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Magnetic properties of nanoparticles in the Bethe-Peierls approximation
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In this work we present a method to calculate the classical magnetic properties of single-domain nanopar-
ticles. Based on the Bethe-Peieffsir) approximation, we developed a simple system of equations for the
classical magnetization of spins at any position within the nanoparticle. Nearest-neighbor pair correlations are
treated exactly for Ising spins, and the method can be generalized for various lattice symmetries. The master
equation is solved for the Glauber dynamisingle spin flip in order to obtain the time evolution of the
magnetization. The capabilities of the model are demonstrated through nontrivial calculations of hysteresis
loops as well as field cooling and zero-field cooling magnetization curves of heterogeneous noninteracting
nanoparticles. The present method automatically incorporates temperature and could be adapted to describe an
ensemble of interacting nanopatrticles.
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I. INTRODUCTION particles(10—20 nm in diameter(Ref. 6 and cobalt nano-
clusters(3—5 nm in diameter’ The formalism presented in
The properties of magnetic nanopatrticles and fine particleéhis paper should provide a theoretical foundation for experi-
assemblies have been attracting the interest of physicists fonents made on singl@r independentheterogeneous nano-
many decades. Below a critical size such nanoscopic magparticles.
netic systems develop properties that cannot be found in Magnetic systems are well known for developing long-
macroscopic systems, where the material is divided into dorange interactions, especially in the continuous phase transi-
mains in order to decrease the magnetostatic energy. Stongons, where the correlation length is infinite. Because of
and Wohlfartf laid the theoretical basis, which is widely that, the calculation of critical exponents requires sophisti-
used nowadays, to describe such low-dimensional systentated theoretical formalisms such as renormalization group
and predicted effects like superparamagnetism. According ttechniques, high-temperature series expansions, or numerical
the Stoner-Wohlfarth model, the strong exchange interactiomethods such as the Monte Carlo method. On the other hand,
aligns all the particle spins so that the magnetization insidaway from the critical point, where the correlation length
the nanoparticle is assumed to be a uniform field, whichdecays exponentially, a mean-field theory may provide a
rotates coherently due to the presence of an external magood description of the behavior of the system. Nevertheless,
netic field. Despite being a suitable assumption for homogethe plain mean-field approach corresponds to one in which
neous systems, it is not appropriate to describe heterogéhere is no correlation between any pair of spins and a given
neous particles, for instance, formed by regions of localizedpin interacts with the average magnetization of its neighbors
moments having distinct magnetic charadferromagnetic, or, equivalently, with an effective mean field produced by all
ferrimagnetic, and antiferromagneticFor such heteroge- the spins in the system. This simplified approach might fail,
neous systems the exchange energy plays a central role lmowever, for nanoparticles having a core with magnetic
determining the magnetization of the nanopartictéUnfor-  properties that differ from those of the surface, as in the
tunately, the nontrivial interaction among the spins is responinstance of a ferromagnetic particle coated by a ferrimagnetic
sible for a highly correlated behavior that is very difficult to or antiferromagnetic layércaused by oxidation processes,
describe in terms of analytical expressions or exact numerier the case of a disordered surface as Wélbr these sys-
cal solutions, for a general case. In addition, the boundaryems the correlations between neighbors are important to es-
conditions imposed by the finite size of the nanopatrticles antblish boundaries between regions of different magnetic
surface disorder complicate otherwise simpler solutions foproperties.
infinite systems. In this work we propose a method to describe the classical
In most experiments the magnetization due to an enmagnetic properties of noninteracting nanoparticles. The
semble of nanopatrticles is the measured parameter. In thimethod takes a further step from the standard mean-field
case the long-range dipolar interaction is dominant; it pro-approach and treats the nearest-neighbor pair correlations be-
duces a collective energy barrier for the magnetization revertween spins within the particle explicitly, therefore being ca-
sal of a nanoparticle and, consequently, sets a new time scgb@ble of describing heterogeneous systems. In spite of being
for irreversible process@she magnetization of independent extensively used to calculate the magnetic properties of infi-
nanoparticles being experimentally accessible in the limit ofhite systems, the Bethe-Peieti&so called pairapproxima-
very dilute particle ensembles. However, a series of recertion has not yet been used to calculate the magnetic proper-
experiments, using a micro superconducting quantum interties of nanoparticles. A somewhat similar approach was used
ference devicémicro-SQUID technique, have demonstrated to describe the magnetization of Fe quasi-one-dimensional
the possibility of measuring both the magnetization reversalquasi-1D clusters® in view of the fact that the results ob-
mechanism and dynamics of individual homogeneous nandained by the Bethe-Peierls approximation agree with the
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and the pair correlation functions

rj()=(oi0})=2 oi0;P(a1), ®)

where the index, as well ag, designates a spin site and the
sum overo accounts for all the spin configurations. Since we
restrict our model to take into account only pair correlations,
the probability of a given spin configuration is writtents

whereN is the total number of spins.
FIG. 1. Schematic representation of an hexagonal nanoparticle The time evolution of the system is obtained by means of
exhibiting three shells of spingmall circles. The representative the master equation for the probabilities,
spins that compose the set of equations for this particle are repre-

sented by solid circles. The dashed lines evidence the sixfold sym- dP(o,t) , , ,
metry. —gr — 2 {P(e" (o’ ,0) = P(o,)w(o,0")},
g

Ising solution for 1D systemsin the following the details of ®
the model and the formalism are presented. Then, in the reyith w(o', ) as the transition probability per unit time from
mainder of the paper, it is shown that the model accounts fthe Spin Conﬁguratiom’ to Conﬁgurationa-_ Here we as-
many of the properties of magnetic nanoparticle systems. sume that the dynamics of the system is governed by single-
spin-flip transitions, which can be mathematically described
Il. THEORY by the Glauber formalisii

At first, consider a 2D array of Ising spins in a hexagonal 1
lattice, as depicted in Fig. 1 for a structure made up of three wi(o)=—{1— 0oy}, (6)
shells. A similar model system could be used to describe the 27
properties of single-crystalline disks with hexagonal contour, .
such as 10—-20 nm BaFeCoTiO nanoparticles whose magn?—f'v—'th
tization reversal has been measutédle note that the for-
malism applies eql_JaIIy well for any 2D lattice and can b_e V(J,B,H)=tan"{(2 Jjjo;+H
extended to 3D lattices as well. Taking advantage of the six- ]
fold rotational symmetry of the lattice, we need to consider
only a small subset of spinsnarkedo;—o by solid circles ~ Wherekg is the Boltzmann constant, is the absolute tem-
in Fig. 1) to provide the magnetization of the whole particle. perature, and is the relaxation time for a single spin. This
Each of the spin sites, which stand for the atomic momentglynamical rule is chosen so that the transition probabilities
in the nanoparticle, are described by Ising spin variables thawi(o;) depend on the spin value ef; as well as on the
take on valuesr,=+1. The nanoparticle is assumed to be values of its nearest neighbors.
very small, so that it constitutes a monodomain. In addition, Using Egs.(5)—(7) we obtain after some algebraic ma-
according to experimental resuft@n uniaxial anisotropy is hipulation the dynamical equations fo(t) andr;;(t):
implicit in the model, with the easy axis coinciding with the

/kBT Etanl’(Ai), (7)

Ising spin direction. Therefore the energy of the system is dmy(t) 1
written as —ar = S| MO-2 Ao, (®)
HZ_(% JijO'in_HZ g, 1) drj(t)y 1

T ;(2rij(t)—%‘, [oitani(A;)
where only the exchange coupling between nearest neighbors
is considered, witlJ;; as the exchange coupling constant and
H is the applied magnetic field.

Having defined the relevant spins that describe the system
we start by writing the dynamical equations for the averagen principle, our task is to integrate these equations to obtain

spin magnetizations, the time evolution of the variables of interest. Within the
Bethe-Peierls approximatidhwe assume that only the cor-
mi(t)=(o)= 2 oP(a 1), (2) relgtlons betwegn pairs o_f nearest nfalghbors are nonzero and
o write the following equation foP;(o):
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N @ 2 1

P(oi,o4)
Pi(o)=——r, (10)
(o) PN~1(qy) 3 6
whereN; is the coordination number of the lattice sitand
for Pij(O'), 4 5

Nj

PO [T b T Ploruoy
PN () PN gy a g TR
1

It is important to notice thaN; is different for the surface

spins.P(o;) andP(o;,0;) are obtained from expressig#) 3
taking as nonzero only the nearest-neighbor correlation func-

tions:

Pij(o)=

1
P(oi)= §(1+mi0i)' (12 FIG. 2. (a) A cluster formed by spino; and its six nearest
neighbors.(b) A cluster formed by the paiv;o; and their nearest
1 neighbors.
P(O’i,O'j):Z(1+mi0'i+mj()'j+rij(7'i0'j). (13)
) (U] ~[UaJ;
Substituting expressiond0) and(11) into the dynamical Uk= (20

equationg8) and(9) yields, after a straightforward manipu- apsSag [Wal]i’ ' '[Wak]i

lation, a closed system of equations for the spin magnetizaghich generate all the possible configurations of the cluster.
tions[m;(t) ] and nearest-neighbor pair correlation functions|, the case of Eq(14) the independent indices, stand for

[rij(t)] that can be solved numerically, all the nearest neighbors €la,<6) of a given spino;, as
q N, depicted in Fig. 2a). When calculating the pair correlations
- m(t) rmt)= %_;kf)kzi({Ni})'i_t_I;akWi({Ni}) , rij=(oio;), 1sa=5, to avoid counting the p:’:lil’ twice, as
dt k=0 | X; Yi shown in Fig. 2b) for spinso; ando; . Fork=0, Vo=1 and
14 7°=1.The parameteti is related to the transition rate of a
spin:
W00 4 ey =18+ 1) @
T dt iR Le LS - ’_(ZJ(k—3)+H o1
=tan —————|.
with k kgT
Ni—1 The results comprehending Eq&4)—(20) correspond to the

] f}kzi({Ni}) caselJ;;=J. To account for the more complex case of differ-
[&il= kEO Lzt [viljts_i)——=—— e

= XJS entJ;; in heterogeneous nanoparticle andi/* have to be
modified to incorporate a generalized parameéterThis is

Nj—1 7k : ;
U W;({N;})
+ kgo {[ui]jtl-%—k_[wi]jtk}#, (16) done in the Appendix.

j

and[¢;]; obtained by the simple exchange of the indices

andj in Eq. (16). Refer to the Appendix for a definition of In this section we describe the properties of the model and

the symbols. We also define the products show that it accounts for many of the phenomena presented
by magnetic nanopatrticle systems.

IIl. RESULTS AND DISCUSSIONS

Ni We start by discussing the properties of the hysteresis of
Zj({Ni}):E[ [Za]y 17 noninteracting homogeneous ferromagnetic nanoparticles, as
yielded by the present model. For this purpose consider Fig.
Nj 3(a) where hysteresis loops for three different nanoparticle
Wj({Nj}):H (w,];, (18)  sizesR=1, 2, and 11 are showR is the number of shells
a and can be associated with the radius of the nanoparticle. We

define the total magnetization of the nanopartidié

upon which act the operators
P P =2>;m;(t)/N, where the sum runs over all the spins of the

A [V, ]j [V ]] nanoparticle N). The smallest nanoparticl&®k& 1) has van-
Yk= S —— (190  ishing coercive field and its magnetization is well fitted by a
ap<---<ay [Zal]i' ' ‘[Zak]j Langevin function, whereas the bigger particl&=2-11)
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0.2 . FIG. 4. (a) Hysteresis loop for a nanoparticle of radiRs=8.
i ] HereJc=1 for R<7, Js=5 in the surfaceR=8, andJ.s=—4
0l T o5 03 couples the core and surface regiofts. Individual magnetization
) 1 ¢ ) curves for the center spirgg), a spin in the sixth shell%), a spin
1/R" in the seventh shellg;), and a spin in the surface shel). (c)

Same parameters as (@ using a simple mean-field approach, the
FIG. 3. (a) Hysteresis loops for various nanoparticle sizBs: exchange shift disappearsl) Same agb) for a simple mean field.
=1, 2, and 11. The reduced temperatureTis 3J/kg, whereJ The reduced temperature kgT=3.5] for all curves.
=1 is the exchange coupling constant gkl is the Boltzmann

constant.(b) The coercive field Kl in units of J) plotted as a . .
function of R-6. From right to left, the dots correspond R of heterogeneous nanoparticles, which are more complex

=2,3,...,11 and thestraight line results from a linear fit to sys_tems, €.g., Cons'_St'ng _Of ferromagnet_ic and antiferromag-
the data. netic (or ferrimagneti¢ regions coupled with each other. Ex-
amples of such systems are oxide-coated cql@ad} or iron
exhibit typical hysteresis loops of ferromagnetic nanopar{Fe) nanoparticles,among many others that exhibit the ex-
ticles. Figure &) shows the dependence of the coercive fieldchange anisotropy effett:**When cooled in the presence of
(H¢) on the number of shells of the nanoparticle, by plottingan external magnetic field the soft ferromagnetic core of the
Hc as a function oR ™1, for the reduced temperatukg T particle aligns with the applied field but its outer antiferro-
=3J. This graph demonstrates that the functional relatiormagnetic(AF) surface gets ordered only when the tempera-
Hce~R™ 16 fits very well the results of our calculations for ture of the system is lower thaf, (Néel temperature'? The
nanoparticles of size 2R<10, with the exception of the coupling of the ferromagnetic core with the antiferromag-
R=1 andR=11 cases. The former is in the superparamagnetic surface therefore produces a unidirectional exchange
netic regime, as indicated by Fig(eB, whereas the last al- anisotropy that shifts the hysteresis loop to higher or lower
ready starts to behave as an infinite system. The same behawagnetic fields, depending on their mutual orientation. Hav-
ior exhibited byH¢ in Fig. 3(b) is obtained for the reduced ing said that, consider an eight-shell nanoparticle with the
temperaturekgT=1.5]. According to our calculations, for following characteristics: the exchange interactions in the
R>10 the Curie temperaturel¢) of the nanoparticle ap- core R=0-7) are given by the coupling paramefer=1,
proaches th& . of an infinite cubic system, as yielded by the the outmost shellR=28) is also ferromagnetic with an ex-
Bethe-Peierls relation cdiliksTo]=5. Calculations for a change constanis=5, and the coupling between tiie=7
square lattice showed thai.~L~'° for small clusters, and R=8 shells is due to an antiferromagnetic exchange
whereL stands for its lateral dimension. Finally, we point out constantlc_s= —4. The hysteresis we obtain with our for-
that the mechanism of magnetization reversal that takesialism is shown in Fig. @), which presents a clear ex-
place in our nanoparticle is not entirely coherent. Because afthange shift. Figure ) shows the magnetization curves of
their smaller coordination number, the average magnetizatiomdividual spins within the nanoparticle: in the center of the
(m,) of the outside spin shells decreases by the action of theanoparticle &), in the sixth shell §), in the seventh shell
reverse fieldH, consequently also decreasing the magnetizafS;), and in the surface shellSg). As evidenced by this
tion of their neighboring shells and creating a nonuniformgraph, the surface shell and the layer just below it are locked
magnetization profile. Eventually, wheth reachesH, all in a very stable AF configuration, whereas the average mag-
spins flip together. This process should be responsible fonetization of the inner ferromagnetic shells varies gradually
easier magnetization rotation and lower switching fields thariowards the center of the particle. For the sake of compari-
those given by the Stoner-Wohlfarth model. son, we have also calculated the hysteresis for the same sys-
In the remainder of this section we consider the propertietem, but using a simple mean-field approach, whose results
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are shown in Figs. @) and 4d). For the standard mean-field
equations each spin experiences only an effective field that 94
can be seen as an average interaction with all the other spin

and, consequently, the exchange shift disappears. Looking a> 02
the individual spin magnetizatior{$ig. 4(d)] it is evident

that there is no correlation between the surface and core do 0
mains.

Another important experimental technique used to inves-
tigate the properties of magnetic nanoparticles is the field
cooling (FC) and zero-field cooling(ZFC) magnetization
measurements. For an ensemble of noninteracting homoge2 0z
neous particles the blocking temperatufigs) is related to
the magnetic anisotropy constant and the volume of the 0
nanoparticlé? For a system of interacting nanoparticles see
Ref. 5. The blocking temperature, where the maximum of the
ZFC curve occurs, indicates the point in which the thermal
energy is comparable to the average anisotropy barrier in thez ozl
nanoparticles, and beyond it the magnetization decrease’ ™
with temperature. In the following we show a deblocking

04

ol L 1 1

behavior that is caused only by the exchange interaction be- 1 2 3 ' 4

4
tween antiferromagnetic and ferromagnetic regions in a k.T/J k.T/J
single nanoparticle. For that purpose consider a six-shell B~ 770 B=770
nanoparticle whose core is predominantly A= —0.5], FIG. 5. FC(solid) and ZFC(dashel curves of the total normal-

for R=0-5, with a ferromagnetic surfacds=2J, for R jzed magnetizatior(M) as a function of the reduced temperature
=6, which is ferromagnetically coupled with the codgs  kgT/J,. Different values for the applied magnetic field are consid-
=1Jy betweenR=5 and R=6. The energy parameter is ered, fromH=0.05J| in (a) throughH=0.0001Jy| in (f), as in-
Jo=1 and the time taken to sweep over the whole temperadicated in the figures. The nanoparticle consistRef6 shells, with
ture interval ists=10%7, with ~ appearing in Eqg8) and(9). an AF core (.= —0.5],, for 0<R=<5), a ferromagnetic surface
The calculations were performed in accordance with theJs=2J, within R=6), and a ferromagnetic coupling between core
standard FC-ZFC experimental practicelhe obtained FC ~ and surface Jcs= 1J,, betweerR=5 andR=6).

(solid line) and ZFC(dashed ling magnetization curves are

shown in Figs. 8)—5(f) as a function of the reduced tem-

perature, for values of the applied field that vary fréin UAF=< > Jc0i0j> =Jc X Tij (24)
=0.05J,| to H=0.0001J,|. HereM is the normalized mag- Y w0

netization of the entire nanoparticle, as previously definedl.rl terms of which we define the differential exchange energy
Because it corresponds to a single partidg, is sharply Axe=(Up+Uy—Unr)/(Up+ Uyt U g). Solid and dashed
marked and does not exhibit the characteristic dispersioHnXeCS repFesenH[ FCAaFnd ZEC pF‘ocesAsFeé respectively, and the
caused by the size distribution of the particles. According toarrows indicate their dynamics. The cohtribution of t’uﬂ
our calculationsTg is not strongly dependent ait.; how- i

ever, it does depend alyc andJs. Figure 5 shows that the term to th_e_ total energy of the nanopar_ucle IS very small
. i however, it is responsible for the deblocking behaviof gt
blocking temperature occurs just about the ranges

<kgTg=<Jg, which has been confirmed in calculations forAt the high-temperature regime the average exchange energy

different nanoparticle parametefsize, exchange constant is nonzero, because of a remaining finite short-range corre-
andt,). Des itz bein Fz)bserved 0 t:ake Iacg for Nano ér[ation between nearest-neighbor pairs. Most of the energy is
ihdty). Desp ng ; P Par4ue to the ferromagnetic ordering. During the ZF{ashed
ticles of different sizes, the blocking temperature effect is

very sensitive to the relative strengths between the ferromag-

netic and antiferromagnetic exchange constants. For clarity, 0.6
Fig. 6 displays the relation between the average magnitude
of the energies associated with the parallel spin alignment 04k
(Ug+Uy) and antiparallel spin alignment(,) configura- <1§
tions within the particle, o2k |
UF=<<|2'J> J50'|UJ+<k2J> JCSOKU'>=JS@2;> rij+JCS<k2J> e 00 . Il . |2 . :Is . 4
(22) kT /1,
FIG. 6. Differential exchange energyAyc=(Ug+Uy,
Uy= H< 2 Ui> - HE m, (23) —Uap)/(Ug+Uy+Uxp) as a function of the reduced temperature
i i kgT/Jo. The applied field isH=0.001J,|.

144424-5



LUIS G. C. REGO AND WAGNER FIGUEIREDO PHYSICAL REVIEW B4 144424

line) the AF core overwhelms the ferromagnetic surface and L+my+m;+ry; 1—mi—m;+ry;
forces the magnetization of the whole nanoparticle to vanish.  [z];= 2 wilj=——7——— (A2
Then, in the subsequent heating, even a very small applied

field is enough to trigger the alignment of the ferromagnetic 1—m+mj—rj; 1+m—mj—rj;
surface, which is evidenced by the relative increase of the  [vilj=———F—,[Uilj=———F—, (A3)

ferromagnetic energy. On the other hand, during the FC pro- 4 4

cess the applied field is able to magnetize the nanoparticle dthere[z];=[z]; and[w;];=[w;];. As already mentioned
higher temperatures, before the AF correlations of the coré the main text, the parametéy in Egs. (14) and (19) is
become too strong. Therefore, the interplay between AF antglated to the transition rate of a spin,

F exchange energies gives rise to the hysteresis in tempera- 2J(k—3)+H
ture that we observe in the FC-ZFC calculations. tk:tanl-(? , (A4)
B
IV. CONCLUSIONS for J;;=J and in accordance with the definitions given in the

main text. For the case of general exchange constags (
e termt, must be generalized and incorporated into the

peratorsV’* andif¥,

We have developed an approach to calculate the classic
magnetic properties of single-domain nanopatrticles. Treatin%
the nearest-neighbor pair correlation functions explicitly we

were able to obtain a simple set of equations for the magne- [Vaj (V4 ];
tization at any point in the particle. In addition, E¢$4) and Pk= e
(15 can also account for the inclusion of interactions be- ap<---<ag [Zal]i' ’ '[Zak]J

tween next-nearest neighbors in a straightforward manner, by N;
incorporating the corresponding; into the operatorgA5) o L .

and(A6) and increasing the coorJdination numbérof each ,521 Js) Z(J“1'+ +J“k1)+ H

spin. The method can be applied to different lattice geom- Xtanh KT

etries and extended to 3D systems. The formalism treats cor- .

rectly the short-range correlations that arise in heterogeneous (AS5)
nanoparticles, which have regions of different magnetic [u,Ji---[uy ]

properties, e.g., oxidized ferromagnetic particles. Such spin ifk= E aplj ad]

correlations were evidenced by the observation of the ex- < <ay [wal]j~ . .[wak]j

change shift in hysteresis loops and by the blocking-
deblocking effect in the FC-ZFC calculations.

Nj

D g2+, ) +H
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APPENDIX ) [;21 Jg+H
Here we define some of the notation used in Sec. II. VO=tanh T ) (A7)
Based on Eq(4), Eq. (14), and(15) are written out in terms B
of the following simple functions: N;
> Jg+H
1+m m Al io=tann| =1 A8
I 2 1 yl 2 1 ( ) a kBT ( )
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