enhancement of superconductivity31 and
the opposite caseb.0 corresponds to the superconducto
normal metal boundary. In these cases the sample sh
have the finite total charge

Q5
uau

4pebES
uc~rW !u2dS5

aB

16pj2b
eE

S
uc~rW !u2dS.

~A3!

The value of this charge is determined by the both sam
sizes andj as well as the charge sign is, determined by
sign of b.
1-9
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