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Coherent multiple Andreev reflections and current resonances in SNS quantum point contacts
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We study coherent multiple Andreev reflections in ballistic superconductor-normal conductor-
superconductor junctions with a quantum point contact in the normal region of the justiperconductor-
normal region-quantum point contact-normal region-superconduettir arbitrary transparency. The presence
of superconducting bound states in these junctions gives rise to great enhancement of the subgap current. The
effect is most pronounced in low-transparency junctiddss1, and in the interval of applied voltagk/2
<eV<2A, where the amplitude of the current structures is proportional to the first power of the junction
transparencyD. The resonant current structures consist of steps and oscillations of the two-particle current and
also of multiparticle resonance peaks. The positions of the two-particle current structures have a pronounced
temperature dependence, which scales Wiffi), while the positions of the multiparticle resonances have a
weak temperature dependence, being mostly determined by the junction geometry. Despite the large, resonant
two-particle current, the excess current at large voltage is small and proportiobal to
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I. INTRODUCTION these recent studies of mesoscopic junctions was focused on
to the two-particle(Andreey current through superconduct-
Transport properties of small conducting structures aréng bound states, while the traditional view of subgap current
strongly influenced by size effects. Oscillation of magnetoreransport in proximity tunnel structures considers single-
sistance in thin metallic films, and quantization of conduc-Particle tunneling into bound states in the normal region of
tance in narrow wires and point contacts are examples df'€ INS well-™“Such a view implicitly assumes that the
such effects. Size effects in superconducting tunneling hayBormal region of the INS plays well the role of equilibrium
attracted attention since early experiments by Tomasah. reservoir, which is appropriate for low-transmission tunnel

these experiments, oscillations of the tunnel conductance a junctions with low tunneling rate compared 1o the inelastic
> EXp S . r8laxation rate. However, transparent mesoscopic structures
function of applied voltage were found for tunneling from a

: . ) re in a different transport regime where the bound levels are
superconductor to a thin superconducting film of a normac/e” decoupled from the superconducting reservoirs, and

conductor-superconductéNS) proximity bilayer. The geo- \yhere injected quasiparticles escape from the INS well via
metric resonance nature of the effect was clearly indicated\ngreey reflectiod®* Resonant two-particle current in
by the dependence of the period of oscillations on the thickyuantum normal conductor-insulator-normal  conductor-

ness of the superconducting film. Similar conductance oscilsyperconductofNINS) junctions has been theoretically stud-
lations for tunneling into a normal metal film of NS bilayers jed in Refs. 15 and 16.

were reported by Rowell and McMillahLater on, an even In  superconductor-normal  conductor-superconductor
more pronounced effect—steps on the current-voltage chatSNS junctions, the situation is more complex: in mesos-
acteristics of superconductor-insulator-normal conductoreopic regime when inelastic relaxation plays secondary role,
superconductofSINS) junctions at applied subgap voltages, the quasiparticles may undergo multiple Andreev reflections
eV<2A—was observed by Rowéllfor a review see Ref. (MAR) before they escape into the reservdirdoreover, in
4). In addition to the dependence on the thickness of the Nhe presence of the ac Josephson current, the Andreev reflec-
film, the period of the current steps also shows temperaturgons are highly coherent. In a number of recent experiments
dependence, which scales with the temperature dependengdth ballistic SNS devices fabricated with high mobility two-
of the superconducting gap(T). The current steps occur at dimensional electron ga€DEG)'®-?! the coherent MAR
applied subgap voltagesV<2A, and they are understood transport regime has been realized. A theory of coherent
as resonant features due to quasiparticle tunneling througllAR has been developed earlier for short superconducting
superconducting bound states existing in insulator-normgunctions??=26 L<¢,, where superconducting bound states
conductor-superconductofiNS) wells at energies lying do not play any significant ro€. Such a theory is consistent
within the superconducting gapi|<A, de Gennes—Saint- with the physical situation in atomic-size superconducting
James levels. point contact$®-3! In 2DEG devices the separation of the
Recently, properties of superconducting bound states havaiperconducting electrodéss typically larger than 200 nm,
attracted new attention in connection with observations ofwvhich is of the same order of magnitude as the supercon-
conductance anomalies in mesoscopic NS structures. Obsefucting coherence lengtl§,=%Ave/A (vg is the Fermi ve-
vation of resonant oscillations of the subgap conductance itocity of the 2D electrons and superconducting bound states
mesoscopic quasiballistic NS junctions have been reportedre formed well inside the energy gap. The presence of
by Morpurgo et al’® These oscillations were interpreted, bound states in the junctions of finite length gives rise to
similar to the case of SINS junctiofisss the observation of resonances in the MAR transport, which dramatically affects
superconducting bound stafes. However, the attention in  the subgap current.
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gate transmission coefficient typically exceeding a value 0.75,
and the number of conducting modes in the 2DEG channel is
< v controlled by a split gate.
. e Under these conditions, electrons ballistically move from
X ~ X S one electrode to the other while occasionally being scattered
S 2DEG by rare impurities or junction interfaces. Under a voltage

e =X bias applied to the junction, the transport regime corresponds
R . to fully coherent MAR. To calculate the dc current we will
apply the scattering-theory approdt*® generalized for su-
gate perconducting junctions; see Refs. 26 and 31 and references

therein.

FIG. 1. Sketch of the device: a ballistic 2DEG is sandwiched The normal electron propagation through the junction is
between two superconducting electrod&, and an electrostatic generally described by thi-channel scattering matrix. By
split gate creates a quantum constrictidashed linewhere only a  assuming the split gate to select only one transport mode, we
few conducting modes are open; rare impurities are indicated witlwill characterize the transport through this mode by the
X. energy-dependent transmission amplitud{&) and reflec-

tion amplitudesr(E) andr’(E) (the energyE is counted

In this paper, we will make a first step towards a full from the Fermi energy The scattering amplitudes satisfy the
theory of ballistic 2DEG-based devices. We will consider theunitarity relationsdr* +d*r’ =0, |d|?>+]|r|?=1. The energy
guantum-transport regime for ballistic SNS junctions and in-dispersion of the scattering amplitudes will introduce the
clude the resonant effect of superconducting bound statesormal-electron(Breit-Wignen and superconductingAn-
into the coherent MAR scheme. In practice, in 2DEG devicesireey resonances in the scattering problem. The effect of
it is possible to reach the quantum-transport regime with anarrow Breit-Wigner resonances on coherent MAR was ear-
small number of electron modes and variable transmissivityier studied by Johanssoet al3® and Levi Yeyatiet al*°
by using electrostatic split gatdsin the case of atomic-size Here we will focus on the effect of Andreev resonances and
contacts, quantization of conduction modes has turned out tonly consider Breit-Wigner resonances, which are wide on
be very helpful for detailed comparison between theory andhe scale of the energy gap. This will allow us to neglect the
experiment. Current in plane two-dimensional junctions carenergy dispersion of the junction transparency,
be then calculated by averaging over all conducting modesD = |d|?~const. However, the scattering phases may depend

In a number of publications, the coherent MAR approachon the energy, which yields the Andreev resonances. In the
has been applied to long SNS junctiois>® However, these  simplest case, this dependence is a linear function within the
studies were restricted to fully transparent junctions wherenergy interval E|~A, and we will write it in the form
the bound states are strongly washed out and the resonances _ _
are not pronouncedn fact, as we will show, at zero tem- d(E)=d¢e®F, r(E)=rqeF, (1)
perature the current in such junctions does not show an
structures We will study junctions with arbitrary transmis-
sivity, 0<D<1, and pay special attention to the low-
transparency limitD<1, where the resonance effects are

%herea,b are constant. In this case, the scattering properties
of the normal channel are similar to those of a 1D NIN
junction. Indeed, the corresponding 1D transfer matrix,

most pronounced. e 1aE/( r* gl (@-b)E/g*
The paper is organized as follows. In Sec. Il we derive a F(E)= oo 0 0 5
1D model for a gated ballistic 2DEG device with one trans- (B)=| rpei@-0E/q, e'aE/d§ ’ 2)

port mode. In Sec. lll we construct a scheme for calculating

MAR amplitudes in terms of wave propagation in energycan be decomposed into a product of three transfer matrices,
space. In Sec. IV, single current resonances are studied, and

Sec. V is devoted to a discussion of the interplay between 4 )= exn —io.L.E/AENVT(0)exn —io.L E/A
resonances in multiparticle currents. The properties of the (E) " ! €o) T(O)exp = o)

total subgap current is discussed in Sec. VI. ~g lokEL T iokEL (3)

where o, is a Pauli matrix. The first and the last matrices
II. 1D MODEL FOR QUANTUM SNS JUNCTIONS describe ballistic propagation of an electron, with wave vec-

We consider an SNS junction similar to the one discussedr K(E)=V2m(Eg+E)/7~ke+E/A&, through the right
by Takayanagiet al!® schematically shown in Fig. 1. The and leftN regions of an effective junction with lengths
junction consists of a normal conducting channel fabricated=bA &o/2 andL, = (a—b/2)A&,, respectively(from right to
with a high-mobility 2DEG, which is confined between su- left), and the matrixi = e' 72F11T(0)e' 72F\r describes an ef-
perconducting electrodes. The distance between the eletective barrier ().
trodes is comparable to the superconducting coherence Quasiparticle propagation through the effective
length and small compared to the elastic and inelastic meabD  superconductor-normal  conductor-insulator-normal
free paths and to the normal-electron-dephasing length. Theonductor-superconductor junction is described by means of
superconductor-2DEG interfaces are highly transmissive, ththe time-dependent Bogoliubov—de Gennes equétiéh,
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ev/2 Since the time dependencies of the wave functions in the two

----------------------- reservoirs are different, the quasiparticle scattering by the
vy — | junction is inelastic and one has to consider a superposition
of plane waves with different energies in order to construct
scattering states.

IiA
- oL Ill. CALCULATION OF CURRENT
' r USING SCATTERING STATES

FIG. 2. Spatial distribution of the superconducting order param-
eter and the electrostatic potential in the junction. The bold vertical ) ] ]
line indicates the impurity potential. We will now proceed with the construction of recurrences

for the scattering amplitudes following the method suggested

A. Recursion relations for MAR amplitudes

_ : by Johanssoret al** To this end we introduce the wave
( Ho(X) _ Aljexil —sgrix)ieVui] functions in the left/right normal regior /t) of the junction
A(x)exd —sgn(x)ieVt1i] —Ho(X) with respect to the position of the impurity. A particular scat-
tering state, labeled with the energyof the incoming qua-
u(x,t) u(x,t) ; . . . 7 .
x( ) =i, ) , (4)  siparticle, will consist of a superposition of plane waves with
v(X,t) v(X,t) energiesE,=E+neV, wheren is an integer,— c<n<oe,
where Hy=p?/2m— u+U(x) —sgnk)eV/2 is the normal- *
electron HamiltonianyJ (x) is the impurity potential, and/ V(E)= E exd —i(Ep+o,eVI2)t/Ih]
is the applied voltage. The superconducting order parameter n=-e
A(X) is constant within the superconducting electrodes and T ik Ll o= ikSx
zero within the normal region-L,<x<L, (see Fig. 2 In (Cn+e mHCqie T )
the further calculations, the impurity potential is described 0

the applied potential along the channel is modeled with a
steplike functionteV/2. In fact, the actual spatial distribu-
tion of the potential does not play any role in this system: it

by the transfer matrixl in Eq. (3). The spatial distribution of 0
( —ikﬂx) 1 @)

T ik AL
c, efn*+cle

can be included in the transfer matrix in E@), leading to o
an additional energy-independent shift in the scattering V.(E)= > exd—i(E,—o,eVi2)t/h]
phases in the matriX. As we will see latefcomment after n=-=
Eq. (17)], the energy-independent phases in thmatrix do ot aikix 4 gl r g=ikix
not affect the current, and can therefore be excluded. [( n- n- )
The phase difference between the two superconductors 0

duces time dependence into the problem. The superconduct-
ing electrodes are considered to be equilibrium reservoirs
where the quasiparticle wave function is a superposition of
electronlike and holelike plane waves, The normal electron/hole wave veckﬁh is defined here as
ke"=k(*+E,), k(E)=\2m(Er+E)/h~ke+E/fve. The
- u meaning of the labels for the scatterifAR) amplitudes
exf =ikx—i(E=x UZEV/Z)t/ﬁ](U), ¢, will be explained below.
Continuity of the scattering-state wave function across the
left and right NS interfaces determines the relation between

follows from the Josephson relatiog & 2eV/#) and intro- ( 0 )]

. h _oh
c,ﬂ{e”‘n“rcrﬁ;’e ikppx

5 v : . L g
exd + IK"x— i (E+ 0,eVI2)t/#] . 5) the electron and hole amplitudes in the vicinity of each in
u terface,
In this equation, thet signs in the time-dependent factors ¢! =a.cl_, cl,=a ’cl_, n#0, a,=a(E,),
refer to the left/right electrodé®"(E) is the wave vector of (8)

electronlike/holelike quasiparticles, andE), v(E) are the . . i o
Bogoliubov amplitudes. The ratio of the Bogoliubov ampli- Which describes elastic Andreev reflectidi indices are
tudes equals the amplitude of Andreev reflection for particle®Mitted. It is convenient to consider scattering amplitudes

and to rewrite Eq(8) for such amplitudes, combining the
_ [E2_ A2 amplitudes of the ballistic propagation through the normal
Eza(E): (E-sgr(E)VE*-A%/A,  |E[>A (6) regions with the Andreev reflection amplitude. Then, in vec-
u (E—iVyA%2—E?)/A, |E|<A. tor notation
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S N I N S junction having been accelerated to eneE;ty(cg,), and is
o, o, then again converted into an electrcn'i;(). The =+ indices
< lekage | —> < label the amplitudes after{) and before ) the Andreev
E; Z o ‘ reflection for propagation upwards along the energy axis.
\ Sl gﬁ_+ eakage There i:; a similar 'Frajectory of injec_ted holes, Which de-
ﬁ E, scends in energy, with the MAR amplltudgs labeled waith
d, o, - O Due to electron back scattering at the barrier, the upward and
injection === downward propagating waves are mixed, ecé,H being not
Ey e ol . | only forward scattered into]_ , but also back scattered into
E _\f_“j__-f’;'j_ leakage cb. , which opens up the possibility of interference.
L C—'T 3—1 E, Injection from the left reservoir, shown in Fig. 3, gener-
X T ates a MAR path, which only connects even side bands at the

FIG. 3. Scattering state i . coefficiepts left side of the junction with odd side bands at the right side.
- 9. Scattering stale in energy space: coelliciepiscorre- Injection from the right reservoir will generate a different

spond to the part of the scattering state at respective energy, loca- . . . .
tion, and specific direction. Electrons are indicated with full Iinesf\llIAR path, with even side bands at the right side of the

and holes with dashed lines: the arrows abgwe below each junction, i.e., the diagram in Fig. 3 will effectively be mir-

coefficient indicate the direction of the quasiparticle motion. rored _around the barrief). Thus, there_are tWO. |r_1dependent
equation systems for the MAR amplitudes: injection from
cl the left and from right. Thé,r labels in the MAR amplitudes
6n+:( ”i)’ (9) can then be omitted since they are uniquely defined by the
- c,ﬁt source term and the side-band index.

The transport along the energy axis generated by MAR,
from energyE to E,, is conveniently described by the effec-

chi=U,Cho, n#0, (100 tive transfer matrixM o,

the modified relatior(8) takes the form

where anfz I\A/an(A:OJr , Nn>0; an+:[|\7|0n]_1607 ,  Nn<0,

a, 0 (13
Un:exquzEnLl,r/Ago)( 0 a—l)exquzEnLl,r/Ago) ~ N N N ~
n Mnm=Tn_1Un_1...Um+1Tm, n>m, (14)
=e'7zfn, 1D whereT, =Tt and,, =T for the injection from the left
The phasep,=2E,L, /A& —arccosE,/A), characterizing _(for_ the injeption from the right, the even and odd side-band
On, is real inside the energy gapE,|<A, where it de- indices are interchanggd-or path§ within the superconduct-
scribes the total energy-dependent phase shift due to ballistibg gap,|E,,En[<A, the matrixM o satisfies the standard
propagation and Andreev reflection. Outside the dé&p| transfer-matrix equatiori}?lnmcrzl\ﬂm: o,, Which provides
= A, the phasep,, has an imaginary part that describes leak-conservation of probability current along the energy axis,
age into the superconducting reservoirs due to incomplete
Andreev reflections. jPo=cl.oCne, jPa=jP., |Enml<A. (15
By matching harmonics with the same time dependence in
Eq.(7), we derive a relation between scattering amplitudes at An important consequence of the coherence of MAR is
the left and the right side of the barrier, the possibility of transmission resonances in energy space.

N on, . ~ g From the form of theVl matrix,
C(n+1)—:TCn+ i C(n+l)—:T Chn+ s (12)

where the effective barrier transfer matrix is defined in Mpo= ... T 17T .., (16)
Eq?'.rf?rizﬂr(;)c.m relations in EqéL0) and (12) couple the it is evident that wherp,=mar, the two matrice§ ~* andT

) ) ~ o : will cancel each other and the probability of transmission
scattering amplitudes,,.. into an infinitely large equation ,rq,qh this part will be unity, which leads to resonant en-
system. This equation system describing coherent MAR i$,5ncement of MAR. The solutiong(™ of the resonance
illustrated by the MAR diagram in Fig. 3.

equation
The electron part of the quasiparticle injected at the left q
NS interface propagates upwards along the energy axis, the 2E,L,, E,
amplitudes for this propagation being labeled with At the qof(m)=gok—m7r= AE : —arccosA——mw=0 a7
0

injection energyE = E, (amplitudec/). ), the quasiparticle is
accelerated across the barrigy, where the potential drops. coincide with the spectrum of the de Gennes—Saint-James
Thus, it enters the right normal part of the junction with levels localized in INS quantum welfsThe corresponding
energy E; (cj_), undergoes Andreev reflection and goesbound states are located either on the left or the right side of
back as a holeqL), entering the left normal part of the the junction.
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Without loss of generality, the calculations can be per- R 5,elu
formed with a real matrixi. The transformation to such a Y(E)=(u?-v?) — 5,6 2ELSEy, |
real matrix is given byl —V; TV, with diagonal unitary ma- !
trices\A/Lz whose elements are constructed with the scatterin

phases, which are energy-independent. It is clear from E
(16) that since these energy-independent matrices commu

with the matriced) ,, they cancel each other and the matrix

M0 undergoes a similar transformation. This will lead to an

overall phase shift of the scattering state, which does not . o
affect the current. A formal solution of Egs(13) and(19), which is useful

Itis interesting to consider the Specia| case of fu”y transboth for numerical calculations and analytical investigations,
parent junctions,D=1, which has been studied in the can be constructed by reducing this infinite set of recursion
literature®33 In this case, all matriced,, in Eq. (14) are '€lations to a finite set by representing the MAR process

. . ~ . . aboveE, and belowE, by boundary conditions involving
equaIAto the unity I’T:Etll’lx, and thd matrix takgs thg simple reflection amplitudesr,, and ro , defined as c#+
form M o=explo.2,—1¢m). The length of the jur_1ct|on then_ =C,T1+fn+ and Cg_=cé_ro_ . This gives the following rep-
enters only through the phase of the MAR amplitudes, whichagentation for the vectors in E():
drops out of the side-band current. Thus the dc current of
fully transparent SNS junctions is independent of length and ~ 1 R lo—
equal to the current in quantum constrictiéfé* In particu- Cn+:C;+( ) cozcé( 1 ) (20
lar, at zero temperature this current does not show any struc- o+
tures in the subgap current. It is also worth mentioning thaThe reflection amplitudes,, andr,_ are independent of
in this particular case of fully transparent SNS junctions, thethe injection, in contrast to the coe1‘ficierrt§+ , c}), . Fur-

M matrix is diagonal and therefore a closed set of recursivéhermore, they are determined by the boundary conditions

relations can be derived for the MAR probabilitié®t just c..=0 and can be expressed in terms of the matrix ele-

for the MAR _amphtudes_, asin the gene_ral Chsm_}uwal_ent ments ofM ., andMO(—N)v whereN— o,

to the equations for distribution functions derived in the

original paper by Klapwijk, Blonder and Tinkhahh. R 1 R ro—
Equation(13) describes “source-free” propagation along lim MNn(r ):0, lim [MO(—N)]_l( 1 ):0-

the MAR ladder. To complete the set of equations for the ~ N—* nt N—

MAR amplitudes we need to take into account quasiparticle (22)

injection, which introduces a source term in Ef@). To this  In other words, the vectors in EQR1) are equal to the as-

end, let us consider a quasiparticle incoming from the lefymptotical values of the eigenvectors BF matrices corre-
superconducting electrode with ener§y having a wave sponding to the eigenvalues, which decrease wieoes to

For quasiparticles injected from the right, a similar equation
Yolds with the substitutione—h and L,—L,. Equations
13) and(19) give a complete set of equations for the MAR

amplitudes with the boundary conditions .=0 at infinity.

B. Calculation of MAR amplitudes

function of the form infinity. The advantage of introducing the reflection ampli-
tudesr,,. andrq_ is that although they have to be calculated

\PF(E)zexp(—iEt/ﬁ—iaZthIZﬁ) 5 eeiiex( u) numerically, the recurrences that they obey do not contain

Y resonances, and converge rather quickly. This is in contrast

to the matrixM o, which does possess resonances, but which
(18 can be calculated analytically in a straightforward way for
any givenn.
The two terms in this equation refer to electronlike=(e) The solutions of the recursion equatidds) and(12) can
and holelike ¢=h) injected quasiparticles. We now include NOW be explicitly written down. For any given energywe
this wave function into the continuity condition at the NS 9€t four different sets of solutions for four scattering states
interface at energf, which gives us the following relation mc_ludlng electron/hole injection from the left and the right.
between the MAR amplitudes,, andé,_ : Using the formal expression in E€RO) and the matrix ele-
o+ 0=+ ments ofM o= (2; 2;;) the solutions for injection from the

+ 6 heiiihx Y
u

14

Cos =UqCo_+Y, (190 left (n>0) have the form
|
: U(1—a3)e'*n[ 8,6+ gl o S,n] ( 1) .
T Mgyt Mgl o €2 90— Myt 1 €2 90— Myl o Ty €290 200 1, |7
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The solutions for injection from the right can be found by the junction, we express the current spectral den¥{)
interchanginge<~h and calculating all quantities with re- through the probability currents of electrons and holes at
spect to injection from the right. The solutions fox0 are  energiesE,, (Fig. 3,

calculated in a similar manner.

e[(—A
C. Calculation of current Idc=ﬁ dE JE),

Now turning our attention to the current, we calculate it in
the normal region next to the barrier, using the wave function

in this region, ¥, and assuming quasiparticle equilibrium B |E| . ~t ~ ~t A
within the electrodes. The current then takes the form J(E)_e,h',,r ?n;x (Can-0Con—FCan1 0Con+).
(25
e —-A
I(t):WJ dE(U2—02)7l Z
FJ—o e/h,lir These currents coincide with the probability currepfis ,
J IE| Eq. (15), flowing along the energy axis.
XIm \IIT—\IIJtan T (23 It is convenient to introduce a leakage currépt defined
X Bl as the difference of the probability currents before and after

where (2—v?)~1=|E|/JEZ—AZ=|E|/¢ is the supercon- Andreev reflection,

ducting density of states, and the sum is over the four scat-

tering states at a given energyassociated with the electron- 1= .

like and holelike quasiparticlese(h) injected from the left Jo= > ?(Jﬁf—lﬁﬁ- (26)
and right (/r). The current can be divided into parts with e/l

different time dependence and expressed as a sum over har- .
monics, J, represents the amount of probability current from all the

scattering states injected at enefgyand leaking out of the
) junction at energyg, (Fig. 3. The leakage current is zero
|(t)=% | yeZNevrn, (24 inside the energy gap due to complete Andreev reflection,
J,=0, |E,|<A [cf. Eq.(15)].
Focusing on the dcN=0) component and calculating the  The explicit expression for the leakage current fat O
contribution of each scattering state at the injection side ofollows from Eq.(26) after insertion of Eqs(22) and (10),

(1—lagl®)(1—|ag|?)(1+|rg_ao/*)(1+|rna,/?)

In=2 . . — : (27)
" Mgt e®eorg_my;— e, my,—eZieoe? enry r, myy|?
|
It follows from Eq.(27) that the leakage currents are positive IE| *
for all n#0, J,=0. One can also show that they satisfy the P ?jﬁ,=k2 J¢, n>0, (29
e/h,l/r =n

inequality = ,,.0J,<4, which is a consequence of the con-
servation of probability current: the leakage current of all
side bands except of the side bamd 0 does not exceed the
probability current injected into four scattering states. Fur- e/h,l/r
thermore, the leakage current satisfies the important detalil
balance equatiof?

E[. .
?Jn+:_k;n J,k, n<0,

e&/ adding and subtracting consecutive terms in the sum. The
spectral density of the dc charge current E2p) can then be
written in the form

‘]—n(E):Jn(E—n)- (28)
J(E)=2, nJ,(E), (30)

n

i.e., the leakage at ener@y. , due to the injection at energy gjnceJ appears im probability currents. This formula has a
E is the same as the leakage at enefiggue to injection at  ¢jeqr physical meaning: the contribution to the charge current

energye . o B of the nth side band is proportional to the leakage current of
Using the continuity of current across the barfigf,  the side band times the effective transferred charge

=an +1)-» guaranteed by the transfer matiix we can ex- The detailed balance of the leakage currents, 28§),

press the probability currents in E@5) through the leakage allows us explicitly to prove that at zero temperature the

current, Eq.(26), scattering processes betwe@ccupied states with negative
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energies,E,E,<—A do not contribute to the current, in 0.7
agreement with the Pauli exclusion principle. Indeed, by 06
separating the contributions from side bands withO and il
remembering that the leakage current is zero within the gap, 05 Lo P
we get for zero temperature, § 0.4 / L=2n€0__..»"'"'
~ 03
e(-A nel [—A-ev L L=2¢
Idc:_J dEE an(E):Z e J dEJ(E) 0.2 -~ ’
h)-« n#0 n=o h —© /’ ______
ol
—-A —-A S
+jAeVdEJn(E)—deEJn(E)} (31 0 X ; = 4
eV/A

where the first and the third terms cancel each other by virtue FIG. 4. Single-particle current for symmetric junctiobs=L,
of Eq. (28). At finite temperature, these two terms produce=L/2 for different junction lengths; the junction transparency is
current of thermal excitations while the second term giveD=0.1. The current onset for the short junctidn=0) disappears
the current of real excitations created by the voltage sourcdor junctions with finite length(bold line); for L=nw¢,, the onset
Keeping only this term, which dominates at low temperatureappears being roughly+ 1 times smaller than the onset for=0.
we finally get

To understand this behavior, we analyze EZJ) in the

ne -A limit of small transparencyD<1, i.e., in the tunnel limit.
lac= 2 In. In="1 0(nev—-24) dE First we note(see Appendix Athat the reflection amplitudes
n>0 A—neV
r,. andry_ may be expanded as
Jn(E)tanh(|E|/2kgT). 32
(B anEl2eT) 2 Foe=(—1)"VR+0(a}.;D), (33

We end this section by noting a technically useful symmetry

in the current density, namely,(E)=J,(—E—neV), seen ro.=+R+0(a? D).
from the explicit form of theM o matrix. This allows us to
reduce the integration interval in E(B2) to —neVI2<E<
—A.

After inserting the explicit form ofl ;=T together with the
expansion33) into Eq.(27) and puttingR=1, we can write
the single particle current in the form

. eD —-A
IV. CURRENT IN TERMS OF n-PARTICLE PROCESSES |1=?0(eV— 2A)f dE[N'(E)N'(El)
A—eV

The approach formulated above provides necessary foun-
dations for numerical calculation of the current for arbitrary +N"(E)N'(E,) Jtank(|E|/2kgT), (34)
transparency and length. However, to get a full understand-
ing of the rich subgap structure in the current-voltage charwhere
acteristics, which may seem quite random, especially for in-
termediate transparencies and lengdee Figs. 14—-16we
will conduct a detailed analytical study of the limit of low
transparency) <1. The separation of currents imeparticle ) )
currents, Eq(32), is our basis for analysis and we will study In @nalogy with the tunnel formula for the curréhiy'"" is
each current,, separately. |den§|f|ed as the tunnellng densny_ of statd30S on the

As explained in the previous section, the de Gennes-eft/right side of the junction. In Fig. 5 the energy depen-
Saint-James levels, Eq46) and(17), are important for the dence of the DOS is presepted. The d¢V|at|on c_)f thIS. DOS
enhancement of the current. Our main attention in this anéhe proximity effect. The expressidi3s) for the DOS has
the next section is on the calculation of the position, height€arlier been derived for proximity NS sandwicHes:'Note
and width of the main current peaks and oscillations thathat the DOS in our case is constant throughout Khee-
have the magnitude of ordd®. To simplify notations, lefy ~ 9ions. In junctions with arbitrary length, the DOS usually

right injection indices are omitted in most cases. approaches zero at the gap edgg=A (Ref. 11. Excep-
tions are junctions with lengths, ,=mwéy/2, where a

bound state splits off from the gap edge. In this case, the
DOS diverges at the gap edge. The quantum well structure of
The single-particle current, which dominates at large apthe SNS junctions also give rise to quasibound states in the
plied voltages, has, according to E@2), an onset aeV  continuum spectrum|E|>A, seen as oscillations in the
=2A. The full numerical solution for the single-particle cur- DOS.
rent is plotted in Fig. 4. The current shows pronounced os- The single-particle current in Eq34) is written as the
cillations and the magnitude of the slope at the current onsehtegral over the product of the DOS at the entrance enErgy
strongly depends on the junction length. and the exit energi +eV. The latter depends on the applied

|E|VE?—A?

N'"(E)= :
©) E2— A2+ AZSir?(2EL, /A &)

(39

A. Single-particle current
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3 WhenL, , approachesréy/2, the lowest quasibound state

in the continuum spectrum approaches the gap edge. This
: leads to an accumulation of the spectral weight at the gap
Y edge and reappearance of the singularity in the DOS, which
L= results in the reappearance of a sharp current onseat
.. =2A, but with smaller magnitude; see Fig. B,(=m&).
A It is of interest to note that in our calculations, based on
the scattering-theory approach, the bound states are not di-
0 rectly involved in the single-particle transport, which there-
fore is nonresonant and shows no subgap resonance peaks.
| 5 ) 25 3 Within the tunnel-model approach the situation is qualita-
tively different: the DOS in Eq(34) usually includes the
FIG. 5. Density of states in thi region for different lengtht c_ontributiop of the broade_ned bound states, and therefore the
of the region. Singular behavior of the DOS for short junctidns, single-particle current exists and ha? pr_onounced resonant
=0 (equal to the DOS in a supercondugtois suppressed for features at subgap vo_ltggeS/<2A. This difference results
finite-length junctions. The amplitude of the first oscillation in- "OM the fact that, within the tunnel-model approach, the
creases as the length increases, indicating accumulation of the sp&tdPerconducting bound states are implicitly assumed to be
tral weight at the energy-gap edge and formation of a bound statgonnected to the reservoitbroadening due to inelastic in-
for L=mé&,. teraction, which allows a stationary current to flow through
the bound states. In contrast, within the scattering approach,
voltage, as well as the integration interval, and therefore th&1e bound states are disconnected from the reservoirs and
DOS oscillations produce oscillations of the currépias a ave zero intrinsic W|dth._ln this case the bpund states obt_aln
function of voltage(Rowell-McMillan oscillationg3). The  their width only due to higher-order tunneling processes in-
oscillations become more pronounced when the junction i¥°IVing Andreev reflections, which are manifested by the
sufficiently long and the differential conductance may everf €S0nant multiparticle currents. In practice, the relevance of
become negative. It is also clear that the DOS oscillates as ¢ Multiparticle versus single-particle mechanism of the
function of the length of the junction, which gives rise to SUPgap current transport is determined by physics and de-
oscillations also irl ;. pe_nds_on tge ratio of the corre_spondl_ng dwelllng a|_1d relax-
In short junctionsL <&, the current onset &V=2A is ation times: I_n this paper, the melz_astlc relaxatlon timre,
very steep, see Fig. 4. In junctions with finite length, theWh'Ch determines the width of the smgle-pamqle resonances,
current onset is smeared and replaced with a smooth osci® @ssumed to be much larger than the dwelling time of the
lating behavior. This can be directly related to the smearing"©St important two-particle current;>#%vg/LD.
of the singularity in the DOS at the gap edge. The length
where the crossover between these two behaviors occurs can B. Two-particle current
ik;ﬁptgﬁgzté‘?; (Ts(teierﬁ:tf t()r:ci;,vreenngg]nlt\?v(lger\:\/grﬂ]eeg(;c;)s fk(;?come The two-particle 2current2 in quantum point conte;ctsl_(
' n <¢g) is of orderD“ when eV<2A and of orderD“InD
small lengthsL<<¢,, near the thresholdeV=2A+Q, Q L . . .
<A, keeping the first-order terms D in the denominator. when_eV?ZA (Ref. 26. For finite-length junctions, the situ-
For a symmetric junction,, =L, =L/2, we get ation is dn‘ferenp For t_he_MAR paths where the energy of the
r ' Andreev reflection coincides with a bound state, the current
spectral density5 is of the order of unity, due to resonant

N
n

P A
-
-

eA tani(A/kgT) (= Dsirfzdz transmission through this state. For low transparebey1,
1= h f 2 2 : this gives a sharp concentration of the current density around
0 DA LA DA : L . .
sinz+ — | +——[1+— the resonant energies. In this limit, the two-particle current is
40 ) g0 4Q well described by the sum of contributions from these reso-

(36) nances, and to evaluate them we examine the energy depen-
dence ofJ, close to the resonant energids,=E(™ + 5E.

From this formula it is clear that for short junctions£0),  Let us consider the contribution to the leakage curfdat'
the current onset has the width—~AD/4. If L is of the order  from quasiparticles injected from the left. As shown in Ap-
of £/D/2, the size of the onset has substantially diminishedoendix B, in this case Eq27) reduces to the standard Breit-
and there is no visible onset aV=2A whenL>¢,\D/2.  Wigner resonance form
This crossover between steep onset and smooth behavior,
which happens already for quite short length®ifs small,

rmpm
can be interpreted in terms of a bound state, which is situated [J,]'= SE_ SE™ 02 ZF(m)+ QI (37
exactly at the gap edge in short junctiois<0), and which ( ) +< 0 2 )
moves down into the gap whdn>0, the effect becoming A 2

fully pronounced when the distance from the gap edge,

five /L, exceeds the dispersion of the Andreev statBA,  where the tunneling rates’™ are given by I'("™
in symmetric junction4® =N'(E,)D/2%™, n=0,2, and
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0.5 0.5
0.4f 0.4
I 0.3
<10.3 <
L =
50.2- ~0.2
0.17 0.1
0
1 L5 a2 25 3
FIG. 6. Two-particle current in symmetric junctioris=L, FIG. 7. Comparison between the approximate expression for the

=L/2 for different lengths; the junction transparencyDs=0.1. two-particle current in Eq(40) (solid curve and the full numerical

The resonant process shown in the inset becomes possible wh&flUtion(crosses D=0.1, L,=L,=L/2=5%.
eV=A+|EM|. . .

It is interesting to compare the resonant structures of the
two-particle current with the resonant structures in NINS

77(m):A‘7_‘P _ &Jr A (38 junctions®®® In NINS junctions, the resonant current steps
JE|_cm G0 JAZ—(EM)2’ occur ateV=E(™, and they do not have any modulation
because the DOS on the normal side of the junction is con-
and the position of the resonance is shifted by stant.
sie sie _The distance b_etween the resonances and _the resonance
SE(M = DA m 1+e'%0 N 1+e'¢2 (39 widths are proportional to the bound-level spacing, and they
4™ 1—g2ieo 1—g2iez|’ decrease in long junctions. For sufficiently long junctions,

the two-particle current may thus give the appearance of in-
An analogous result is valid for quasiparticles injected fromcluding a series of peaks, as shown on Fig. 7. In symmetric
the right. junctions, the bound-state energies at both sides of the barrier
After integrating over energy, the two-particle current inwill coincide, reducing the number of steps by a factor of 2
the resonance approximation may be written in the form  and giving current steps of double height.
We will conclude this section by noting that the difference
B 2e - 27DA between the full numerical calculation of the two-particle
IZ(eV)_i;r mz;fo T 0(eV-ET-A)—D current and the resonant approximation given in @) is
' 7 rather small already whe =0.1, as can be seen in Fig. 7.

N'(E(M—eV)NI(E(M +eV)
N/(EM—eV)+N(EM+eV)

M(T,V), C. Excess current

Excess current in SNS junctions, i.e., the difference be-
(40) tween the current in the superconducting junction and in the
where the( s)ummation is over the positive bound-level eneformal junction at large voltage,
gies, O<KE'™ <A, and the DOSN' should be calculated at
the injection side of the junction and™(T,V)=(1/2) I#E=1=GV+0(AleV), (4D
X[ tanH(eV—E™M)/2kg T} + tanH(eV-+E™)/2kgT}). Accord-  is commonly considered as a measure of the intensity of
ing to Eq.(40), the two-particle currert,(eV) increasesina Andreev reflection. In tunnel superconductor-insulator-
steplike manner in the voltage regidn<eV<2A. The steps superconductor junctions and low-transmissive point con-
occur at every voltage where a new resonant channel throughcts the excess current is smdlf*°~D2%eA/xh, D<1,
a bound state opens up,&¥™=A+E™. We note that the while in fully transparent contacts the excess current is large,
step positions depend on temperature and approximatelf*°=8eA/37%, D=1.2¢ Accordingly, one would expect
scale withA (T). Each current step has the height of orBer large excess current in long SNS junctions due to the reso-
As seen from Eq(40), the contribution to the current of a nant enhancement of the two-particle current. However, the
particular bound stat&™ is modulated, as a function of excess current is small because of a large deficiency, of order
voltage, by the oscillations of the density of states at theD, of the single-particle current caused by the broadening of
entrance and exit energid$(E(™ +eV). In other words, the the current onset at the threshold. As we will show, the
pronounced oscillations of the two-particle current seen irsingle-particle and two-particle currents undergo a fine can-
Fig. 6 reflect how close the entrance and exit ener§id8  cellation, yielding small net excess current of orBérwhen
+eV are to a quasibound state in the continuum. E& D<1.
>2A, the two-particle current, oscillates around a constant ~ The excess current has contributions only from the single-
value with an amplitude of oscillation decreasing¢eV?  and two-particle currents, since all higher-order currents in-
for large voltages. clude at least one Andreev reflection outside the gap whose
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h

0.6 Lo | &XC=| TXC"' | ch, (43)
05 L=,
<+ e - =78, exc. 4eDA 2eD (= )
204 LS TR T TR A[N(E)+N(E)—2]dE,
g
2,030
SN AY 2mwDeA
T2, 15%= - :
o e, I “m=0 hayMm
0.1p% DR . N . .
M e Let us consider the contributions to the single-particle cur-
o 4 A 3 10 rent from the left electrode,
eV/A
excrl 2eDA 2eD (= |
FIG. 8. Deviation of the current from its asymptotical value at [37)'=—- + e [N(E)—1]dE. (49
A

V=0, the excess current value is approached much faster in finite-

length junctions, shown here f@&r=0.3. InsertingN'(E) from Eq. (35), this equation can be trans-

- 2 . formed to the form
probability is of order A/eV)“. In the limit of large voltage,

eV>A, the relevant part of the current in E®2) then takes 2eD (= E¢ E
the form [18%'= f _ —Z|dE
h Ja\ &+ A%SirP(2EL /AL €
4De (- (1-ad)(1+Ra&)) -
Il:T dEl R2 40 ;RR aoZi(p ! (42) eb = df SmZ(ZELl /A§O) (45)
—eV/ + — 0 == '
eV % eemo) h )" 24 si(2EL /A &)
8D2%e [-A lay|? where £¢=JE?—AZ. It is now possible to analytically con-
l,= h f_ev E1+R2|a1|4—2RRe{e2i¢1}' tinue the integral in the upper half plane, which will reduce

the integral to a sum over the residues of the poles given by
These equations are written for symmetric junctiohs, € equation¢?+ sir’(2EL /A&,). Comparing this equation
—=L,=L/2, and for zero temperature; small Andreev- vv_|th Eq. (17) we find that.the poles coincide with the ener-
reflection amplitudess|a(eV/2)|<1 have been neglected in gies 9f the bound states in the.gap. The. excess current con-
Eq. (27). The behavior of the current in E¢42) as a func- tribution from the left-injected single-particle current is thus
tion of voltage is presented in Fig. 8 for different lengths. It
is clearly seen that the limiting value of the excess current is [18%) = — 2DmeA 2 1 _— (46)
approached much faster in finite-length SNS junctions com- ! (m) 2
pared to point contactd (=0). In Fig. 9 the excess current excil : _ ,
behavior with respect to the junction length is presented folVherell> °]' is the contribution to the two-particle current
different transparencies. from the bound-state resonances at the left electrode. A simi-
To analytically examine the excess current in the limit of/@r relation is derived for current from the right electrode.
small transparencyD <1, it is convenient to start with Egs. Thus, there is exact cancellat_lon of the excess single-particle
(34) and (40). To first order ofD the excess current assumes and two-particle currents fo first ordern _
the form (T=0), It is interesting to npte that the cancellation effgct is re-
lated to the conservation of the number of states in a prox-
1.8 : : imity normal metal compared to the conventional normal
metal. It follows from Eq(44) thatlh/2e DA is equal to the
difference between the number of continuum states in the
proximity metal and the total number of states in a conven-
tional metal, while, on the other hand, the number of the
bound states is equal to

h m=0 i

ICXC CXC(L=0)

A A
f dE > 5(¢(E)—mw)=f dED, S(E—EM)/ 5™
0 m=0 0 m=0

=1,h/2e DA 4
10 2 4 L/&o 6 8 10 2 (47)

according to Eq(43).
FIG. 9. Dependence of th@ormalized excess current on the

junction length for different transparencies. For fully transparent V. INTERPLAY BETWEEN RESONANCES
junction, D=1, the excess currents are identical for all junction

lengths; the excess current increases for small-transparency junc- For processes with several Andreev reflections=8),
tions. the possibilities for resonances increase. Every Andreev-
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FIG. 10. Three-particle current in symmetric junctidns=L,
=L/2 for different lengths; the junction transparencyDs=0.1.
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031

0 1 eV/A 2 3
FIG. 11. “Peak triangle” of three-particle current for long junc-

tion: L;=L,=L=10¢,, D=0.1. Every peak of the triangle consists

The MAR path with two overlapping resonances, shown in thept 4 number of tightly positioned resonances due to nearly equidis-

inset, generates a current peak with height proportion&l.to

reflection energy may coincide with a bound-state energ

tant bound-state spectrufresonance clusterThe number of reso-
nances in a cluster is, from left to right, 1, 4, 7, 6, 5, 4, 3, 2, 1. The

Ynset shows an example of resonant MAR paths forming a cluster.

and thus be resonant. For some specific voltages, more than
one resonance is important, creating a situation of overlap; here A:(Fgm)5E++ng)5E,)/A SE. = SE+esV/2.

ping resonances, which can enhance the current giving pealﬁ1

in the current-voltage characteristics at these voltages.

A. Three-particle current

The three-particle curreri; has a nonresonant value of
order D3. However, | is enhanced to ordeéd? when the

e energy dependence of the current in &) has the
form of two resonant peaks with widthk TA~DA/ % split

by the energy interval- DA/ 7 at V=0, the peak splitting
increasing with increasingV. After integration over energy,
the overlapping resonances give a current contribution in the
form of a current peakkgT<<A),

energy of one of the two Andreev reflections coincides with

a bound-state energy. (km) 3De TA 2NN’
; : 15" (8V)= .
For the applied voltage equal to the difference between '3 h esV \ 2 pON + p(MN!
_ ieg\Vkm — £(m) _ £(K) ) W m| S0 7 7
two bound-state energies\ E E'Y, two reso 1+ 7%y
nances occur simultaneously, i.e., form a resonance consist- VDA
ing of two overlapping single resonances; see the inset in (50)

Fig. 10. This will enhance the current to ord2iclose to this

voltage, giving a peak in the current-voltage characteristic%
(CVC). The number of peaks is equal to the number of
bound-state pairs. The peaks are located in the voltage inteé-

val 2A/3<eV<2A; we note that the peak positions are
weakly dependent on temperature.

To evaluate the height and the width of these peaks, we

study the contribution from overlapping resonancesat
~E®<0 and atE,~E(M>0. Close to these energies, the
phasesp{¥ and o™, defined in Eq(17), are close to zero,
and we find the current spectral density for injection of a
quasiparticle from the leftsee Appendix ¢

[J5]km!
B D3N'(E)N'(E3)
ID—4¢{ i +iD (p{IN"(Eg) + oSN (E))|2
(48)

We now expande(¥, ¢S™ in the deviation from perfect
overlap in energy,dE=(E;—EW+E,—EM)/2, and in
voltage,8V=V—V&M and find, usindd <1, from Eq.(48)

Drirm

(SE. SE_IA%2—D/4n® p(M)24 A2’
(49

[J5(E)Jm1 =

In this equation, the densities of staftés’ are taken at the
ntrance and exit energiel!(2E®—E™) and N"(2E™
—EW®), and the temperature is taken to be zero. A factor of
has been included in Eq50) to take into account the
similar resonant process for injection from the right, where
E,=—EM andE,=—EW®.

The curve for the three-particle current versus voltage
thus consists of peaks with heights of or@eand half-width
ry= JVDA/7 on top of a background of ord&?. The back-
ground current increases with voltage in the interval/2
<eV<A as more single resonances come into the integra-
tion region. In the interval <eV, the background current
decreases due to broadening of the resonances because of
leakage associated with incomplete Andreev reflection out-
side the gap.

In long symmetric junctions the current peaks form an
interesting triangular pattern. To see this, we first note that if
the bound-state spectrum were perfectly linear, several of the
peaks described by Eq$48)—(50) will be situated at the
same voltage sinceV(KkM=gMm _gK=gMm+1)_gk+l)

(see also the inset in Fig. land thus the total number of
peaks will be reduced while their respective height will be
increased. Since the bound-state spectrum is not linear, the
peaks show splitting. However, the deviation from linearity
is small and in practice the peaks form clusters, giving com-
bined peaks with height roughly equal to the number of clus-
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0.4 - ‘ where a(2E(®) is the Andreev-reflection amplitude at en-
ergy 22O,

For longer junctions, there are many possibilities to have
overlapping resonances. Two bound states at one side of the
junction with energie€®<0 andE(™>0 can give a peak
in I, if (EM—E®)/2=eV=A/2. Although the height of all
peaks is roughly proportional tb, numerically the heights
(and widths of the peaks may vary considerably depending
on the position of the second Andreev reflection. If the sec-
ond Andreev reflection does not occur at the energy of a
bound state, the situation is similar to the one described
above; see lower inset in Fig. 12. However, if a bound state
. . o is close to the energy of the second Andreev reflection, then

FIG. 12. Four-particle current in symmetric junctioh$=L;  the cyrrent spectral density(E) consists of the three full-
=L/2 for different Iengths; the junction transparencyD$ 0.1. transmission peakS with WldthS‘DA/'T] which are Sp“t
The four-particle current in short junctions is not visible on the Within the interval~\/5A/77 (triple reso’nanc)e The triple

scale in the figure. The solid-line peak and the small dashed-line has | tral aht d to the doubl
peaks are due to double resonances, illustrated by the MAR digesonance has larger spectral weight compared 1o the double

gram in the upper inset. Large dashed-line peak is due to a qui€SONance, which results in the larger height and width of the

sitriple resonance in the MAR path. An effective four-barrier struc-cum?nt peak. . . .
ture equivalent to this MAR path is shown in the lower inset. Rigorously speaking, a triple resonance can only occur in
asymmetric junctions because it requires equal distance be-

tering peaks. In the interval 23<eV<A, the number of tween neighboring resonances, while the bound-state spec-

peaks in a cluster increases in steps of three from 1 to 4, etdfUM in Symmetric junctions is not equidistant. However, in

up to the number of bound states. In the interateV Iongliuncgons, the dleviation from the eqﬁidisftant spectrulm is
<2A the number of peaks in a cluster decreases in steps Gi"a: and gquasitriple resonances may therefore occur also in

o P - » tric junctions.
1. This gives an appearance of a “peak triangle” for very'0Ng Symme —
long junctions, shown in Fig. 11. This “peak triangle” is This effect can be observed in Fig. 12, where the four-

further enhanced by the background current, which has R&rticle current for a symmetric junction with length
similar triangular form, as explained above. =T7&0>2m€, consists of three peaks with different heights:
the central peak corresponding to the quasitriple resonance

while the two side peaks corresponding to the double reso-
nances with the heights given by E&1).

The four-particle current has a nonresonant value of order Finally, it is worth noting that, similar to the situation for
D*, which is enhanced to ord®?® when the energy of one the three-particle current, the peaks will form clusters, giving
of the three Andreev reflections coincides with a bound-stat@ smaller number of current peaks than the number of pairs
energy. Similar to the three-particle current, overlappingof bound states in long junctions.
resonances can enhance the magnitude of the curyeiot )
the orderD for those voltages where both the first and the C. High-order currents
third Andreev reflections coincide with the bound states, as The studied properties of multiple resonances in three-
shown in the upper inset in Fig. 12. Indeed, it is clear fromand four-particle currents allow us to make some general
the explicit form ofM o= Te'7z¢3T~leloz¢2Telo2¢1T -1 that  conclusions about resonant behavior of the high-order mul-
wheng; =k andgs=mar, thenM 4= (— 1)K+ Mel7z#2 je., tiparticle currents that determine the total current at small

the transparency of the MAR trajectory is enhanced to unity}’0|tage- The nonresonant magnitude ofraparticle current
Other combinations of the resonances, e.g., when the firs¢ Of order D" at the threshold voltages V,=2A/n, and
and the second Andreev reflection occur at bound-state endfierefore the total nonresonant current exponentially de-
gies, will produce peaks of ord&? or smaller, as described Ccreases with the applied voltagen transparent junctions,
in Appendix D. D~1, the current is exponentially small &t eV
Focusing on the double resonances that produce large<A y1—D). However, multiple resonances may enhance the
(~D) current peaks, we find that in short junctions with just magnitude of the current by several ordersDofThe major
one pair of bound states; E(©, the double resonance will question of interest here concerns the maximum value of the
occur at voltageV=E©, provided the energy of the bound resonant current, in particular, whether it can be of of@et
state is within the intervah/2<E(Q<A. The spectral den- arbitrary small voltage.

B. Four-particle current

sity of the current has a form similar to that in E¢9), the To obtain such large current at small voltage, it is neces-
major difference being the small peak splittitfy~DA/».  Sary to achieve a transmission probability through a high-
The height of the resulting current peaksT<A) is order MAR path equal to unity, which implies that the en-

ergy of at least every other Andreev reflection must coincide

with a bound statécf. the discussion in the preceding sec-
, (51  tion). Forn>4, this means that three or more bound states
1+[a(2E@)]* must be approximately equidistant in energy. Since the

mDeA 1-[a(2E()]*
[12]max= h

144504-12



INGERMAN, JOHANSSON, SHUMEIKO, AND WENDIN PHYSICAL REVIEW B34 144504

T - e

FIG. 13. Mapping of a high-order MAR path on a multibarrier
structure: for an equidistant spectrum, full alignment of positions of
bound levels(indicated by bold lingsis possible for voltageV
=gMD—EM vyielding a full-transmission band. The deviation of
the real bound-level spectrum from a best linear fit is shown by the
thin line.

The/A

bound-state spectrum is nonequidistant, @&q), this is gen- ] o )
erally not possible if the resonances are narrow; therefore, in_F'G- 15 Total current in asymmetric junctiohg=0, L, =L for
junctions with arbitrary geometry and small transmissivity dfferent lengths; the transparency0s=0.1.
there are no large current peaks below the volayge A/2.
However, the possibility of a large resonant current exist
for junctions with sufficiently large transparency. To find the
relevant transparency, let us consider a very long symmetri
junction and assume for the moment that the bound-state
spectrum is equidistanE(M™* Y —E(M=const. Then, from VI. SUMMARY
mapping of thenth order MAR process on a 1D multibarrier
structure(see Fig. 13 it is clear that if the applied voltage is

é'n symmetric junctions whei is of the order of 10%, the
multiple resonances are completely blocked and current
eeaks are exponentially suppresse@ ¥t A/2.

Adding up the contributions to the current calculated in
: ; this paper, we arrive at a rather complex form of CVC at
commensurate with the level spacing, e.gy=E(M"%) ' P
—EM, the multibarrier structure is periodic, and full trans- subgap voltages, as shown in Figs. 14-16. Nevertheless, the
' ' analysis of the tunnel limit allows us to classify various sub-

mission is achieved leading to a current peak. This Cor‘Clb'(::;ap current structures. Here we will summarize the results of

Elc?nn (')‘?f ;/r?e“?n?ésr?eizrl 3i2& r;iguéjdézga?;‘:’%i?;g ;;;h\?vi\é?r?i_ his classification. As a reference system we will take a short
the full-transmission band. The deviation of the bound-stat L=0) Junction where the form of the CVC is well
) studied?® The current structures in short junctions can be

spectrum from the best linear fit does not exceed the value . .
0.33\&/L, Fig. 13. On the other hand, the width of the Ihterpreted as resonant features due to quasibound states situ

full-transmission energy band is yDA/7 for equidistant ated at the edges of the energy §ahe resonant conditions

selecting voltages equal to the gap subharmon&y,
spectrum and fom—o. Thus one should expect large- g ges €q gap

t struct in | tric uncti th t =2A/n. This subharmonic gap structure of the short junc-
current structures in fong Symmetric junctions with transparsy;, , gradually changes with increasing junction length as
ency D>0.1 to occur at voltagesV>A¢&,/L. In junctions

: bound states move down into the gap, giving rise to CVC
with smaller transparency, large current structures may a

| AJ2 lained before- . structures with steps, oscillations, and peaks. The major
pear only ate V> , as explained before; see Fig. 16. It is oints are as follows.

also easy 1o see that in asymmetric junctions, where th (i) The current in the subgap region is considerably en-
Wldth- of the full tr_ansm|SS|on band for an equidistant SP€Chanced, compared to the short-junction case. This effect is
trum is~DA/ 7 (since the relevant resonances at one side Oéresent as soon as the effective lenigtti, is comparable to,

the junction are weakly coupled to each other through they |5 ger than, the square root of transparency of the junction,
MAR proces$, large resonant current at small voltage mayL/g ~D
O .

exist if D>0.33. Our numerical investigations confirm that (i) The main onset of the current in short junctions at

08 10 -

The/DA

0
0 eV/A 2 3
FIG. 14. Total current in symmetric junctiong=L,=L/2 for FIG. 16. Total current for different junction transparencizs
different lengths; the junction transparencybDis=0.1. The junction is symmetric, with length,=L,=2¢,.
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eV=2A shifts downwards in voltage to the valed/=A  from NEDO (Japan is gratefully acknowledged.
+E© whereE(© is the energy of the bound state. This shift
is_ cagsed by the resonant two-particle current_giving a CoN-  AppENDIX A: APPROXIMATION FOR fo_ AND 1,
tribution to the total current of the order of the single-particle
current. In this appendix, the expansion is derived for the reflec-
(i) For longer junctions, the current onset transforms intotion amplitudes in Eq(33) for a quasiparticle injected from
a staircase within the voltage intervakle V<2A with the  the left. From the definition of_ and r-u-. Eq. (20,
number of steps corresponding to the number of boungye know
states, the step positions being givenddy=A +E(™. This
is due to the resonances in the two-particle current trans- R Fo_
ported through bound states. Resonant channels open up, one Co_ =c})_( 1 ) , (A1)
by one, as the voltage increases and bound states enter the
“energy window” available for two-particle processes. The
current plateaus are not flat but modulated because of oscil- - _ Me-1)-
lations of the density of continuum states. The period of the C(‘l)‘_c(—l)‘( 1 ) (A2)
modulation is roughly equal to the interlevel distance and it
decreases with the junction length. The amplitude of thelhey are related as
modulation, on the other hand, increases with the junction A . o
length. Thus, in long junctions, the current structures take the Co-=Mg_1U_1¢(-1), (A3)
form of a series of peakéee Fig. 14 within the voltage R R '
interval A<eV<2A. The position of the peaks has pro- whereMy_;=T andU_;=¢'7z¢-1. From this relation, we
nounced temperature dependence, scaling with the temperéid ro_ in terms ofr_,)_ as
ture dependence of the order parameter, while the distance
between peaks has a weak temperature dependence. \/§+r(_1)_e2i¢’—l
(iv) There is another series of the current peaks whose fo-=17 R Pe s JR I |+ A4
positions only weakly depend on temperature and are en- f-1-€
tirelx()determined (213)/ thc(ek)bound—state spectruev=E™ oo x=(1—VR)r(_1y_€?-1/(1+1_;,_e?*-1). When
—E" andeV=(E""—E™)/2. These peaks are caused by |y| <1 e can make an expansion in this parameter to get to
the overlap of two resonances in the three- and four-particle,q form
currents and they exist in the intervals of applied voltage
2A/3<eV<2A andA/2<eV<A, respectively. The heights
of these peaks are comparable with the heights of the two- o= JR+D ——
particle current structures<(D). 1+ r(_l)_ez'q’fl
(v) At voltages smaller thaaV=A/2 the resonant current (A5)
structures generally become smaller in magnitaddeast by
one order inD) if the junction transparency is sufficiently
small (D<0.1), and the current decays exponentially when )
eV approaches zer¢although for some particular junction r :(_1)n\/§+D M(n+1)+€
lengths there could be huge-D) current peaks caused by nt 1+(— 1)nr(n+l)+62i¢n+l
multiple resonancesThis qualitative difference of the CVC
below and aboveV=A/2 allows one to expect a cross over =(-1)"JR+0(a3,,D). (AB)
from power to exponential dependence of CVC in multi-
channel junctions. _ APPENDIX B: RESONANCE IN TWO-PARTICLE
(vi) In transparent junctions, all current structures will CURRENT
persist but become smooth; appreciable current will appear
below eV=A/2 as soon a®=1/3. The current structures In this appendix, we derive the resonant form of the two-
completely disappear in fully transparent junctiols=1, particle current, Eq(37), for a quasiparticle injected from
where the CVC does not depend on the junction length; sege left. The definition of\vl 20 IS |\7|20: Te’z¢1T~ 1 which,
Fig. 16. ; T oadt
(vii) At voltages larger than &, the current undergoes Lisln,gl the pseudgumtgnty of the transfer matriced "o,
oscillations, similar to Rowell-McMillan oscillatiors,and =T 7, can be written in the form
the excess current is approached much faster than in short
junctions. In low-transparency junctions the excess current is
small,1¥*°~D? D <1, despite strong Andreev reflection and
large pair current,~D.

1+x/\/§)
—X

2ip_1q
ri_1y_€
1) = JR+0(a?,D).

Similarly we also get

ion+1

N 2i . A
Myg=—=sSing,To,+e '72¢1, (B1)

JD

It simplifies in the limitD<1, |o{™|=|¢;—mu|<1 to
ACKNOWLEDGMENTS

. k
We thank E. N. Bratus’, J. Lantz, and T. fueander for " (-1

M 5= 2ip{™(1+0y)+D]. B2
discussions. Support from NFR and NUTEEBweden and 207 p [2i¢17(1+ ) +D] (B2)

144504-14



INGERMAN, JOHANSSON, SHUMEIKO, AND WENDIN PHYSICAL REVIEW B34 144504

Inserting the simplified expansion & ,, and the expansion I 30=—4 sin@;sin@,(1/D+T7YD) +2i o,sin @1+ @)
of r,, andry_ from Eq.(33) into Eq.(27), as well as putting o _
R=1, the leakage current density takes the form +e 19202 T lgmloz0n, (C3

_ 4 _ 4
! |?0| ! |5‘_2| 2 It simplifies in the limit of D<1, |@{¥|=|¢,—km|<1,
|1—e?#0|2 |1—g?'¢2|? and|eS™|=|@,—mm|<1 to

B)]'= . . :
)] oi (m_ P 1+e2"”0+1+e2'*”2) :
1" T 5 2 - _ 1y k+m
1—e?iv0 1 —g2ie2 ~ (=1)
(B3) Msozw[(D—4¢(1k)<P(zm))(1—Ux)
We make an expansion of the phasg{™= 7™ (E i Dioto®(1— (m)
oy (1—o)+ e (1+0,)}]. (C4
—EM)/A =M SE/A, where ¢ o W}
P 2L A Inserting this form of theéV 5, matrix and the expansiof33)
(M=A— =—4+———_—_. (B4 forr,_ andrs, into Eq.(27), as well as puttindR=1, th
7 : 0- 3+ q.(27), puttingr=1, the
Ele_egm € JAZ—(EM)2 probability current density for injection of a quasiparticle

The two-particle current density now takes a Breit—Wignerfrom the left takes the form

form

(1—]agl*)(1—|ag*)D?
I_
INRINW . [J5(B)] - 1w o (C5)
(5E—5E<m>)2 (rgm>+r<2m>)2’ (B5)

+

A 2

[J2(E)]'=

2i 2i
y1re™®s mlter®

(k LomITE
®1 1—e?ies ¢2 1—e?i¢0]’

Kk .
where the tunneling rates are given byl{y Q=(D—4¢{?¢™)+iD
=N'(Eo ) D/27™, where

1+ e2i¢o2 1—|ag4* whereD<1 is once again used.
N'(E0Y2)=Re{ 5 }: 2i0’ > (BO) Since|¢{¥|<1 and|¢e{™|<1 and the DOS at energies
1-e%%02)  [1-e%%07 Eos, EQ.(35), are equal to
are equal to the DOS, E(B5) at energyEy ,. The resonance
is slightly shifted fromE(™ with | 1+e?%)  1-|ag*
N'(E)=R dien| 2ipg(2’ (C6)
DA [1+e%%0 1+e%e 1-e?%o]  |1-ef%]
SE(M = Im 4+ — . (B7)
4nM | 1-e%%0 1-e%%2
1+e%¢s 1—|agl*
N"(E;)=R = = (C7)
APPENDIX C: RESONANCE IN THREE-PARTICLE 1-e?¢s) |1—e?¥3)?
CURRENT
In this appendix, the resonant form of the three-particleVe arrive at the form
current, Eq(48), is derived. TheM 3, matrix, which by defi-
nition Is | NI(E)Nr(Eg)Dg
T T a(B)]'= ® oM Dl oMONT MN(EYV 2
M= T leloz2TelozerT 1, (C1) ID—4¢17¢;" +iD[@1'N'(E3) + @3N (E)(]| )
C8
can be transformed using E@1) to
Kl T 10202 TT— 1T giosert—1 APPENDIX D: RESONANCE IN FOUR-PARTICLE
30 CURRENT
= Z_isimpz-]—flazJr e 10292 ' In this apper_ldix, we discuss the styucture of the resonance
JD in the four-particle current. The matrix
F-1 2i R T —io,p ~ 2~ ES i 2~ ES
XT \/_Bsm e To,+e '7z2%1], (C2 M 4o=Te72¢3T ~leloze2Teloz1 T~ 1 (D1)
which can be written in the form can be written as
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N io N
M40:D—22[ —8 sing4Sing,sin ¢3\/5T*1+ D sing;Sin@,sin @+ D2sin( @1+ @3— ¢5)

. a . A 1 . .
+2D sing;c0g @3— @) VDT 142D sing;coq @1 — ¢,) VDT 1]+ E[_4D sin ¢;Sin @3C0Se,

+2D sin@asin( @1~ ¢2) VD T+2D sine;sin(e3— ¢,) VDT~ *+ D2cog @1+ @3~ ¢,)].

(D2)

From Eq.(D2) it is clear that, in generaM 40<1/D2. When bothe, and ¢4 are close to a multiple ofr, |\7I4oo<1, while close
to other double resonances, e.g., whgnand ¢, are close to a multiple ofr, M 4 1/D.
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“8This results from the fact that the resonances are coupled with the the width of the resonance and thus the height of the current
MAR trajectory that crosses the barrier twis®e upper inset in peak is independent of the DOS at the entrance and exit ener-
Fig. 12, instead of once as in the three-particle case, and there- gies, and only depends on the Andreev-reflection probability at
fore the resonance coupling is weaker. Another difference is that the exit and entrance energies.
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