
PHYSICAL REVIEW B, VOLUME 64, 144424
Magnetic properties of nanoparticles in the Bethe-Peierls approximation

Luis G. C. Rego* and Wagner Figueiredo
Departamento de Fı´sica, Universidade Federal de Santa Catarina, Floriano´polis, SC 88040-900, Brazil

~Received 3 April 2001; published 21 September 2001!

In this work we present a method to calculate the classical magnetic properties of single-domain nanopar-
ticles. Based on the Bethe-Peierls~pair! approximation, we developed a simple system of equations for the
classical magnetization of spins at any position within the nanoparticle. Nearest-neighbor pair correlations are
treated exactly for Ising spins, and the method can be generalized for various lattice symmetries. The master
equation is solved for the Glauber dynamics~single spin flip! in order to obtain the time evolution of the
magnetization. The capabilities of the model are demonstrated through nontrivial calculations of hysteresis
loops as well as field cooling and zero-field cooling magnetization curves of heterogeneous noninteracting
nanoparticles. The present method automatically incorporates temperature and could be adapted to describe an
ensemble of interacting nanoparticles.
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I. INTRODUCTION

The properties of magnetic nanoparticles and fine part
assemblies have been attracting the interest of physicist
many decades. Below a critical size such nanoscopic m
netic systems develop properties that cannot be found
macroscopic systems, where the material is divided into
mains in order to decrease the magnetostatic energy. St
and Wohlfarth1 laid the theoretical basis, which is widel
used nowadays, to describe such low-dimensional syst
and predicted effects like superparamagnetism. Accordin
the Stoner-Wohlfarth model, the strong exchange interac
aligns all the particle spins so that the magnetization ins
the nanoparticle is assumed to be a uniform field, wh
rotates coherently due to the presence of an external m
netic field. Despite being a suitable assumption for homo
neous systems, it is not appropriate to describe heter
neous particles, for instance, formed by regions of locali
moments having distinct magnetic character~ferromagnetic,
ferrimagnetic, and antiferromagnetic!. For such heteroge
neous systems the exchange energy plays a central ro
determining the magnetization of the nanoparticle.2–4 Unfor-
tunately, the nontrivial interaction among the spins is resp
sible for a highly correlated behavior that is very difficult
describe in terms of analytical expressions or exact num
cal solutions, for a general case. In addition, the bound
conditions imposed by the finite size of the nanoparticles
surface disorder complicate otherwise simpler solutions
infinite systems.

In most experiments the magnetization due to an
semble of nanoparticles is the measured parameter. In
case the long-range dipolar interaction is dominant; it p
duces a collective energy barrier for the magnetization re
sal of a nanoparticle and, consequently, sets a new time s
for irreversible processes,5 the magnetization of independe
nanoparticles being experimentally accessible in the limi
very dilute particle ensembles. However, a series of rec
experiments, using a micro superconducting quantum in
ference device~micro-SQUID! technique, have demonstrate
the possibility of measuring both the magnetization reve
mechanism and dynamics of individual homogeneous na
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particles~10–20 nm in diameter! ~Ref. 6! and cobalt nano-
clusters~3–5 nm in diameter!.7 The formalism presented in
this paper should provide a theoretical foundation for exp
ments made on single~or independent! heterogeneous nano
particles.

Magnetic systems are well known for developing lon
range interactions, especially in the continuous phase tra
tions, where the correlation length is infinite. Because
that, the calculation of critical exponents requires sophi
cated theoretical formalisms such as renormalization gr
techniques, high-temperature series expansions, or nume
methods such as the Monte Carlo method. On the other h
away from the critical point, where the correlation leng
decays exponentially, a mean-field theory may provide
good description of the behavior of the system. Neverthel
the plain mean-field approach corresponds to one in wh
there is no correlation between any pair of spins and a gi
spin interacts with the average magnetization of its neighb
or, equivalently, with an effective mean field produced by
the spins in the system. This simplified approach might f
however, for nanoparticles having a core with magne
properties that differ from those of the surface, as in
instance of a ferromagnetic particle coated by a ferrimagn
or antiferromagnetic layer,3 caused by oxidation processe
or the case of a disordered surface as well.4 For these sys-
tems the correlations between neighbors are important to
tablish boundaries between regions of different magn
properties.

In this work we propose a method to describe the class
magnetic properties of noninteracting nanoparticles. T
method takes a further step from the standard mean-fi
approach and treats the nearest-neighbor pair correlation
tween spins within the particle explicitly, therefore being c
pable of describing heterogeneous systems. In spite of b
extensively used to calculate the magnetic properties of i
nite systems, the Bethe-Peierls~also called pair! approxima-
tion has not yet been used to calculate the magnetic pro
ties of nanoparticles. A somewhat similar approach was u
to describe the magnetization of Fe quasi-one-dimensio
~quasi-1D! clusters,8 in view of the fact that the results ob
tained by the Bethe-Peierls approximation agree with
©2001 The American Physical Society24-1
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Ising solution for 1D systems.9 In the following the details of
the model and the formalism are presented. Then, in the
mainder of the paper, it is shown that the model accounts
many of the properties of magnetic nanoparticle systems

II. THEORY

At first, consider a 2D array of Ising spins in a hexagon
lattice, as depicted in Fig. 1 for a structure made up of th
shells. A similar model system could be used to describe
properties of single-crystalline disks with hexagonal conto
such as 10–20 nm BaFeCoTiO nanoparticles whose ma
tization reversal has been measured.6 We note that the for-
malism applies equally well for any 2D lattice and can
extended to 3D lattices as well. Taking advantage of the
fold rotational symmetry of the lattice, we need to consid
only a small subset of spins~markeds1–s6 by solid circles
in Fig. 1! to provide the magnetization of the whole partic
Each of the spin sites, which stand for the atomic mome
in the nanoparticle, are described by Ising spin variables
take on valuess i561. The nanoparticle is assumed to
very small, so that it constitutes a monodomain. In additi
according to experimental results,6 an uniaxial anisotropy is
implicit in the model, with the easy axis coinciding with th
Ising spin direction. Therefore the energy of the system
written as

H52(
^ i , j &

Ji j s is j2H(
i

s i , ~1!

where only the exchange coupling between nearest neigh
is considered, withJi j as the exchange coupling constant a
H is the applied magnetic field.

Having defined the relevant spins that describe the sys
we start by writing the dynamical equations for the avera
spin magnetizations,

mi~ t !5^s i&5(
s

s i P~s,t !, ~2!

FIG. 1. Schematic representation of an hexagonal nanopar
exhibiting three shells of spins~small circles!. The representative
spins that compose the set of equations for this particle are re
sented by solid circles. The dashed lines evidence the sixfold s
metry.
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and the pair correlation functions

r i j ~ t !5^s is j&5(
s

s is j P~s,t !, ~3!

where the indexi, as well asj, designates a spin site and th
sum overs accounts for all the spin configurations. Since w
restrict our model to take into account only pair correlatio
the probability of a given spin configuration is written as10

P~s,t !5
1

2N H 11(
i

s imi~ t !1(
i , j

s is j r i j ~ t !J , ~4!

whereN is the total number of spins.
The time evolution of the system is obtained by means

the master equation for the probabilities,

dP~s,t !

dt
5(

s8
$P~s8,t !w~s8,s!2P~s,t !w~s,s8!%,

~5!

with w(s8,s) as the transition probability per unit time from
the spin configurations8 to configurations. Here we as-
sume that the dynamics of the system is governed by sin
spin-flip transitions, which can be mathematically describ
by the Glauber formalism10

wi~s i !5
1

2t
$12s ig%, ~6!

with

g~J,b,H !5tanhF S (
j

Ji j s j1H D /kBTG[tanh~D i !, ~7!

wherekB is the Boltzmann constant,T is the absolute tem-
perature, andt is the relaxation time for a single spin. Th
dynamical rule is chosen so that the transition probabilit
wi(s i) depend on the spin value ofs i as well as on the
values of its nearest neighbors.

Using Eqs.~5!–~7! we obtain after some algebraic ma
nipulation the dynamical equations formi(t) and r i j (t):

dmi~ t !

dt
52

1

t H mi~ t !2(
s

tanh~D i !Pi~s,t !J , ~8!

dri j ~ t !

dt
52

1

t H 2r i j ~ t !2(
s

@s i tanh~D j !

1s j tanh~D i !#Pi j ~s,t !J . ~9!

In principle, our task is to integrate these equations to ob
the time evolution of the variables of interest. Within th
Bethe-Peierls approximation,11 we assume that only the cor
relations between pairs of nearest neighbors are nonzero
write the following equation forPi(s):
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Pi~s!5

)
a

Ni

P~s i ,sa!

PNi21~s i !
, ~10!

whereNi is the coordination number of the lattice sitei and
for Pi j (s),

Pi j ~s!5
P~s i ,s j !

PNi21~s i !P
Nj 21~s j !

)
a

Ni

P~s i ,sa!)
b

Nj

P~s i ,sb!.

~11!

It is important to notice thatNi is different for the surface
spins.P(s i) andP(s i ,s j ) are obtained from expression~4!
taking as nonzero only the nearest-neighbor correlation fu
tions:

P~s i !5
1

2
~11mis i !, ~12!

P~s i ,s j !5
1

4
~11mis i1mjs j1r i j s is j !. ~13!

Substituting expressions~10! and~11! into the dynamical
equations~8! and~9! yields, after a straightforward manipu
lation, a closed system of equations for the spin magnet
tions @mi(t)# and nearest-neighbor pair correlation functio
@r i j (t)# that can be solved numerically,

t
dmi~ t !

dt
1mi~ t !5 (

k50

Ni H t62k

xi
5

V̂ kZi~$Ni%!1
tk

yi
5
Û kWi~$Ni%!J ,

~14!

t
dri j ~ t !

dt
12r i j ~ t !5@j i # j1@j j # i , ~15!

with

@j i # j5 (
k50

Nj 21

$@zi # j t62k2@v i # j t52k%
V̂ kZj~$Nj%!

xj
5

1 (
k50

Nj 21

$@ui # j t11k2@wi # j tk%
Û kWj~$Nj%!

yj
5

, ~16!

and @j j # i obtained by the simple exchange of the indicei
and j in Eq. ~16!. Refer to the Appendix for a definition o
the symbols. We also define the products

Zj~$Nj%!5)
a

Nj

@za# j , ~17!

Wj~$Nj%!5)
a

Nj

@wa# j , ~18!

upon which act the operators

V̂ k[ (
a1,•••,ak

@va1
# j•••@vak

# j

@za1
# j•••@zak

# j
, ~19!
14442
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Û k[ (
a1,•••,ak

@ua1
# j•••@uak

# j

@wa1
# j•••@wak

# j
, ~20!

which generate all the possible configurations of the clus
In the case of Eq.~14! the independent indicesak stand for
all the nearest neighbors (1<ak<6) of a given spins j , as
depicted in Fig. 2~a!. When calculating the pair correlation
r i j 5^s is j&, 1<ak<5, to avoid counting the pair twice, a
shown in Fig. 2~b! for spinss i ands j . Fork50, V̂ 051 and
Û 051. The parametertk is related to the transition rate of
spin:

tk5tanhS 2J~k23!1H

kBT D . ~21!

The results comprehending Eqs.~14!–~20! correspond to the
caseJi j 5J. To account for the more complex case of diffe
entJi j in heterogeneous nanoparticlesV̂ k andÛ k have to be
modified to incorporate a generalized parametertk . This is
done in the Appendix.

III. RESULTS AND DISCUSSIONS

In this section we describe the properties of the model
show that it accounts for many of the phenomena prese
by magnetic nanoparticle systems.

We start by discussing the properties of the hysteresis
noninteracting homogeneous ferromagnetic nanoparticles
yielded by the present model. For this purpose consider
3~a! where hysteresis loops for three different nanoparti
sizesR51, 2, and 11 are shown.R is the number of shells
and can be associated with the radius of the nanoparticle
define the total magnetization of the nanoparticleM
[( imi(t)/N, where the sum runs over all the spins of t
nanoparticle (N). The smallest nanoparticle (R51) has van-
ishing coercive field and its magnetization is well fitted by
Langevin function, whereas the bigger particles (R52 –11)

FIG. 2. ~a! A cluster formed by spins j and its six nearest
neighbors.~b! A cluster formed by the pairs is j and their nearest
neighbors.
4-3
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LUIS G. C. REGO AND WAGNER FIGUEIREDO PHYSICAL REVIEW B64 144424
exhibit typical hysteresis loops of ferromagnetic nanop
ticles. Figure 3~b! shows the dependence of the coercive fi
(HC) on the number of shells of the nanoparticle, by plotti
HC as a function ofR21.6, for the reduced temperaturekBT
53J. This graph demonstrates that the functional relat
HC;R21.6 fits very well the results of our calculations fo
nanoparticles of size 2<R<10, with the exception of the
R51 andR511 cases. The former is in the superparam
netic regime, as indicated by Fig. 3~a!, whereas the last al
ready starts to behave as an infinite system. The same be
ior exhibited byHC in Fig. 3~b! is obtained for the reduce
temperaturekBT51.5J. According to our calculations, fo
R.10 the Curie temperature (TC) of the nanoparticle ap
proaches theTC of an infinite cubic system, as yielded by th
Bethe-Peierls relation coth@J/kBTC#55.9 Calculations for a
square lattice showed thatHC;L21.5 for small clusters,
whereL stands for its lateral dimension. Finally, we point o
that the mechanism of magnetization reversal that ta
place in our nanoparticle is not entirely coherent. Becaus
their smaller coordination number, the average magnetiza
(mi) of the outside spin shells decreases by the action of
reverse fieldH, consequently also decreasing the magnet
tion of their neighboring shells and creating a nonunifo
magnetization profile. Eventually, whenH reachesHC , all
spins flip together. This process should be responsible
easier magnetization rotation and lower switching fields th
those given by the Stoner-Wohlfarth model.

In the remainder of this section we consider the proper

FIG. 3. ~a! Hysteresis loops for various nanoparticle sizes:R
51, 2, and 11. The reduced temperature isT53J/kB , where J
51 is the exchange coupling constant andkB is the Boltzmann
constant.~b! The coercive field (HC in units of J) plotted as a
function of R21.6. From right to left, the dots correspond toR
52,3, . . . ,11 and thestraight line results from a linear fit to
the data.
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of heterogeneous nanoparticles, which are more comp
systems, e.g., consisting of ferromagnetic and antiferrom
netic ~or ferrimagnetic! regions coupled with each other. Ex
amples of such systems are oxide-coated cobalt~Co! or iron
~Fe! nanoparticles,3 among many others that exhibit the e
change anisotropy effect.13,14When cooled in the presence o
an external magnetic field the soft ferromagnetic core of
particle aligns with the applied field but its outer antiferr
magnetic~AF! surface gets ordered only when the tempe
ture of the system is lower thanTN ~Néel temperature!.12 The
coupling of the ferromagnetic core with the antiferroma
netic surface therefore produces a unidirectional excha
anisotropy that shifts the hysteresis loop to higher or low
magnetic fields, depending on their mutual orientation. H
ing said that, consider an eight-shell nanoparticle with
following characteristics: the exchange interactions in
core (R50 –7) are given by the coupling parameterJC51,
the outmost shell (R58) is also ferromagnetic with an ex
change constantJS55, and the coupling between theR57
and R58 shells is due to an antiferromagnetic exchan
constantJC-S524. The hysteresis we obtain with our fo
malism is shown in Fig. 4~a!, which presents a clear ex
change shift. Figure 4~b! shows the magnetization curves
individual spins within the nanoparticle: in the center of t
nanoparticle (S0), in the sixth shell (S6), in the seventh shel
(S7), and in the surface shell (S8). As evidenced by this
graph, the surface shell and the layer just below it are loc
in a very stable AF configuration, whereas the average m
netization of the inner ferromagnetic shells varies gradua
towards the center of the particle. For the sake of comp
son, we have also calculated the hysteresis for the same
tem, but using a simple mean-field approach, whose res

FIG. 4. ~a! Hysteresis loop for a nanoparticle of radiusR58.
Here JC51 for R<7, JS55 in the surfaceR58, andJC-S524
couples the core and surface regions.~b! Individual magnetization
curves for the center spin (S0), a spin in the sixth shell (S6), a spin
in the seventh shell (S7), and a spin in the surface shell (S8). ~c!
Same parameters as in~a! using a simple mean-field approach, th
exchange shift disappears.~d! Same as~b! for a simple mean field.
The reduced temperature iskBT53.5JC for all curves.
4-4



d
th
p
g

d

es
e

og

th
e
th
a
t

as
g
b

he

s
r

th

e
-

-
ed

io
t

or
t,
a
i
a
ri
u
e

rgy

the

all;

ergy
rre-
y is

re
id-

re

re

MAGNETIC PROPERTIES OF NANOPARTICLES IN THE . . . PHYSICAL REVIEW B 64 144424
are shown in Figs. 4~c! and 4~d!. For the standard mean-fiel
equations each spin experiences only an effective field
can be seen as an average interaction with all the other s
and, consequently, the exchange shift disappears. Lookin
the individual spin magnetizations@Fig. 4~d!# it is evident
that there is no correlation between the surface and core
mains.

Another important experimental technique used to inv
tigate the properties of magnetic nanoparticles is the fi
cooling ~FC! and zero-field cooling~ZFC! magnetization
measurements. For an ensemble of noninteracting hom
neous particles the blocking temperature (TB) is related to
the magnetic anisotropy constant and the volume of
nanoparticle.12 For a system of interacting nanoparticles s
Ref. 5. The blocking temperature, where the maximum of
ZFC curve occurs, indicates the point in which the therm
energy is comparable to the average anisotropy barrier in
nanoparticles, and beyond it the magnetization decre
with temperature. In the following we show a deblockin
behavior that is caused only by the exchange interaction
tween antiferromagnetic and ferromagnetic regions in
single nanoparticle. For that purpose consider a six-s
nanoparticle whose core is predominantly AF,JC520.5J0
for R50 –5, with a ferromagnetic surface,JS52J0 for R
56, which is ferromagnetically coupled with the core,JCS
51J0 betweenR55 and R56. The energy parameter i
J051 and the time taken to sweep over the whole tempe
ture interval ists5104t, with t appearing in Eqs.~8! and~9!.
The calculations were performed in accordance with
standard FC-ZFC experimental practice.15 The obtained FC
~solid line! and ZFC~dashed line! magnetization curves ar
shown in Figs. 5~a!–5~f! as a function of the reduced tem
perature, for values of the applied field that vary fromH
50.05uJ0u to H50.0001uJ0u. HereM is the normalized mag
netization of the entire nanoparticle, as previously defin
Because it corresponds to a single particle,TB is sharply
marked and does not exhibit the characteristic dispers
caused by the size distribution of the particles. According
our calculations,TB is not strongly dependent onJC ; how-
ever, it does depend onJSC andJS . Figure 5 shows that the
blocking temperature occurs just about the rangeJCS
<kBTB<JS , which has been confirmed in calculations f
different nanoparticle parameters~size, exchange constan
and ts!. Despite being observed to take place for nanop
ticles of different sizes, the blocking temperature effect
very sensitive to the relative strengths between the ferrom
netic and antiferromagnetic exchange constants. For cla
Fig. 6 displays the relation between the average magnit
of the energies associated with the parallel spin alignm
(UF1UH) and antiparallel spin alignment (UAF) configura-
tions within the particle,

UF5K (
^ i , j &

JSs is j1 (
^k,l &

JCSsks l L 5JS(
^ i , j &

r i j 1JCS(
^k,l &

r kl ,

~22!

UH5HK (
i

s i L 5H(
i

mi , ~23!
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UAF5K (
^ i , j &

JCs is j L 5JC(
^ i , j &

r i j , ~24!

in terms of which we define the differential exchange ene
DXC[(UF1UH2UAF)/(UF1UH1UAF). Solid and dashed
lines represent FC and ZFC processes, respectively, and
arrows indicate their dynamics. The contribution of theUH
term to the total energy of the nanoparticle is very sm
however, it is responsible for the deblocking behavior atTB .
At the high-temperature regime the average exchange en
is nonzero, because of a remaining finite short-range co
lation between nearest-neighbor pairs. Most of the energ
due to the ferromagnetic ordering. During the ZFC~dashed

FIG. 5. FC~solid! and ZFC~dashed! curves of the total normal-
ized magnetization~M! as a function of the reduced temperatu
kBT/J0. Different values for the applied magnetic field are cons
ered, fromH50.05uJ0u in ~a! throughH50.0001uJ0u in ~f!, as in-
dicated in the figures. The nanoparticle consists ofR56 shells, with
an AF core (JC520.5J0, for 0<R<5), a ferromagnetic surface
(JS52J0 within R56), and a ferromagnetic coupling between co
and surface (JCS51J0, betweenR55 andR56).

FIG. 6. Differential exchange energyDXC[(UF1UH

2UAF)/(UF1UH1UAF) as a function of the reduced temperatu
kBT/J0. The applied field isH50.001uJ0u.
4-5
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line! the AF core overwhelms the ferromagnetic surface a
forces the magnetization of the whole nanoparticle to van
Then, in the subsequent heating, even a very small app
field is enough to trigger the alignment of the ferromagne
surface, which is evidenced by the relative increase of
ferromagnetic energy. On the other hand, during the FC p
cess the applied field is able to magnetize the nanopartic
higher temperatures, before the AF correlations of the c
become too strong. Therefore, the interplay between AF
F exchange energies gives rise to the hysteresis in temp
ture that we observe in the FC-ZFC calculations.

IV. CONCLUSIONS

We have developed an approach to calculate the clas
magnetic properties of single-domain nanoparticles. Trea
the nearest-neighbor pair correlation functions explicitly
were able to obtain a simple set of equations for the mag
tization at any point in the particle. In addition, Eqs.~14! and
~15! can also account for the inclusion of interactions b
tween next-nearest neighbors in a straightforward manne
incorporating the correspondingJi j into the operators~A5!
and~A6! and increasing the coordination numberNj of each
spin. The method can be applied to different lattice geo
etries and extended to 3D systems. The formalism treats
rectly the short-range correlations that arise in heterogene
nanoparticles, which have regions of different magne
properties, e.g., oxidized ferromagnetic particles. Such s
correlations were evidenced by the observation of the
change shift in hysteresis loops and by the blockin
deblocking effect in the FC-ZFC calculations.
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APPENDIX

Here we define some of the notation used in Sec.
Based on Eq.~4!, Eq. ~14!, and~15! are written out in terms
of the following simple functions:

xi5
11mi

2
, yi5

12mi

2
, ~A1!
J

,
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@zi # j5
11mi1mj1r i j

4
,@wi # j5

12mi2mj1r i j

4
, ~A2!

@v i # j5
12mi1mj2r i j

4
,@ui # j5

11mi2mj2r i j

4
, ~A3!

where@zi # j5@zj # i and @wi # j5@wj # i . As already mentioned
in the main text, the parametertk in Eqs. ~14! and ~15! is
related to the transition rate of a spin,

tk5tanhS 2J~k23!1H

kBT D , ~A4!

for Ji j 5J and in accordance with the definitions given in t
main text. For the case of general exchange constants (Ji j ),
the term tk must be generalized and incorporated into
operatorsV̂ k and Û k,

V̂ k[ (
a1,•••,ak

@va1
# j•••@vak

# j

@za1
# j•••@zak

# j

3tanhS (
b51

Nj

Jb j22~Ja1 j1•••1Jakj !1H

kBT
D

~A5!

Û k[ (
a1,•••,ak

@ua1
# j•••@uak

# j

@wa1
# j•••@wak

# j

3tanhS (
b51

Nj

Jb j22~Ja1 j1•••1Jakj !1H

kBT
D ,

~A6!

so that, fork50,

V̂ 0[tanhS (
b51

Nj

Jb j1H

kBT
D , ~A7!

Û 0[tanhS (
b51

Nj

Jb j1H

kBT
D . ~A8!
n

.

n

ys.

.
tt.
.

.
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